CINXE.COM
Search results for: high temperature material behaviour
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: high temperature material behaviour</title> <meta name="description" content="Search results for: high temperature material behaviour"> <meta name="keywords" content="high temperature material behaviour"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="high temperature material behaviour" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="high temperature material behaviour"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 29474</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: high temperature material behaviour</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29384</span> Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Keim">V. Keim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Spachtholz"> J. Spachtholz</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hammer"> J. Hammer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20low%20cycle%20fatigue" title="complex low cycle fatigue">complex low cycle fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20modelling" title=" material modelling"> material modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20glass%20fibre%20reinforced%20polyphthalamides" title=" short glass fibre reinforced polyphthalamides"> short glass fibre reinforced polyphthalamides</a>, <a href="https://publications.waset.org/abstracts/search?q=visco-elasto-plastic%20deformation" title=" visco-elasto-plastic deformation"> visco-elasto-plastic deformation</a> </p> <a href="https://publications.waset.org/abstracts/53704/simulation-of-the-visco-elasto-plastic-deformation-behaviour-of-short-glass-fibre-reinforced-polyphthalamides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29383</span> Temperature Dependence of Relative Permittivity: A Measurement Technique Using Split Ring Resonators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreedevi%20P.%20Chakyar">Sreedevi P. Chakyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolly%20Andrews"> Jolly Andrews</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Joseph"> V. P. Joseph </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact method for measuring the relative permittivity of a dielectric material at different temperatures using a single circular Split Ring Resonator (SRR) metamaterial unit working as a test probe is presented in this paper. The dielectric constant of a material is dependent upon its temperature and the <em>LC</em> resonance of the SRR depends on its dielectric environment. Hence, the temperature of the dielectric material in contact with the resonator influences its resonant frequency. A single SRR placed between transmitting and receiving probes connected to a Vector Network Analyser (VNA) is used as a test probe. The dependence of temperature between 30 <sup>o</sup>C and 60 <sup>o</sup>C on resonant frequency of SRR is analysed. Relative permittivities ‘ε’ of test samples for different temperatures are extracted from a calibration graph drawn between the relative permittivity of samples of known dielectric constant and their corresponding resonant frequencies. This method is found to be an easy and efficient technique for analysing the temperature dependent permittivity of different materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title="metamaterials">metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20permeability" title=" negative permeability"> negative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=permittivity%20measurement%20techniques" title=" permittivity measurement techniques"> permittivity measurement techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20ring%20resonators" title=" split ring resonators"> split ring resonators</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependent%20dielectric%20constant" title=" temperature dependent dielectric constant"> temperature dependent dielectric constant</a> </p> <a href="https://publications.waset.org/abstracts/50478/temperature-dependence-of-relative-permittivity-a-measurement-technique-using-split-ring-resonators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29382</span> Shopping Behaviour of Ethnic Groups in Indian Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hari%20Govindmishra">Hari Govindmishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarabjot%20Singh"> Sarabjot Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study offers an approach to understand different determinants of shopping behaviour, and the effect of ethnicity on shopping behaviour. The results reveal that the Indian culture is composite in nature and because of which there is no difference between different ethnic groups in their preference for three shopping behaviour determinants, viz., status consciousness, need for touch and companion opinion. The research model investigates the relevant relationship between these constructs by using a structural equation modelling approach, which reveals that status consciousness, need for touch and companion opinion are significant determinants of shopping behaviour. Consequently, the shopping behaviour managers have to understand the collective nature of Indian ethnic consumers in their shopping behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethnic%20groups" title="ethnic groups">ethnic groups</a>, <a href="https://publications.waset.org/abstracts/search?q=status%20consciousness" title=" status consciousness"> status consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=companion%20opinion" title=" companion opinion"> companion opinion</a>, <a href="https://publications.waset.org/abstracts/search?q=need%20for%20touch" title=" need for touch"> need for touch</a>, <a href="https://publications.waset.org/abstracts/search?q=shopping%20behaviour" title=" shopping behaviour"> shopping behaviour</a> </p> <a href="https://publications.waset.org/abstracts/42476/shopping-behaviour-of-ethnic-groups-in-indian-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29381</span> Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon"> Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200°C. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200°C. Tensile strength of cast 310S stainless steel was 9 MPa at 1200°C, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900°C. Elongation also increased with temperature decreased. Microstructure observation revealed that σ phase was precipitated along the grain boundary and within the matrix over 1200°C, which is detrimental to high temperature elongation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title="stainless steel">stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=STS%20310S" title=" STS 310S"> STS 310S</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20deformation" title=" high temperature deformation"> high temperature deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/11151/microstructure-and-high-temperature-deformation-behavior-of-cast-310s-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29380</span> Evaluation of Corrosion Behaviour of Austenitic Steel 08Cr18Ni10Ti Exposed to Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20%C5%A0%C3%ADpov%C3%A1">Monika Šípová</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Maru%C5%A1%C3%A1kov%C3%A1"> Daniela