CINXE.COM
Search results for: inertial focusing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: inertial focusing</title> <meta name="description" content="Search results for: inertial focusing"> <meta name="keywords" content="inertial focusing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="inertial focusing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="inertial focusing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1772</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: inertial focusing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1772</span> Structural Parameter-Induced Focusing Pattern Transformation in CEA Microfluidic Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Shi">Xin Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Tan"> Wei Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Guorui%20Zhu"> Guorui Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contraction-expansion array (CEA) microfluidic device is widely used for particle focusing and particle separation. Without the introduction of external fields, it can manipulate particles using hydrodynamic forces, including inertial lift forces and Dean drag forces. The focusing pattern of the particles in a CEA channel can be affected by the structural parameter, block ratio, and flow streamlines. Here, two typical focusing patterns with five different structural parameters were investigated, and the force mechanism was analyzed. We present nine CEA channels with different aspect ratios based on the process of changing the particle equilibrium positions. The results show that 10-15 μm particles have the potential to generate a side focusing line as the structural parameter (¬R𝓌) increases. For a determined channel structure and target particles, when the Reynolds number (Rₑ) exceeds the critical value, the focusing pattern will transform from a single pattern to a double pattern. The parameter α/R𝓌 can be used to calculate the critical Reynolds number for the focusing pattern transformation. The results can provide guidance for microchannel design and biomedical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title="microfluidic">microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20focusing" title=" inertial focusing"> inertial focusing</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20separation" title=" particle separation"> particle separation</a>, <a href="https://publications.waset.org/abstracts/search?q=Dean%20flow" title=" Dean flow"> Dean flow</a> </p> <a href="https://publications.waset.org/abstracts/144908/structural-parameter-induced-focusing-pattern-transformation-in-cea-microfluidic-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1771</span> Analysis of Lift Force in Hydrodynamic Transport of a Finite Sized Particle in Inertial Microfluidics with a Rectangular Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinghui%20Wu">Xinghui Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Yang"> Chun Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inertial microfluidics is a competitive fluidic method with applications in separation of particles, cells and bacteria. In contrast to traditional microfluidic devices with low Reynolds number, inertial microfluidics works in the intermediate Re number range which brings about several intriguing inertial effects on particle separation/focusing to meet the throughput requirement in the real-world. Geometric modifications to make channels become irregular shapes can leverage fluid inertia to create complex secondary flow for adjusting the particle equilibrium positions and thus enhance the separation resolution and throughput. Although inertial microfluidics has been extensively studied by experiments, our current understanding of its mechanisms is poor, making it extremely difficult to build rational-design guidelines for the particle focusing locations, especially for irregularly shaped microfluidic channels. Inertial particle microfluidics in irregularly shaped channels were investigated in our group. There are several fundamental issues that require us to address. One of them is about the balance between the inertial lift forces and the secondary drag forces. Also, it is critical to quantitatively describe the dependence of the life forces on particle-particle interactions in irregularly shaped channels, such as a rectangular one. To provide physical insights into the inertial microfluidics in channels of irregular shapes, in this work the immersed boundary-lattice Boltzmann method (IB-LBM) was introduced and validated to explore the transport characteristics and the underlying mechanisms of an inertial focusing single particle in a rectangular microchannel. The transport dynamics of a finitesized particle were investigated over wide ranges of Reynolds number (20 < Re < 500) and particle size. The results show that the inner equilibrium positions are more difficult to occur in the rectangular channel, which can be explained by the secondary flow caused by the presence of a finite-sized particle. Furthermore, force decoupling analysis was utilized to study the effect of each type of lift force on the inertia migration, and a theoretical model for the lateral lift force of a finite-sized particle in the rectangular channel was established. Such theoretical model can be used to provide theoretical guidance for the design and operation of inertial microfluidics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20microfluidics" title="inertial microfluidics">inertial microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20focuse" title=" particle focuse"> particle focuse</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20force" title=" life force"> life force</a>, <a href="https://publications.waset.org/abstracts/search?q=IB-LBM" title=" IB-LBM"> IB-LBM</a> </p> <a href="https://publications.waset.org/abstracts/163749/analysis-of-lift-force-in-hydrodynamic-transport-of-a-finite-sized-particle-in-inertial-microfluidics-with-a-rectangular-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1770</span> Low Cost Inertial Sensors Modeling Using Allan Variance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Hussen">A. A. Hussen</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20N.