CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 86 results for author: <span class="mathjax">Ahmed, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Ahmed%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ahmed, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ahmed%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ahmed, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Ahmed%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Ahmed%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Ahmed%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14258">arXiv:2409.14258</a> <span> [<a href="https://arxiv.org/pdf/2409.14258">pdf</a>, <a href="https://arxiv.org/format/2409.14258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Improvement of NACA6309 Airfoil with Passive Air-Flow Control by using Trailing Edge Flap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shanto%2C+M+H">Mahadi Hasan Shanto</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+T">Sayed Tanvir Ahmed</a>, <a href="/search/physics?searchtype=author&query=Ashikuzzaman%2C+A+K+M">A K M Ashikuzzaman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14258v1-abstract-short" style="display: inline;"> When fossil fuel supplies can no longer be replenished and hence fossil fuel power generation becomes outdated, wind energy will become a vital solution to the impending energy crisis. A horizontal-axis wind turbine is a widely used technology that is highly dependent on the design of high-performing airfoils. In this paper, we have studied the performance of the NACA6309 airfoil and designed it b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14258v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14258v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14258v1-abstract-full" style="display: none;"> When fossil fuel supplies can no longer be replenished and hence fossil fuel power generation becomes outdated, wind energy will become a vital solution to the impending energy crisis. A horizontal-axis wind turbine is a widely used technology that is highly dependent on the design of high-performing airfoils. In this paper, we have studied the performance of the NACA6309 airfoil and designed it by modifying the airfoil with a trailing edge plain flap. Computational Fluid Dynamic (CFD) simulations are utilized for this purpose. We have designed sixteen configurations of NACA 6309 airfoil by using plain flaps at the trailing edge and studied their aerodynamic performance. After comparing the lift, drag, and lift-to-drag ratios, it is evident that the \(1^\circ\) up-flap configuration generates the best output. In addition, the \(10^\circ\) down flap provides the worst performance among all configurations. Finally, pressure contours and velocity contours around the airfoils are presented, which describe the overall characteristics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14258v1-abstract-full').style.display = 'none'; document.getElementById('2409.14258v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13922">arXiv:2409.13922</a> <span> [<a href="https://arxiv.org/pdf/2409.13922">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Effects of Trailing Edge Thickness on NACA 4412 Airfoil Performance at Low Reynolds Numbers: A CFD Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+T">Sayed Tanvir Ahmed</a>, <a href="/search/physics?searchtype=author&query=Shanto%2C+M+H">Mahadi Hasan Shanto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13922v1-abstract-short" style="display: inline;"> Due to the augmentation of the significance of wind energy, giving a high priority to the \text{airfoil's} efficiency enhancement is obligatory. To improve the performance of airfoils, many impressive techniques are already invented. In this article, the trailing edge of the NACA 4412 airfoil is modified by changing the thickness. CFD is used in this study, which aids in the identification of seve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13922v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13922v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13922v1-abstract-full" style="display: none;"> Due to the augmentation of the significance of wind energy, giving a high priority to the \text{airfoil's} efficiency enhancement is obligatory. To improve the performance of airfoils, many impressive techniques are already invented. In this article, the trailing edge of the NACA 4412 airfoil is modified by changing the thickness. CFD is used in this study, which aids in the identification of several important details. For our investigation, we choose the reliable Spalart Almaras model and the Reynolds number is 300k. Overall, the results demonstrate that using \(0.8\%\) thickness at the trailing edge of the NACA 4412 airfoil is viable to obtain the best output. The predominant reason is that not only the better coefficient of lift but also the preferable lift-to-drag \(\frac{C_L}{C_D}\) ratio is found in this configuration. However, using \(0.2\%\) thickness at the trailing edge reduces performance as a whole. So, it is recommended to utilize \(0.2\%\) thickness on the trailing edge of the NACA 4412 airfoil. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13922v1-abstract-full').style.display = 'none'; document.getElementById('2409.13922v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16880">arXiv:2408.16880</a> <span> [<a href="https://arxiv.org/pdf/2408.16880">pdf</a>, <a href="https://arxiv.org/format/2408.16880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.27.084802">10.1103/PhysRevAccelBeams.27.084802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Continuous Electron Beam Accelerator Facility at 12 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adderley%2C+P+A">P. A. Adderley</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+T">T. Allison</a>, <a href="/search/physics?searchtype=author&query=Bachimanchi%2C+R">R. Bachimanchi</a>, <a href="/search/physics?searchtype=author&query=Baggett%2C+K">K. Baggett</a>, <a href="/search/physics?searchtype=author&query=BastaniNejad%2C+M">M. BastaniNejad</a>, <a href="/search/physics?searchtype=author&query=Bevins%2C+B">B. Bevins</a>, <a href="/search/physics?searchtype=author&query=Bevins%2C+M">M. Bevins</a>, <a href="/search/physics?searchtype=author&query=Bickley%2C+M">M. Bickley</a>, <a href="/search/physics?searchtype=author&query=Bodenstein%2C+R+M">R. M. Bodenstein</a>, <a href="/search/physics?searchtype=author&query=Bogacz%2C+S+A">S. A. Bogacz</a>, <a href="/search/physics?searchtype=author&query=Bruker%2C+M">M. Bruker</a>, <a href="/search/physics?searchtype=author&query=Burrill%2C+A">A. Burrill</a>, <a href="/search/physics?searchtype=author&query=Cardman%2C+L">L. Cardman</a>, <a href="/search/physics?searchtype=author&query=Creel%2C+J">J. Creel</a>, <a href="/search/physics?searchtype=author&query=Chao%2C+Y+-">Y. -C. Chao</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+G">G. Cheng</a>, <a href="/search/physics?searchtype=author&query=Ciovati%2C+G">G. Ciovati</a>, <a href="/search/physics?searchtype=author&query=Chattopadhyay%2C+S">S. Chattopadhyay</a>, <a href="/search/physics?searchtype=author&query=Clark%2C+J">J. Clark</a>, <a href="/search/physics?searchtype=author&query=Clemens%2C+W+A">W. A. Clemens</a>, <a href="/search/physics?searchtype=author&query=Croke%2C+G">G. Croke</a>, <a href="/search/physics?searchtype=author&query=Daly%2C+E">E. Daly</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+G+K">G. K. Davis</a>, <a href="/search/physics?searchtype=author&query=Delayen%2C+J">J. Delayen</a> , et al. (114 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16880v1-abstract-short" style="display: inline;"> This review paper describes the energy-upgraded CEBAF accelerator. This superconducting linac has achieved 12 GeV beam energy by adding 11 new high-performance cryomodules containing eighty-eight superconducting cavities that have operated CW at an average accelerating gradient of 20 MV/m. After reviewing the attributes and performance of the previous 6 GeV CEBAF accelerator, we discuss the upgrad… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16880v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16880v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16880v1-abstract-full" style="display: none;"> This review paper describes the energy-upgraded CEBAF accelerator. This superconducting linac has achieved 12 GeV beam energy by adding 11 new high-performance cryomodules containing eighty-eight superconducting cavities that have operated CW at an average accelerating gradient of 20 MV/m. After reviewing the attributes and performance of the previous 6 GeV CEBAF accelerator, we discuss the upgraded CEBAF accelerator system in detail with particular attention paid to the new beam acceleration systems. In addition to doubling the acceleration in each linac, the upgrade included improving the beam recirculation magnets, adding more helium cooling capacity to allow the newly installed modules to run cold, adding a new experimental hall, and improving numerous other accelerator components. We review several of the techniques deployed to operate and analyze the accelerator performance, and document system operating experience and performance. In the final portion of the document, we present much of the current planning regarding projects to improve accelerator performance and enhance operating margins, and our plans for ensuring CEBAF operates reliably into the future. For the benefit of potential users of CEBAF, the performance and quality measures for beam delivered to each of the experimental halls is summarized in the appendix. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16880v1-abstract-full').style.display = 'none'; document.getElementById('2408.16880v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">66 pages, 73 figures, 21 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-ACC-23-3940 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 27 (2024) 084802 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02338">arXiv:2408.02338</a> <span> [<a href="https://arxiv.org/pdf/2408.02338">pdf</a>, <a href="https://arxiv.org/format/2408.02338">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.icarus.2024.116253">10.1016/j.icarus.2024.116253 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling the Plasma Composition of 67P/C-G at different Heliocentric Distances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Sana Ahmed</a>, <a href="/search/physics?searchtype=author&query=Soni%2C+V">Vikas Soni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02338v1-abstract-short" style="display: inline;"> The Rosetta spacecraft accompanied the comet 67P/C-G for nearly 2 years, collecting valuable data on the neutral and ion composition of the coma. The Rosetta Plasma Consortium (RPC) provided continuous measurements of the in situ plasma density while ROSINA-COPS monitored the neutral composition. In this work, we aim to estimate the composition of the cometary ionosphere at different heliocentric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02338v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02338v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02338v1-abstract-full" style="display: none;"> The Rosetta spacecraft accompanied the comet 67P/C-G for nearly 2 years, collecting valuable data on the neutral and ion composition of the coma. The Rosetta Plasma Consortium (RPC) provided continuous measurements of the in situ plasma density while ROSINA-COPS monitored the neutral composition. In this work, we aim to estimate the composition of the cometary ionosphere at different heliocentric distances of the comet. Lauter et al. (2020) derived the temporal evolution of the volatile sublimation rates for 50 separated time intervals on the orbit of 67P/C-G using the COPS and DFMS data. We use these sublimation rates as inputs in a multifluid chemical-hydrodynamical model for 36 of the time intervals for heliocentric distances < 3 au. We compare the total ion densities obtained from our models with the local plasma density measured by the RPC instruments. We find that at the location of the spacecraft, our modeled ion densities match with the in situ measured plasma density within factors of 1 - 3 for many of the time intervals. We obtain the cometocentric distance variation of the ions H2O+ and H3O+ and the ion groups created respectively by the ionization and protonation of neutral species. We see that H3O+ is dominant at the spacecraft location for nearly all the time intervals while ions created due to protonation are dominant at low cometocentric distances for the intervals near perihelion. We also discuss our ion densities in the context of their detection by DFMS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02338v1-abstract-full').style.display = 'none'; document.getElementById('2408.02338v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Icarus</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Icarus 422 (2024) 116253 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08696">arXiv:2405.08696</a> <span> [<a href="https://arxiv.org/pdf/2405.08696">pdf</a>, <a href="https://arxiv.org/format/2405.08696">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Demonstration of magnetically silent optically pumped magnetometers for the TUCAN electric dipole moment experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Klassen%2C+W">Wolfgang Klassen</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shomi Ahmed</a>, <a href="/search/physics?searchtype=author&query=Grehan%2C+K+P">Kiera Pond Grehan</a>, <a href="/search/physics?searchtype=author&query=Hovde%2C+C">Chris Hovde</a>, <a href="/search/physics?searchtype=author&query=Madison%2C+K+W">Kirk W. Madison</a>, <a href="/search/physics?searchtype=author&query=Mammei%2C+R+R">Russel R. Mammei</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+J+W">Jeffery W. Martin</a>, <a href="/search/physics?searchtype=author&query=McCrea%2C+M">Mark McCrea</a>, <a href="/search/physics?searchtype=author&query=Mohammadi%2C+T">Tahereh Mohammadi</a>, <a href="/search/physics?searchtype=author&query=Momose%2C+T">Takamasa Momose</a>, <a href="/search/physics?searchtype=author&query=Opsahl%2C+P">Patrick Opsahl</a>, <a href="/search/physics?searchtype=author&query=Ostapchuk%2C+D+C+M">David C. M. Ostapchuk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08696v2-abstract-short" style="display: inline;"> We report the performance of a magnetically silent optically pumped cesium magnetometer with a statistical sensitivity of 3.5 pT/rtHz at 1~Hz and a stability of 90 fT over 150 seconds of measurement. Optical pumping with coherent, linearly-polarized, resonant light leads to a relatively long-lived polarized ground state of the cesium vapour contained in a measurement cell. The state precesses at i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08696v2-abstract-full').style.display = 'inline'; document.getElementById('2405.08696v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08696v2-abstract-full" style="display: none;"> We report the performance of a magnetically silent optically pumped cesium magnetometer with a statistical sensitivity of 3.5 pT/rtHz at 1~Hz and a stability of 90 fT over 150 seconds of measurement. Optical pumping with coherent, linearly-polarized, resonant light leads to a relatively long-lived polarized ground state of the cesium vapour contained in a measurement cell. The state precesses at its Larmor frequency in the magnetic field to be measured. Nonlinear magneto-optical rotation then leads to the rotation of the plane of polarization of a linearly polarized probe laser beam. The rotation angle is modulated at twice the Larmor frequency. A measurement of this frequency constitutes an absolute measurement of the magnetic field magnitude. Featuring purely optical operation, non-magnetic construction, low noise floor, and high stability, this sensor will be used for the upcoming TUCAN electric dipole moment experiment and other highly sensitive magnetic applications. Novel aspects of the system include commercial construction and the ability to operate up to 24 sensors on a single probe laser diode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08696v2-abstract-full').style.display = 'none'; document.getElementById('2405.08696v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures. Submitted to The European Physical Journal C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01050">arXiv:2401.01050</a> <span> [<a href="https://arxiv.org/pdf/2401.01050">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Gold Nanoparticles Coated Optical Fiber for Real-time Localized Surface Plasmon Resonance Analysis of In-situ Light-Matter Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hossain%2C+N+I">Nafize Ishtiaque Hossain</a>, <a href="/search/physics?searchtype=author&query=Hossain%2C+K+Z">Kazi Zihan Hossain</a>, <a href="/search/physics?searchtype=author&query=Monwar%2C+M">Momena Monwar</a>, <a href="/search/physics?searchtype=author&query=Apon%2C+M+S">Md. Shihabuzzaman Apon</a>, <a href="/search/physics?searchtype=author&query=Shaw%2C+C">Caleb Shaw</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shoeb Ahmed</a>, <a href="/search/physics?searchtype=author&query=Tabassum%2C+S">Shawana Tabassum</a>, <a href="/search/physics?searchtype=author&query=Khan%2C+M+R">M. Rashed Khan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01050v1-abstract-short" style="display: inline;"> In