Marušáková</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Aparicio"> Claudia Aparicio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New sources and ways of producing energy are still seeking, and one of the sustainable ways is Generation IV nuclear reactors. The supercritical water-cooled reactor is one of the six nuclear reactors of Generation IV, and as a consequence of the development of light water, reactors seem to be the most perspective. Thus, materials usually used in light water reactors are also tested under the expected operating conditions of the supercritical water-cooled reactor. Austenitic stainless steel 08Cr18Ni10Ti is widely used in the eastern types of light water nuclear power plants. Therefore, specimens of 08Cr18Ni10Ti were exposed to conditions close to the pseudo-critical point of water and high-temperature supercritical water. The description and evaluation of the corrosion behaviour of austenitic stainless steel have been done based on the results of X-ray diffraction in combination with energy dispersive spectroscopy and electron backscatter diffraction. Thus, significant differences have been found in the structure and composition of oxides formed depending on the temperature of exposure. The high temperature of supercritical water resulted in localised form of corrosion in contrast to the thin oxide layer of 1 µm present on the surface of specimens exposed close to the pseudo-critical point of water. The obtained results are important for further research as the supercritical water can be successfully used as a coolant for small modular reactors, which are currently of interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=localised%20corrosion" title="localised corrosion">localised corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20water" title=" supercritical water"> supercritical water</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20backscatter%20diffraction" title=" electron backscatter diffraction"> electron backscatter diffraction</a> </p> <a href="https://publications.waset.org/abstracts/160178/evaluation-of-corrosion-behaviour-of-austenitic-steel-08cr18ni10ti-exposed-to-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29379</span> Geopolymer Stabilization of Earth Building Material for Construction 3D Printing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timur%20Mukhametkaliyev">Timur Mukhametkaliyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earthen material possesses low compression strength, and it is highly sensitive to the water content. Different binders can be added (Portland cement or lime) to improve the durability and the mechanical characteristics of earthen material, but the production of these binders has high embodied energy and results in an increase in world CO₂ emission. Geopolymers are binders which can be synthesized at low temperature in alkaline solutions from raw materials consisting of amorphous aluminosilicates. Geopolymers are an attractive substitution of Portland cement and can be used as an excellent stabilization for earthen material. In this study, earthen material stabilized with geopolymer binder for use in construction 3D printing was developed. Construction 3D printing offers freedom of design, waste minimisation, customisation, reduced labour, and automation. For successful 3D printing, the properties of used material are the most important aspects because they require adaptability for extrusion and controlled time of hardening for the binder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20construction" title=" building construction"> building construction</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a> </p> <a href="https://publications.waset.org/abstracts/135313/geopolymer-stabilization-of-earth-building-material-for-construction-3d-printing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29378</span> Movement of Metallic Inclusions in the Volume of Synthetic Diamonds at High Pressure and High Temperature in the Temperature Gradient Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20I.%20Yachevskaya">P. I. Yachevskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Terentiev"> S. A. Terentiev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kuznetsov"> M. S. Kuznetsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several synthetic HPHT diamonds with metal inclusions have been studied. To have possibility of investigate the movement and transformation of the inclusions in the volume of the diamond the samples parallele-piped like shape has been made out of diamond crystals. The calculated value of temperature gradient in the samples of diamond which was placed in high-pressure cell was about 5-10 grad/mm. Duration of the experiments was in range 2-16 hours. All samples were treated several times. It has been found that the volume (dimensions) of inclusions, temperature, temperature gradient and the crystallographic orientation of the samples in the temperature field affects the movement speed of inclusions. Maximum speed of inclusions’ movement reached a value 150 µm/h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamond" title="diamond">diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusions" title=" inclusions"> inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20gradient" title=" temperature gradient"> temperature gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=HPHT" title=" HPHT"> HPHT</a> </p> <a href="https://publications.waset.org/abstracts/19108/movement-of-metallic-inclusions-in-the-volume-of-synthetic-diamonds-at-high-pressure-and-high-temperature-in-the-temperature-gradient-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29377</span> Experimental Study of Flow Effects of Solid Particles’ Size in Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Akridiss">S. Akridiss</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20El%20Tabach"> E. El Tabach</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Chetehouna"> K. Chetehouna</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Gascoin"> N. Gascoin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kadiri"> M. S. Kadiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transpiration cooling combined to regenerative cooling is a technique that could be used to cool the porous walls of the future ramjet combustion chambers; it consists of using fuel that will flow through the pores of the porous material consisting of the chamber walls, as coolant. However, at high temperature, the fuel is pyrolysed and generates solid coke particles inside the porous materials. This phenomenon can lead to a significant decrease of the material permeability and can affect the efficiency of the cooling system. In order to better understand this phenomenon, an experimental laboratory study was undertaken to determine the transport and deposition of particles in a sintered porous material subjected to steady state flow. The test bench composed of a high-pressure autoclave is used to study the transport of different particle size (35 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20study" title="experimental study">experimental study</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20material" title=" porous material"> porous