%20Jleta"> I. N. Jleta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allan%20variance" title="Allan variance">Allan variance</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title=" accelerometer"> accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroscope" title=" gyroscope"> gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20errors" title=" stochastic errors"> stochastic errors</a> </p> <a href="https://publications.waset.org/abstracts/28956/low-cost-inertial-sensors-modeling-using-allan-variance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1769</span> Inertial Particle Focusing Dynamics in Trapezoid Straight Microchannels: Application to Continuous Particle Filtration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Moloudi">Reza Moloudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Oh"> Steve Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Chun%20Yang"> Charles Chun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Ebrahimi%20Warkiani"> Majid Ebrahimi Warkiani</a>, <a href="https://publications.waset.org/abstracts/search?q=May%20Win%20Naing"> May Win Naing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of the channel and its impacts not only on the shear field but also the wall-effect lift force near the wall region. Despite comprehensive experiments and numerical analysis of the lift forces for rectangular and non-rectangular microchannels (half-circular and triangular cross-section), which all possess planes of symmetry, less effort has been made on the 'flow field structure' of trapezoidal straight microchannels and its effects on inertial focusing. On the other hand, a rectilinear channel with trapezoidal cross-sections breaks down all planes of symmetry. In this study, particle focusing dynamics inside trapezoid straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-laterally movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the main lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio (K=a/Hmin, a is particle size), channel aspect ratio (AR=W/Hmin, W is channel width, and Hmin is smaller channel height), and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Increasing the channel aspect ratio (AR) from 2 to 4 and the slope of slanted wall up to Tan(α)≈0.4 (Tan(α)=(Hlonger-sidewall-Hshorter-sidewall)/W) enhanced the off-center lateral focusing position from the middle of channel cross-section, up to ~20 percent of the channel width. It was found that the focusing point was spoiled near the slanted wall due to the dissymmetry; it mainly focused near the bottom wall or fluctuated between the channel center and the bottom wall, depending on the slanted wall and Re (Re < 100, channel aspect ratio 4:1). Eventually, as a proof of principle, a trapezoidal straight microchannel along with a bifurcation was designed and utilized for continuous filtration of a broader range of particle clogging ratio (0.3 < K < 1) exiting through the longer wall outlet with ~99% efficiency (Re < 100) in comparison to the rectangular straight microchannels (W > H, 0.3 ≤ K < 0.5). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%2Fparticle%20sorting" title="cell/particle sorting">cell/particle sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20microfluidics" title=" inertial microfluidics"> inertial microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=straight%20microchannel" title=" straight microchannel"> straight microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoid" title=" trapezoid"> trapezoid</a> </p> <a href="https://publications.waset.org/abstracts/86868/inertial-particle-focusing-dynamics-in-trapezoid-straight-microchannels-application-to-continuous-particle-filtration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1768</span> Using Lagrange Equations to Study the Relative Motion of a Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Petre">R. A. Petre</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Nichifor"> S. E. Nichifor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Craifaleanu"> A. Craifaleanu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Stroe"> I. Stroe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relative motion of a robotic arm formed by homogeneous bars of different lengths and masses, hinged to each other is investigated. The first bar of the mechanism is articulated on a platform, considered initially fixed on the surface of the Earth, while for the second case the platform is considered to be in rotation with respect to the Earth. For both analyzed cases the motion equations are determined using the Lagrangian formalism, applied in its traditional form, valid with respect to an inertial reference system, conventionally considered as fixed. However, in the second case, a generalized form of the formalism valid with respect to a non-inertial reference frame will also be applied. The numerical calculations were performed using a MATLAB program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20equations" title="Lagrange equations">Lagrange equations</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20motion" title=" relative motion"> relative motion</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20reference%20frame" title=" inertial reference frame"> inertial reference frame</a>, <a href="https://publications.waset.org/abstracts/search?q=non-inertial%20reference%20frame" title=" non-inertial reference frame"> non-inertial reference frame</a> </p> <a href="https://publications.waset.org/abstracts/128576/using-lagrange-equations-to-study-the-relative-motion-of-a-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1767</span> Influence of Inertial Forces of Large Bearings Utilized in Wind Energy Assemblies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Barabas">S. Barabas</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sarbu"> F. Sarbu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Barabas"> B. Barabas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fota"> A. Fota </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Main objective of this paper is to establish a link between inertial forces of the bearings used in construction of wind power plant and its behavior. Using bearings with lower inertial forces has the immediate effect of decreasing inertia rotor system, with significant results in increased energy efficiency, due to decreased friction forces between rollers and raceways. The FEM analysis shows the appearance of uniform contact stress at the ends of the rollers, demonstrated the necessity of production of low mass bearings. Favorable results are expected in the economic field, by reducing material consumption and by increasing the durability of bearings. Using low mass bearings with hollow rollers instead of solid rollers has an impact on working temperature, on vibrations and noise which decrease. Implementation of types of hollow rollers of cylindrical tubular type, instead