CINXE.COM

Search results for: PDMS

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: PDMS</title> <meta name="description" content="Search results for: PDMS"> <meta name="keywords" content="PDMS"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="PDMS" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="PDMS"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: PDMS</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Formation of Round Channel for Microfluidic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Zahra">A. Zahra</a>, <a href="https://publications.waset.org/search?q=G.%20de%20Cesare">G. de Cesare</a>, <a href="https://publications.waset.org/search?q=D.%20Caputo"> D. Caputo</a>, <a href="https://publications.waset.org/search?q=A.%20Nascetti"> A. Nascetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>PDMS (Polydimethylsiloxane) polymer is a suitable material for biological and MEMS (Microelectromechanical systems) designers, because of its biocompatibility, transparency and high resistance under plasma treatment. PDMS round channel is always been of great interest due to its ability to confine the liquid with membrane type micro valves. In this paper we are presenting a very simple way to form round shapemicrofluidic channel, which is based on reflow of positive photoresist AZ&reg; 40 XT. With this method, it is possible to obtain channel of different height simply by varying the spin coating parameters of photoresist.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lab-on-Chip" title="Lab-on-Chip">Lab-on-Chip</a>, <a href="https://publications.waset.org/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/search?q=Reflow" title=" Reflow"> Reflow</a>, <a href="https://publications.waset.org/search?q=Round%20microfluidic%20channel." title=" Round microfluidic channel."> Round microfluidic channel.</a> </p> <a href="https://publications.waset.org/9998716/formation-of-round-channel-for-microfluidic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998716/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998716/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998716/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998716/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998716/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998716/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998716/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998716/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998716/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998716/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3023</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Effects of Stiffness on Endothelial Cells Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Forough%20Ataollahi">Forough Ataollahi</a>, <a href="https://publications.waset.org/search?q=Belinda%20Pingguan-Murphy"> Belinda Pingguan-Murphy</a>, <a href="https://publications.waset.org/search?q=Wan%20Abu%20Bakar%20Wan%20Abas"> Wan Abu Bakar Wan Abas</a>, <a href="https://publications.waset.org/search?q=Noor%20Azuan%20Abu%20Osman"> Noor Azuan Abu Osman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Endothelium proliferation is an important process in cardiovascular homeostasis and can be regulated by extracellular environment, as cells can actively sense mechanical environment. In this study, we evaluated endothelial cell proliferation on PDMS/alumina (Al<sub>2</sub>O<sub>3</sub>) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 5% and 10% Al<sub>2</sub>O<sub>3</sub> at curing temperature 50˚C for 4h and then characterized by mechanical, structural and morphological analyses. Higher stiffness was found in the composites compared to the pure PDMS substrate. Cell proliferation of the cultured bovine aortic endothelial cells on substrate materials were evaluated via Resazurin assay and 1, 1&rsquo;-Dioctadecyl-1, 3, 3, 3&rsquo;, 3&rsquo;-Tetramethylindocarbocyanine Perchlorate-Acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The results revealed that stiffer substrates promote more endothelial cells proliferation to the less stiff substrates. Therefore, this study firmly hypothesizes that the stiffness elevates endothelial cells proliferation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bovine%20aortic%20endothelial%20cells" title="Bovine aortic endothelial cells">Bovine aortic endothelial cells</a>, <a href="https://publications.waset.org/search?q=extra%20cellular%20matrix" title=" extra cellular matrix"> extra cellular matrix</a>, <a href="https://publications.waset.org/search?q=proliferation" title=" proliferation"> proliferation</a>, <a href="https://publications.waset.org/search?q=stiffness." title=" stiffness."> stiffness.