material</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20particles" title=" suspended particles"> suspended particles</a> </p> <a href="https://publications.waset.org/abstracts/91089/experimental-study-of-flow-effects-of-solid-particles-size-in-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29376</span> Phase Composition Analysis of Ternary Alloy Materials for Gas Turbine Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayandi%20Ramanathan">Mayandi Ramanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to high Turbine Entry Temperatures in the range of 1500 to 1600°C. The blades rotate at very high rotation rates and remove a significant amount of thermal power from the gas stream. At high temperatures, the major component failure mechanism is a creep. During its service over time under high thermal loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades and gas turbine components. The proposed advanced Ti alloy material needs a process that provides a strategic orientation of metallic ordering, uniformity in composition and high metallic strength. The chemical composition of the proposed Ti alloy material (25% Ta/(Al+Ta) ratio), unlike Ti-47Al-2Cr-2Nb, has less excess Al that could limit the service life of turbine blades. Properties and performance of Ti-47Al-2Cr-2Nb and Ti-6Al-4V materials will be compared with that of the proposed Ti alloy material to generalize the performance metrics of various gas turbine components. This paper will involve the summary of the effects of additive manufacturing and heat treatment process conditions on the changes in the phase composition, grain structure, lattice structure of the material, tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness at different temperatures. Based on these results, additive manufacturing and heat treatment process conditions will be optimized to fabricate turbine blade with Ti-43Al matrix alloyed with an optimized amount of refractory Ta metal. Improvement in service temperature of the turbine blades and corrosion resistance dependence on the coercivity of the alloy material will be reported. A correlation of phase composition and creep strain rate will also be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20materials" title="high temperature materials">high temperature materials</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20strength" title=" specific strength"> specific strength</a>, <a href="https://publications.waset.org/abstracts/search?q=creep%20strain" title=" creep strain"> creep strain</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20composition" title=" phase composition"> phase composition</a> </p> <a href="https://publications.waset.org/abstracts/96645/phase-composition-analysis-of-ternary-alloy-materials-for-gas-turbine-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29375</span> Personal Characteristics Related to Hasty Behaviour in Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20Jin%20Park">Sun Jin Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Ja%20Cho"> Kyung-Ja Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on characteristics related to hasty behaviour. To investigate the relation between personal characteristics and hasty behaviour, 601 data were collected, 335 males and 256 females answered their own 'social avoidance and distress’, ‘anxiety’, ‘sensation seeking', 'hope', and ' hasty behaviour. And then 591 data were used for the analysis. The factor analysis resulted hasty behaviour consisted of 5 factors, time pressure, isolation, uncomfortable situation, boring condition, and expectation of reward. The result showed anxiety, sensation seeking, and hope related to hasty behaviour. Specifically, anxiety was involved in every hasty behaviour. This result means that psychological tension and worry are related to hasty behaviour in common. 'Social avoidance and distress', 'sensation seeking' and 'hope' influenced on hasty behaviour under time pressure, in isolation, in expectation of rewards respectively. This means that each factor of hasty behaviour has anxiety as its basis, expressed through a varied nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hasty%20behaviour" title="hasty behaviour">hasty behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20avoidance%20and%20distress" title=" social avoidance and distress"> social avoidance and distress</a>, <a href="https://publications.waset.org/abstracts/search?q=anxiety" title=" anxiety"> anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=sensation%20seeking" title=" sensation seeking"> sensation seeking</a>, <a href="https://publications.waset.org/abstracts/search?q=hope" title=" hope"> hope</a> </p> <a href="https://publications.waset.org/abstracts/5484/personal-characteristics-related-to-hasty-behaviour-in-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29374</span> The Effect of Mixing and Degassing Conditions on the Properties of Epoxy/Anhydride Resin System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latha%20Krishnan">Latha Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Cobley"> Andrew Cobley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxy resin is most widely used as matrices for composites of aerospace, automotive and electronic applications due to its outstanding mechanical properties. These properties are chiefly predetermined by the chemical structure of the prepolymer and type of hardener but can also be varied by the processing conditions such as prepolymer and hardener mixing, degassing and curing conditions. In this research, the effect of degassing on the curing behaviour and the void occurrence is experimentally evaluated for epoxy /anhydride resin system. The epoxy prepolymer was mixed with an anhydride hardener and accelerator in an appropriate quantity. In order to investigate the effect of degassing on the curing behaviour and void content of the resin, the uncured resin samples were prepared using three different methods: 1) no degassing 2) degassing on prepolymer and 3) degassing on mixed solution of prepolymer and hardener with an accelerator. The uncured resins were tested in differential scanning calorimeter (DSC) to observe the changes in curing behaviour of the above three resin samples by analysing factors such as gel temperature, peak cure temperature and heat of reaction/heat flow in curing. Additionally, the completely cured samples were tested in DSC to identify the changes in the glass transition temperature (Tg) between the three samples. In order to evaluate the effect of degassing on the void content and morphology changes in the cured epoxy resin, the fractured surfaces of cured epoxy resin were examined under the scanning electron microscope (SEM). Also, the changes in the mechanical properties of the cured resin were studied by three-point bending test. It was found that degassing at different stages of resin mixing had significant effects on properties such as glass transition temperature, the void content and void size of the epoxy/anhydride resin system. For example, degassing (vacuum applied on the mixed resin) has shown higher glass transition temperature (Tg) with lower void content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anhydride%20epoxy" title="anhydride epoxy">anhydride epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20behaviour" title=" curing