of expensive rollers with logarithmic profile, will bring significant inertial forces decrease with large benefits in behavior of wind power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20forces" title="inertial forces">inertial forces</a>, <a href="https://publications.waset.org/abstracts/search?q=Von%20Mises%20stress" title=" Von Mises stress"> Von Mises stress</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20rollers" title=" hollow rollers"> hollow rollers</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/32703/influence-of-inertial-forces-of-large-bearings-utilized-in-wind-energy-assemblies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1766</span> Combining Laws of Mechanics and Hydrostatics in Non Inertial Reference Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Blokh">M. Blokh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title="hydrodynamics">hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanics" title=" mechanics"> mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=non-inertial%20reference%20frames" title=" non-inertial reference frames"> non-inertial reference frames</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching" title=" teaching "> teaching </a> </p> <a href="https://publications.waset.org/abstracts/28610/combining-laws-of-mechanics-and-hydrostatics-in-non-inertial-reference-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1765</span> Realization of Hybrid Beams Inertial Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somya%20Ranjan%20Patro">Somya Ranjan Patro</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhigna%20Bhatt"> Abhigna Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inertial amplifier has recently gained increasing attention as a new mechanism for vibration control of structures. Currently, theoretical investigations are undertaken by researchers to reveal its fundamentals and to understand its underline principles in altering the structural response of structures against dynamic loadings. This paper investigates experimental and analytical studies on the dynamic characteristics of hybrid beam inertial amplifier (HBIA). The analytical formulation of the HBIA has been derived by implementing the spectral element method and rigid body dynamics. This formulation gives the relation between dynamic force and the response of the structure in the frequency domain. Further, for validation of the proposed HBIA, the experiments have been performed. The experimental setup consists of a 3D printed HBIA of polylactic acid (PLA) material screwed at the base plate of the shaker system. Two numbers of accelerometers are used to study the response, one at the base plate of the shaker second one placed at the top of the inertial amplifier. A force transducer is also placed in between the base plate and the inertial amplifier to calculate the total amount of load transferred from the base plate to the inertial amplifier. The obtained time domain response from the accelerometers have been converted into the frequency domain using the Fast Fourier Transform (FFT) algorithm. The experimental transmittance values are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20amplifier" title="inertial amplifier">inertial amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20fourier%20transform" title=" fast fourier transform"> fast fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title=" natural frequencies"> natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title=" polylactic acid"> polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20absorbers" title=" vibration absorbers"> vibration absorbers</a> </p> <a href="https://publications.waset.org/abstracts/153357/realization-of-hybrid-beams-inertial-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1764</span> Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svilen%20Dimitrov">Svilen Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Manthan%20Pancholi"> Manthan Pancholi</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Schmitz"> Norbert Schmitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Stricker"> Didier Stricker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20harness" title="wearable harness">wearable harness</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20measurement%20units" title=" inertial measurement units"> inertial measurement units</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone%20therapeutic%20games" title=" smartphone therapeutic games"> smartphone therapeutic games</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20tracking" title=" motion tracking"> motion tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=lower-body%20activity%20monitoring" title=" lower-body activity monitoring"> lower-body activity monitoring</a> </p> <a href="https://publications.waset.org/abstracts/65691/realization-of-wearable-inertial-measurement-units-sensor-fusion-harness-to-control-therapeutic-smartphone-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1763</span> Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdunnaser%20Tresh"> Abdunnaser Tresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20engineering" title=" materials engineering"> materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/3660/simplified-insgps-integration-algorithm-in-land-vehicle-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1762</span> Overview of Fiber Optic Gyroscopes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdo">M. Abdo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elghandour"> Ahmed Elghandour</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairy%20Eltahlawy"> Khairy Eltahlawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shalaby"> Mohamed Shalaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros—fiber optic gyroscopes and ring laser gyroscopes—and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and brillion fiber optic gyroscopes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20gyros" title="mechanical gyros">mechanical gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20laser%20gyros" title=" ring laser gyros"> ring laser gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=interferometric%20fiber%20optic%20gyros" title=" interferometric fiber optic gyros"> interferometric fiber optic gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=resonator%20fiber%20optic%20gyros" title=" resonator fiber optic gyros"> resonator fiber optic gyros</a> </p> <a href="https://publications.waset.org/abstracts/168383/overview-of-fiber-optic-gyroscopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1761</span> Comparative