</a> </p> <a href="https://publications.waset.org/9997411/effects-of-stiffness-on-endothelial-cells-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997411/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997411/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997411/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997411/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997411/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997411/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997411/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997411/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997411/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997411/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2596</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Optimization of the Headspace Solid-Phase Microextraction Gas Chromatography for Volatile Compounds Determination in Phytophthora Cinnamomi Rands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rui%20Qiu">Rui Qiu</a>, <a href="https://publications.waset.org/search?q=Giles%20Hardy"> Giles Hardy</a>, <a href="https://publications.waset.org/search?q=Dong%20Qu"> Dong Qu</a>, <a href="https://publications.waset.org/search?q=Robert%20Trengove"> Robert Trengove</a>, <a href="https://publications.waset.org/search?q=Manjree%20Agarwal"> Manjree Agarwal</a>, <a href="https://publications.waset.org/search?q=YongLin%20Ren"> YongLin Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytophthora cinnamomi (P. c) is a plant pathogenic oomycete that is capable of damaging plants in commercial production systems and natural ecosystems worldwide. The most common methods for the detection and diagnosis of P. c infection are expensive, elaborate and time consuming. This study was carried out to examine whether species specific and life cycle specific volatile organic compounds (VOCs) can be absorbed by solid-phase microextraction fibers and detected by gas chromatography that are produced by P. c and another oomycete Pythium dissotocum. A headspace solid-phase microextraction (HS-SPME) together with gas chromatography (GC) method was developed and optimized for the identification of the VOCs released by P. c. The optimized parameters included type of fiber, exposure time, desorption temperature and desorption time. Optimization was achieved with the analytes of P. c+V8A and V8A alone. To perform the HS-SPME, six types of fiber were assayed and compared: 7μm Polydimethylsiloxane (PDMS), 100μm Polydimethylsiloxane (PDMS), 50/30μm Divinylbenzene/CarboxenTM/Polydimethylsiloxane DVB/CAR/PDMS), 65μm Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), 85μm Polyacrylate (PA) fibre and 85μm CarboxenTM/ Polydimethylsiloxane (Carboxen™/PDMS). In a comparison of the efficacy of the fibers, the bipolar fiber DVB/CAR/PDMS had a higher extraction efficiency than the other fibers. An exposure time of 16h with DVB/CAR/PDMS fiber in the sample headspace was enough to reach the maximum extraction efficiency. A desorption time of 3min in the GC injector with the desorption temperature of 250°C was enough for the fiber to desorb the compounds of interest. The chromatograms and morphology study confirmed that the VOCs from P. c+V8A had distinct differences from V8A alone, as did different life cycle stages of P. c and different taxa such as Pythium dissotocum. The study proved that P. c has species and life cycle specific VOCs, which in turn demonstrated the feasibility of this method as means of <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gas%20chromatography" title="Gas chromatography">Gas chromatography</a>, <a href="https://publications.waset.org/search?q=headspace%20solid-phase%0Amicroextraction" title=" headspace solid-phase microextraction"> headspace solid-phase microextraction</a>, <a href="https://publications.waset.org/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/search?q=volatile%20compounds." title=" volatile compounds."> volatile compounds.</a> </p> <a href="https://publications.waset.org/14665/optimization-of-the-headspace-solid-phase-microextraction-gas-chromatography-for-volatile-compounds-determination-in-phytophthora-cinnamomi-rands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14665/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14665/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14665/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14665/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14665/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14665/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14665/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14665/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14665/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14665/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1883</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Development of Piezoelectric Gas Micro Pumps with the PDMS Check Valve Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chiang-Ho%20Cheng">Chiang-Ho Cheng</a>, <a href="https://publications.waset.org/search?q=An-Shik%20Yang"> An-Shik Yang</a>, <a href="https://publications.waset.org/search?q=Hong-Yih%20Cheng"> Hong-Yih Cheng</a>, <a href="https://publications.waset.org/search?q=Ming-Yu%20Lai"> Ming-Yu Lai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micro pump with check valve having the advantages of miniature size, light weight and low power consumption. The micro pump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micro pump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micro pump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micro pump and the displacement of the piezoelectric actuator, simultaneously. The gas micro pump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micro pump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=PDMS" title="PDMS">PDMS</a>, <a href="https://publications.waset.org/search?q=Check%20valve" title=" Check valve"> Check valve</a>, <a href="https://publications.waset.org/search?q=Micro%20pump" title=" Micro pump"> Micro pump</a>, <a href="https://publications.waset.org/search?q=Piezoelectric." title=" Piezoelectric."> Piezoelectric.