behaviour"> curing behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=degassing" title=" degassing"> degassing</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20occurrence" title=" void occurrence"> void occurrence</a> </p> <a href="https://publications.waset.org/abstracts/50452/the-effect-of-mixing-and-degassing-conditions-on-the-properties-of-epoxyanhydride-resin-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29373</span> Contribution in Fatigue Life Prediction of Composite Material </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostefa%20Bendouba">Mostefa Bendouba</a>, <a href="https://publications.waset.org/abstracts/search?q=Djebli%20Abdelkader"> Djebli Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20Aid"> Abdelkrim Aid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benguediab"> Mohamed Benguediab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damage evolution mechanism is one of the important focuses of fatigue behaviour investigation of composite materials and also is the foundation to predict fatigue life of composite structures for engineering application. This paper is dedicated to a damage investigation under two block loading cycle fatigue conditions submitted to composite material. The loading sequence effect and the influence of the cycle ratio of the first stage on the cumulative fatigue life were studied herein. Two loading sequences, i.e., high-to-low and low-to-high cases are considered in this paper. The proposed damage indicator is connected cycle by cycle to the S-N curve and the experimental results are in agreement with model expectations. Some experimental researches are used to validate this proposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20acumulation" title=" damage acumulation"> damage acumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution" title=" evolution"> evolution</a> </p> <a href="https://publications.waset.org/abstracts/17290/contribution-in-fatigue-life-prediction-of-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29372</span> Fe-BTC Based Electrochemical Sensor for Anti-Psychotic and Anti-Migraine Drugs: Aripiprazole and Rizatriptan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Saxena">Sachin Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Manju%20Srivastava"> Manju Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study describes a stable, highly sensitive and selective analytical sensor. Fe-BTC was synthesized at room temperature using the noble Iron-trimesate system. The high surface area of as synthesized Fe-BTC proved MOFs as ideal modifiers for glassy carbon electrode. The characterization techniques such as TGA, XRD, FT-IR, BET (BET surface area= 1125 m2/gm) analysis explained the electrocatalytic behaviour of Fe-BTC towards these two drugs. The material formed is cost effective and exhibit higher catalytic behaviour towards analyte systems. The synergism between synthesized Fe-BTC and electroanalytical techniques helped in developing a highly sensitive analytical method for studying the redox fate of ARP and RZ, respectively. Cyclic voltammetry of ferricyanide system proved Fe-BTC/GCE with an increase in 132% enhancement in peak current value as compared to that of GCE. The response characteristics of cyclic voltammetry (CV) and square wave voltammetry (SWV) revealed that the ARP and RZ could be effectively accumulated at Fe-BTC/GCE. On the basis of the electrochemical measurements, electrode dynamics parameters have been evaluated. Present study opens up new field of applications of MOFs modified GCE for drug sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOFs" title="MOFs">MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-psychotic" title=" anti-psychotic"> anti-psychotic</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-migraine%20drugs" title=" anti-migraine drugs"> anti-migraine drugs</a> </p> <a href="https://publications.waset.org/abstracts/103954/fe-btc-based-electrochemical-sensor-for-anti-psychotic-and-anti-migraine-drugs-aripiprazole-and-rizatriptan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29371</span> Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharminder%20Singh">Dharminder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Yadav"> Sanjeev Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravakar%20Mohanty"> Pravakar Mohanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20bubbling%20fluidized%20bed%20gasifier" title="air bubbling fluidized bed gasifier">air bubbling fluidized bed gasifier</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20temperature" title=" bed temperature"> bed temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal%20heating" title=" charcoal heating"> charcoal heating</a>, <a href="https://publications.waset.org/abstracts/search?q=dolomite" title=" dolomite"> dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20temperature" title=" flame temperature"> flame temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/61151/effect-of-different-factors-on-temperature-profile-and-performance-of-an-air-bubbling-fluidized-bed-gasifier-for-rice-husk-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29370</span> A quantitative Analysis of Impact of Potential Variables on the Energy Performance of Old and New Buildings in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao%20Meng">Yao Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahroo%20Eftekhari"> Mahroo Eftekhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20Loveday"> Dennis Loveday</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, there are two types of heating systems in Chinese residential buildings, with respect to the controllability of the heating system, one is an old heating system without any possibility of controlling room temperature and another is a new heating system that provides temperature control of individual rooms. This paper is aiming to evaluate the impact of potential variables on the energy performance of old and new buildings respectively in China, and to explore how the use of individual room temperature control would change occupants’ heating behaviour and thermal comfort in Chinese residential buildings and its impact on the building energy performance. In the study, two types of residential buildings have been chosen, the new building install personal control on the heating system, together with ‘pay for what you use’ tariffs. The old building comprised uncontrolled heating with payment based on floor area. The studies were carried out in each building, with a longitudinal monitoring of indoor air temperature, outdoor air temperature, window position. The occupants’ behaviour and thermal sensation were evaluated by questionnaires. Finally, use the simulated analytic method to identify the impact of influence variables on energy use for both types of buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title="residential buildings">residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20parameters" title=" design parameters"> design parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20analytics%20method" title=" simulation analytics method"> simulation analytics method</a> </p> <a href="https://publications.waset.org/abstracts/32418/a-quantitative-analysis-of-impact-of-potential-variables-on-the-energy-performance-of-old-and-new-buildings-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29369</span> The