situ measurement of analytes for in vivo or in vitro systems has been challenging due to the bulky size of traditional analytical instruments. Also, frequent in vitro concentration measurements rely on fluorescence-based methods or direct slicing of the matrix for analyses. These traditional approaches become unreliable if localized and in situ analyses are needed. In contrast, for in situ and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01050v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01050v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01050v1-abstract-full" style="display: none;"> In situ measurement of analytes for in vivo or in vitro systems has been challenging due to the bulky size of traditional analytical instruments. Also, frequent in vitro concentration measurements rely on fluorescence-based methods or direct slicing of the matrix for analyses. These traditional approaches become unreliable if localized and in situ analyses are needed. In contrast, for in situ and real-time analysis of target analytes, surface-engineered optical fibers can be leveraged as a powerful miniaturized tool, which has shown promise from bio to environmental studies. Herein, we demonstrate an optical fiber functionalized with gold nanoparticles using a dip-coating process to investigate the interaction of light with molecules at or near the surface of the optical fiber. Localized surface plasmon resonance from the light-matter interaction enables the detection of minute changes in the refractive index of the surrounding medium. We used this principle to assess the in situ molecular distribution of a synthetic drug (methylene blue) in an in vitro matrix (agarose gel) having varying concentrations. Leveraging the probed Z-height in diffused analytes, combined with its in silico data, our platform shows the feasibility of a simple optofluidic tool. Such straightforward in situ measurements of analytes with optical fiber hold potential for real-time molecular diffusion and molecular perturbation analyses relevant to biomedical and clinical studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01050v1-abstract-full').style.display = 'none'; document.getElementById('2401.01050v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00901">arXiv:2311.00901</a> <span> [<a href="https://arxiv.org/pdf/2311.00901">pdf</a>, <a href="https://arxiv.org/format/2311.00901">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Closed Loop Testing of Microphonics Algorithms Using a Cavity Emulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Raman%2C+S">S. Raman</a>, <a href="/search/physics?searchtype=author&query=Varghese%2C+P">P. Varghese</a>, <a href="/search/physics?searchtype=author&query=Chase%2C+B">B. Chase</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Fulz%2C+C">C. Fulz</a>, <a href="/search/physics?searchtype=author&query=Hanlet%2C+P">P. Hanlet</a>, <a href="/search/physics?searchtype=author&query=Klepec%2C+D">D. Klepec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00901v2-abstract-short" style="display: inline;"> An analog crystal filter based cavity emulator is modified with reverse biased varactor diodes to provide a tuning range of around 160 Hz. The piezo drive voltage of the resonance controller is used to detune the cavity through the bias voltage. A signal conditioning and summing circuit allows the introduction of microphonics disturbance from a signal source or using real microphonics data from ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00901v2-abstract-full').style.display = 'inline'; document.getElementById('2311.00901v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00901v2-abstract-full" style="display: none;"> An analog crystal filter based cavity emulator is modified with reverse biased varactor diodes to provide a tuning range of around 160 Hz. The piezo drive voltage of the resonance controller is used to detune the cavity through the bias voltage. A signal conditioning and summing circuit allows the introduction of microphonics disturbance from a signal source or using real microphonics data from cavity testing. This setup is used in closed loop with a cavity controller and resonance controller to study the effectiveness of resonance control algorithms suitable for superconducting cavities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00901v2-abstract-full').style.display = 'none'; document.getElementById('2311.00901v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster presented at LLRF Workshop 2023 (LLRF2023, arXiv: 2311.00901)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLRF2023/27 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00900">arXiv:2311.00900</a> <span> [<a href="https://arxiv.org/pdf/2311.00900">pdf</a>, <a href="https://arxiv.org/format/2311.00900">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> LLRF System for the Fermilab PIP-II Superconducting LINAC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Varghese%2C+P">P. Varghese</a>, <a href="/search/physics?searchtype=author&query=Chase%2C+B">B. Chase</a>, <a href="/search/physics?searchtype=author&query=Cullerton%2C+E">E. Cullerton</a>, <a href="/search/physics?searchtype=author&query=Raman%2C+S">S. Raman</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Hanlet%2C+P">P. Hanlet</a>, <a href="/search/physics?searchtype=author&query=Klepec%2C+D">D. Klepec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00900v2-abstract-short" style="display: inline;"> PIP-II is an 800 MEV superconducting linac that is in the initial acceleration chain for the Fermilab accelerator complex. The RF system consists of a warm front-end with an ion source, RFQ and buncher cavities along with 25 superconducting cryo-modules comprised of five different acceleration \(尾\). The LLRF system for the LINAC has to provide field and resonance control for a total of 125 RF cav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00900v2-abstract-full').style.display = 'inline'; document.getElementById('2311.00900v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00900v2-abstract-full" style="display: none;"> PIP-II is an 800 MEV superconducting linac that is in the initial acceleration chain for the Fermilab accelerator complex. The RF system consists of a warm front-end with an ion source, RFQ and buncher cavities along with 25 superconducting cryo-modules comprised of five different acceleration \(尾\). The LLRF system for the LINAC has to provide field and resonance control for a total of 125 RF cavities.The LLRF system design is in the final design review phase and will enter the production phase next year. The PIP-II project is an international collaboration with various partner labs contributing subsystems. The LLRF system design for the PIP-II Linac is presented and the specification requirements and system performance in various stages of testing are described in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00900v2-abstract-full').style.display = 'none'; document.getElementById('2311.00900v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at LLRF Workshop 2023 (LLRF2023, arXiv: 2311.00900)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLRF2023/25 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02309">arXiv:2310.02309</a> <span> [<a href="https://arxiv.org/pdf/2310.02309">pdf</a>, <a href="https://arxiv.org/format/2310.02309">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Parameter estimation by learning quantum correlations in continuous photon-counting data using neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/physics?searchtype=author&query=Lastre%2C+M+G">Manuel Gonz谩lez Lastre</a>, <a href="/search/physics?searchtype=author&query=Herreros%2C+S+G">Sergio Garc铆a Herreros</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shahnawaz Ahmed</a>, <a href="/search/physics?searchtype=author&query=Khanahmadi%2C+M">Maryam Khanahmadi</a>, <a href="/search/physics?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz%2C+C+S">Carlos S谩nchez Mu帽oz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02309v1-abstract-short" style="display: inline;"> We present an inference method utilizing artificial neural networks for parameter estimation of a quantum probe monitored through a single continuous measurement. Unlike existing approaches focusing on the diffusive signals generated by continuous weak measurements, our method harnesses quantum correlations in discrete photon-counting data characterized by quantum jumps. We benchmark the precision… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02309v1-abstract-full').style.display = 'inline'; document.getElementById('2310.02309v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02309v1-abstract-full" style="display: none;"> We present an inference method utilizing artificial neural networks for parameter estimation of a quantum probe monitored through a single continuous measurement. Unlike existing approaches focusing on the diffusive signals generated by continuous weak measurements, our method harnesses quantum correlations in discrete photon-counting data characterized by quantum jumps. We benchmark the precision of this method against Bayesian inference, which is optimal in the sense of information retrieval. By using numerical experiments on a two-level quantum system, we demonstrate that our approach can achieve a similar optimal performance as Bayesian inference, while drastically reducing computational costs. Additionally, the method exhibits robustness against the presence of imperfections in both measurement and training data. This approach offers a promising and computationally efficient tool for quantum parameter estimation with photon-counting data, relevant for applications such as quantum sensing or quantum imaging, as well as robust calibration tasks in laboratory-based settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02309v1-abstract-full').style.display = 'none'; document.getElementById('2310.02309v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures, code is available at http://github.com/CarlosSMWolff/ParamEst-NN</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05574">arXiv:2309.05574</a> <span> [<a href="https://arxiv.org/pdf/2309.05574">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Vacancy-Engineered Phonon Polaritons in $伪$-MoO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hussain%2C+N">Naveed Hussain</a>, <a href="/search/physics?searchtype=author&query=Sakib%2C+M+A">Mashnoon Alam Sakib</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhaoxu Li</a>, <a href="/search/physics?searchtype=author&query=Harris%2C+W">William Harris</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shehzad Ahmed</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+R">Ruqian Wu</a>, <a href="/search/physics?searchtype=author&query=Wickramasinghe%2C+H+K">H. Kumar Wickramasinghe</a>, <a href="/search/physics?searchtype=author&query=Shcherbakov%2C+M+R">Maxim R. Shcherbakov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05574v1-abstract-short" style="display: inline;"> Low-symmetry van der Waals materials have enabled strong confinement of mid-infrared light through hyperbolic phonon polaritons (HPhPs) at the nanoscale. Yet, the bottleneck persists in manipulating the intrinsic polaritonic dispersion to drive further progress in phonon-polaritonics. Here, we present a thermomechanical strategy to manipulate the HPhPs in $伪$-MoO$_3$ using high pressure and temper… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05574v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05574v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05574v1-abstract-full" style="display: none;"> Low-symmetry van der Waals materials have enabled strong confinement of mid-infrared light through hyperbolic phonon polaritons (HPhPs) at the nanoscale. Yet, the bottleneck persists in manipulating the intrinsic polaritonic dispersion to drive further progress in phonon-polaritonics. Here, we present a thermomechanical strategy to manipulate the HPhPs in $伪$-MoO$_3$ using high pressure and temperature treatment. The hot pressing engineers the stoichiometry of $伪$-MoO$_3$ by controllably introducing oxygen vacancy defects (OVDs), which cause a semiconductor-to-semimetal transition. Our density functional theory and finite-difference time-domain results, combined with experimental studies show that the OVDs induce a metastable metallic state by reducing the bandgap while modifying the intrinsic dielectric permittivity of $伪$-MoO$_3$. Photo-induced force microscopy confirms an average dielectric permittivity tunability of $|螖\varepsilon/\varepsilon|\approx0.35$ within a Reststrahlen band of $伪$-MoO$_3$, resulting in drastic shifts in the HPhP dispersion. The polariton lifetimes for pristine and hot-pressed flakes were measured as $0.92 \pm 0.06$ and $0.86 \pm 0.11$ ps, respectively, exhibiting a loss of only 7%, while the group velocity exhibited an increase of $38.8 \pm 0.2$%. The OVDs in $伪$-MoO$_3$ provide a low-loss platform that enables active tuning of mid-infrared HPhPs and have a profound impact on applications in super-resolution imaging, nanoscale thermal manipulation, boosted molecular sensing, and on-chip photonic circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05574v1-abstract-full').style.display = 'none'; document.getElementById('2309.05574v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 13 figures, supporting information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14925">arXiv:2308.14925</a> <span> [<a href="https://arxiv.org/pdf/2308.14925">pdf</a>, <a href="https://arxiv.org/format/2308.14925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Tissues and Organs">q-bio.TO</span> </div> </div> <p class="title is-5 mathjax"> Patient-specific, mechanistic models of tumor growth incorporating artificial intelligence and big data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lorenzo%2C+G">Guillermo Lorenzo</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+R">Syed Rakin Ahmed</a>, <a href="/search/physics?searchtype=author&query=Hormuth%2C+D+A">David A. Hormuth II</a>, <a href="/search/physics?searchtype=author&query=Vaughn%2C+B">Brenna Vaughn</a>, <a href="/search/physics?searchtype=author&query=Kalpathy-Cramer%2C+J">Jayashree Kalpathy-Cramer</a>, <a href="/search/physics?searchtype=author&query=Solorio%2C+L">Luis Solorio</a>, <a href="/search/physics?searchtype=author&query=Yankeelov%2C+T+E">Thomas E. Yankeelov</a>, <a href="/search/physics?searchtype=author&query=Gomez%2C+H">Hector Gomez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14925v1-abstract-short" style="display: inline;"> Despite the remarkable advances in cancer diagnosis, treatment, and management that have occurred over the past decade, malignant tumors remain a major public health problem. Further progress in combating cancer may be enabled by personalizing the delivery of therapies according to the predicted response for each individual patient. The design of personalized therapies requires patient-specific in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14925v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14925v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14925v1-abstract-full" style="display: none;"> Despite the remarkable advances in cancer diagnosis, treatment, and management that have occurred over the past decade, malignant tumors remain a major public health problem. Further progress in combating cancer may be enabled by personalizing the delivery of therapies according to the predicted response for each individual patient. The design of personalized therapies requires patient-specific information integrated into an appropriate mathematical model of tumor response. A fundamental barrier to realizing this paradigm is the current lack of a rigorous, yet practical, mathematical theory of tumor initiation, development, invasion, and response to therapy. In this review, we begin by providing an overview of different approaches to modeling tumor growth and treatment, including mechanistic as well as data-driven models based on ``big data" and artificial intelligence. Next, we present illustrative examples of mathematical models manifesting their utility and discussing the limitations of stand-alone mechanistic and data-driven models. We further discuss the potential of mechanistic models for not only predicting, but also optimizing response to therapy on a patient-specific basis. We then discuss current efforts and future possibilities to integrate mechanistic and data-driven models. We conclude by proposing five fundamental challenges that must be addressed to fully realize personalized care for cancer patients driven by computational models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14925v1-abstract-full').style.display = 'none'; document.getElementById('2308.14925v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05723">arXiv:2307.05723</a> <span> [<a href="https://arxiv.org/pdf/2307.05723">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Engineering Optical and Mirror Bi-stability Mechanically </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Sohail Ahmed</a>, <a href="/search/physics?searchtype=author&query=Javaid%2C+A">Asma Javaid</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+H">Hui Jing</a>, <a href="/search/physics?searchtype=author&query=Saif%2C+F">Farhan Saif</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05723v1-abstract-short" style="display: inline;"> We explain optical and mirrors displacement bistability in a hybrid optomechanical system in the presence of a strong laser driving field and a weak probe field. External modulating fields are applied selectively on movable mirrors. We show that the optomechanical coupling, electromechanical Coulomb coupling and, amplitude & phase of external modulating fields are important parameters to control t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05723v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05723v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05723v1-abstract-full" style="display: none;"> We explain optical and mirrors displacement bistability in a hybrid optomechanical system in the presence of a strong laser driving field and a weak probe field. External modulating fields are applied selectively on movable mirrors. We show that the optomechanical coupling, electromechanical Coulomb coupling and, amplitude & phase of external modulating fields are important parameters to control the optical and mirror displacement bistable behaviour. The parameters values are taken according to presently available experiments. The study may be applied to the realization of a tunable electro opto mechanical switch depending on the optomechanical and Coulomb coupling, frequencies, threshold power, and the amplitude and phase of external mechanical pumps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05723v1-abstract-full').style.display = 'none'; document.getElementById('2307.05723v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00300">arXiv:2305.00300</a> <span> [<a href="https://arxiv.org/pdf/2305.00300">pdf</a>, <a href="https://arxiv.org/format/2305.00300">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rspa.2022.0815">10.1098/rspa.2022.0815 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the dual advantage of placing observations through forward sensitivity analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Lakshmivarahan%2C+S">Sivaramakrishnan Lakshmivarahan</a>, <a href="/search/physics?searchtype=author&query=Lewis%2C+J+M">John M Lewis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00300v1-abstract-short" style="display: inline;"> The four-dimensional variational data assimilation methodology for assimilating noisy observations into a deterministic model has been the workhorse of forecasting centers for over three decades. While this method provides a computationally efficient framework for dynamic data assimilation, it is largely silent on the important question concerning the minimum number and placement of observations.