CINXE.COM
Search results for: inertial navigation system
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: inertial navigation system</title> <meta name="description" content="Search results for: inertial navigation system"> <meta name="keywords" content="inertial navigation system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="inertial navigation system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="inertial navigation system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17781</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: inertial navigation system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17781</span> Performance Evaluation of GPS/INS Main Integration Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Adwaib"> Ahmed Adwaib </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a comparative study between the main GPS/INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=INS" title=" INS"> INS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20calibration" title=" sensor calibration"> sensor calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20system" title=" navigation system"> navigation system</a> </p> <a href="https://publications.waset.org/abstracts/1700/performance-evaluation-of-gpsins-main-integration-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17780</span> Comparative Study between Inertial Navigation System and GPS in Flight Management System Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Matouk%20Elamari"> Matouk Elamari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rgeai"> M. Rgeai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateh%20Alej"> Fateh Alej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern avionics the main fundamental component is the flight management system (FMS). An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. The main function of the FMS is in-flight management of the flight plan using various sensors such as Global Positioning System (GPS) and Inertial Navigation System (INS) to determine the aircraft's position and guide the aircraft along the flight plan. GPS which is satellite based navigation system, and INS which generally consists of inertial sensors (accelerometers and gyroscopes). GPS is used to locate positions anywhere on earth, it consists of satellites, control stations, and receivers. GPS receivers take information transmitted from the satellites and uses triangulation to calculate a user’s exact location. The basic principle of an INS is based on the integration of accelerations observed by the accelerometers on board the moving platform, the system will accomplish this task through appropriate processing of the data obtained from the specific force and angular velocity measurements. Thus, an appropriately initialized inertial navigation system is capable of continuous determination of vehicle position, velocity and attitude without the use of the external information. The main objective of article is to introduce a comparative study between the two systems under different conditions and scenarios using MATLAB with SIMULINK software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flight%20management%20system" title="flight management system">flight management system</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system" title=" inertial navigation system"> inertial navigation system</a> </p> <a href="https://publications.waset.org/abstracts/49195/comparative-study-between-inertial-navigation-system-and-gps-in-flight-management-system-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17779</span> Integrated Navigation System Using Simplified Kalman Filter Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdunnaser%20Tresh"> Abdunnaser Tresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GPS and inertial navigation system (INS) have complementary qualities that make them ideal use for sensor fusion. The limitations of GPS include occasional high noise content, outages when satellite signals are blocked, interference and low bandwidth. The strengths of GPS include its long-term stability and its capacity to function as a stand-alone navigation system. In contrast, INS is not subject to interference or outages, have high bandwidth and good short-term noise characteristics, but have long-term drift errors and require external information for initialization. A combined system of GPS and INS subsystems can exhibit the robustness, higher bandwidth and better noise characteristics of the inertial system with the long-term stability of GPS. The most common estimation algorithm used in integrated INS/GPS is the Kalman Filter (KF). KF is able to take advantages of these characteristics to provide a common integrated navigation implementation with performance superior to that of either subsystem (GPS or INS). This paper presents a simplified KF algorithm for land vehicle navigation application. In this integration scheme, the GPS derived positions and velocities are used as the update measurements for the INS derived PVA. The KF error state vector in this case includes the navigation parameters as well as the accelerometer and gyroscope error states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=INS" title=" INS"> INS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system" title=" inertial navigation system"> inertial navigation system</a> </p> <a href="https://publications.waset.org/abstracts/11049/integrated-navigation-system-using-simplified-kalman-filter-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17778</span> A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Shi">Jian Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Baoguo%20Yu"> Baoguo Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haonan%20Jia"> Haonan Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Liu"> Meng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Huang"> Ping Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20alignment" title="air alignment">air alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20alignment" title=" fine alignment"> fine alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system" title=" inertial