Impact of Living at Home during the COVID-19 on Young Children’s Disruptive Behaviours</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Yuwei">Zhou Yuwei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study used the multidimensional rating scale for disruptive behaviour in preschool children (parent version) to assess changes in the disruptive behaviour (tantrums, disobedience, aggression, and low level of concern for others) of 200 young children in Nanjing, Jiangsu Province, China, before and after living at home during the new crown epidemic, and five additional teachers of young children were selected to conduct interviews on the performance and changes in their disruptive behaviour at school. The following conclusions were drawn from the questionnaires and interviews: (1) 49% of the children showed a decrease in disruptive behaviour compared to the pre-epidemic period; (2) boys were more disruptive than girls due to individual factors; (3) children with a decrease in disruptive behaviour were more likely to have democratic and authoritative parenting styles due to parental education and upbringing; and the higher the level of parental education, the greater the decrease in disruptive behaviour. (4) For parents who worked outside the home during the epidemic and who did not work, disruptive behaviour scores were higher for their children. Meanwhile, disruptive behaviour was more pronounced the longer the child used electronic devices. The longer the parent-child interaction, the less disruptive behaviour was evident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disruptive%20behaviour" title="disruptive behaviour">disruptive behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20life" title=" home life"> home life</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a> </p> <a href="https://publications.waset.org/abstracts/155607/the-impact-of-living-at-home-during-the-covid-19-on-young-childrens-disruptive-behaviours" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29368</span> High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minoo%20Tavakoli">Minoo Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Kiani%20Rashid"> Alireza Kiani Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Afrasiabi"> Abbas Afrasiabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20arc%20spray" title="electric arc spray">electric arc spray</a>, <a href="https://publications.waset.org/abstracts/search?q=pack%20cementation" title=" pack cementation"> pack cementation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminized%20steel" title=" aluminized steel "> aluminized steel </a> </p> <a href="https://publications.waset.org/abstracts/15965/high-temperature-oxidation-behavior-of-aluminized-steel-by-arc-spray-and-cementation-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29367</span> Cable Diameter Effect on the Contact Temperature of Power Automotive Connector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Beloufa">Amine Beloufa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amirat"> Mohamed Amirat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the electric vehicle, high power leads to high current; automotive power connector should resist to this high current in order to avoid a serious damage caused by the increase of contact temperature. The purpose of this paper is to analyze experimentally and numerically the effect of the cable diameter variation on the decrease of contact temperature. For this reason, a finite element model was developed to calculate the numerical contact temperature for several cable diameters and several electrical high currents. Also, experimental tests were established in order to validate this numerical model. Results show that the influence of cable diameter on the contact temperature is never neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20temperature" title="contact temperature">contact temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20test" title=" experimental test"> experimental test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20automotive%20connector" title=" power automotive connector"> power automotive connector</a> </p> <a href="https://publications.waset.org/abstracts/66274/cable-diameter-effect-on-the-contact-temperature-of-power-automotive-connector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29366</span> The Microstructure Development Behavior of Mg-Ag Alloy during High-Temperature Plane Strain Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jimin%20Yun">Jimin Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yebeen%20Ji"> Yebeen Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwonhoo%20Kim"> Kwonhoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium and Mg-Ag system alloys are known to be promising biomaterials due to their high specific strengths and biocompatibility. Because the limited numbers of slip systems were activated in the HCP structure at room temperature, their formability was low. To solve these problems, much research about the improvement of room-temperature formability has been studied, but the microstructure development behaviors of Mg-Ag alloys were still limited. Therefore, this study was conducted to investigate the texture development behaviors of Mg-Ag alloy during high-temperature plane strain deformation. The Ag content of the Mg-Ag alloy used in this study was 3.0, 5.0, and 9.0 wt%. Hot rolling was performed at a temperature of 673K with a reduction ratio of 25%, and these specimens were annealed for 1H at 773K, followed by water quenching at room temperature. High-temperature plane strain deformation was performed under temperatures of 623K and 723K, with strain rates from 0.1/s to 0.05/s and strain from -0.4 to –1.0. As a result, it showed a microstructure and texture similar to the AZ61 alloy, which had been studied previously. It was confirmed that the basal texture became stronger with increasing strains at high-temperature plane strain deformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg-Ag" title="Mg-Ag">Mg-Ag</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20development%20behavior" title=" microstructure development behavior"> microstructure development behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ61" title=" AZ61"> AZ61</a> </p> <a href="https://publications.waset.org/abstracts/181510/the-microstructure-development-behavior-of-mg-ag-alloy-during-high-temperature-plane-strain-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29365</span> Effect of Climate Change on Road Maintenance in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Russedul%20Islam">Mohammed Russedul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20M.