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00300v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00300v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00300v1-abstract-full" style="display: none;"> The four-dimensional variational data assimilation methodology for assimilating noisy observations into a deterministic model has been the workhorse of forecasting centers for over three decades. While this method provides a computationally efficient framework for dynamic data assimilation, it is largely silent on the important question concerning the minimum number and placement of observations. To answer this question, we demonstrate the dual advantage of placing the observations where the square of the sensitivity of the model solution with respect to the unknown control variables, called forward sensitivities, attains its maximum. Therefore, we can force the observability Gramian to be of full rank, which in turn guarantees efficient recovery of the optimal values of the control variables, which is the first of the two advantages of this strategy. We further show that the proposed strategy of placing observations has another inherent optimality: the square of the sensitivity of the optimal estimates of the control with respect to the observations (used to obtain these estimates) attains its minimum value, a second advantage that is a direct consequence of the above strategy for placing observations. Our analytical framework and numerical experiments on linear and nonlinear systems confirm the effectiveness of our proposed strategy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00300v1-abstract-full').style.display = 'none'; document.getElementById('2305.00300v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06785">arXiv:2304.06785</a> <span> [<a href="https://arxiv.org/pdf/2304.06785">pdf</a>, <a href="https://arxiv.org/format/2304.06785">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Strongly intermittent far scrape-off layer fluctuations in Alcator C-Mod plasmas close to the empirical discharge density limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Sajidah Ahmed</a>, <a href="/search/physics?searchtype=author&query=Garcia%2C+O+E">Odd Erik Garcia</a>, <a href="/search/physics?searchtype=author&query=Kuang%2C+A+Q">Adam Q Kuang</a>, <a href="/search/physics?searchtype=author&query=LaBombard%2C+B">Brian LaBombard</a>, <a href="/search/physics?searchtype=author&query=Terry%2C+J+L">James L Terry</a>, <a href="/search/physics?searchtype=author&query=Theodorsen%2C+A">Audun Theodorsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06785v4-abstract-short" style="display: inline;"> Intermittent plasma fluctuations in the boundary region of the Alcator C-Mod device were comprehensively investigated using data time-series from gas puff imaging and mirror Langmuir probe diagnostics. Fluctuations were sampled during stationary plasma conditions in ohmically heated, lower single null diverted configurations with scans in both line-averaged density and plasma current, with Greenwa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06785v4-abstract-full').style.display = 'inline'; document.getElementById('2304.06785v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06785v4-abstract-full" style="display: none;"> Intermittent plasma fluctuations in the boundary region of the Alcator C-Mod device were comprehensively investigated using data time-series from gas puff imaging and mirror Langmuir probe diagnostics. Fluctuations were sampled during stationary plasma conditions in ohmically heated, lower single null diverted configurations with scans in both line-averaged density and plasma current, with Greenwald density fractions up to 0.85. Utilizing a stochastic model, we describe the plasma fluctuations as a super-position of uncorrelated pulses, with large-amplitude events corresponding to blob-like filaments moving through the scrape-off layer. A deconvolution method is used to estimate the pulse arrival times and amplitudes. The analysis reveals a significant increase of pulse amplitudes and waiting times as the line-averaged density approaches the empirical discharge density limit. Broadened and flattened average radial profiles are thus accompanied by strongly intermittent and large-amplitude fluctuations. Although these filaments are arriving less frequently at high line-averaged densities, we show that there are significant increases in radial far-SOL particle and heat fluxes which will further enhance plasma--wall interactions. The stochastic model has been used as a framework for study of the scalings in the intermittency parameter, flux and mean amplitude and waiting times, and is being used to inform predictive capability for the effects of filamentary transport as a function of Greenwald fraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06785v4-abstract-full').style.display = 'none'; document.getElementById('2304.06785v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised manuscript after second round of peer review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04885">arXiv:2304.04885</a> <span> [<a href="https://arxiv.org/pdf/2304.04885">pdf</a>, <a href="https://arxiv.org/format/2304.04885">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Forward Sensitivity Analysis and Mode Dependent Control for Closure Modeling of Galerkin Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04885v1-abstract-short" style="display: inline;"> Model reduction by projection-based approaches is often associated with losing some of the important features that contribute towards the dynamics of the retained scales. As a result, a mismatch occurs between the predicted trajectories of the original system and the truncated one. We put forth a framework to apply a continuous time control signal in the latent space of the reduced order model (RO… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04885v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04885v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04885v1-abstract-full" style="display: none;"> Model reduction by projection-based approaches is often associated with losing some of the important features that contribute towards the dynamics of the retained scales. As a result, a mismatch occurs between the predicted trajectories of the original system and the truncated one. We put forth a framework to apply a continuous time control signal in the latent space of the reduced order model (ROM) to account for the effect of truncation. We set the control input using parameterized models by following energy transfer principles. Our methodology relies on observing the system behavior in the physical space and using the projection operator to restrict the feedback signal into the latent space. Then, we leverage the forward sensitivity method (FSM) to derive relationships between the feedback and the desired mode-dependent control. We test the performance of the proposed approach using two test cases, corresponding to viscous Burgers and vortex merger problems at high Reynolds number. Results show that the ROM trajectory with the applied FSM control closely matches its target values in both the data-dense and data-sparse regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04885v1-abstract-full').style.display = 'none'; document.getElementById('2304.04885v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09621">arXiv:2303.09621</a> <span> [<a href="https://arxiv.org/pdf/2303.09621">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.489893">10.1364/OL.489893 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-noise, 2-W average power, 112-fs Kerr-lens mode-locked Ho:CALGO laser at 2.1 um </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yao%2C+W">Weichao Yao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yicheng Wang</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shahwar Ahmed</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M">Martin Hoffmann</a>, <a href="/search/physics?searchtype=author&query=van+Delden%2C+M">Marcel van Delden</a>, <a href="/search/physics?searchtype=author&query=Musch%2C+T">Thomas Musch</a>, <a href="/search/physics?searchtype=author&query=Saraceno%2C+C+J">Clara J. Saraceno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09621v1-abstract-short" style="display: inline;"> We report on an in-band pumped soft-aperture Kerr-lens mode-locked Ho:CALGO bulk laser at 2.1 um, generating 2 W of average power with 112 fs pulses at 91-MHz repetition rate. To the best of our knowledge, this is the highest average power from a 100-fs class mode-locked laser based on a Tm3+ or Ho3+ doped bulk material. We show that the laser has excellent noise properties with an integrated rela… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09621v1-abstract-full').style.display = 'inline'; document.getElementById('2303.09621v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09621v1-abstract-full" style="display: none;"> We report on an in-band pumped soft-aperture Kerr-lens mode-locked Ho:CALGO bulk laser at 2.1 um, generating 2 W of average power with 112 fs pulses at 91-MHz repetition rate. To the best of our knowledge, this is the highest average power from a 100-fs class mode-locked laser based on a Tm3+ or Ho3+ doped bulk material. We show that the laser has excellent noise properties with an integrated relative intensity noise of 0.02% and a timing jitter of 950 fs (RMS phase noise 0.543 mrad) in the integration interval from 10 Hz to 10 MHz. The demonstrated combination of high average power, short pulses, and low-noise make this an outstanding laser source for spectroscopy and many other applications at 2.1 um. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09621v1-abstract-full').style.display = 'none'; document.getElementById('2303.09621v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08893">arXiv:2303.08893</a> <span> [<a href="https://arxiv.org/pdf/2303.08893">pdf</a>, <a href="https://arxiv.org/format/2303.08893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cma.2023.116161">10.1016/j.cma.2023.116161 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Multifidelity deep operator network approach to closure for multiscale systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Stinis%2C+P">Panos Stinis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08893v2-abstract-short" style="display: inline;"> Projection-based reduced order models (PROMs) have shown promise in representing the behavior of multiscale systems using a small set of generalized (or latent) variables. Despite their success, PROMs can be susceptible to inaccuracies, even instabilities, due to the improper accounting of the interaction between the resolved and unresolved scales of the multiscale system (known as the closure pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08893v2-abstract-full').style.display = 'inline'; document.getElementById('2303.08893v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08893v2-abstract-full" style="display: none;"> Projection-based reduced order models (PROMs) have shown promise in representing the behavior of multiscale systems using a small set of generalized (or latent) variables. Despite their success, PROMs can be susceptible to inaccuracies, even instabilities, due to the improper accounting of the interaction between the resolved and unresolved scales of the multiscale system (known as the closure problem). In the current work, we interpret closure as a multifidelity problem and use a multifidelity deep operator network (DeepONet) framework to address it. In addition, to enhance the stability and accuracy of the multifidelity-based closure, we employ the recently developed "in-the-loop" training approach from the literature on coupling physics and machine learning models. The resulting approach is tested on shock advection for the one-dimensional viscous Burgers equation and vortex merging using the two-dimensional Navier-Stokes equations. The numerical experiments show significant improvement of the predictive ability of the closure-corrected PROM over the un-corrected one both in the interpolative and the extrapolative regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08893v2-abstract-full').style.display = 'none'; document.getElementById('2303.08893v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 21 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNNL-SA-182879 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06797">arXiv:2302.06797</a> <span> [<a href="https://arxiv.org/pdf/2302.06797">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Giant Thermomechanical Bandgap Engineering in Quasi-two-dimensional Tellurium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hussain%2C+N">Naveed Hussain</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shehzad Ahmed</a>, <a href="/search/physics?searchtype=author&query=Tep%2C+H+U">H眉seyin U. Tep</a>, <a href="/search/physics?searchtype=author&query=Ullah%2C+K">Kaleem Ullah</a>, <a href="/search/physics?searchtype=author&query=Shahzad%2C+K">Khurram Shahzad</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+H">Hui Wu</a>, <a href="/search/physics?searchtype=author&query=Shcherbakov%2C+M+R">Maxim R. Shcherbakov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06797v1-abstract-short" style="display: inline;"> Mechanical straining-induced bandgap modulation in two-dimensional (2D) materials has been confined to volatile and narrow modulation due to substrate slippage and poor strain transfer. We report the thermomechanical modulation of the inherent bandgap in quasi-2D tellurium nanoflakes (TeNFs) via non-volatile strain induction during hot-press synthesis. We leveraged the coefficient of thermal expan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06797v1-abstract-full').style.display = 'inline'; document.getElementById('2302.06797v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06797v1-abstract-full" style="display: none;"> Mechanical straining-induced bandgap modulation in two-dimensional (2D) materials has been confined to volatile and narrow modulation due to substrate slippage and poor strain transfer. We report the thermomechanical modulation of the inherent bandgap in quasi-2D tellurium nanoflakes (TeNFs) via non-volatile strain induction during hot-press synthesis. We leveraged the coefficient of thermal expansion (CTE) mismatch between TeNFs and growth substrates by maintaining a high-pressure enforced non-slip condition during thermal relaxation (623 to 300K) to achieve the optimal biaxial compressive strain of -4.6 percent in TeNFs/sapphire. This resulted in an enormous bandgap modulation of 2.3 eV, at a rate of up to ~600 meV/%, which is two-fold larger than reported modulation rate. Strained TeNFs display robust band-to-band radiative excitonic blue photoemission with an intrinsic quantum efficiency (IQE) of c.a. 79.9%, making it promising for energy efficient blue LEDs and nanolasers. Computational