</a> </p> <a href="https://publications.waset.org/10001977/development-of-piezoelectric-gas-micro-pumps-with-the-pdms-check-valve-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001977/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001977/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001977/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001977/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001977/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001977/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001977/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001977/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001977/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001977/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2026</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Fabrication of Microfluidic Device for Quantitative Monitoring of Algal Cell Behavior Using X-ray LIGA Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Ruenin">J. Ruenin</a>, <a href="https://publications.waset.org/search?q=S.%20Sukprasong"> S. Sukprasong</a>, <a href="https://publications.waset.org/search?q=R.%20Phatthanakun"> R. Phatthanakun</a>, <a href="https://publications.waset.org/search?q=N.%20Chomnawang"> N. Chomnawang</a>, <a href="https://publications.waset.org/search?q=P.%20Kuntanawat"> P. Kuntanawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a simple microfluidic device for monitoring algal cell behavior is proposed. An array of algal microwells is fabricated by PDMS soft-lithography using X-ray LIGA mold, placed on a glass substrate. Two layers of replicated PDMS and substrate are attached by oxygen plasma bonding, creating a microchannel for the microfluidic system. Algal cell are loaded into the microfluidic device, which provides positive charge on the bottom surface of wells. Algal cells, which are negative charged, can be attracted to the bottom of the wells via electrostatic interaction. By varying the concentration of algal cells in the loading suspension, it is possible to obtain wells with a single cell. Liquid medium for cells monitoring are flown continuously over the wells, providing nutrient and waste exchange between the well and the main flow. This device could lead to the uncovering of the quantitative biology of the algae, which is a key to effective and extensive algal utilizations in the field of biotechnology, food industry and bioenergy research and developments.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Algal%20cells" title="Algal cells">Algal cells</a>, <a href="https://publications.waset.org/search?q=microfluidic%20device" title=" microfluidic device"> microfluidic device</a>, <a href="https://publications.waset.org/search?q=X-ray%20LIGA" title=" X-ray LIGA"> X-ray LIGA</a>, <a href="https://publications.waset.org/search?q=X-ray%0D%0Alithography" title=" X-ray lithography"> X-ray lithography</a>, <a href="https://publications.waset.org/search?q=metallic%20mold" title=" metallic mold"> metallic mold</a>, <a href="https://publications.waset.org/search?q=synchrotron%20light" title=" synchrotron light"> synchrotron light</a>, <a href="https://publications.waset.org/search?q=PDMS" title=" PDMS"> PDMS</a> </p> <a href="https://publications.waset.org/13109/fabrication-of-microfluidic-device-for-quantitative-monitoring-of-algal-cell-behavior-using-x-ray-liga-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13109/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13109/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13109/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13109/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13109/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13109/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13109/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13109/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13109/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13109/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2429</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Effect of Temperature on Specific Retention Volumes of Selected Volatile Organic Compounds Using the Gas - Liquid Chromatographic Technique Revisited</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Edison%20Muzenda">Edison Muzenda</a>, <a href="https://publications.waset.org/search?q=Ayo%20S.%20Afolabi"> Ayo S. Afolabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper is a continuation of our interest in the influence of temperature on specific retention volumes and the resulting infinite dilution activity coefficients. This has a direct effect in the design of absorption and stripping columns for the abatement of volatile organic compounds. The interaction of 13 volatile organic compounds (VOCs) with polydimethylsiloxane (PDMS) at varying temperatures was studied by gas liquid chromatography (GLC). Infinite dilution activity coefficients and specific retention volumes obtained in this study were found to be in agreement with those obtained from static headspace and group contribution methods by the authors as well as literature values for similar systems. Temperature variation also allows for transport calculations for different seasons. The results of this work confirm that PDMS is well suited for the scrubbing of VOCs from waste gas streams. Plots of specific retention volumes against temperature gave linear van-t Hoff plots.