Study between Inertial Navigation System and GPS in Flight Management System Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Matouk%20Elamari"> Matouk Elamari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rgeai"> M. Rgeai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateh%20Alej"> Fateh Alej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern avionics the main fundamental component is the flight management system (FMS). An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. The main function of the FMS is in-flight management of the flight plan using various sensors such as Global Positioning System (GPS) and Inertial Navigation System (INS) to determine the aircraft's position and guide the aircraft along the flight plan. GPS which is satellite based navigation system, and INS which generally consists of inertial sensors (accelerometers and gyroscopes). GPS is used to locate positions anywhere on earth, it consists of satellites, control stations, and receivers. GPS receivers take information transmitted from the satellites and uses triangulation to calculate a user’s exact location. The basic principle of an INS is based on the integration of accelerations observed by the accelerometers on board the moving platform, the system will accomplish this task through appropriate processing of the data obtained from the specific force and angular velocity measurements. Thus, an appropriately initialized inertial navigation system is capable of continuous determination of vehicle position, velocity and attitude without the use of the external information. The main objective of article is to introduce a comparative study between the two systems under different conditions and scenarios using MATLAB with SIMULINK software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flight%20management%20system" title="flight management system">flight management system</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system" title=" inertial navigation system"> inertial navigation system</a> </p> <a href="https://publications.waset.org/abstracts/49195/comparative-study-between-inertial-navigation-system-and-gps-in-flight-management-system-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1760</span> The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Randles">Andrew Randles</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Ocak"> Ilker Ocak</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheam%20Daw%20Don"> Cheam Daw Don</a>, <a href="https://publications.waset.org/abstracts/search?q=Navab%20Singh"> Navab Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Gu"> Alex Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitive%20pressure%20sensor" title="capacitive pressure sensor">capacitive pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=9%20DOF" title=" 9 DOF"> 9 DOF</a>, <a href="https://publications.waset.org/abstracts/search?q=10%20DOF" title=" 10 DOF"> 10 DOF</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitive" title=" capacitive"> capacitive</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20measurement%20unit" title=" inertial measurement unit"> inertial measurement unit</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system" title=" inertial navigation system"> inertial navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=INS" title=" INS"> INS</a> </p> <a href="https://publications.waset.org/abstracts/32117/the-design-development-and-optimization-of-a-capacitive-pressure-sensor-utilizing-an-existing-9dof-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1759</span> Overview of Fiber Optic Gyroscopes as Ring Laser Gyros and Fiber Optic Gyros and the Comparison Between Them</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdo">M. Abdo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shalaby"> Mohamed Shalaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros and fiber optic gyroscopes and ring laser gyroscopes and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and Brillion fiber optic gyroscopes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20gyros" title="mechanical gyros">mechanical gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20laser%20gyros" title=" ring laser gyros"> ring laser gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=interferometric%20finer%20optic%20gyros" title=" interferometric finer optic gyros"> interferometric finer optic gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=Resonator%20fiber%20optic%20gyros" title=" Resonator fiber optic gyros"> Resonator fiber optic gyros</a> </p> <a href="https://publications.waset.org/abstracts/168331/overview-of-fiber-optic-gyroscopes-as-ring-laser-gyros-and-fiber-optic-gyros-and-the-comparison-between-them" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1758</span> Performance Evaluation of GPS/INS Main Integration Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Adwaib"> Ahmed Adwaib </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a comparative study between the main GPS/INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=INS" title=" INS"> INS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20calibration" title=" sensor calibration"> sensor calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20system" title=" navigation system"> navigation system</a> </p> <a href="https://publications.waset.org/abstracts/1700/performance-evaluation-of-gpsins-main-integration-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1757</span> Simulation for the Magnetized Plasma Compression Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20V.%20Kuzenov">Victor V. Kuzenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20V.