studies reveal that biaxial compressive strain inhibits exciton-exciton annihilation by evading van-Hove singularities, hence promoting radiative-recombination. Bandgap modulation by such nonvolatile straining is scalable to other 2D semiconductors for on-demand nano(opto)-electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06797v1-abstract-full').style.display = 'none'; document.getElementById('2302.06797v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02547">arXiv:2301.02547</a> <span> [<a href="https://arxiv.org/pdf/2301.02547">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-031-09327-2_2">10.1007/978-3-031-09327-2_2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Patient-specific Finite Element Modeling of Aneurysmal dilatation after chronic type B aortic dissection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shaojie Zhang</a>, <a href="/search/physics?searchtype=author&query=Laubrie%2C+J+D">Joan D Laubrie</a>, <a href="/search/physics?searchtype=author&query=Mousavi%2C+S+J">S. Jamaleddin Mousavi</a>, <a href="/search/physics?searchtype=author&query=Avril%2C+S">St茅phane Avril</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+B">Sabrina Ben Ahmed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02547v1-abstract-short" style="display: inline;"> Progressive aneurysmal dilatation is a well-recognized complication in patients with chronic type B aortic dissection (cTBAD), which may lead to a delayed rupture and create a life-threatening condition. However, our understanding of such aortic expansion in cTBAD remains weak. In the present paper, we propose to use numerical simulations to study the role of growth and remodeling (G\&R) in aneury… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02547v1-abstract-full').style.display = 'inline'; document.getElementById('2301.02547v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02547v1-abstract-full" style="display: none;"> Progressive aneurysmal dilatation is a well-recognized complication in patients with chronic type B aortic dissection (cTBAD), which may lead to a delayed rupture and create a life-threatening condition. However, our understanding of such aortic expansion in cTBAD remains weak. In the present paper, we propose to use numerical simulations to study the role of growth and remodeling (G\&R) in aneurysmal dilatation after cTBAD. We set up a 3D finite-element model of G\&R for aortic dissection within an open-source code. Constitutive equations, momentum balance equations, and equations related to the mechanobiology of the artery were formulated based on the homogenized constrained mixture theory. The model was first applied to idealized aortic geometries with cylindrical and toric shapes to demonstrate its feasibility and efficiency. The model was then applied to a patient-specific aortic segment to show its potential in more relevant and complex patient-specific clinical applications. It was found that the G\&R tends to naturally trigger the aneurysmal dilatation after dissection, in order to restore its tensional equilibrium. Our results indicated that the value of the gain parameter, related to collagen G\&R, plays an important role in the stability of aortic expansion after cTBAD. A small gain parameter will induce an excessive aneurysmal degeneration whilst a large gain parameter helps to recover a stabilized state of the artery after dissection. Finally, it was found that other mechanobiology-related parameters, such as the circumferential length of the dissection, as well as the pressure in the false lumen, may also be determinant for the stability of aneurysmal dilatation after cTBAD. Both a wide tear and an elevated false lumen pressure favor an unstable development of aortic expansion after cTBAD. As future work, the present model will be validated through predictions of aneurysmal dilatation in patient-specific clinical cases, in comparison with datasets followed over a significant period of time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02547v1-abstract-full').style.display = 'none'; document.getElementById('2301.02547v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Computational Biomechanics for Medicine, Springer International Publishing, pp.15-38, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07522">arXiv:2212.07522</a> <span> [<a href="https://arxiv.org/pdf/2212.07522">pdf</a>, <a href="https://arxiv.org/format/2212.07522">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/10618562.2022.2152014">10.1080/10618562.2022.2152014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonintrusive reduced order modeling of convective Boussinesq flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dabaghian%2C+P+H">Pedram H. Dabaghian</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07522v1-abstract-short" style="display: inline;"> In this paper, we formulate three nonintrusive methods and systematically explore their performance in terms of the ability to reconstruct the quantities of interest and their predictive capabilities. The methods include deterministic dynamic mode decomposition (DMD), randomized DMD and nonlinear proper orthogonal decomposition (NLPOD). We apply these methods to a convection dominated fluid flow p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07522v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07522v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07522v1-abstract-full" style="display: none;"> In this paper, we formulate three nonintrusive methods and systematically explore their performance in terms of the ability to reconstruct the quantities of interest and their predictive capabilities. The methods include deterministic dynamic mode decomposition (DMD), randomized DMD and nonlinear proper orthogonal decomposition (NLPOD). We apply these methods to a convection dominated fluid flow problem governed by the Boussinesq equations. We analyze the reconstruction results primarily at two different times for considering different noise levels synthetically added into the data snapshots. Overall, our results indicate that, with a proper selection of the number of retained modes and neural network architectures, all three approaches make predictions that are in a good agreement with the full order model solution. However, we find that the NLPOD approach seems more robust for higher noise levels compared to both DMD approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07522v1-abstract-full').style.display = 'none'; document.getElementById('2212.07522v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09751">arXiv:2211.09751</a> <span> [<a href="https://arxiv.org/pdf/2211.09751">pdf</a>, <a href="https://arxiv.org/format/2211.09751">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Heart Abnormality Detection from Heart Sound Signals using MFCC Feature and Dual Stream Attention Based Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rashid%2C+N">Nayeeb Rashid</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Swapnil Saha</a>, <a href="/search/physics?searchtype=author&query=Subah%2C+M+R">Mohseu Rashid Subah</a>, <a href="/search/physics?searchtype=author&query=Robin%2C+R+A">Rizwan Ahmed Robin</a>, <a href="/search/physics?searchtype=author&query=Fahim%2C+S+M+H">Syed Mortuza Hasan Fahim</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shahed Ahmed</a>, <a href="/search/physics?searchtype=author&query=Mahmud%2C+T+I">Talha Ibn Mahmud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09751v1-abstract-short" style="display: inline;"> Cardiovascular diseases are one of the leading cause of death in today's world and early screening of heart condition plays a crucial role in preventing them. The heart sound signal is one of the primary indicator of heart condition and can be used to detect abnormality in the heart. The acquisition of heart sound signal is non-invasive, cost effective and requires minimum equipment. But currently… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09751v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09751v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09751v1-abstract-full" style="display: none;"> Cardiovascular diseases are one of the leading cause of death in today's world and early screening of heart condition plays a crucial role in preventing them. The heart sound signal is one of the primary indicator of heart condition and can be used to detect abnormality in the heart. The acquisition of heart sound signal is non-invasive, cost effective and requires minimum equipment. But currently the detection of heart abnormality from heart sound signal depends largely on the expertise and experience of the physician. As such an automatic detection system for heart abnormality detection from heart sound signal can be a great asset for the people living in underdeveloped areas. In this paper we propose a novel deep learning based dual stream network with attention mechanism that uses both the raw heart sound signal and the MFCC features to detect abnormality in heart condition of a patient. The deep neural network has a convolutional stream that uses the raw heart sound signal and a recurrent stream that uses the MFCC features of the signal. The features from these two streams are merged together using a novel attention network and passed through the classification network. The model is trained on the largest publicly available dataset of PCG signal and achieves an accuracy of 87.11, sensitivity of 82.41, specificty of 91.8 and a MACC of 87.12. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09751v1-abstract-full').style.display = 'none'; document.getElementById('2211.09751v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08741">arXiv:2210.08741</a> <span> [<a href="https://arxiv.org/pdf/2210.08741">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic subwavelength grating perturbation enables zero crosstalk in a leaky mode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kabir%2C+M+F">Md Faiyaz Kabir</a>, <a href="/search/physics?searchtype=author&query=Mia%2C+M+B">Md Borhan Mia</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+I">Ishtiaque Ahmed</a>, <a href="/search/physics?searchtype=author&query=Jaidye%2C+N">Nafiz Jaidye</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+Z">Syed Z. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S">Sangsik Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08741v1-abstract-short" style="display: inline;"> Electromagnetic coupling via either exponentially decaying evanescent field or radiative wave is a primary characteristic of light, allowing optical signal/power transfer but limiting integration density in a photonic circuit. A leaky mode combines both evanescent field and radiative wave, causing stronger crosstalk and thus not ideal for dense integration. Here we show that a leaky mode with anis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08741v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08741v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08741v1-abstract-full" style="display: none;"> Electromagnetic coupling via either exponentially decaying evanescent field or radiative wave is a primary characteristic of light, allowing optical signal/power transfer but limiting integration density in a photonic circuit. A leaky mode combines both evanescent field and radiative wave, causing stronger crosstalk and thus not ideal for dense integration. Here we show that a leaky mode with anisotropic perturbation rather can achieve completely zero crosstalk realized by subwavelength grating (SWG) metamaterials. The oscillating fields in the SWGs enable coupling coefficients in each direction to counteract each other, resulting in completely zero crosstalk. We experimentally demonstrate such an extraordinarily low coupling between closely spaced identical leaky SWG waveguides, suppressing the crosstalk by $\approx$40 dB compared to conventional strip waveguides, corresponding to $\approx$100 times longer coupling length. This leaky-SWG suppresses the crosstalk of transverse-magnetic (TM) mode, which is challenging due to its low confinement, and marks a novel approach in electromagnetic coupling applicable to other spectral regimes and generic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08741v1-abstract-full').style.display = 'none'; document.getElementById('2210.08741v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09894">arXiv:2209.09894</a> <span> [<a href="https://arxiv.org/pdf/2209.09894">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Modeling of 3D Printable Electrical Machineries Ferromagnetic Parts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Eskender%2C+S+B">Shinthia Binte Eskender</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+A">Anupam Saha</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+I">Shaikh Ishtiaque Ahmed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09894v1-abstract-short" style="display: inline;"> The electrical machinery core is formed with a ferromagnetic material that offers high magnetic properties. As ferromagnetic materials have high relative magnetic permeability, they are important in the formation of electromagnetic device cores. Conventional subtractive and powder metallurgy methods for fabrication electrical machineries offer significant core losses and reduce magnetic flux densi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09894v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09894v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09894v1-abstract-full" style="display: none;"> The electrical machinery core is formed with a ferromagnetic material that offers high magnetic properties. As ferromagnetic materials have high relative magnetic permeability, they are important in the formation of electromagnetic device cores. Conventional subtractive and powder metallurgy methods for fabrication electrical machineries offer significant core losses and reduce magnetic flux density and magnetic permeability. With the advancement of technology, the limitation of the traditional process can be overcome by using the additive manufacturing process. Hence, this paper proposes a 3D printable model of two types of single-phase transformers, referred to as E-I shape and U-I shape transformers respectively. Possibilities of designing the electrical machinery part which has a ferromagnetic core are investigated. The efficiency of the transformers is evaluated in terms of magnetic flux density distribution and volumetric loss density based on the results of a large number of Finite element simulation methods under various operating situations on COMSOL. The performance of various ferromagnetic materials such as Soft Iron (Fe) and Ferrite (Fe2O3) on the transformer core is evaluated. This analysis reveals that if U-I shaped transformer can be made from 3D printing, it will be the best feasible structure for higher operating frequency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09894v1-abstract-full').style.display = 'none'; document.getElementById('2209.09894v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published on International Conference on Mechanical, Manufacturing and Process Engineering (ICMMPE - 2022)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 5056 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00812">arXiv:2208.00812</a> <span> [<a href="https://arxiv.org/pdf/2208.00812">pdf</a>, <a href="https://arxiv.org/format/2208.00812">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.150402">10.1103/PhysRevLett.130.150402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gradient-descent quantum process tomography by learning Kraus operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shahnawaz Ahmed</a>, <a href="/search/physics?searchtype=author&query=Quijandr%C3%ADa%2C+F">Fernando Quijandr铆a</a>, <a href="/search/physics?searchtype=author&query=Kockum%2C+A+F">Anton Frisk Kockum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00812v1-abstract-short" style="display: inline;"> We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems by learning a process representation using Kraus operators. The Kraus form ensures that the reconstructed process is completely positive. To make the process trace-preserving, we use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the K… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00812v1-abstract-full').style.display = 'inline'; document.getElementById('2208.00812v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00812v1-abstract-full" style="display: none;"> We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems by learning a process representation using Kraus operators. The Kraus form ensures that the reconstructed process is completely positive. To make the process trace-preserving, we use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators. Our ansatz uses a few Kraus operators to avoid direct estimation of large process matrices, e.g., the Choi matrix, for low-rank quantum processes. The GD-QPT matches the performance of both compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random processes, but shines by combining the best features of these two methods. Similar to CS (but unlike PLS), GD-QPT can reconstruct a process from just a small number of random measurements, and similar to PLS (but unlike CS) it also works for larger system sizes, up to at least five qubits. We envisage that the data-driven approach of GD-QPT can become a practical tool that greatly reduces the cost and computational effort