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Specific%20retention%20volume" title="Specific retention volume">Specific retention volume</a>, <a href="https://publications.waset.org/search?q=Waste%20gas%20streams" title=" Waste gas streams"> Waste gas streams</a>, <a href="https://publications.waset.org/search?q=specific%20retention" title="specific retention">specific retention</a>, <a href="https://publications.waset.org/search?q=infinite%20dilution" title=" infinite dilution"> infinite dilution</a>, <a href="https://publications.waset.org/search?q=abatement" title=" abatement"> abatement</a>, <a href="https://publications.waset.org/search?q=transport." title=" transport."> transport.</a> </p> <a href="https://publications.waset.org/2071/effect-of-temperature-on-specific-retention-volumes-of-selected-volatile-organic-compounds-using-the-gas-liquid-chromatographic-technique-revisited" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2071/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2071/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2071/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2071/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2071/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2071/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2071/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2071/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2071/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2071/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1956</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Advanced Micromanufacturing for Ultra Precision Part by Soft Lithography and Nano Powder Injection Molding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Andy%20Tirta">Andy Tirta</a>, <a href="https://publications.waset.org/search?q=Yus%20Prasetyo"> Yus Prasetyo</a>, <a href="https://publications.waset.org/search?q=Eung-Ryul.%20Baek"> Eung-Ryul. Baek</a>, <a href="https://publications.waset.org/search?q=Chul-Jin.%20Choi"> Chul-Jin. Choi </a>, <a href="https://publications.waset.org/search?q=Hye-Moon.%20Lee"> Hye-Moon. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the advanced technologies that offer high precision product, relative easy, economical process and also rapid production are needed to realize the high demand of ultra precision micro part. In our research, micromanufacturing based on soft lithography and nanopowder injection molding was investigated. The silicone metal pattern with ultra thick and high aspect ratio succeeds to fabricate Polydimethylsiloxane (PDMS) micro mold. The process followed by nanopowder injection molding (PIM) by a simple vacuum hot press. The 17-4ph nanopowder with diameter of 100 nm, succeed to be injected and it forms green sample microbearing with thickness, microchannel and aspect ratio is 700μm, 60μm and 12, respectively. Sintering process was done in 1200 C for 2 hours and heating rate 0.83oC/min. Since low powder load (45% PL) was applied to achieve green sample fabrication, ~15% shrinkage happen in the 86% relative density. Several improvements should be done to produce high accuracy and full density sintered part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Micromanufacturing" title="Micromanufacturing">Micromanufacturing</a>, <a href="https://publications.waset.org/search?q=Nano%20PIM" title=" Nano PIM"> Nano PIM</a>, <a href="https://publications.waset.org/search?q=PDMS%20micro%0Amould." title=" PDMS micro mould."> PDMS micro mould.</a> </p> <a href="https://publications.waset.org/356/advanced-micromanufacturing-for-ultra-precision-part-by-soft-lithography-and-nano-powder-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/356/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/356/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/356/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/356/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/356/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/356/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/356/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/356/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/356/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/356/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2063</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Absorption of Volatile Organic Compounds into Polydimethylsiloxane: Phase Equilibrium Computation at Infinite Dilution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Edison%20Muzenda">Edison Muzenda</a>, <a href="https://publications.waset.org/search?q=Corina%20M%20Mateescu"> Corina M Mateescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Group contribution methods such as the UNIFAC are very useful to researchers and engineers involved in synthesis, feasibility studies, design and optimization of separation processes. They can be applied successfully to predict phase equilibrium and excess properties in the development of chemical and separation processes. The main focus of this work was to investigate the possibility of absorbing selected volatile organic compounds (VOCs) into polydimethylsiloxane (PDMS) using three selected UNIFAC group contribution methods. Absorption followed by subsequent stripping is the predominant available abatement technology of VOCs from flue gases prior to their release into the atmosphere. The original, modified and effective UNIFAC models were used in this work. The thirteen selected VOCs that have been considered in this research are: pentane, hexane, heptanes, trimethylamine, toluene, xylene, cyclohexane, butyl acetate, diethyl acetate, chloroform, acetone, ethyl methyl ketone and isobutyl methyl ketone. The computation was done for solute VOC concentration of 8.55x10-8 which is well in the infinite dilution region. The results obtained in