navigation system"> inertial navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20navigation%20system" title=" integrated navigation system"> integrated navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=UKF" title=" UKF"> UKF</a> </p> <a href="https://publications.waset.org/abstracts/128940/a-robust-and-adaptive-unscented-kalman-filter-for-the-air-fine-alignment-of-the-strapdown-inertial-navigation-systemgps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17777</span> Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdunnaser%20Tresh"> Abdunnaser Tresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20engineering" title=" materials engineering"> materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/3660/simplified-insgps-integration-algorithm-in-land-vehicle-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17776</span> A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tijing%20Cai">Tijing Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Qimeng%20Xu"> Qimeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daijin%20Zhou"> Daijin Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS-IMU%20%28Micro-Electro-Mechanical%20System%20Inertial%20Measurement%20Unit%29" title="MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)">MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)</a>, <a href="https://publications.waset.org/abstracts/search?q=BDS%20%28BeiDou%20Navigation%20Satellite%20System%29" title=" BDS (BeiDou Navigation Satellite System)"> BDS (BeiDou Navigation Satellite System)</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-antenna" title=" dual-antenna"> dual-antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20navigation" title=" integrated navigation"> integrated navigation</a> </p> <a href="https://publications.waset.org/abstracts/97626/a-short-baseline-dual-antenna-bdsmems-imu-integrated-navigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17775</span> Low Cost Inertial Sensors Modeling Using Allan Variance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Hussen">A. A. Hussen</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20N.%20Jleta"> I. N. Jleta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allan%20variance" title="Allan variance">Allan variance</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title=" accelerometer"> accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroscope" title=" gyroscope"> gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20errors" title=" stochastic errors"> stochastic errors</a> </p> <a href="https://publications.waset.org/abstracts/28956/low-cost-inertial-sensors-modeling-using-allan-variance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17774</span> An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Wang">Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuguo%20Pan"> Shuguo Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GNSS%2FINS%20integrated%20navigation" title="GNSS/INS integrated navigation">GNSS/INS integrated navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=ambiguity%20resolution" title=" ambiguity resolution"> ambiguity resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Cubature%20Kalman%20filter" title=" Cubature Kalman filter"> Cubature Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=Robust%20algorithm" title=" Robust algorithm"> Robust algorithm</a> </p> <a href="https://publications.waset.org/abstracts/151088/an-improved-robust-algorithm-based-on-cubature-kalman-filter-for-single-frequency-global-navigation-satellite-systeminertial-navigation-tightly-coupled-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17773</span> Location Detection of Vehicular Accident Using Global Navigation Satellite Systems/Inertial Measurement Units Navigator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neda%20Navidi">Neda Navidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rene%20Jr.%20Landry"> Rene Jr. Landry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicle tracking and accident recognizing are considered by many industries like insurance and vehicle rental companies. The main goal of this paper is to detect the location of a car accident by combining different methods. The methods, which are considered in this paper, are Global Navigation Satellite Systems/Inertial Measurement Units (GNSS/IMU)-based navigation and vehicle accident detection algorithms. They are expressed by a set of raw measurements, which are obtained from a designed integrator black box using GNSS and inertial sensors. Another concern of this paper is the definition of accident detection algorithm based on its jerk to identify the position of that accident. In fact, the results convinced us that, even in GNSS blockage areas, the position of the accident could be detected by GNSS/INS integration with 50% improvement compared to GNSS stand alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driver%20behavior%20monitoring" title="driver behavior monitoring">driver behavior monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=GNSS" title=" GNSS"> GNSS</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a> </p> <a href="https://publications.waset.org/abstracts/72798/location-detection-of-vehicular-accident-using-global-navigation-satellite-systemsinertial-measurement-units-navigator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17772</span> Overview of Fiber Optic Gyroscopes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdo">M. Abdo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elghandour"> Ahmed Elghandour</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairy%20Eltahlawy"> Khairy Eltahlawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shalaby"> Mohamed Shalaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros—fiber optic gyroscopes and ring laser gyroscopes—and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and brillion fiber optic gyroscopes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20gyros" title="mechanical gyros">mechanical gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20laser%20gyros" title=" ring laser gyros"> ring laser gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=interferometric%20fiber%20optic%20gyros" title=" interferometric fiber optic gyros"> interferometric fiber optic gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=resonator%20fiber%20optic%20gyros" title=" resonator fiber optic gyros"> resonator fiber optic gyros</a> </p> <a href="https://publications.waset.org/abstracts/168383/overview-of-fiber-optic-gyroscopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17771</span> Overview of Fiber Optic Gyroscopes as Ring Laser Gyros and Fiber Optic Gyros and the Comparison Between Them</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdo">M. Abdo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shalaby"> Mohamed Shalaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros and fiber optic gyroscopes and ring laser gyroscopes and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and Brillion fiber optic gyroscopes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20gyros" title="mechanical gyros">mechanical gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20laser%20gyros" title=" ring laser gyros"> ring laser gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=interferometric%20finer%20optic%20gyros" title=" interferometric finer optic gyros"> interferometric finer optic gyros</a>, <a href="https://publications.waset.org/abstracts/search?q=Resonator%20fiber%20optic%20gyros" title=" Resonator fiber optic gyros"> Resonator fiber optic gyros</a> </p> <a href="https://publications.waset.org/abstracts/168331/overview-of-fiber-optic-gyroscopes-as-ring-laser-gyros-and-fiber-optic-gyros-and-the-comparison-between-them" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17770</span> Performance Analysis of Geophysical Database Referenced Navigation: The Combination of Gravity Gradient and Terrain Using Extended Kalman Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisun%20Lee">Jisun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Hyoun%20Kwon"> Jay Hyoun Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an alternative way to compensate the INS (inertial navigation system) error in non-GNSS (Global Navigation Satellite System) environment, geophysical database referenced navigation is being studied. In this study, both gravity gradient and terrain data were combined to complement the weakness of sole geophysical data as well as to improve the stability of the positioning. The main process to compensate the INS error using geophysical database was constructed on the basis of the EKF (Extended Kalman Filter). In detail, two type of combination method, centralized and decentralized filter, were applied to check the pros and cons of its algorithm and to find more robust results. The performance of each navigation algorithm was evaluated based on the simulation by supposing that the aircraft flies with precise geophysical DB and sensors above nine different trajectories. Especially, the results were compared to the ones from sole geophysical database referenced navigation to check the improvement due to a combination of the heterogeneous geophysical database. It was found that the overall navigation performance was improved, but not all trajectories generated better navigation result by the combination of gravity gradient with terrain data. Also, it was found that the centralized filter generally showed more stable results. It is because that the way to allocate the weight for the decentralized filter could not be optimized due to the local inconsistency of geophysical data. In the future, switching of geophysical data or combining different navigation algorithm are necessary to obtain more robust navigation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Extended%20Kalman%20Filter" title="Extended Kalman Filter">Extended Kalman Filter</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysical%20database%20referenced%20navigation" title=" geophysical database referenced navigation"> geophysical database referenced navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20gradient" title=" gravity gradient"> gravity gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain" title=" terrain "> terrain </a> </p> <a href="https://publications.waset.org/abstracts/67266/performance-analysis-of-geophysical-database-referenced-navigation-the-combination-of-gravity-gradient-and-terrain-using-extended-kalman-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17769</span> Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassim%20Bessaad">Nassim Bessaad</a>, <a href="https://publications.waset.org/abstracts/search?q=Qilian%20Bao"> Qilian Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Jiangkang"> Zhao Jiangkang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20navigation" title="inertial navigation">inertial navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20filtering" title=" adaptive filtering"> adaptive filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=star%20tracker" title=" star tracker"> star tracker</a>, <a href="https://publications.waset.org/abstracts/search?q=FOG" title=" FOG"> FOG</a> </p> <a href="https://publications.waset.org/abstracts/145618/design-of-enhanced-adaptive-filter-for-integrated-navigation-system-of-fog-sins-and-star-tracker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17768</span> Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidney%20A.%20Lima">Sidney A. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermann%20J.%20H.%20Kux"> Hermann J. H. Kux</a>, <a href="https://publications.waset.org/abstracts/search?q=Elcio%20H.