for QPT in intermediate-scale quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00812v1-abstract-full').style.display = 'none'; document.getElementById('2208.00812v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, Code and data available at https://github.com/quantshah/gd-qpt</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 130, 150402 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.11516">arXiv:2207.11516</a> <span> [<a href="https://arxiv.org/pdf/2207.11516">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.471341">10.1364/OE.471341 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 8.7-W average power, in-band pumped femtosecond Ho:CALGO laser at 2.1 um </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yao%2C+W">Weichao Yao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yicheng Wang</a>, <a href="/search/physics?searchtype=author&query=Tomilov%2C+S">Sergei Tomilov</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M">Martin Hoffmann</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Sharhwar Ahmed</a>, <a href="/search/physics?searchtype=author&query=Liebald%2C+C">Christoph Liebald</a>, <a href="/search/physics?searchtype=author&query=Rytz%2C+D">Daniel Rytz</a>, <a href="/search/physics?searchtype=author&query=Peltz%2C+M">Mark Peltz</a>, <a href="/search/physics?searchtype=author&query=Wesemann%2C+V">Volker Wesemann</a>, <a href="/search/physics?searchtype=author&query=Saraceno%2C+C+J">Clara J. Saraceno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.11516v1-abstract-short" style="display: inline;"> We report on an in-band pumped SESAM mode-locked Ho:CALGO bulk laser with a record-high average power of 8.7 W and an optical-to-optical efficiency of 38.2% at a central wavelength of 2.1 um. At this power level, the bulk laser generates pulses with a duration of 369 fs at 84.4-MHz repetition rate, corresponding to a pulse energy of 103 nJ and a peak power of 246 kW. To the best of our knowledge,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11516v1-abstract-full').style.display = 'inline'; document.getElementById('2207.11516v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.11516v1-abstract-full" style="display: none;"> We report on an in-band pumped SESAM mode-locked Ho:CALGO bulk laser with a record-high average power of 8.7 W and an optical-to-optical efficiency of 38.2% at a central wavelength of 2.1 um. At this power level, the bulk laser generates pulses with a duration of 369 fs at 84.4-MHz repetition rate, corresponding to a pulse energy of 103 nJ and a peak power of 246 kW. To the best of our knowledge, this is the highest average power and pulse energy directly generated from a mode-locked bulk laser in the 2-3 um wavelength region. Our current results indicate that Ho:CALGO is a competitive candidate for average power scaling of 2 um femtosecond lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11516v1-abstract-full').style.display = 'none'; document.getElementById('2207.11516v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12419">arXiv:2205.12419</a> <span> [<a href="https://arxiv.org/pdf/2205.12419">pdf</a>, <a href="https://arxiv.org/format/2205.12419">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Physics Guided Machine Learning for Variational Multiscale Reduced Order Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Rasheed%2C+A">Adil Rasheed</a>, <a href="/search/physics?searchtype=author&query=Iliescu%2C+T">Traian Iliescu</a>, <a href="/search/physics?searchtype=author&query=Veneziani%2C+A">Alessandro Veneziani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12419v1-abstract-short" style="display: inline;"> We propose a new physics guided machine learning (PGML) paradigm that leverages the variational multiscale (VMS) framework and available data to dramatically increase the accuracy of reduced order models (ROMs) at a modest computational cost. The hierarchical structure of the ROM basis and the VMS framework enable a natural separation of the resolved and unresolved ROM spatial scales. Modern PGML… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12419v1-abstract-full').style.display = 'inline'; document.getElementById('2205.12419v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12419v1-abstract-full" style="display: none;"> We propose a new physics guided machine learning (PGML) paradigm that leverages the variational multiscale (VMS) framework and available data to dramatically increase the accuracy of reduced order models (ROMs) at a modest computational cost. The hierarchical structure of the ROM basis and the VMS framework enable a natural separation of the resolved and unresolved ROM spatial scales. Modern PGML algorithms are used to construct novel models for the interaction among the resolved and unresolved ROM scales. Specifically, the new framework builds ROM operators that are closest to the true interaction terms in the VMS framework. Finally, machine learning is used to reduce the projection error and further increase the ROM accuracy. Our numerical experiments for a two-dimensional vorticity transport problem show that the novel PGML-VMS-ROM paradigm maintains the low computational cost of current ROMs, while significantly increasing the ROM accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12419v1-abstract-full').style.display = 'none'; document.getElementById('2205.12419v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04084">arXiv:2201.04084</a> <span> [<a href="https://arxiv.org/pdf/2201.04084">pdf</a>, <a href="https://arxiv.org/format/2201.04084">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.2514/6.2022-2325">10.2514/6.2022-2325 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sketching Methods for Dynamic Mode Decomposition in Spherical Shallow Water Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Bistrian%2C+D+A">Diana A. Bistrian</a>, <a href="/search/physics?searchtype=author&query=Navon%2C+I+M">Ionel M. Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04084v1-abstract-short" style="display: inline;"> Dynamic mode decomposition (DMD) is an emerging methodology that has recently attracted computational scientists working on nonintrusive reduced order modeling. One of the major strengths that DMD possesses is having ground theoretical roots from the Koopman approximation theory. Indeed, DMD may be viewed as the data-driven realization of the famous Koopman operator. Nonetheless, the stable implem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04084v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04084v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04084v1-abstract-full" style="display: none;"> Dynamic mode decomposition (DMD) is an emerging methodology that has recently attracted computational scientists working on nonintrusive reduced order modeling. One of the major strengths that DMD possesses is having ground theoretical roots from the Koopman approximation theory. Indeed, DMD may be viewed as the data-driven realization of the famous Koopman operator. Nonetheless, the stable implementation of DMD incurs computing the singular value decomposition of the input data matrix. This, in turn, makes the process computationally demanding for high dimensional systems. In order to alleviate this burden, we develop a framework based on sketching methods, wherein a sketch of a matrix is simply another matrix which is significantly smaller, but still sufficiently approximates the original system. Such sketching or embedding is performed by applying random transformations, with certain properties, on the input matrix to yield a compressed version of the initial system. Hence, many of the expensive computations can be carried out on the smaller matrix, thereby accelerating the solution of the original problem. We conduct numerical experiments conducted using the spherical shallow water equations as a prototypical model in the context of geophysical flows. The performance of several sketching approaches is evaluated for capturing the range and co-range of the data matrix. The proposed sketching-based framework can accelerate various portions of the DMD algorithm, compared to classical methods that operate directly on the raw input data. This eventually leads to substantial computational gains that are vital for digital twinning of high dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04084v1-abstract-full').style.display = 'none'; document.getElementById('2201.04084v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIAA SciTech 2022 Forum </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.08295">arXiv:2110.08295</a> <span> [<a href="https://arxiv.org/pdf/2110.08295">pdf</a>, <a href="https://arxiv.org/format/2110.08295">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0074310">10.1063/5.0074310 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear proper orthogonal decomposition for convection-dominated flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Rasheed%2C+A">Adil Rasheed</a>, <a href="/search/physics?searchtype=author&query=Iliescu%2C+T">Traian Iliescu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.08295v2-abstract-short" style="display: inline;"> Autoencoder techniques find increasingly common use in reduced order modeling as a means to create a latent space. This reduced order representation offers a modular data-driven modeling approach for nonlinear dynamical systems when integrated with a time series predictive model. In this letter, we put forth a nonlinear proper orthogonal decomposition (POD) framework, which is an end-to-end Galerk… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08295v2-abstract-full').style.display = 'inline'; document.getElementById('2110.08295v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.08295v2-abstract-full" style="display: none;"> Autoencoder techniques find increasingly common use in reduced order modeling as a means to create a latent space. This reduced order representation offers a modular data-driven modeling approach for nonlinear dynamical systems when integrated with a time series predictive model. In this letter, we put forth a nonlinear proper orthogonal decomposition (POD) framework, which is an end-to-end Galerkin-free model combining autoencoders with long short-term memory networks for dynamics. By eliminating the projection error due to the truncation of Galerkin models, a key enabler of the proposed nonintrusive approach is the kinematic construction of a nonlinear mapping between the full-rank expansion of the POD coefficients and the latent space where the dynamics evolve. We test our framework for model reduction of a convection-dominated system, which is generally challenging for reduced order models. Our approach not only improves the accuracy, but also significantly reduces the computational cost of training and testing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08295v2-abstract-full').style.display = 'none'; document.getElementById('2110.08295v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14954">arXiv:2106.14954</a> <span> [<a href="https://arxiv.org/pdf/2106.14954">pdf</a>, <a href="https://arxiv.org/format/2106.14954">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0061577">10.1063/5.0061577 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On closures for reduced order models $-$ A spectrum of first-principle to machine-learned avenues </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Pawar%2C+S">Suraj Pawar</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Rasheed%2C+A">Adil Rasheed</a>, <a href="/search/physics?searchtype=author&query=Iliescu%2C+T">Traian Iliescu</a>, <a href="/search/physics?searchtype=author&query=Noack%2C+B+R">Bernd R. Noack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14954v2-abstract-short" style="display: inline;"> For over a century, reduced order models (ROMs) have been a fundamental discipline of theoretical fluid mechanics. Early examples include Galerkin models inspired by the Orr-Sommerfeld stability equation and numerous vortex models, of which the von K谩rm谩n vortex street is one of the most prominent. Subsequent ROMs typically relied on first principles, like mathematical Galerkin models, weakly nonl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14954v2-abstract-full').style.display = 'inline'; document.getElementById('2106.14954v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14954v2-abstract-full" style="display: none;"> For over a century, reduced order models (ROMs) have been a fundamental discipline of theoretical fluid mechanics. Early examples include Galerkin models inspired by the Orr-Sommerfeld stability equation and numerous vortex models, of which the von K谩rm谩n vortex street is one of the most prominent. Subsequent ROMs typically relied on first principles, like mathematical Galerkin models, weakly nonlinear stability theory, and two- and three-dimensional vortex models. Aubry et al. [N. Aubry, P. Holmes, J. Lumley, and E. Stone, Journal of Fluid Mechanics, 192, 115-173 (1988)] pioneered data-driven proper orthogonal decomposition (POD) modeling. In early POD modeling, available data was used to build an optimal basis, which was then utilized in a classical Galerkin procedure to construct the ROM. But data has made a profound impact on ROMs beyond the Galerkin expansion. In this paper, we take a modest step and illustrate the impact of data-driven modeling on one significant ROM area. Specifically, we focus on ROM closures, which are correction terms that are added to classical ROMs in order to model the effect of the discarded ROM modes in under-resolved simulations. Through simple examples, we illustrate the main modeling principles used to construct classical ROMs, motivate and introduce modern ROM closures, and show how data-driven modeling, artificial intelligence, and machine learning have changed the standard ROM methodology over the last two decades. Finally, we outline our vision on how state-of-the-art data-driven modeling can continue to reshape the field of reduced order modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14954v2-abstract-full').style.display = 'none'; document.getElementById('2106.14954v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12110">arXiv:2106.12110</a> <span> [<a href="https://arxiv.org/pdf/2106.12110">pdf</a>, <a href="https://arxiv.org/format/2106.12110">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Boggio%2C+J+M+C">J. M. Chavez Boggio</a>, <a href="/search/physics?searchtype=author&query=Bodenm%C3%BCller%2C+D">D. Bodenm眉ller</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Wabnitz%2C+S">S. Wabnitz</a>, <a href="/search/physics?searchtype=author&query=Modotto%2C+D">D. Modotto</a>, <a href="/search/physics?searchtype=author&query=Hansson%2C+T">T. Hansson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12110v1-abstract-short" style="display: inline;"> Nonlinear Kerr micro-resonators have enabled fundamental breakthroughs in the understanding of dissipative solitons, as well as in their application to optical frequency comb generation. However, the conversion efficiency of the pump power into a soliton frequency comb typically remains below a few percent. We introduce a hybrid Mach-Zehnder ring resonator geometry, consisting of a micro-ring reso… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12110v1-abstract-full').style.display = 'inline'; document.getElementById('2106.12110v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12110v1-abstract-full" style="display: none;"> Nonlinear Kerr micro-resonators have enabled fundamental breakthroughs in the understanding of dissipative solitons, as well as in their application to optical frequency comb generation. However, the conversion efficiency of the pump power into a soliton frequency comb typically remains below a few percent. We introduce a hybrid Mach-Zehnder ring resonator geometry, consisting of a micro-ring resonator embedded in an additional cavity with twice the optical path length of the ring. The resulting interferometric back coupling enables to achieve an unprecedented control of the pump depletion: pump-to-frequency comb conversion efficiencies of up to 98\% of the usable power is experimentally demonstrated with a soliton crystal comb. We assess the robustness of the proposed on-chip geometry by generating a large variety of dissipative Kerr soliton combs, which require a lower amount of pump power to be accessed, when compared with an isolated micro-ring resonator with identical parameters. Micro-resonators with feedback enable accessing new regimes of coherent soliton comb generation, and are well suited for comb applications in astronomy, spectroscopy and telecommunications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12110v1-abstract-full').style.display = 'none'; document.getElementById('2106.12110v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13260">arXiv:2104.13260</a> <span> [<a href="https://arxiv.org/pdf/2104.13260">pdf</a>, <a href="https://arxiv.org/format/2104.13260">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6404/ac93c7">10.1088/1361-6404/ac93c7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Student use of a quantum simulation and visualization tool </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+Z">Shaeema Zaman Ahmed</a>, <a href="/search/physics?searchtype=author&query=Weidner%2C+C+A">Carrie A. Weidner</a>, <a href="/search/physics?searchtype=author&query=Jensen%2C+J+H+M">Jesper H. M. Jensen</a>, <a href="/search/physics?searchtype=author&query=Sherson%2C+J+F">Jacob F. Sherson</a>, <a href="/search/physics?searchtype=author&query=Lewandowski%2C+H+J">H. J. Lewandowski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13260v2-abstract-short" style="display: inline;"> Knowledge of quantum mechanical systems is becoming more important for many science and engineering students who are looking to join the emerging quantum workforce. To better prepare a wide range of students for these careers, we must seek to develop new tools to enhance our education in quantum topics. We present initial studies on the use of one of these such tools, Quantum Composer, a 1D quantu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13260v2-abstract-full').style.display = 'inline'; document.getElementById('2104.13260v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13260v2-abstract-full" style="display: none;"> Knowledge of quantum mechanical systems is becoming more important for many science and engineering students who are looking to join the emerging quantum workforce. To better prepare a wide range of students for these careers, we must seek to develop new tools to enhance our education in quantum topics. We present initial studies on the use of one of these such tools, Quantum Composer, a 1D quantum simulation and visualization tool developed for education and research purposes. In particular, we conducted five think-aloud interviews with students who worked through an exercise using Quantum Composer that focused on the statics and dynamics of quantum states in a single harmonic well system. Our results show that Quantum Composer helps students to obtain the correct answers to the questions posed, but additional support is needed to facilitate the development of student reasoning behind these answers. We also show that students are able to focus only on the relevant features of Quantum Composer to achieve the task. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13260v2-abstract-full').style.display = 'none'; document.getElementById('2104.13260v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03109">arXiv:2103.03109</a> <span> [<a href="https://arxiv.org/pdf/2103.03109">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A training programme for early-stage researchers that focuses on developing personal science outreach portfolios </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+Z">Shaeema Zaman Ahmed</a>, <a href="/search/physics?searchtype=author&query=Hjorth%2C+A">Arthur Hjorth</a>, <a href="/search/physics?searchtype=author&query=Rafner%2C+J+F">Janet Frances Rafner</a>, <a href="/search/physics?searchtype=author&query=Weidner%2C+C+A">Carrie Ann Weidner</a>, <a href="/search/physics?searchtype=author&query=Kragh%2C+G">Gitte Kragh</a>, <a href="/search/physics?searchtype=author&query=Jensen%2C+J+H+M">Jesper Hasseriis Mohr Jensen</a>, <a href="/search/physics?searchtype=author&query=Bobroff%2C+J">Julien Bobroff</a>, <a href="/search/physics?searchtype=author&query=Nielsen%2C+K+H">Kristian Hvidtfelt Nielsen</a>, <a href="/search/physics?searchtype=author&query=Sherson%2C+J+F">Jacob Friis Sherson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03109v2-abstract-short" style="display: inline;"> Development of outreach skills is critical for researchers when communicating their work to non-expert audiences. However, due to the lack of formal training, researchers are typically unaware of the benefits of outreach training and often under-prioritize outreach. We present a training programme conducted with an international network of PhD students in quantum physics, which focused on developi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03109v2-abstract-full').style.display = 'inline'; document.getElementById('2103.03109v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03109v2-abstract-full" style="display: none;"> Development of outreach skills is critical for researchers when communicating their work to non-expert audiences. However, due to the lack of formal training, researchers are typically unaware of the benefits of outreach training and often under-prioritize outreach. We present a training programme conducted with an international network of PhD students in quantum physics, which focused on developing outreach skills and an understanding of the associated professional benefits by creating an outreach portfolio consisting of a range of implementable outreach products. We describe our approach, assess the impact, and provide a list of guidelines for designing similar programmes across scientific disciplines in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03109v2-abstract-full').style.display = 'none'; document.getElementById('2103.03109v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.04647">arXiv:2102.04647</a> <span> [<a href="https://arxiv.org/pdf/2102.04647">pdf</a>, <a href="https://arxiv.org/ps/2102.04647">ps</a>, <a href="https://arxiv.org/format/2102.04647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JLT.2021.3068265">10.1109/JLT.2021.3068265 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Physics Based Multiscale Compact Model of p-i-n Avalanche Photodiodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+Z">Sheikh Z. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Ganguly%2C+S">Samiran Ganguly</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+Y">Yuan Yuan</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+J">Jiyuan Zheng</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yaohua Tan</a>, <a href="/search/physics?searchtype=author&query=Campbell%2C+J+C">Joe C. Campbell</a>, <a href="/search/physics?searchtype=author&query=Ghosh%2C+A+W">Avik W. Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.04647v1-abstract-short" style="display: inline;"> III-V material based digital alloy Avalanche Photodiodes (APDs) have recently been found to exhibit low noise similar to Silicon APDs. The III-V materials can be chosen to operate at any wavelength in the infrared spectrum. In this work, we present a physics-based SPICE compatible compact model for APDs built from parameters extracted from an Environment-Dependent Tight Binding (EDTB) model calibr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04647v1-abstract-full').style.display = 'inline'; document.getElementById('2102.04647v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.04647v1-abstract-full" style="display: none;"> III-V material based digital alloy Avalanche Photodiodes (APDs) have recently been found to exhibit low noise similar to Silicon APDs. The III-V materials can be chosen to operate at any wavelength in the infrared spectrum. In this work, we present a physics-based SPICE compatible compact model for APDs built from parameters extracted from an Environment-Dependent Tight Binding (EDTB) model calibrated to ab-initio Density Functional Theory (DFT) and Monte Carlo (MC) methods. Using this approach, we can accurately capture the physical characteristics of these APDs in integrated photonics circuit simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04647v1-abstract-full').style.display = 'none'; document.getElementById('2102.04647v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05908">arXiv:2101.05908</a> <span> [<a href="https://arxiv.org/pdf/2101.05908">pdf</a>, <a href="https://arxiv.org/format/2101.05908">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Hybrid analysis and modeling for next generation of digital twins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pawar%2C+S">Suraj Pawar</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Rasheed%2C+A">Adil Rasheed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05908v1-abstract-short" style="display: inline;"> The physics-based modeling has been the workhorse for many decades in many scientific and engineering applications ranging from wind power, weather forecasting, and aircraft design. Recently, data-driven models are increasingly becoming popular in many branches of science and engineering due to their non-intrusive nature and online learning capability. Despite the robust performance of data-driven… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05908v1-abstract-full').style.display = 'inline'; document.getElementById('2101.05908v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05908v1-abstract-full" style="display: none;"> The physics-based modeling has been the workhorse for many decades in many scientific and engineering applications ranging from wind power, weather forecasting, and aircraft design. Recently, data-driven models are increasingly becoming popular in many branches of science and engineering due to their non-intrusive nature and online learning capability. Despite the robust performance of data-driven models, they are faced with challenges of poor generalizability and difficulty in interpretation. These challenges have encouraged the integration of physics-based models with data-driven models, herein denoted hybrid analysis and modeling (HAM). We propose two different frameworks under the HAM paradigm for applications relevant to wind energy in order to bring the physical realism within emerging digital twin technologies. The physics-guided machine learning (PGML) framework reduces the uncertainty of neural network predictions by embedding physics-based features from a simplified model at intermediate layers and its performance is demonstrated for the aerodynamic force prediction task. Our results show that the proposed PGML framework achieves approximately 75\% reduction in uncertainty for smaller angle of attacks. The interface learning (IL) framework illustrates how different solvers can be coupled to produce a multi-fidelity model and is successfully applied for the Boussinesq equations that govern a broad class of transport processes. The IL approach paves the way for seamless integration of multi-scale, multi-physics and multi-fidelity models (M^3 models). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05908v1-abstract-full').style.display = 'none'; document.getElementById('2101.05908v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2012.13343</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01276">arXiv:2011.01276</a> <span> [<a href="https://arxiv.org/pdf/2011.01276">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimum design of tracking bifacial solar farms -- A comprehensive global analysis of next-generation PV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Patel%2C+M+T">M. Tahir Patel</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+M+S">M. Sojib Ahmed</a>, <a href="/search/physics?searchtype=author&query=Imran%2C+H">Hassan Imran</a>, <a href="/search/physics?searchtype=author&query=Butt%2C+N+Z">Nauman Z. Butt</a>, <a href="/search/physics?searchtype=author&query=Khan%2C+M+R">M. Ryyan Khan</a>, <a href="/search/physics?searchtype=author&query=Alam%2C+M+A">Muhammad A. Alam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01276v1-abstract-short" style="display: inline;"> The bifacial gain of East-West vertical and South-facing optimally-tilted bifacial farms are well established. One wonders if bifacial gain (and the associated LCOE) may be further improved by tracking the sun. Tracking bifacial PV has advantages of improved temperature sensitivity, enhanced diffuse and albedo light collection, flattened energy-output, reduced soiling, etc. Monofacial tracking alr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01276v1-abstract-full').style.display = 'inline'; document.getElementById('2011.01276v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01276v1-abstract-full" style="display: none;"> The bifacial gain of East-West vertical and South-facing optimally-tilted bifacial farms are well established. One wonders if bifacial gain (and the associated LCOE) may be further improved by tracking the sun. Tracking bifacial PV has advantages of improved temperature sensitivity, enhanced diffuse and albedo light collection, flattened energy-output, reduced soiling, etc. Monofacial tracking already provides many of these advantages, therefore the relative merits of bifacial tracking are not obvious. In this paper, we use a detailed illumination and temperature-dependent bifacial solar farm model to show that bifacial tracking PV delivers up to 45% energy gain when compared to fixed-tilt bifacial PV near the equator, and ~10% bifacial energy gain over tracking monofacial farm with an albedo of 0.5. An optimum pitch further improves the gain of a tracking bifacial farm. Our results will broaden the scope and understanding of bifacial technology by demonstrating global trends in energy gain for worldwide deployment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01276v1-abstract-full').style.display = 'none'; document.getElementById('2011.01276v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures, submitted in a journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.10806">arXiv:2010.10806</a> <span> [<a href="https://arxiv.org/pdf/2010.10806">pdf</a>, <a href="https://arxiv.org/format/2010.10806">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.013181">10.1103/PhysRevResearch.5.013181 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QuTiP-BoFiN: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/physics?searchtype=author&query=Raheja%2C+T">Tarun Raheja</a>, <a href="/search/physics?searchtype=author&query=Cross%2C+S">Simon Cross</a>, <a href="/search/physics?searchtype=author&query=Menczel%2C+P">Paul Menczel</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shahnawaz Ahmed</a>, <a href="/search/physics?searchtype=author&query=Pitchford%2C+A">Alexander Pitchford</a>, <a href="/search/physics?searchtype=author&query=Burgarth%2C+D">Daniel Burgarth</a>, <a href="/search/physics?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.10806v3-abstract-short" style="display: inline;"> The "hierarchical equations of motion" (HEOM) method is a powerful exact numerical approach to solve the dynamics and find the steady-state of a quantum system coupled to a non-Markovian and non-perturbative environment. Originally developed in the context of physical chemistry, it has also been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biolo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10806v3-abstract-full').style.display = 'inline'; document.getElementById('2010.10806v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.10806v3-abstract-full" style="display: none;"> The "hierarchical equations of motion" (HEOM) method is a powerful exact numerical approach to solve the dynamics and find the steady-state of a quantum system coupled to a non-Markovian and non-perturbative environment. Originally developed in the context of physical chemistry, it has also been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics. Here we present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments. We demonstrate its utility with a series of examples. For the bosonic case, we include demonstrations of fitting arbitrary spectral densities, and an example of the dynamics of energy transfer in the Fenna-Matthews-Olson photosynthetic complex, showing how a suitable non-Markovian environment can protect against pure dephasing. We also demonstrate how the HEOM can be used to benchmark different strategies for dynamical decoupling of a spin from its environment, and show that the Uhrig pulse-spacing scheme is less optimal than equally spaced pulses when the environment's spectral density is very broad. For the fermionic case, we present an integrable single-impurity example, used as a benchmark of the code, and a more complex example of an impurity strongly coupled to a single vibronic mode, with applications to single-molecule electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10806v3-abstract-full').style.display = 'none'; document.getElementById('2010.10806v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 15 figures. Updated to describe package inclusion in QuTiP v4.7 (www.qutip.org), new examples (optimal pulse spacing in dynamical decoupling, quantum heat transport), and inclusion of additional contributors in author list. Further updates to expand examples, clarify content and summarize existing packages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 013181, (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.04490">arXiv:2008.04490</a> <span> [<a href="https://arxiv.org/pdf/2008.04490">pdf</a>, <a href="https://arxiv.org/format/2008.04490">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0024670">10.1063/5.0024670 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interface learning in fluid dynamics: statistical inference of closures within micro-macro coupling models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pawar%2C+S">Suraj Pawar</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.04490v1-abstract-short" style="display: inline;"> Many complex multiphysics systems in fluid dynamics involve using solvers with varied levels of approximations in different regions of the computational domain to resolve multiple spatiotemporal scales present in the flow. The accuracy of the solution is governed by how the information is exchanged between these solvers at the interface and several methods have been devised for such coupling probl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04490v1-abstract-full').style.display = 'inline'; document.getElementById('2008.04490v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.04490v1-abstract-full" style="display: none;"> Many complex multiphysics systems in fluid