this study compare very well with those published in literature obtained through both measurements and predictions. The phase equilibrium obtained in this study show that PDMS is a good absorbent for the removal of VOCs from contaminated air streams through physical absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Absorption" title="Absorption">Absorption</a>, <a href="https://publications.waset.org/search?q=Computation" title=" Computation"> Computation</a>, <a href="https://publications.waset.org/search?q=Feasibility%20studies" title=" Feasibility studies"> Feasibility studies</a>, <a href="https://publications.waset.org/search?q=Infinite%20dilution" title="Infinite dilution">Infinite dilution</a>, <a href="https://publications.waset.org/search?q=Volatile%20organic%20compounds" title=" Volatile organic compounds"> Volatile organic compounds</a> </p> <a href="https://publications.waset.org/14927/absorption-of-volatile-organic-compounds-into-polydimethylsiloxane-phase-equilibrium-computation-at-infinite-dilution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14927/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14927/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14927/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14927/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14927/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14927/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14927/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14927/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14927/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14927/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1956</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mrinalini%20Amritkar">Mrinalini Amritkar</a>, <a href="https://publications.waset.org/search?q=Disha%20Patil"> Disha Patil</a>, <a href="https://publications.waset.org/search?q=Swapna%20Kulkarni"> Swapna Kulkarni</a>, <a href="https://publications.waset.org/search?q=Sukratu%20Barve"> Sukratu Barve</a>, <a href="https://publications.waset.org/search?q=Suresh%20Gosavi"> Suresh Gosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lab-on-chip" title="Lab-on-chip">Lab-on-chip</a>, <a href="https://publications.waset.org/search?q=micro-mixer" title=" micro-mixer"> micro-mixer</a>, <a href="https://publications.waset.org/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/search?q=PDMS." title=" PDMS."> PDMS.</a> </p> <a href="https://publications.waset.org/10010130/unsteady-flow-simulations-for-microchannel-design-and-its-fabrication-for-nanoparticle-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010130/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010130/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010130/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010130/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010130/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010130/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010130/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010130/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010130/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010130/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">789</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Aroma Composition and Polyphenol Content of Ciders Available in Latvian Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rita%20Riekstina-Dolge">Rita Riekstina-Dolge</a>, <a href="https://publications.waset.org/search?q=Zanda%20Kruma"> Zanda Kruma</a>, <a href="https://publications.waset.org/search?q=Daina%20Karklina"> Daina Karklina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aroma forming volatiles are important components of fermented beverages. The aim of current research is to evaluate the volatile compounds and phenolic compounds of commercial ciders. Volatile aroma compounds and TPC of seven commercial ciders were determined. Extraction of aroma compounds was performed using solid phase microextraction (DVB/Car/PDMS fibre). Analysis of volatile aroma compounds was made using a Perkin Elmer Clarus 500 GC/MS. Total phenol content (TPC) was determined according to the Folin-Ciocalteu spectrophotometric method and results were expressed as gallic acid equivalents. The highest volatile compounds were in apple ciders with pear flavor. The highest TPC and lower content of volatile compounds were detected in French ciders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=cider" title="cider">cider</a>, <a href="https://publications.waset.org/search?q=TPC" title=" TPC"> TPC</a>, <a href="https://publications.waset.org/search?q=volatile%20compounds" title=" volatile compounds"> volatile compounds</a> </p> <a href="https://publications.waset.org/5533/aroma-composition-and-polyphenol-content-of-ciders-available-in-latvian-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5533/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5533/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5533/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5533/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5533/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5533/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5533/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5533/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5533/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5533/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2825</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Assessment of