%20Shiguemori"> Elcio H. Shiguemori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomy" title="autonomy">autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20resection" title=" spatial resection"> spatial resection</a>, <a href="https://publications.waset.org/abstracts/search?q=UAS" title=" UAS"> UAS</a> </p> <a href="https://publications.waset.org/abstracts/91629/accuracy-of-autonomy-navigation-of-unmanned-aircraft-systems-through-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17767</span> Research on the United Navigation Mechanism of Land, Sea and Air Targets under Multi-Sources Information Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Liu">Rui Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Greve"> Klaus Greve</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The navigation information is a kind of dynamic geographic information, and the navigation information system is a kind of special geographic information system. At present, there are many researches on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing is not deeply applied into the research of navigation information service. And the imperfection of navigation target coordination and navigation information sharing mechanism under certain navigation tasks has greatly affected the reliability and scientificity of navigation service such as path planning. Considering this, the project intends to study the multi-source information fusion and multi-objective united navigation information interaction mechanism: first of all, investigate the actual needs of navigation users in different areas, and establish the preliminary navigation information classification and importance level model; and then analyze the characteristics of the remote sensing and GIS vector data, and design the fusion algorithm from the aspect of improving the positioning accuracy and extracting the navigation environment data. At last, the project intends to analyze the feature of navigation information of the land, sea and air navigation targets, and design the united navigation data standard and navigation information sharing model under certain navigation tasks, and establish a test navigation system for united navigation simulation experiment. The aim of this study is to explore the theory of united navigation service and optimize the navigation information service model, which will lay the theory and technology foundation for the united navigation of land, sea and air targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20fusion" title="information fusion">information fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=united%20navigation" title=" united navigation"> united navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20path%20planning" title=" dynamic path planning"> dynamic path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20information%20visualization" title=" navigation information visualization"> navigation information visualization</a> </p> <a href="https://publications.waset.org/abstracts/70612/research-on-the-united-navigation-mechanism-of-land-sea-and-air-targets-under-multi-sources-information-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17766</span> The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Randles">Andrew Randles</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Ocak"> Ilker Ocak</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheam%20Daw%20Don"> Cheam Daw Don</a>, <a href="https://publications.waset.org/abstracts/search?q=Navab%20Singh"> Navab Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Gu"> Alex Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitive%20pressure%20sensor" title="capacitive pressure sensor">capacitive pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=9%20DOF" title=" 9 DOF"> 9 DOF</a>, <a href="https://publications.waset.org/abstracts/search?q=10%20DOF" title=" 10 DOF"> 10 DOF</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitive" title=" capacitive"> capacitive</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20measurement%20unit" title=" inertial measurement unit"> inertial measurement unit</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system" title=" inertial navigation system"> inertial navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=INS" title=" INS"> INS</a> </p> <a href="https://publications.waset.org/abstracts/32117/the-design-development-and-optimization-of-a-capacitive-pressure-sensor-utilizing-an-existing-9dof-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17765</span> Comparison of Loosely Coupled and Tightly Coupled INS/GNSS Architecture for Guided Rocket Navigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Purwoko">Rahmat Purwoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Bambang%20Riyanto%20Trilaksono"> Bambang Riyanto Trilaksono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gives comparison of INS/GNSS architecture namely Loosely Coupled and Tightly Coupled using Hardware in the Loop Simulation in Guided Missile RKX-200 rocket model. INS/GNSS Tightly Coupled architecture requires pseudo-range, pseudo-range rate, and position and velocity of each satellite in constellation from GPS (Global Positioning System) measurement. The Loosely Coupled architecture use estimated position and velocity from GNSS receiver. INS/GNSS architecture also requires angular rate and specific force measurement from IMU (Inertial Measurement Unit). Loosely Coupled arhitecture designed using 15 states Kalman Filter and Tightly Coupled designed using 17 states Kalman Filter. Integration algorithm calculation using ECEF frame. Navigation System implemented Zedboard All Programmable SoC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kalman%20filter" title="kalman filter">kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=loosely%20coupled" title=" loosely coupled"> loosely coupled</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20system" title=" navigation system"> navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=tightly%20coupled" title=" tightly coupled"> tightly coupled</a> </p> <a href="https://publications.waset.org/abstracts/57097/comparison-of-loosely-coupled-and-tightly-coupled-insgnss-architecture-for-guided-rocket-navigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17764</span> Development of Modular Shortest Path Navigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nalinee%20Sophatsathit">Nalinee Sophatsathit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a variation of navigation systems which tallies every node along the shortest path from start to destination nodes. The underlying technique rests on the well-established Dijkstra Algorithm. The ultimate goal is to serve as a user navigation guide that