dynamics involve using solvers with varied levels of approximations in different regions of the computational domain to resolve multiple spatiotemporal scales present in the flow. The accuracy of the solution is governed by how the information is exchanged between these solvers at the interface and several methods have been devised for such coupling problems. In this article, we construct a data-driven model by spatially coupling a microscale lattice Boltzmann method (LBM) solver and macroscale finite difference method (FDM) solver for reaction-diffusion systems. The coupling between the micro-macro solvers has one to many mapping at the interface leading to the interface closure problem, and we propose a statistical inference method based on neural networks to learn this closure relation. The performance of the proposed framework in a bifidelity setting partitioned between the FDM and LBM domain shows its promise for complex systems where analytical relations between micro-macro solvers are not available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04490v1-abstract-full').style.display = 'none'; document.getElementById('2008.04490v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.03811">arXiv:2008.03811</a> <span> [<a href="https://arxiv.org/pdf/2008.03811">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.langmuir.0c02354">10.1021/acs.langmuir.0c02354 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigations into the complete spreading dynamics of a viscoelastic drop on a spherical substrate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shyam%2C+S">Sudip Shyam</a>, <a href="/search/physics?searchtype=author&query=Gaikwad%2C+H+S">Harshad Sanjay Gaikwad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+A+G">Syed Abu Ghalib Ahmed</a>, <a href="/search/physics?searchtype=author&query=Chakraborty%2C+B">Bibek Chakraborty</a>, <a href="/search/physics?searchtype=author&query=Mondal%2C+P+K">Pranab Kumar Mondal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.03811v2-abstract-short" style="display: inline;"> We study the spreading dynamics of a sphere-shaped elastic non-Newtonian liquid drop on a spherical substrate in the capillary driven regime. We use the simplified Phan Thien Tanner model to represent the rheology of the elastic non-Newtonian drop. We consider the drop to be a crater on a flat substrate to calculate the viscous dissipation near the contact line. Following the approach compatible w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03811v2-abstract-full').style.display = 'inline'; document.getElementById('2008.03811v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.03811v2-abstract-full" style="display: none;"> We study the spreading dynamics of a sphere-shaped elastic non-Newtonian liquid drop on a spherical substrate in the capillary driven regime. We use the simplified Phan Thien Tanner model to represent the rheology of the elastic non-Newtonian drop. We consider the drop to be a crater on a flat substrate to calculate the viscous dissipation near the contact line. Following the approach compatible with the capillary-viscous force balance, we establish the evolution equation for describing the temporal evolution of the contact line during spreading. We show that the contact line velocity obtained from the theoretical calculation matches well with our experimental observations. Also, as confirmed by the present experimental observations, our analysis deems efficient to capture the phenomenon during the late-stage of spreading for which the effect of line tension becomes dominant. An increment in the viscoelastic parameter of the fluid increases the viscous dissipation effect at the contact line. It is seen that the higher dissipation effect leads to an enhancement in the wetting time of the drop on the spherical substrate. Also, we have shown that the elastic nature of fluid leads to an increment in the dynamic contact angle at any temporal instant as compared to its Newtonian counterpart. Finally, we unveil that the phenomenon of increasing contact angle results in the time required for the complete wetting of drop becomes higher with increasing viscoelasticity of the fluid. This article will fill a gap still affecting the existing literature due to the unavailability of experimental investigations of the spreading of the elastic non-Newtonian drop on a spherical substrate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03811v2-abstract-full').style.display = 'none'; document.getElementById('2008.03811v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Langmuir, 1, 63-75, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.03157">arXiv:2008.03157</a> <span> [<a href="https://arxiv.org/pdf/2008.03157">pdf</a>, <a href="https://arxiv.org/format/2008.03157">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A nudged hybrid analysis and modeling approach for realtime wake-vortex transport and decay prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shady Ahmed</a>, <a href="/search/physics?searchtype=author&query=Pawar%2C+S">Suraj Pawar</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Rasheed%2C+A">Adil Rasheed</a>, <a href="/search/physics?searchtype=author&query=Tabib%2C+M">Mandar Tabib</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.03157v2-abstract-short" style="display: inline;"> We put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements for air traffic improvements. Toward emerging applications of digital twins in aviation, the proposed approach allows for constructing a realtime predictive tool for wake-vortex transport and decay systems. We build on the fact that in realis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03157v2-abstract-full').style.display = 'inline'; document.getElementById('2008.03157v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.03157v2-abstract-full" style="display: none;"> We put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements for air traffic improvements. Toward emerging applications of digital twins in aviation, the proposed approach allows for constructing a realtime predictive tool for wake-vortex transport and decay systems. We build on the fact that in realistic application, there are uncertainties in initial and boundary conditions, model parameters, as well as measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM nudging (LSTM-N) approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate our concept by solving a two-dimensional vorticity transport equation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-N behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity, and offer a huge potential in developing next-generation digital twin technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03157v2-abstract-full').style.display = 'none'; document.getElementById('2008.03157v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2005.14246</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.06179">arXiv:2007.06179</a> <span> [<a href="https://arxiv.org/pdf/2007.06179">pdf</a>, <a href="https://arxiv.org/ps/2007.06179">ps</a>, <a href="https://arxiv.org/format/2007.06179">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1371/journal.pone.0246092">10.1371/journal.pone.0246092 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multifidelity Computing for Coupling Full and Reduced Order Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Kara%2C+K">Kursat Kara</a>, <a href="/search/physics?searchtype=author&query=Younis%2C+R">Rami Younis</a>, <a href="/search/physics?searchtype=author&query=Rasheed%2C+A">Adil Rasheed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.06179v2-abstract-short" style="display: inline;"> Hybrid physics-machine learning models are increasingly being used in simulations of transport processes. Many complex multiphysics systems relevant to scientific and engineering applications include multiple spatiotemporal scales and comprise a multifidelity problem sharing an interface between various formulations or heterogeneous computational entities. To this end, we present a robust hybrid a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06179v2-abstract-full').style.display = 'inline'; document.getElementById('2007.06179v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.06179v2-abstract-full" style="display: none;"> Hybrid physics-machine learning models are increasingly being used in simulations of transport processes. Many complex multiphysics systems relevant to scientific and engineering applications include multiple spatiotemporal scales and comprise a multifidelity problem sharing an interface between various formulations or heterogeneous computational entities. To this end, we present a robust hybrid analysis and modeling approach combining a physics-based full order model (FOM) and a data-driven reduced order model (ROM) to form the building blocks of an integrated approach among mixed fidelity descriptions toward predictive digital twin technologies. At the interface, we introduce a long short-term memory network to bridge these high and low-fidelity models in various forms of interfacial error correction or prolongation. The proposed interface learning approaches are tested as a new way to address ROM-FOM coupling problems solving nonlinear advection-diffusion flow situations with a bifidelity setup that captures the essence of a broad class of transport processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06179v2-abstract-full').style.display = 'none'; document.getElementById('2007.06179v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16925">arXiv:2006.16925</a> <span> [<a href="https://arxiv.org/pdf/2006.16925">pdf</a>, <a href="https://arxiv.org/format/2006.16925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-030-63092-8_6">10.1007/978-3-030-63092-8_6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ethical Analysis on the Application of Neurotechnology for Human Augmentation in Physicians and Surgeons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hossain%2C+S">Soaad Hossain</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+I">Syed Ishtiaque Ahmed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16925v3-abstract-short" style="display: inline;"> With the shortage of physicians and surgeons and increase in demand worldwide due to situations such as the COVID-19 pandemic, there is a growing interest in finding solutions to help address the problem. A solution to this problem would be to use neurotechnology to provide them augmented cognition, senses and action for optimal diagnosis and treatment. Consequently, doing so can negatively impact… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16925v3-abstract-full').style.display = 'inline'; document.getElementById('2006.16925v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16925v3-abstract-full" style="display: none;"> With the shortage of physicians and surgeons and increase in demand worldwide due to situations such as the COVID-19 pandemic, there is a growing interest in finding solutions to help address the problem. A solution to this problem would be to use neurotechnology to provide them augmented cognition, senses and action for optimal diagnosis and treatment. Consequently, doing so can negatively impact them and others. We argue that applying neurotechnology for human enhancement in physicians and surgeons can cause injustices, and harm to them and patients. In this paper, we will first describe the augmentations and neurotechnologies that can be used to achieve the relevant augmentations for physicians and surgeons. We will then review selected ethical concerns discussed within literature, discuss the neuroengineering behind using neurotechnology for augmentation purposes, then conclude with an analysis on outcomes and ethical issues of implementing human augmentation via neurotechnology in medical and surgical practice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16925v3-abstract-full').style.display = 'none'; document.getElementById('2006.16925v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a preprint of the following chapter: Ethical Analysis on the Application of Neurotechnology for Human Augmentation in Physicians and Surgeons, published in Proceedings of the Future Technologies Conference (FTC) 2020, Volume 3, edited by Kohei Arai, Supriya Kapoor and Rahul Bhatia. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-63092-8_6</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68-06 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.3; K.4.1; K.4.2; K.4.3; J.7; J.4 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.10112">arXiv:2006.10112</a> <span> [<a href="https://arxiv.org/pdf/2006.10112">pdf</a>, <a href="https://arxiv.org/format/2006.10112">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.102.053304">10.1103/PhysRevE.102.053304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interface learning of multiphysics and multiscale systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Kara%2C+K">Kursat Kara</a>, <a href="/search/physics?searchtype=author&query=Younis%2C+R">Rami Younis</a>, <a href="/search/physics?searchtype=author&query=Rasheed%2C+A">Adil Rasheed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.10112v2-abstract-short" style="display: inline;"> Complex natural or engineered systems comprise multiple characteristic scales, multiple spatiotemporal domains, and even multiple physical closure laws. To address such challenges, we introduce an interface learning paradigm and put forth a data-driven closure approach based on memory embedding to provide physically correct boundary conditions at the interface. To enable the interface learning for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10112v2-abstract-full').style.display = 'inline'; document.getElementById('2006.10112v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.10112v2-abstract-full" style="display: none;"> Complex natural or engineered systems comprise multiple characteristic scales, multiple spatiotemporal domains, and even multiple physical closure laws. To address such challenges, we introduce an interface learning paradigm and put forth a data-driven closure approach based on memory embedding to provide physically correct boundary conditions at the interface. To enable the interface learning for hyperbolic systems by considering the domain of influence and wave structures into account, we put forth the concept of upwind learning towards a physics-informed domain decomposition. The promise of the proposed approach is shown for a set of canonical illustrative problems. We highlight that high-performance computing environments can benefit from this methodology to reduce communication costs among processing units in emerging machine learning ready heterogeneous platforms toward exascale era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10112v2-abstract-full').style.display = 'none'; document.getElementById('2006.10112v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 102, 053304 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.07263">arXiv:2006.07263</a> <span> [<a href="https://arxiv.org/pdf/2006.07263">pdf</a>, <a href="https://arxiv.org/format/2006.07263">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1119/10.0003396">10.1119/10.0003396 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Composer: A programmable quantum visualization and simulation tool for education and research </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+Z">Shaeema Zaman Ahmed</a>, <a href="/search/physics?searchtype=author&query=Jensen%2C+J+H+M">Jesper Hasseriis Mohr Jensen</a>, <a href="/search/physics?searchtype=author&query=Weidner%2C+C+A">Carrie Ann Weidner</a>, <a href="/search/physics?searchtype=author&query=S%C3%B8rensen%2C+J+J">Jens Jakob S酶rensen</a>, <a href="/search/physics?searchtype=author&query=Mudrich%2C+M">Marcel Mudrich</a>, <a href="/search/physics?searchtype=author&query=Sherson%2C+J+F">Jacob Friis Sherson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.07263v1-abstract-short" style="display: inline;"> Making quantum mechanical equations and concepts come to life through interactive simulation and visualization are commonplace for augmenting learning and teaching. However, graphical visualizations nearly always exhibit a set of hard-coded functionalities while corresponding text-based codes offer a higher degree of flexibility at the expense of steep learning curves or time investments. We intro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07263v1-abstract-full').style.display = 'inline'; document.getElementById('2006.07263v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.07263v1-abstract-full" style="display: none;"> Making quantum mechanical equations and concepts come to life through interactive simulation and visualization are commonplace for augmenting learning and teaching. However, graphical visualizations nearly always exhibit a set of hard-coded functionalities while corresponding text-based codes offer a higher degree of flexibility at the expense of steep learning curves or time investments. We introduce Quantum Composer, which allows the user to build, expand, or explore quantum mechanical simulations by interacting with graphically connectable nodes, each corresponding to a physical concept, mathematical operation, visualization, etc. Abstracting away numerical and programming details while at the same time retaining accessibility, emphasis on understanding, and rapid feedback mechanisms, we illustrate through a series