%20Muniruzzaman"> Shah M. Muniruzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamrul-Al-Masud"> M. Kamrul-Al-Masud</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Sadat%20Morshed"> Syed Sadat Morshed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bangladesh is one of the most climate vulnerable countries in the world. According to scientists it is predicted that temperature will raise 1-3% and precipitation 20% by 2050 in Bangladesh. Increased temperature and precipitation will deteriorate pavement structure in an accelerated rate. The study has found that pavement life will reduce significantly due to rise in temperature and precipitation in in a coastal road in Bangladesh. It will cause to increase the maintenance cost of the road. The study has found that reduction in pavement life will be caused due the decrease in stiffness and strength parameters of the pavement material due to high temperature and precipitation. It has found that use of new material costlier than the existing one will be necessary to prevent the reduction of pavement life. Eventually it will increase the re-construction cost of the road. The study has used mechanistic-empirical analysis method with a software GAMES (General analysis on multi-layered elastic systems) to find out the effect of temperature and precipitation rise on the pavement life. The study will help to guide road engineers of Bangladesh to prepare in advance to fight with the climate change effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20cost" title=" maintenance cost"> maintenance cost</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanistic-empirical%20method" title=" mechanistic-empirical method"> mechanistic-empirical method</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20life" title=" pavement life"> pavement life</a> </p> <a href="https://publications.waset.org/abstracts/37676/effect-of-climate-change-on-road-maintenance-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29364</span> Effect of Multilayered MnBi Films on Magnetic and Microstructural Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Sook%20Lee">Hyun-Sook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongjae%20Moon"> Hongjae Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwaebong%20Jung"> Hwaebong Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumin%20Kim"> Sumin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wooyoung%20Lee"> Wooyoung Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-temperature phase (LTP) of MnBi has attracted much attention because it has a larger coercivity than that of Nd-Fe-B at high temperature, which gives high potential as a permanent magnet material that can be used at such high temperature. We present variation in magnetic properties of MnBi films by controlling the numbers of Bi/Mn bilayer. The thin films of LTP-MnBi were fabricated onto glass substrates by UHV sputtering, followed by in-situ annealing process at an optimized condition of 350 °C and 1.5 hours. The composition ratio of Bi/Mn was adjusted by varying the thickness of Bi and Mn layers. The highest value of (BH)max ~ 8.6 MGOe at room temperature was obtained in one Bi/Mn bilayer with 34 nm Bi and 16 nm Mn. To investigate the effect of Bi/Mn multilayers on the magnetic properties, we increased the numbers of Bi/Mn bilayer up to five at which the total film thicknesses of Bi and Mn were fixed with 34 nm and 16 nm. The increase of coercivity was observed up to three layers from 4.8 kOe to 15.3 kOe and then suppression was appeared. A reversed behavior was exhibited in the magnetization. We found that these were closely related to a microstructural change of LTP-MnBi and a reduction of growth rate of LTP-MnBi by analyzing XRD and TEM results. We will discuss how the multilayered MnBi affects the magnetic properties in details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coercivity" title="coercivity">coercivity</a>, <a href="https://publications.waset.org/abstracts/search?q=MnBi" title=" MnBi"> MnBi</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20film" title=" multilayer film"> multilayer film</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet" title=" permanent magnet"> permanent magnet</a> </p> <a href="https://publications.waset.org/abstracts/51229/effect-of-multilayered-mnbi-films-on-magnetic-and-microstructural-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29363</span> Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Sassi">Sonia Sassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostapha%20Tarfaoui"> Mostapha Tarfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Benyahia"> Hamza Benyahia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesively-bonded%20composite%20joints" title="adhesively-bonded composite joints">adhesively-bonded composite joints</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20compression%20tests" title=" dynamic compression tests"> dynamic compression tests</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20balance" title=" energy balance"> energy balance</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title=" heat dissipation"> heat dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=SHPB" title=" SHPB"> SHPB</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20behavior" title=" thermomechanical behavior"> thermomechanical behavior</a> </p> <a href="https://publications.waset.org/abstracts/76693/dynamic-thermomechanical-behavior-of-adhesively-bonded-composite-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29362</span> Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keiji%20Komatsu">Keiji Komatsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayato%20Maruyama"> Hayato Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariyuki%20Kato"> Ariyuki Kato</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Nakamura"> Atsushi Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Ohshio"> Shigeo Ohshio</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Akasaka"> Hiroki Akasaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Saitoh"> Hidetoshi Saitoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20luminescence%20spectroscopy" title="low temperature luminescence spectroscopy">low temperature luminescence spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20identification" title=" material identification"> material identification</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20aluminates%20phosphor" title=" strontium aluminates phosphor"> strontium aluminates phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20properties" title=" emission properties "> emission properties </a> </p> <a href="https://publications.waset.org/abstracts/10329/low-temperature-luminescence-spectroscopy-of-violet-sr-al-oeu2-phosphor-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29361</span> Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Walluch">Matthias Walluch</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Alberto%20Rodr%C3%ADguez"> José Alberto Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Giehl"> Christopher Giehl</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Arnold"> Gunther Arnold</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Ehgartner"> Daniela Ehgartner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applications <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20analysis" title="dynamic mechanical analysis">dynamic mechanical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20rheometry" title=" oscillatory rheometry"> oscillatory rheometry</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%27s%20ratio" title=" Poisson's ratio"> Poisson's ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20glass" title=" solid glass"> solid