furnishes stop over cost of every node along this shortest path, whereby users can decide whether or not to visit any specific nodes. The output is an implementable module that can be further refined to run on the Internet and smartphone technology. This will benefit large organizations having physical installations spreaded over wide area such as hospitals, universities, etc. The savings on service personnel, let alone lost time and unproductive work, are attributive to innovative navigation system management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=navigation%20systems" title="navigation systems">navigation systems</a>, <a href="https://publications.waset.org/abstracts/search?q=shortest%20path" title=" shortest path"> shortest path</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone%20technology" title=" smartphone technology"> smartphone technology</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20navigation%20guide" title=" user navigation guide"> user navigation guide</a> </p> <a href="https://publications.waset.org/abstracts/12201/development-of-modular-shortest-path-navigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17763</span> Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Pastor">Daniel Pastor</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo-Sang%20Shin"> Hyo-Sang Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vision" title="vision">vision</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=SLAM" title=" SLAM"> SLAM</a> </p> <a href="https://publications.waset.org/abstracts/20509/optical-flow-localisation-and-appearance-mapping-oflaam-for-long-term-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17762</span> Submarine Topography and Beach Survey of Gang-Neung Port in South Korea, Using Multi-Beam Echo Sounder and Shipborne Mobile Light Detection and Ranging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Hyuck%20Kim">Won Hyuck Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Hwan%20Kim"> Chang Hwan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Wook%20Kim"> Hyun Wook Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myoung%20Hoon%20Lee"> Myoung Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Hong%20Park"> Chan Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20Yeong%20Park"> Hyeon Yeong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We conducted submarine topography & beach survey from December 2015 and January 2016 using multi-beam echo sounder EM3001(Kongsberg corporation) & Shipborne Mobile LiDAR System. Our survey area were the Anmok beach in Gangneung, South Korea. We made Shipborne Mobile LiDAR System for these survey. Shipborne Mobile LiDAR System includes LiDAR (RIEGL LMS-420i), IMU ((Inertial Measurement Unit, MAGUS Inertial+) and RTKGNSS (Real Time Kinematic Global Navigation Satellite System, LEIAC GS 15 GS25) for beach's measurement, LiDAR's motion compensation & precise position. Shipborne Mobile LiDAR System scans beach on the movable vessel using the laser. We mounted Shipborne Mobile LiDAR System on the top of the vessel. Before beach survey, we conducted eight circles IMU calibration survey for stabilizing heading of IMU. This exploration should be as close as possible to the beach. But our vessel could not come closer to the beach because of latency objects in the water. At the same time, we conduct submarine topography survey using multi-beam echo sounder EM3001. A multi-beam echo sounder is a device observing and recording the submarine topography using sound wave. We mounted multi-beam echo sounder on left side of the vessel. We were equipped with a motion sensor, DGNSS (Differential Global Navigation Satellite System), and SV (Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. Shipborne Mobile LiDAR System was able to reduce the consuming time of beach survey rather than previous conventional methods of beach survey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anmok" title="Anmok">Anmok</a>, <a href="https://publications.waset.org/abstracts/search?q=beach%20survey" title=" beach survey"> beach survey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shipborne%20Mobile%20LiDAR%20System" title=" Shipborne Mobile LiDAR System"> Shipborne Mobile LiDAR System</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine%20topography" title=" submarine topography"> submarine topography</a> </p> <a href="https://publications.waset.org/abstracts/65092/submarine-topography-and-beach-survey-of-gang-neung-port-in-south-korea-using-multi-beam-echo-sounder-and-shipborne-mobile-light-detection-and-ranging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17761</span> Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Liu">Rui Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengyu%20Cui"> Pengyu Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Nan%20Jiang"> Nan Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=navigation%20electronic%20map" title="navigation electronic map">navigation electronic map</a>, <a href="https://publications.waset.org/abstracts/search?q=united%20navigation" title=" united navigation"> united navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-element%20expression%20pattern" title=" multi-element expression pattern"> multi-element expression pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-source%20information%20fusion" title=" multi-source information fusion"> multi-source information fusion</a> </p> <a href="https://publications.waset.org/abstracts/79171/design-of-an-air-and-land-multi-element-expression-pattern-of-navigation-electronic-map-for-ground-vehicles-under-united-navigation-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17760</span> Analysis of Autonomous Orbit Determination for Lagrangian Navigation Constellation with Different Dynamical Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gao%20Youtao">Gao Youtao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Tanran"> Zhao Tanran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Bingyu"> Jin Bingyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Bo"> Xu Bo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global navigation satellite