%20Ryzhkov"> Sergei V. Ryzhkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ongoing experimental and theoretical studies on magneto-inertial confinement fusion (Angara, C-2, CJS-100, General Fusion, MagLIF, MAGPIE, MC-1, YG-1, Omega) and new constructing facilities (Baikal, C-2W, Z300 and Z800) require adequate modeling and description of the physical processes occurring in high-temperature dense plasma in a strong magnetic field. This paper presents a mathematical model, numerical method, and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion (MIF). The computer simulation of the compression process of the magnetized target by the high-power laser pulse and the high-speed plasma jets is presented. The characteristic patterns of the two methods of the target compression are being analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetized%20target" title="magnetized target">magnetized target</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-inertial%20fusion" title=" magneto-inertial fusion"> magneto-inertial fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20and%20laser%20beams" title=" plasma and laser beams"> plasma and laser beams</a> </p> <a href="https://publications.waset.org/abstracts/66035/simulation-for-the-magnetized-plasma-compression-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1756</span> Influence of Pile Radius on Inertial Response of Pile Group in Fundamental Frequency of Homogeneous Soil Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faghihnia%20Torshizi%20Mostafa">Faghihnia Torshizi Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Saitoh%20Masato"> Saitoh Masato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An efficient method is developed for the response of a group of vertical, cylindrical fixed-head, finite length piles embedded in a homogeneous elastic stratum, subjected to harmonic force atop the pile group cap. Pile to pile interaction is represented through simplified beam-on-dynamic-Winkler-foundation (BDWF) with realistic frequency-dependent springs and dashpots. Pile group effect is considered through interaction factors. New closed-form expressions for interaction factors and curvature ratios atop the pile are extended by considering different boundary conditions at the tip of the piles (fixed, hinged). In order to investigate the fundamental characteristics of inertial bending strains in pile groups, inertial bending strains at the head of each pile are expressed in terms of slenderness ratio. The results of parametric study give valuable insight in understanding the behavior of fixed head pile groups in fundamental natural frequency of soil stratum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Winkler-foundation" title="Winkler-foundation">Winkler-foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental%20frequency%20of%20soil%20stratum" title=" fundamental frequency of soil stratum"> fundamental frequency of soil stratum</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20inertial%20bending%20strain" title=" normalized inertial bending strain"> normalized inertial bending strain</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20excitation" title=" harmonic excitation"> harmonic excitation</a> </p> <a href="https://publications.waset.org/abstracts/66823/influence-of-pile-radius-on-inertial-response-of-pile-group-in-fundamental-frequency-of-homogeneous-soil-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1755</span> Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Zare-Farsani">B. Zare-Farsani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Valieghbal"> M. Valieghbal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tarkashvand"> M. Tarkashvand</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Farahbod"> A. H. Farahbod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20confinement%20fusion" title="inertial confinement fusion">inertial confinement fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=mach-zehnder%20interferometer" title=" mach-zehnder interferometer"> mach-zehnder interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20holographic%20microscopy" title=" digital holographic microscopy"> digital holographic microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title=" image reconstruction"> image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=holovision" title=" holovision"> holovision</a> </p> <a href="https://publications.waset.org/abstracts/45440/characterization-of-inertial-confinement-fusion-targets-based-on-transmission-holographic-mach-zehnder-interferometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1754</span> CFD-DEM Modelling and Analysis of the Continuous Separation of Sized Particles Using Inertial Microfluidics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhu">Hui Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Wang"> Yuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shibo%20Kuang"> Shibo Kuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Aibing%20Yu"> Aibing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inertial difference induced by the microfluidics inside a curved micro-channel has great potential to provide a fast, inexpensive, and portable solution to the separation of micro- and sub-micro particles in many applications such as aerosol collections, airborne bacteria and virus detections, as well as particle sortation. In this work, the separation behaviors of different sized particles inside a reported curved micro-channel have been studied by a combined approach of computational fluid dynamics for gas and discrete element model for particles (CFD-DEM). The micro-channel is operated by controlling the gas flow rates at all of its branches respectively used to load particles, introduce gas streams, collect particles of various sizes. The validity of the model has been examined by comparing by the calculated separation efficiency of different sized particles against the measurement. On this basis, the separation mechanisms of the inertial microfluidic separator are elucidated in terms of the interactions between particles, between particle and fluid, and between particle and wall. The model is then used to study the effect of feed solids concentration on the separation accuracy and efficiency. The results obtained from the present study demonstrate that the CFD-DEM approach can provide a convenient way to study the particle separation behaviors in micro-channels of various types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD-DEM" title="CFD-DEM">CFD-DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20effect" title=" inertial effect"> inertial effect</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/57240/cfd-dem-modelling-and-analysis-of-the-continuous-separation-of-sized-particles-using-inertial-microfluidics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1753</span> A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Shi">Jian Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Baoguo%20Yu"> Baoguo Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haonan%20Jia"> Haonan Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Liu"> Meng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Huang"> Ping Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20alignment" title="air alignment">air alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20alignment" title=" fine alignment"> fine alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system" title=" inertial