glass</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/156665/characterizing-solid-glass-in-bending-torsion-and-tension-high-temperature-dynamic-mechanical-analysis-up-to-950-c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29360</span> Experimental Investigations on Setting Behavior and Compreesive Strength of Flyash Based Geopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishan%20Tank">Ishan Tank</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashmita%20Rupal"> Ashmita Rupal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Sharma"> Sanjay Kumar Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete, a widely used building material, has cement as its main constituent. An excessive amount of emissions are released into the atmosphere during the manufacture of cement, which is detrimental to the environment. To minimize this problem, innovative materials like geopolymer mortar (GPM) seem to be a better alternative. By using fly ash-based geopolymer instead of standard cement mortar as a binding ingredient, this concept has been successfully applied to the building sector. The advancement of this technology significantly reduces greenhouse gas emissions and helps in source reduction, thereby minimizing pollution of the environment. In order to produce mortar and use this geopolymer mortar in the development of building materials, the current investigation is properly introducing this geopolymeric material, namely fly ash, as a binder in place of standard cement. In the domain of the building material industry, fly ash based geopolymer is a new and optimistic replacement for traditional binding materials because it is both environmentally sustainable and has good durability. The setting behaviour and strength characteristics of fly ash, when mixed with alkaline activator solution with varied concentration of sodium hydroxide solution, alkaline liquids mix ratio, and curing temperature, must be investigated, though, in order to determine its suitability and application in comparison with the traditional binding material, by activating the raw materials, which include various elements of silica and alumina, finer material known as geopolymer mortar is created. The concentration of the activator solution has an impact on the compressive strength of the geopolymer concrete formed. An experimental examination of compressive strength after 7, 14, and 28 days of fly ash-based geopolymer concrete is presented in this paper. Furthermore, the process of geopolymerization largely relies on the curing temperature. So, the setting time of Geopolymer mortar due to different curing temperatures has been studied and discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20mortar" title="geopolymer mortar">geopolymer mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=setting%20time" title=" setting time"> setting time</a>, <a href="https://publications.waset.org/abstracts/search?q=flyash" title=" flyash"> flyash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=binder%20material" title=" binder material"> binder material</a> </p> <a href="https://publications.waset.org/abstracts/165309/experimental-investigations-on-setting-behavior-and-compreesive-strength-of-flyash-based-geopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29359</span> [Keynote Talk]: Thermal Performance of Common Building Insulation Materials: Operating Temperature and Moisture Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maatouk%20Khoukhi">Maatouk Khoukhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An accurate prediction of the heat transfer through the envelope components of building is required to achieve an accurate cooling/heating load calculation which leads to precise sizing of the hvac equipment. This also depends on the accuracy of the thermal conductivity of the building insulation material. The proper use of thermal insulation in buildings (k-value) contribute significantly to reducing the HVAC size and consequently the annual energy cost. The first part of this paper presents an overview of building thermal insulation and their applications. The second part presents some results related to the change of the polystyrene insulation thermal conductivity with the change of the operating temperature and the moisture. Best-fit linear relationship of the k-value in term of the operating temperatures and different percentage of moisture content by weight has been established. The thermal conductivity of the polystyrene insulation material increases with the increase of both operating temperature and humidity content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20insulation%20material" title="building insulation material">building insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20temperature" title=" operating temperature"> operating temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/54803/keynote-talk-thermal-performance-of-common-building-insulation-materials-operating-temperature-and-moisture-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29358</span> A Novel Marketable Dried Mixture for High-Quality Sweet Wine Production in Domestic Refrigerator Using Tubular Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganatsios%20Vassilios">Ganatsios Vassilios</a>, <a href="https://publications.waset.org/abstracts/search?q=Terpou%20Antonia"> Terpou Antonia</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Kanellaki"> Maria Kanellaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekatorou%20Argyro"> Bekatorou Argyro</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20Koutinas"> Athanasios Koutinas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a new fermentation technology is proposed with potential application in home wine-making. Delignified cellulosic material was used to preserve Tubular Cellulose (TC), an effective fermentation support material in high osmotic pressure, low temperature, and alcohol concentration. The psychrotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 was immobilized on TC to preserve a novel home wine making biocatalyst (HWB) and the entrapment was examined by SEM. Various concentrations of HWB was added in high-density grape must and the mixture was dried immediately. The dried mixture was stored for various time intervals and its fermentation examined after addition of potable water. The percentage of added water was also examined to succeed high alcohol and residual sugar concentration. The effect of low temperature (1-10 oC) on fermentation kinetics was studied revealing the ability of HBW on low-temperature sweet wine making. Sweet wines SPME GC-MS analysis revealed the promotion effect of TC on volatile by-products formation in comparison with free cells. Kinetics results and aromatic profile of final product encouraged the efforts of high-quality sweet wine making in domestic refrigerator and potential marketable opportunities are also assessed and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tubular%20cellulose" title="tubular cellulose">tubular cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20wine" title=" sweet wine"> sweet wine</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae%20AXAZ-1" title=" Saccharomyces cerevisiae AXAZ-1"> Saccharomyces cerevisiae AXAZ-1</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20sugar%20concentration" title=" residual