system(GNSS) can deliver navigation information for spacecraft orbiting on low-Earth orbits and medium Earth orbits. However, the GNSS cannot navigate the spacecraft on high-Earth orbit or deep space probes effectively. With the deep space exploration becoming a hot spot of aerospace, the demand for a deep space satellite navigation system is becoming increasingly prominent. Many researchers discussed the feasibility and performance of a satellite navigation system on periodic orbits around the Earth-Moon libration points which can be called Lagrangian point satellite navigation system. Autonomous orbit determination (AOD) is an important performance for the Lagrangian point satellite navigation system. With this ability, the Lagrangian point satellite navigation system can reduce the dependency on ground stations. AOD also can greatly reduce total system cost and assure mission continuity. As the elliptical restricted three-body problem can describe the Earth-Moon system more accurately than the circular restricted three-body problem, we study the autonomous orbit determination of Lagrangian navigation constellation using only crosslink range based on elliptical restricted three body problem. Extended Kalman filter is used in the autonomous orbit determination. In order to compare the autonomous orbit determination results based on elliptical restricted three-body problem to the results of autonomous orbit determination based on circular restricted three-body problem, we give the autonomous orbit determination position errors of a navigation constellation include four satellites based on the circular restricted three-body problem. The simulation result shows that the Lagrangian navigation constellation can achieve long-term precise autonomous orbit determination using only crosslink range. In addition, the type of the libration point orbit will influence the autonomous orbit determination accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title="extended Kalman filter">extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20orbit%20determination" title=" autonomous orbit determination"> autonomous orbit determination</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-periodic%20orbit" title=" quasi-periodic orbit"> quasi-periodic orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20constellation" title=" navigation constellation"> navigation constellation</a> </p> <a href="https://publications.waset.org/abstracts/72040/analysis-of-autonomous-orbit-determination-for-lagrangian-navigation-constellation-with-different-dynamical-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17759</span> 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Maklouf">O. Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdulla"> Ahmed Abdulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers are looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=ParIMU" title=" ParIMU"> ParIMU</a>, <a href="https://publications.waset.org/abstracts/search?q=INS" title=" INS"> INS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/7197/1g2a-imugps-integration-algorithm-for-land-vehicle-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17758</span> Ultra-Tightly Coupled GNSS/INS Based on High Degree Cubature Kalman Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Benzerrouk">Hamza Benzerrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Nebylov"> Alexander Nebylov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In classical GNSS/INS integration designs, the loosely coupled approach uses the GNSS derived position and the velocity as the measurements vector. This design is suboptimal from the standpoint of preventing GNSSoutliers/outages. The tightly coupled GPS/INS navigation filter mixes the GNSS pseudo range and inertial measurements and obtains the vehicle navigation state as the final navigation solution. The ultra‐tightly coupled GNSS/INS design combines the I (inphase) and Q(quadrature) accumulator outputs in the GNSS receiver signal tracking loops and the INS navigation filter function intoa single Kalman filter variant (EKF, UKF, SPKF, CKF and HCKF). As mentioned, EKF and UKF are the most used nonlinear filters in the literature and are well adapted to inertial navigation state estimation when integrated with GNSS signal outputs. In this paper, it is proposed to move a step forward with more accurate filters and modern approaches called Cubature and High Degree cubature Kalman Filtering methods, on the basis of previous results solving the state estimation based on INS/GNSS integration, Cubature Kalman Filter (CKF) and High Degree Cubature Kalman Filter with (HCKF) are the references for the recent developed generalized Cubature rule based Kalman Filter (GCKF). High degree cubature rules are the kernel of the new solution for more accurate estimation with less computational complexity compared with the Gauss-Hermite Quadrature (GHQKF). Gauss-Hermite Kalman Filter GHKF which is not selected in this work because of its limited real-time implementation in high-dimensional state-spaces. In ultra tightly or a deeply coupled GNSS/INS system is dynamics EKF is used with transition matrix factorization together with GNSS block processing which is well described in the paper and assumes available the intermediary frequency IF by using a correlator samples with a rate of 500 Hz in the presented approach. GNSS (GPS+GLONASS) measurements are assumed available and modern SPKF with Cubature Kalman Filter (CKF) are compared with new versions of CKF called high order CKF based on Spherical-radial cubature rules developed at the fifth order in this work. Estimation accuracy of the high degree CKF is supposed to be comparative to GHKF, results of state estimation are then observed and discussed for different initialization parameters. Results show more accurate navigation state estimation and more robust GNSS receiver when Ultra Tightly Coupled approach applied based on High Degree Cubature Kalman Filter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GNSS" title="GNSS">GNSS</a>, <a href="https://publications.waset.org/abstracts/search?q=INS" title=" INS"> INS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filtering" title=" Kalman