navigation system"> inertial navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20navigation%20system" title=" integrated navigation system"> integrated navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=UKF" title=" UKF"> UKF</a> </p> <a href="https://publications.waset.org/abstracts/128940/a-robust-and-adaptive-unscented-kalman-filter-for-the-air-fine-alignment-of-the-strapdown-inertial-navigation-systemgps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1752</span> Using Inertial Measurement Unit to Evaluate the Balance Ability of Hikers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Chen%20Chen">Po-Chen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsung-Han%20Yang"> Tsung-Han Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Wei%20Zheng"> Zhi-Wei Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Tsang%20Tang"> Shih-Tsang Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Falls are the most common accidents during mountain hiking, especially in high-altitude environments with unstable terrain or adverse weather. Balance ability is a crucial factor in hiking, effectively ensuring hiking safety and reducing the risk of injuries. If balance ability can be assessed simply and effectively, hikers can identify their weaknesses and conduct targeted training to improve their balance ability, thereby reducing injury risks. With the widespread use of smartphones and their built-in inertial sensors, this project aims to develop a simple Inertial Measurement Unit (IMU) balance measurement technique based on smartphones. This will provide hikers with an easy-to-use, low-cost tool for assessing balance ability, monitoring training effects in real-time, and continuously tracking balance ability through uploading cloud data uploads, facilitating personal athletic performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance" title="balance">balance</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone" title=" smartphone"> smartphone</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20devices" title=" wearable devices"> wearable devices</a> </p> <a href="https://publications.waset.org/abstracts/188349/using-inertial-measurement-unit-to-evaluate-the-balance-ability-of-hikers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1751</span> Location Detection of Vehicular Accident Using Global Navigation Satellite Systems/Inertial Measurement Units Navigator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neda%20Navidi">Neda Navidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rene%20Jr.%20Landry"> Rene Jr. Landry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicle tracking and accident recognizing are considered by many industries like insurance and vehicle rental companies. The main goal of this paper is to detect the location of a car accident by combining different methods. The methods, which are considered in this paper, are Global Navigation Satellite Systems/Inertial Measurement Units (GNSS/IMU)-based navigation and vehicle accident detection algorithms. They are expressed by a set of raw measurements, which are obtained from a designed integrator black box using GNSS and inertial sensors. Another concern of this paper is the definition of accident detection algorithm based on its jerk to identify the position of that accident. In fact, the results convinced us that, even in GNSS blockage areas, the position of the accident could be detected by GNSS/INS integration with 50% improvement compared to GNSS stand alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driver%20behavior%20monitoring" title="driver behavior monitoring">driver behavior monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=GNSS" title=" GNSS"> GNSS</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a> </p> <a href="https://publications.waset.org/abstracts/72798/location-detection-of-vehicular-accident-using-global-navigation-satellite-systemsinertial-measurement-units-navigator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1750</span> Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Madureira">João Madureira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Lagido"> Ricardo Lagido</a>, <a href="https://publications.waset.org/abstracts/search?q=In%C3%AAs%20Sousa"> Inês Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fraunhofer%20Portugal"> Fraunhofer Portugal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20measurement%20unit%20%28IMU%29" title="inertial measurement unit (IMU)">inertial measurement unit (IMU)</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20positioning%20system%20%28GPS%29" title=" global positioning system (GPS)"> global positioning system (GPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone" title=" smartphone"> smartphone</a>, <a href="https://publications.waset.org/abstracts/search?q=surfing%20performance" title=" surfing performance"> surfing performance</a> </p> <a href="https://publications.waset.org/abstracts/21286/comparison-of-number-of-waves-surfed-and-duration-using-global-positioning-system-and-inertial-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1749</span> Optimization and Vibration Suppression of Double Tuned Inertial Mass Damper of Damped System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaozhi%20Yang">Chaozhi Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinzhong%20Chen"> Xinzhong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqing%20Huang"> Guoqing Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inerter is a two-terminal inertial element that can produce apparent mass far larger than its physical mass. A double tuned inertial mass damper (DTIMD) is developed by combining a spring with an inerter and a dashpot in series to replace the viscous damper of a tuned mass damper (TMD), and its performance is investigated. Firstly, the DTIMD is optimized numerically with H∞ and H2 methods considering the system’s damping based on the single-degree-of-freedom (SDOF)-DTIMD system, and the optimal structural parameters are obtained. Then, compared with a TMD, the control effect of the DTIMD with the optimal structural parameters on wind-induced vibration of a wind turbine in downwind direction under the shutdown condition is studied. The results demonstrate that the vibration suppression of the DTIMD is superior than that of a TMD at the same mass ratio. And at the identical vibration suppression, the tuned mass of the DTIMD can be reduced by up to 40% compared with a TMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind-induced%20vibration" title="wind-induced