sugar concentration"> residual sugar concentration</a> </p> <a href="https://publications.waset.org/abstracts/16045/a-novel-marketable-dried-mixture-for-high-quality-sweet-wine-production-in-domestic-refrigerator-using-tubular-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29357</span> High-Speed Cutting of Inconel 625 Using Carbide Ball End Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kawasaki">Kazumasa Kawasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuya%20Fukazawa"> Katsuya Fukazawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel-based superalloys are an important class of engineering material within the aerospace and power generation, due to their excellent combination of corrosion resistance and mechanical properties, including high-temperature applications Inconel 625 is one of such superalloys and difficult-to-machine material. In cutting of Inconel 625 superalloy with a ball end mill, the problem of adhesive wear often occurs. However, the proper cutting conditions are not known so much because of lack of study examples. In this study, the experiments using ball end mills made of carbide tools were tried to find the best cutting conditions out following qualifications. Using Inconel 625 superalloy as a work material, three kinds of experiment, with the revolution speed of 5000 rpm, 8000 rpm, and 10000 rpm, were performed under dry cutting conditions in feed speed per tooth of 0.045 mm/ tooth, depth of cut of 0.1 mm. As a result, in the case of 8000 rpm, it was successful to cut longest with the least wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel%20625" title="Inconel 625">Inconel 625</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20end%20mill" title=" ball end mill"> ball end mill</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20tool" title=" carbide tool"> carbide tool</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20cutting" title=" high speed cutting"> high speed cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a> </p> <a href="https://publications.waset.org/abstracts/98349/high-speed-cutting-of-inconel-625-using-carbide-ball-end-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29356</span> Tga Analysis on the Decomposition of Active Material of Aquilaria Malaccencis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurshafika%20Adira%20Bt%20Audi%20Ashraf">Nurshafika Adira Bt Audi Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Habsah%20Alwi"> Habsah Alwi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes the series of analysis conducted after the use of Vacuum far Infra Red. Parameter including the constant drying temperature at 40°C with pressure difference (-400 bar, -500 bar and -600 bar) and constant drying pressure at -400 bar with difference temperature (40°C, 50°C and 60°C). The dried leaves with constant temperature and constant pressure is compared with the fresh leaves via several analysis including TGA, FTIR and Chromameter. Results indicated that the fresh leaves shows three degradation stages while temperature constant shows four stages of degradation and at constant pressure of -400 bar, five stages of degradation is shown. However, at the temperature constant with pressure -500 bar, five degradation stages are identified and at constant pressure with temperature 40°C, three stage of degradation is presence. It is assumed that it is due to the difference size of the sample as the particle size is decrease, the peak temperature shown in TG curves is also decrease which lead to the rapid ignition. Based on the FTIR analysis, fresh leaves gives the high presence of O-H and C=O group where both of the constant parameters give the absence of those due to the drying effects. In color analysis, the constant drying parameters (pressure and temperature) both shows that as the temperature increases, the average total of color change is also increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromameter" title="chromameter">chromameter</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaccum%20far%20infrared%20dying" title=" Vaccum far infrared dying "> Vaccum far infrared dying </a> </p> <a href="https://publications.waset.org/abstracts/34517/tga-analysis-on-the-decomposition-of-active-material-of-aquilaria-malaccencis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29355</span> Comparative Analysis of Hybrid and Non-hybrid Cooled 185 KW High-Speed Permanent Magnet Synchronous Machine for Air Suspension Blower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Abubakar">Usman Abubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyuan%20Wang"> Xiaoyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayyed%20Haleem%20Shah"> Sayyed Haleem Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiq%20Ur%20Rahman"> Sadiq Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabiu%20Saleh%20Zakariyya"> Rabiu Saleh Zakariyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-speed Permanent magnet synchronous machine (HSPMSM) uses in different industrial applications like blowers, compressors as a result of its superb performance. Nevertheless, the over-temperature rise of both winding and PM is one of their substantial problem for a high-power HSPMSM, which affects its lifespan and performance. According to the literature, HSPMSM with a Hybrid cooling configuration has a much lower temperature rise than non-hybrid cooling. This paper presents the design 185kW, 26K rpm with two different cooling configurations, i.e., hybrid cooling configuration (forced air and housing spiral water jacket) and non-hybrid (forced air cooling assisted with winding’s potting material and sleeve’s material) to enhance the heat dissipation of winding and PM respectively. Firstly, the machine’s electromagnetic design is conducted by the finite element method to accurately account for machine losses. Then machine’s cooling configurations are introduced, and their effectiveness is validated by lumped parameter thermal network (LPTN). Investigation shows that using potting, sleeve materials to assist non-hybrid cooling configuration makes the machine’s winding and PM temperature closer to hybrid cooling configuration. Therefore, the machine with non-hybrid cooling is prototyped and tested due to its simplicity, lower energy consumption and can still maintain the lifespan and performance of the HSPMSM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airflow%20network" title="airflow network">airflow network</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20ventilation" title=" axial ventilation"> axial ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20PMSM" title=" high-speed PMSM"> high-speed PMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20network" title=" thermal network"> thermal network</a> </p> <a href="https://publications.waset.org/abstracts/139686/comparative-analysis-of-hybrid-and-non-hybrid-cooled-185-kw-high-speed-permanent-magnet-synchronous-machine-for-air-suspension-blower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=3" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=982">982</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=983">983</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20temperature%20material%20behaviour&page=5" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>