of examples its open-ended applicability in both introductory and advanced quantum mechanics courses, student projects, and for visual exploration within research environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07263v1-abstract-full').style.display = 'none'; document.getElementById('2006.07263v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.02551">arXiv:2006.02551</a> <span> [<a href="https://arxiv.org/pdf/2006.02551">pdf</a>, <a href="https://arxiv.org/format/2006.02551">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TAP.2020.3037651">10.1109/TAP.2020.3037651 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Memory-efficient Implementation of Perfectly Matched Layer with Smoothly-varying Coefficients in Discontinuous Galerkin Time-Domain Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+L">Liang Chen</a>, <a href="/search/physics?searchtype=author&query=Ozakin%2C+M+B">Mehmet Burak Ozakin</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shehab Ahmed</a>, <a href="/search/physics?searchtype=author&query=Bagci%2C+H">Hakan Bagci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.02551v2-abstract-short" style="display: inline;"> Wrapping a computation domain with a perfectly matched layer (PML) is one of the most effective methods of imitating/approximating the radiation boundary condition in Maxwell and wave equation solvers. Many PML implementations often use a smoothly-increasing attenuation coefficient to increase the absorption for a given layer thickness, and, at the same time, to reduce the numerical reflection fro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02551v2-abstract-full').style.display = 'inline'; document.getElementById('2006.02551v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.02551v2-abstract-full" style="display: none;"> Wrapping a computation domain with a perfectly matched layer (PML) is one of the most effective methods of imitating/approximating the radiation boundary condition in Maxwell and wave equation solvers. Many PML implementations often use a smoothly-increasing attenuation coefficient to increase the absorption for a given layer thickness, and, at the same time, to reduce the numerical reflection from the interface between the computation domain and the PML. In discontinuous Galerkin time-domain (DGTD) methods, using a PML coefficient that varies within a mesh element requires a different mass matrix to be stored for every element and therefore significantly increases the memory footprint. In this work, this bottleneck is addressed by applying a weight-adjusted approximation to these mass matrices. The resulting DGTD scheme has the same advantages as the scheme that stores individual mass matrices, namely higher accuracy (due to reduced numerical reflection) and increased meshing flexibility (since the PML does not have to be defined layer by layer) but it requires significantly less memory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02551v2-abstract-full').style.display = 'none'; document.getElementById('2006.02551v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Trans. Antennas Propag., vol. 69, no. 2, pp. 3605-3610, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14246">arXiv:2005.14246</a> <span> [<a href="https://arxiv.org/pdf/2005.14246">pdf</a>, <a href="https://arxiv.org/format/2005.14246">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Reduced order modeling of fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and partitioning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shady Ahmed</a>, <a href="/search/physics?searchtype=author&query=Pawar%2C+S">Suraj Pawar</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Rasheed%2C+A">Adil Rasheed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14246v1-abstract-short" style="display: inline;"> In this paper, we put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements. We build on the fact that in a realistic application, there are uncertainties in initial conditions, boundary conditions, model parameters, and/or field measurements. Moreover, conventional nonlinear ROMs based on Galerkin pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14246v1-abstract-full').style.display = 'inline'; document.getElementById('2005.14246v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14246v1-abstract-full" style="display: none;"> In this paper, we put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements. We build on the fact that in a realistic application, there are uncertainties in initial conditions, boundary conditions, model parameters, and/or field measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities due to the modal truncation, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM-Nudge approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate the idea with the viscous Burgers problem, as a benchmark test bed with quadratic nonlinearity and Laplacian dissipation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-Nudge behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity. This first step in our assessment of the proposed model shows that the LSTM nudging could represent a viable realtime predictive tool in emerging digital twin systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14246v1-abstract-full').style.display = 'none'; document.getElementById('2005.14246v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.11296">arXiv:2005.11296</a> <span> [<a href="https://arxiv.org/pdf/2005.11296">pdf</a>, <a href="https://arxiv.org/format/2005.11296">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0012853">10.1063/5.0012853 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long short-term memory embedded nudging schemes for nonlinear data assimilation of geophysical flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pawar%2C+S">Suraj Pawar</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Rasheed%2C+A">Adil Rasheed</a>, <a href="/search/physics?searchtype=author&query=Navon%2C+I+M">Ionel M. Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.11296v1-abstract-short" style="display: inline;"> Reduced rank nonlinear filters are increasingly utilized in data assimilation of geophysical flows, but often require a set of ensemble forward simulations to estimate forecast covariance. On the other hand, predictor-corrector type nudging approaches are still attractive due to their simplicity of implementation when more complex methods need to be avoided. However, optimal estimate of nudging ga… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11296v1-abstract-full').style.display = 'inline'; document.getElementById('2005.11296v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.11296v1-abstract-full" style="display: none;"> Reduced rank nonlinear filters are increasingly utilized in data assimilation of geophysical flows, but often require a set of ensemble forward simulations to estimate forecast covariance. On the other hand, predictor-corrector type nudging approaches are still attractive due to their simplicity of implementation when more complex methods need to be avoided. However, optimal estimate of nudging gain matrix might be cumbersome. In this paper, we put forth a fully nonintrusive recurrent neural network approach based on a long short-term memory (LSTM) embedding architecture to estimate the nudging term, which plays a role not only to force the state trajectories to the observations but also acts as a stabilizer. Furthermore, our approach relies on the power of archival data and the trained model can be retrained effectively due to power of transfer learning in any neural network applications. In order to verify the feasibility of the proposed approach, we perform twin experiments using Lorenz 96 system. Our results demonstrate that the proposed LSTM nudging approach yields more accurate estimates than both extended Kalman filter (EKF) and ensemble Kalman filter (EnKF) when only sparse observations are available. With the availability of emerging AI-friendly and modular hardware technologies and heterogeneous computing platforms, we articulate that our simplistic nudging framework turns out to be computationally more efficient than either the EKF or EnKF approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11296v1-abstract-full').style.display = 'none'; document.getElementById('2005.11296v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10926">arXiv:2005.10926</a> <span> [<a href="https://arxiv.org/pdf/2005.10926">pdf</a>, <a href="https://arxiv.org/format/2005.10926">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.102.043302">10.1103/PhysRevE.102.043302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+E">Shady E. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Bhar%2C+K">Kinjal Bhar</a>, <a href="/search/physics?searchtype=author&query=San%2C+O">Omer San</a>, <a href="/search/physics?searchtype=author&query=Rasheed%2C+A">Adil Rasheed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10926v2-abstract-short" style="display: inline;"> In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dime… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10926v2-abstract-full').style.display = 'inline'; document.getElementById('2005.10926v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10926v2-abstract-full" style="display: none;"> In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10926v2-abstract-full').style.display = 'none'; document.getElementById('2005.10926v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 102, 043302 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.08826">arXiv:2004.08826</a> <span> [<a href="https://arxiv.org/pdf/2004.08826">pdf</a>, <a href="https://arxiv.org/format/2004.08826">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep Convolutional Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ribeiro%2C+M+D">Mateus Dias Ribeiro</a>, <a href="/search/physics?searchtype=author&query=Rehman%2C+A">Abdul Rehman</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Sheraz Ahmed</a>, <a href="/search/physics?searchtype=author&query=Dengel%2C+A">Andreas Dengel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.08826v3-abstract-short" style="display: inline;"> Computational Fluid Dynamics (CFD) simulation by the numerical solution of the Navier-Stokes equations is an essential tool in a wide range of applications from engineering design to climate modeling. However, the computational cost and memory demand required by CFD codes may become very high for flows of practical interest, such as in aerodynamic shape optimization. This expense is associated wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08826v3-abstract-full').style.display = 'inline'; document.getElementById('2004.08826v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.08826v3-abstract-full" style="display: none;"> Computational Fluid Dynamics (CFD) simulation by the numerical solution of the Navier-Stokes equations is an essential tool in a wide range of applications from engineering design to climate modeling. However, the computational cost and memory demand required by CFD codes may become very high for flows of practical interest, such as in aerodynamic shape optimization. This expense is associated with the complexity of the fluid flow governing equations, which include non-linear partial derivative terms that are of difficult solution, leading to long computational times and limiting the number of hypotheses that can be tested during the process of iterative design. Therefore, we propose DeepCFD: a convolutional neural network (CNN) based model that efficiently approximates solutions for the problem of non-uniform steady laminar flows. The proposed model is able to learn complete solutions of the Navier-Stokes equations, for both velocity and pressure fields, directly from ground-truth data generated using a state-of-the-art CFD code. Using DeepCFD, we found a speedup of up to 3 orders of magnitude compared to the standard CFD approach at a cost of low error rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08826v3-abstract-full').style.display = 'none'; document.getElementById('2004.08826v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.10579">arXiv:2002.10579</a> <span> [<a href="https://arxiv.org/pdf/2002.10579">pdf</a>, <a href="https://arxiv.org/format/2002.10579">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Exceptional coupling in extreme skin-depth waveguides for extremely low waveguide crosstalk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mia%2C+M+B">Md Borhan Mia</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+Z">Syed Z. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+I">Ishtiaque Ahmed</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+Y+J">Yun Jo Lee</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+M">Minghao Qi</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S">Sangsik Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.10579v1-abstract-short" style="display: inline;"> Photonic chips can miniaturize complicate optical systems very tiny and portable, providing versatile functionalities for many optical applications. Increasing the photonic chip integration density is highly desired as it provides more functionalities, low cost, and lower power consumption. However, photonic chip integration density is limited by the waveguide crosstalk, which is caused by the eva… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10579v1-abstract-full').style.display = 'inline'; document.getElementById('2002.10579v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.10579v1-abstract-full" style="display: none;"> Photonic chips can miniaturize complicate optical systems very tiny and portable, providing versatile functionalities for many optical applications. Increasing the photonic chip integration density is highly desired as it provides more functionalities, low cost, and lower power consumption. However, photonic chip integration density is limited by the waveguide crosstalk, which is caused by the evanescent waves in the cladding. Here we show that the waveguide crosstalk can be suppressed completely with the exceptional coupling in extreme skin-depth (eskid) waveguides. The anisotropic dielectric perturbations in the coupled eskid waveguides cause such an exceptional coupling, resulting in infinitely long coupling length. We demonstrate the extreme suppression of waveguide crosstalk via exceptional coupling on a silicon-on-insulator (SOI) platform, which is compatible with a complementary metal-oxide-semiconductor (CMOS) process. The idea of exceptional coupling in eskid waveguides can be applied to many other photonic devices as well, significantly reducing entire chip footprints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10579v1-abstract-full').style.display = 'none'; document.getElementById('2002.10579v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.00222">arXiv:2002.00222</a> <span> [<a href="https://arxiv.org/pdf/2002.00222">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.386305">10.1364/OL.386305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-cycle, MHz-repetition rate THz source with 66 mW of average power </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Meyer%2C+F">Frank Meyer</a>, <a href="/search/physics?searchtype=author&query=Vogel%2C+T">Tim Vogel</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shahwar Ahmed</a>, <a href="/search/physics?searchtype=author&query=Saraceno%2C+C+J">Clara J. Saraceno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.00222v1-abstract-short" style="display: inline;"> We demonstrate THz generation using the tilted pulse front method in Lithium Niobate, driven at unprecedented high average power of more than 100 W and at 13.3 MHz repetition rate, provided by a compact amplifier-free modelocked thin-disk oscillator. The conversion efficiency was optimized with respect to pump spot size and pump pulse duration, enabling us to generate a maximum THz average power o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00222v1-abstract-full').style.display = 'inline'; document.getElementById('2002.00222v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.00222v1-abstract-full" style="display: none;"> We demonstrate THz generation using the tilted pulse front method in Lithium Niobate, driven at unprecedented high average power of more than 100 W and at 13.3 MHz repetition rate, provided by a compact amplifier-free modelocked thin-disk oscillator. The conversion efficiency was optimized with respect to pump spot size and pump pulse duration, enabling us to generate a maximum THz average power of 66 mW, which is the highest reported to date from a laser-driven, few-cycle THz source. Furthermore, we identify beam walk-off as the main obstacle that currently limits the conversion efficiency in this excitation regime (with moderate pulse energies and small spot sizes). Further upscaling to the watt level and beyond is within reach, paving the way for linear and nonlinear high-average power THz spectroscopy experiments with exceptional signal-to-noise ratio at MHz repetition rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00222v1-abstract-full').style.display = 'none'; document.getElementById('2002.00222v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Optics Letters</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Ahmed%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Ahmed%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Ahmed%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>