vibration">wind-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=inerter" title=" inerter"> inerter</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a>, <a href="https://publications.waset.org/abstracts/search?q=damped%20system" title=" damped system"> damped system</a> </p> <a href="https://publications.waset.org/abstracts/164513/optimization-and-vibration-suppression-of-double-tuned-inertial-mass-damper-of-damped-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1748</span> Effective Training System for Riding Posture Using Depth and Inertial Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangseung%20Kang">Sangseung Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyekyung%20Kim"> Kyekyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Suyoung%20Chi"> Suyoung Chi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A good posture is the most important factor in riding. In this paper, we present an effective posture correction system for a riding simulator environment to provide position error detection and customized training functions. The proposed system detects and analyzes the rider's posture using depth data and inertial sensing data. Our experiments show that including these functions will help users improve their seat for a riding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=posture%20correction" title="posture correction">posture correction</a>, <a href="https://publications.waset.org/abstracts/search?q=posture%20training" title=" posture training"> posture training</a>, <a href="https://publications.waset.org/abstracts/search?q=riding%20posture" title=" riding posture"> riding posture</a>, <a href="https://publications.waset.org/abstracts/search?q=riding%20simulator" title=" riding simulator"> riding simulator</a> </p> <a href="https://publications.waset.org/abstracts/20842/effective-training-system-for-riding-posture-using-depth-and-inertial-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1747</span> Evaluation of Pile Performance in Different Layers of Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orod%20Zarrin">Orod Zarrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohesn%20Ramezan%20Shirazi"> Mohesn Ramezan Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Moniri"> Hassan Moniri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. Pile foundations during earthquake excitation indicate that piles are subject to damage by affecting the superstructure integrity and serviceability. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. However, the large cracks reason have been listed such as liquefaction, lateral spreading, and inertial load. In the field of designing, elastic response of piles is always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. In addition, emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pile" title="pile">pile</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=non-liquefiable" title=" non-liquefiable"> non-liquefiable</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a> </p> <a href="https://publications.waset.org/abstracts/46209/evaluation-of-pile-performance-in-different-layers-of-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1746</span> Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Sandro%20F.%20Rocha">Mario Sandro F. Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20S.%20Ande"> Carlos S. Ande</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20A.%20Oliveira"> Anderson A. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20M.%20Bersotti"> Felipe M. Bersotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20O.%20Venzel"> Lucas O. Venzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title="biomechanics">biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20sensors" title=" inertial sensors"> inertial sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20capture" title=" motion capture"> motion capture</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/112465/inertial-motion-capture-system-for-biomechanical-analysis-in-rehabilitation-and-sports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1745</span> Integrated Navigation System Using Simplified Kalman Filter Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdunnaser%20Tresh"> Abdunnaser Tresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GPS and inertial navigation system (INS) have complementary qualities that make them ideal use for sensor fusion. The limitations of GPS include occasional high noise content, outages when satellite signals are blocked, interference and low bandwidth. The strengths of GPS include its long-term stability and its capacity to function as a stand-alone navigation system. In contrast, INS is not subject to interference or outages, have high bandwidth and good short-term noise characteristics, but have long-term drift errors and require external information for initialization. A combined system of GPS and INS subsystems can exhibit the robustness, higher bandwidth and better noise characteristics of the inertial system with the long-term stability of GPS. The most common estimation algorithm used in integrated INS/GPS is the Kalman Filter (KF). KF is able to take advantages of these characteristics to provide a common integrated navigation implementation with performance superior to that of either subsystem (GPS or INS). This paper presents a simplified KF algorithm for land vehicle navigation application. In this integration scheme, the GPS derived positions and velocities are used as the update measurements for the INS derived PVA. The KF error state vector in this case includes the navigation parameters as well as the accelerometer and gyroscope error states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=INS" title=" INS"> INS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system" title=" inertial navigation system"> inertial navigation system</a> </p> <a href="https://publications.waset.org/abstracts/11049/integrated-navigation-system-using-simplified-kalman-filter-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1744</span> Reliability and Validity of a Portable Inertial Sensor and Pressure Mat System for Measuring Dynamic Balance Parameters during Stepping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emily%20Rowe">Emily Rowe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Balance assessments can be used to help evaluate a person’s risk of falls, determine causes of balance deficits and inform intervention decisions. It is widely accepted that instrumented quantitative analysis can be more reliable and specific than semi-qualitative ordinal scales or itemised scoring