filtering"> Kalman filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20tight%20integration" title=" ultra tight integration"> ultra tight integration</a> </p> <a href="https://publications.waset.org/abstracts/52009/ultra-tightly-coupled-gnssins-based-on-high-degree-cubature-kalman-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17757</span> Using Lagrange Equations to Study the Relative Motion of a Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Petre">R. A. Petre</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Nichifor"> S. E. Nichifor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Craifaleanu"> A. Craifaleanu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Stroe"> I. Stroe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relative motion of a robotic arm formed by homogeneous bars of different lengths and masses, hinged to each other is investigated. The first bar of the mechanism is articulated on a platform, considered initially fixed on the surface of the Earth, while for the second case the platform is considered to be in rotation with respect to the Earth. For both analyzed cases the motion equations are determined using the Lagrangian formalism, applied in its traditional form, valid with respect to an inertial reference system, conventionally considered as fixed. However, in the second case, a generalized form of the formalism valid with respect to a non-inertial reference frame will also be applied. The numerical calculations were performed using a MATLAB program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20equations" title="Lagrange equations">Lagrange equations</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20motion" title=" relative motion"> relative motion</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20reference%20frame" title=" inertial reference frame"> inertial reference frame</a>, <a href="https://publications.waset.org/abstracts/search?q=non-inertial%20reference%20frame" title=" non-inertial reference frame"> non-inertial reference frame</a> </p> <a href="https://publications.waset.org/abstracts/128576/using-lagrange-equations-to-study-the-relative-motion-of-a-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17756</span> Comparison of Extended Kalman Filter and Unscented Kalman Filter for Autonomous Orbit Determination of Lagrangian Navigation Constellation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youtao%20Gao">Youtao Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingyu%20Jin"> Bingyu Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanran%20Zhao"> Tanran Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Xu"> Bo Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The history of satellite navigation can be dated back to the 1960s. From the U.S. Transit system and the Russian Tsikada system to the modern Global Positioning System (GPS) and the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), performance of satellite navigation has been greatly improved. Nowadays, the navigation accuracy and coverage of these existing systems have already fully fulfilled the requirement of near-Earth users, but these systems are still beyond the reach of deep space targets. Due to the renewed interest in space exploration, a novel high-precision satellite navigation system is becoming even more important. The increasing demand for such a deep space navigation system has contributed to the emergence of a variety of new constellation architectures, such as the Lunar Global Positioning System. Apart from a Walker constellation which is similar to the one adopted by GPS on Earth, a novel constellation architecture which consists of libration point satellites in the Earth-Moon system is also available to construct the lunar navigation system, which can be called accordingly, the libration point satellite navigation system. The concept of using Earth-Moon libration point satellites for lunar navigation was first proposed by Farquhar and then followed by many other researchers. Moreover, due to the special characteristics of Libration point orbits, an autonomous orbit determination technique, which is called ‘Liaison navigation’, can be adopted by the libration point satellites. Using only scalar satellite-to-satellite tracking data, both the orbits of the user and libration point satellites can be determined autonomously. In this way, the extensive Earth-based tracking measurement can be eliminated, and an autonomous satellite navigation system can be developed for future space exploration missions. The method of state estimate is an unnegligible factor which impacts on the orbit determination accuracy besides type of orbit, initial state accuracy and measurement accuracy. We apply the extended Kalman filter(EKF) and the unscented Kalman filter(UKF) to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The simulation results illustrate that UKF can improve the accuracy and z-axis convergence to some extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title="extended Kalman filter">extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20orbit%20determination" title=" autonomous orbit determination"> autonomous orbit determination</a>, <a href="https://publications.waset.org/abstracts/search?q=unscented%20Kalman%20filter" title=" unscented Kalman filter"> unscented Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20constellation" title=" navigation constellation"> navigation constellation</a> </p> <a href="https://publications.waset.org/abstracts/72788/comparison-of-extended-kalman-filter-and-unscented-kalman-filter-for-autonomous-orbit-determination-of-lagrangian-navigation-constellation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17755</span> Influence of Inertial Forces of Large Bearings Utilized in Wind Energy Assemblies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Barabas">S. Barabas</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sarbu"> F. Sarbu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Barabas"> B. Barabas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fota"> A. Fota </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Main objective of this paper is to establish a link between inertial forces of the bearings used in construction of wind power plant and its behavior. Using bearings with lower inertial forces has the immediate effect of decreasing inertia rotor system, with significant results in increased energy efficiency, due to decreased friction forces between rollers and raceways. The FEM analysis shows the appearance of uniform contact stress at the ends of the rollers, demonstrated the necessity of production of low mass bearings. Favorable results are expected in the economic field, by reducing material consumption and by increasing the durability of bearings. Using low mass bearings with hollow rollers instead of solid rollers has an impact on working temperature, on vibrations and noise which decrease. Implementation of types of hollow rollers of cylindrical tubular type, instead of expensive rollers with logarithmic profile, will bring significant inertial forces decrease with large benefits in behavior of wind power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20forces" title="inertial forces">inertial forces</a>, <a href="https://publications.waset.org/abstracts/search?q=Von%20Mises%20stress" title=" Von Mises stress"> Von Mises stress</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20rollers" title=" hollow rollers"> hollow rollers</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/32703/influence-of-inertial-forces-of-large-bearings-utilized-in-wind-energy-assemblies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17754</span> Genetic Algorithms Based ACPS Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20Laarouchi">Emine Laarouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Cancila"> Daniela Cancila</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Soulier"> Laurent Soulier</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakima%20Chaouchi"> Hakima Chaouchi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyber-Physical Systems as drones proved their efficiency for supporting emergency applications. For these particular applications, travel time and autonomous navigation algorithms are of paramount importance, especially when missions are performed in urban environments with high obstacle density. In this context, however, safety properties are not properly addressed. Our ambition is to optimize the system safety level under autonomous navigation systems, by preserving performance of the CPS. At this aim, we introduce genetic algorithms in the autonomous navigation process of the drone to better infer its trajectory considering the possible obstacles. We first model the wished safety requirements through a cost function and then seek to optimize it though genetics algorithms (GA). The main advantage in the use of GA is to consider different parameters together, for example, the level of battery for navigation system selection. Our tests show that the GA introduction in the autonomous navigation systems minimize the risk of safety lossless. Finally, although our simulation has been tested for autonomous drones, our approach and results could be extended for other autonomous navigation systems such as autonomous cars, robots, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety" title="safety">safety</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicles" title=" unmanned aerial vehicles "> unmanned aerial vehicles </a>, <a href="https://publications.waset.org/abstracts/search?q=CPS" title=" CPS"> CPS</a>, <a href="https://publications.waset.org/abstracts/search?q=ACPS" title=" ACPS"> ACPS</a>, <a href="https://publications.waset.org/abstracts/search?q=drones" title=" drones"> drones</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title=" path planning"> path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a> </p> <a href="https://publications.waset.org/abstracts/117828/genetic-algorithms-based-acps-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17753</span> DQN for Navigation in Gazebo Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xabier%20Olaz%20Moratinos">Xabier Olaz Moratinos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=DQN" title=" DQN"> DQN</a>, <a href="https://publications.waset.org/abstracts/search?q=gazebo" title=" gazebo"> gazebo</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a> </p> <a href="https://publications.waset.org/abstracts/165698/dqn-for-navigation-in-gazebo-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17752</span> Effective Training System for Riding Posture Using Depth and Inertial Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangseung%20Kang">Sangseung Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyekyung%20Kim"> Kyekyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Suyoung%20Chi"> Suyoung Chi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A good posture is the most important factor in riding. In this paper, we present an effective posture correction system for a riding simulator environment to provide position error detection and customized training functions. The proposed system detects and analyzes the rider's posture using depth data and inertial sensing data. Our experiments show that including these functions will help users improve their seat for a riding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=posture%20correction" title="posture correction">posture correction</a>, <a href="https://publications.waset.org/abstracts/search?q=posture%20training" title=" posture training"> posture training</a>, <a href="https://publications.waset.org/abstracts/search?q=riding%20posture" title=" riding posture"> riding posture</a>, <a href="https://publications.waset.org/abstracts/search?q=riding%20simulator" title=" riding simulator"> riding simulator</a> </p> <a href="https://publications.waset.org/abstracts/20842/effective-training-system-for-riding-posture-using-depth-and-inertial-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=592">592</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=593">593</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>