Psychomotor Development of Preschool Children: A Review of Eight Psychomotor Developmental Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Viola%20Huba%C4%8Dov%C3%A1%20Pirov%C3%A1">Viola Hubačová Pirová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The assessment of psychomotor development allows us to identify children with motor delays, helps us to monitor progress in time and prepare suitable intervention programs. The foundation of psychomotor development lies in pre-school age and is crucial for child&acute;s further cognitive and social development. Many assessment tools of psychomotor development have been developed over the years. Some of them are easy screening tools; others are more complex and sophisticated. The purpose of this review is to describe the history of psychomotor assessment, specify preschool children&acute;s psychomotor evaluation and review eight psychomotor development assessment tools for preschool children (Denver II., DEMOST-PRE, TGMD -2/3, BOT-2, MABC-2, PDMS-2, KTK, MOT 4-6). The selection of test depends on purpose and context in which is the assessment planned.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Assessment%20of%20psychomotor%20development" title="Assessment of psychomotor development">Assessment of psychomotor development</a>, <a href="https://publications.waset.org/search?q=preschool%20children" title=" preschool children"> preschool children</a>, <a href="https://publications.waset.org/search?q=psychomotor%20development" title=" psychomotor development"> psychomotor development</a>, <a href="https://publications.waset.org/search?q=review%20of%20assessment%20tools." title=" review of assessment tools."> review of assessment tools.</a> </p> <a href="https://publications.waset.org/10011559/assessment-of-psychomotor-development-of-preschool-children-a-review-of-eight-psychomotor-developmental-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011559/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011559/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011559/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011559/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011559/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011559/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011559/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011559/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011559/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011559/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1480</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Characterization of Lubricity of Mucins at Polymeric Surfaces for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Seunghwan%20Lee">Seunghwan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lubricating properties of commercially available mucins originating from different animal organs, namely bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM), have been characterized at polymeric surfaces for biomedical applications. Atomic force microscopy (AFM) and pin-on-disk tribometry have been employed for tribological studies at nanoscale and macroscale contacts, respectively. Polystyrene (PS) was employed to represent ‘rigid’ contacts, whereas poly(dimethylsiloxane) (PDMS) was employed to represent ‘soft contacts’. To understand the lubricating properties of mucins in correlation with the coverage on surfaces, adsorption properties of mucins onto the polymeric substrates have been characterized by means of optical waveguide light-mode spectroscopy (OWLS). Both mucins showed facile adsorption onto both polymeric substrates, but the lubricity was highly dependent upon the pH change between 2 and 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bovine%20submaxillary%20mucin%20%28BSM%29" title="Bovine submaxillary mucin (BSM)">Bovine submaxillary mucin (BSM)</a>, <a href="https://publications.waset.org/search?q=Porcine%20Gastric%20Mucin%20%28PGM%29" title=" Porcine Gastric Mucin (PGM)"> Porcine Gastric Mucin (PGM)</a>, <a href="https://publications.waset.org/search?q=lubricity" title=" lubricity"> lubricity</a>, <a href="https://publications.waset.org/search?q=biomedical." title=" biomedical."> biomedical.</a> </p> <a href="https://publications.waset.org/1731/characterization-of-lubricity-of-mucins-at-polymeric-surfaces-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1731/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1731/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1731/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1731/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1731/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1731/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1731/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1731/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1731/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1731/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2359</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Design and Microfabrication of a High Throughput Thermal Cycling Platform with Various Annealing Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sin%20J.%20Chen">Sin J. Chen</a>, <a href="https://publications.waset.org/search?q=Jyh%20J.%20Chen"> Jyh J. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes a micro device integrated with multi-chamber for polymerase chain reaction (PCR) with different annealing temperatures. The device consists of the reaction polydimethylsiloxane (PDMS) chip, a cover glass chip, and is equipped with cartridge heaters, fans, and thermocouples for temperature control. In this prototype, commercial software is utilized to determine the geometric and operational parameters those are responsible for creating the denaturation, annealing, and extension temperatures within the chip. Two cartridge heaters are placed at two sides of the chip and maintained at two different temperatures to achieve a thermal gradient on the chip during the annealing step. The temperatures on the chip surface are measured via an infrared imager. Some thermocouples inserted into the reaction chambers are used to obtain the transient temperature profiles of the reaction chambers during several thermal cycles. The experimental temperatures compared to the simulated results show a similar trend. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polymerase%20chain%20reaction" title="Polymerase chain reaction">Polymerase chain reaction</a>, <a href="https://publications.waset.org/search?q=thermal%20cycles" title=" thermal cycles"> thermal cycles</a>, <a href="https://publications.waset.org/search?q=temperature%20gradient" title=" temperature gradient"> temperature gradient</a>, <a href="https://publications.waset.org/search?q=micro-fabrication." title=" micro-fabrication."> micro-fabrication.</a> </p> <a href="https://publications.waset.org/11596/design-and-microfabrication-of-a-high-throughput-thermal-cycling-platform-with-various-annealing-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11596/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11596/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11596/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11596/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11596/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11596/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11596/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11596/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11596/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11596/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1649</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Microfluidic Manipulation for Biomedical and Biohealth Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Reza%20Hadjiaghaie%20Vafaie">Reza Hadjiaghaie Vafaie</a>, <a href="https://publications.waset.org/search?q=Sevda%20Givtaj"> Sevda Givtaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidic" title="Microfluidic">Microfluidic</a>, <a href="https://publications.waset.org/search?q=nano%2Fmicro%20actuator" title=" nano/micro actuator"> nano/micro actuator</a>, <a href="https://publications.waset.org/search?q=AC%20electrothermal" title=" AC electrothermal"> AC electrothermal</a>, <a href="https://publications.waset.org/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/search?q=micropump" title=" micropump"> micropump</a>, <a href="https://publications.waset.org/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/search?q=microfabrication" title=" microfabrication"> microfabrication</a>, <a href="https://publications.waset.org/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/search?q=biomedical%20applications." title=" biomedical applications."> biomedical applications.</a> </p> <a href="https://publications.waset.org/10013705/microfluidic-manipulation-for-biomedical-and-biohealth-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013705/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013705/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013705/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013705/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013705/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013705/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013705/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013705/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013705/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013705/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Srinivas%20Bathini">Srinivas Bathini</a>, <a href="https://publications.waset.org/search?q=Duraichelvan%20Raju"> Duraichelvan Raju</a>, <a href="https://publications.waset.org/search?q=Simona%20Badilescu"> Simona Badilescu</a>, <a href="https://publications.waset.org/search?q=Muthukumaran%20Packirisamy"> Muthukumaran Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Exosomes" title="Exosomes">Exosomes</a>, <a href="https://publications.waset.org/search?q=gold%20nano-islands" title=" gold nano-islands"> gold nano-islands</a>, <a href="https://publications.waset.org/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/search?q=plasmonic%20biosensing." title=" plasmonic biosensing. "> plasmonic biosensing. </a> </p> <a href="https://publications.waset.org/10009022/microfluidic-plasmonic-bio-sensing-of-exosomes-by-using-a-gold-nano-island-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009022/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009022/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009022/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009022/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009022/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009022/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009022/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009022/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009022/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009022/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1466</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10