methods. However, the uptake of quantitative methods is hindered by expense, lack of portability, and set-up requirements. During stepping, foot placement is actively coordinated with the body centre of mass (COM) kinematics during pre-initiation. Based on this, the potential to use COM velocity just prior to foot off and foot placement error as an outcome measure of dynamic balance is currently being explored using complex 3D motion capture. Inertial sensors and pressure mats might be more practical technologies for measuring these parameters in clinical settings. Objective: The aim of this study was to test the criterion validity and test-retest reliability of a synchronised inertial sensor and pressure mat-based approach to measure foot placement error and COM velocity while stepping. Methods: Trials were held with 15 healthy participants who each attended for two sessions. The trial task was to step onto one of 4 targets (2 for each foot) multiple times in a random, unpredictable order. The stepping target was cued using an auditory prompt and electroluminescent panel illumination. Data was collected using 3D motion capture and a combined inertial sensor-pressure mat system simultaneously in both sessions. To assess the reliability of each system, ICC estimates and their 95% confident intervals were calculated based on a mean-rating (k = 2), absolute-agreement, 2-way mixed-effects model. To test the criterion validity of the combined inertial sensor-pressure mat system against the motion capture system multi-factorial two-way repeated measures ANOVAs were carried out. Results: It was found that foot placement error was not reliably measured between sessions by either system (ICC 95% CIs; motion capture: 0 to >0.87 and pressure mat: <0.53 to >0.90). This could be due to genuine within-subject variability given the nature of the stepping task and brings into question the suitability of average foot placement error as an outcome measure. Additionally, results suggest the pressure mat is not a valid measure of this parameter since it was statistically significantly different from and much less precise than the motion capture system (p=0.003). The inertial sensor was found to be a moderately reliable (ICC 95% CIs >0.46 to >0.95) but not valid measure for anteroposterior and mediolateral COM velocities (AP velocity: p=0.000, ML velocity target 1 to 4: p=0.734, 0.001, 0.000 & 0.376). However, it is thought that with further development, the COM velocity measure validity could be improved. Possible options which could be investigated include whether there is an effect of inertial sensor placement with respect to pelvic marker placement or implementing more complex methods of data processing to manage inherent accelerometer and gyroscope limitations. Conclusion: The pressure mat is not a suitable alternative for measuring foot placement errors. The inertial sensors have the potential for measuring COM velocity; however, further development work is needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title="dynamic balance">dynamic balance</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20sensors" title=" inertial sensors"> inertial sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=portable" title=" portable"> portable</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20mat" title=" pressure mat"> pressure mat</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=stepping" title=" stepping"> stepping</a>, <a href="https://publications.waset.org/abstracts/search?q=validity" title=" validity"> validity</a>, <a href="https://publications.waset.org/abstracts/search?q=wearables" title=" wearables"> wearables</a> </p> <a href="https://publications.waset.org/abstracts/160542/reliability-and-validity-of-a-portable-inertial-sensor-and-pressure-mat-system-for-measuring-dynamic-balance-parameters-during-stepping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1743</span> Noncritical Phase-Matched Fourth Harmonic Generation of Converging Beam by Deuterated Potassium Dihydrogen Phosphate Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangxu%20Chai">Xiangxu Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Feng"> Bin Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Li"> Ping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Deyan%20Zhu"> Deyan Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liquan%20Wang"> Liquan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanzhong%20Wang"> Guanzhong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukun%20Jing"> Yukun Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In high power large-aperture laser systems, such as the inertial confinement fusion project, the Nd: glass laser (1053nm) is usually needed to be converted to ultraviolet (UV) light and the fourth harmonic generation (FHG) is one of the most favorite candidates to achieve UV light. Deuterated potassium dihydrogen phosphate (DKDP) crystal is an optimal choice for converting the Nd: glass radiation to the fourth harmonic laser by noncritical phase matching (NCPM). To reduce the damage probability of focusing lens, the DKDP crystal is suggested to be set before the focusing lens. And a converging beam enters the FHG crystal consequently. In this paper, we simulate the process of FHG in the scheme and the dependence of FHG efficiency on the lens’ F is derived. Besides, DKDP crystal with gradient deuterium is proposed to realize the NCPM FHG of the converging beam. At every position, the phase matching is achieved by adjusting the deuterium level, and the FHG efficiency increases as a result. The relation of the lens’ F with the deuterium gradient is investigated as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fourth%20harmonic%20generation" title="fourth harmonic generation">fourth harmonic generation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20induced%20damage" title=" laser induced damage"> laser induced damage</a>, <a href="https://publications.waset.org/abstracts/search?q=converging%20beam" title=" converging beam"> converging beam</a>, <a href="https://publications.waset.org/abstracts/search?q=DKDP%20crystal" title=" DKDP crystal"> DKDP crystal</a> </p> <a href="https://publications.waset.org/abstracts/103692/noncritical-phase-matched-fourth-harmonic-generation-of-converging-beam-by-deuterated-potassium-dihydrogen-phosphate-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=59">59</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=60">60</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20focusing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>