CINXE.COM
Search results for: strontium aluminates phosphor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: strontium aluminates phosphor</title> <meta name="description" content="Search results for: strontium aluminates phosphor"> <meta name="keywords" content="strontium aluminates phosphor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="strontium aluminates phosphor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="strontium aluminates phosphor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 88</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: strontium aluminates phosphor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keiji%20Komatsu">Keiji Komatsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayato%20Maruyama"> Hayato Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariyuki%20Kato"> Ariyuki Kato</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Nakamura"> Atsushi Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Ohshio"> Shigeo Ohshio</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Akasaka"> Hiroki Akasaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Saitoh"> Hidetoshi Saitoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20luminescence%20spectroscopy" title="low temperature luminescence spectroscopy">low temperature luminescence spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20identification" title=" material identification"> material identification</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20aluminates%20phosphor" title=" strontium aluminates phosphor"> strontium aluminates phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20properties" title=" emission properties "> emission properties </a> </p> <a href="https://publications.waset.org/abstracts/10329/low-temperature-luminescence-spectroscopy-of-violet-sr-al-oeu2-phosphor-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Study of Strontium Sorption onto Indian Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Pathak">Pankaj Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Sharma"> Susmita Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Incessant industrial growth fulfill the energy demand of present day society, at the same time it produces huge amount of waste which could be hazardous or non-hazardous in nature. These wastes are coming out from different sources viz, nuclear power, thermal power, coal mines which contain different types of contaminants and one of the emergent contaminant is strontium, used in the present study. The isotope of strontium (Sr90) is radioactive in nature with half-life of 28.8 years and permissible limit of strontium in drinking water is 1.5 ppm. Above the permissible limit causes several types of diseases in human being. Therefore, safe disposal of strontium into ground becomes a biggest challenge for the researchers. In this context, bentonite is being used as an efficient material to retain strontium onto ground due to its specific physical, chemical and mineralogical properties which exhibits higher cation exchange capacity and specific surface area. These properties influence the interaction between strontium and bentonite, which is quantified by employing a parameter known as distribution coefficient. Batch test was conducted, and sorption isotherms were modelled at different interaction time. The pseudo first-order and pseudo second order kinetic models have been used to fit experimental data, which helps to determine the sorption rate and mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20time" title=" interaction time"> interaction time</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium" title=" strontium"> strontium</a> </p> <a href="https://publications.waset.org/abstracts/65073/study-of-strontium-sorption-onto-indian-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Enhancement of Light Extraction of Luminescent Coating by Nanostructuring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aubry%20Martin">Aubry Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nehed%20Amara"> Nehed Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeff%20Nyalosaso"> Jeff Nyalosaso</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrey%20Potdevin"> Audrey Potdevin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7Ois%20ReVeret"> FrançOis ReVeret</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Langlet"> Michel Langlet</a>, <a href="https://publications.waset.org/abstracts/search?q=Genevieve%20Chadeyron"> Genevieve Chadeyron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy-saving lighting devices based on LightEmitting Diodes (LEDs) combine a semiconductor chip emitting in the ultraviolet or blue wavelength region to one or more phosphor(s) deposited in the form of coatings. The most common ones combine a blue LED with the yellow phosphor Y₃Al₅O₁₂:Ce³⁺ (YAG:Ce) and a red phosphor. Even if these devices are characterized by satisfying photometric parameters (Color Rendering Index, Color Temperature) and good luminous efficiencies, further improvements can be carried out to enhance light extraction efficiency (increase in phosphor forward emission). One of the possible strategies is to pattern the phosphor coatings. Here, we have worked on different ways to nanostructure the coating surface. On the one hand, we used the colloidal lithography combined with the Langmuir-Blodgett technique to directly pattern the surface of YAG:Tb³⁺ sol-gel derived coatings, YAG:Tb³⁺ being used as phosphor model. On the other hand, we achieved composite architectures combining YAG:Ce coatings and ZnO nanowires. Structural, morphological and optical properties of both systems have been studied and compared to flat YAG coatings. In both cases, nanostructuring brought a significative enhancement of photoluminescence properties under UV or blue radiations. In particular, angle-resolved photoluminescence measurements have shown that nanostructuring modifies photons path within the coatings, with a better extraction of the guided modes. These two strategies have the advantage of being versatile and applicable to any phosphor synthesizable by sol-gel technique. They then appear as promising ways to enhancement luminescence efficiencies of both phosphor coatings and the optical devices into which they are incorporated, such as LED-based lighting or safety devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphor%20coatings" title="phosphor coatings">phosphor coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructuring" title=" nanostructuring"> nanostructuring</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20extraction" title=" light extraction"> light extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanowires" title=" ZnO nanowires"> ZnO nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20lithography" title=" colloidal lithography"> colloidal lithography</a>, <a href="https://publications.waset.org/abstracts/search?q=LED%20devices" title=" LED devices"> LED devices</a> </p> <a href="https://publications.waset.org/abstracts/139533/enhancement-of-light-extraction-of-luminescent-coating-by-nanostructuring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Awan"> F. M. Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Hanafy"> H. A. Hanafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20magnetic%20materials" title="hard magnetic materials">hard magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20route" title=" ceramic route"> ceramic route</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20ferrite" title=" strontium ferrite"> strontium ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/21878/the-influence-of-reaction-parameters-on-magnetic-properties-of-synthesized-strontium-ferrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyansha%20Sharma">Priyansha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibani%20Mund"> Sibani Mund</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivakumar%20Vaidyanathan"> Sivakumar Vaidyanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PL" title="PL">PL</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphor" title=" phosphor"> phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20yield" title=" quantum yield"> quantum yield</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20LED" title=" white LED"> white LED</a> </p> <a href="https://publications.waset.org/abstracts/177908/solid-state-synthesis-approach-and-optical-study-of-red-emitting-phosphors-li3basrxca1eu27gd03moo48-for-white-leds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Photocatalytic Degradation of Organic Pollutants Using Strontium Titanate Synthesized by Electrospinning Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hui-Hsin%20Huang">Hui-Hsin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Chia%20Hu"> Che-Chia Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To date, photocatalytic wastewater treatment using solar energy has attracted considerable attention. In this study, strontium titanates with various morphologies, i.e., nanofibers and cubic-like particles, were prepared as photocatalysts using the electrospinning (ES), solid-state (SS), and sol-gel (SG) methods. X-ray diffraction (XRD) analysis showed that ES and SS can be assigned to pure phase SrTiO3, while SG was referred to Sr2TiO4. These samples displayed optical absorption edges at 385-395 nm, indicating they can be activated in UV light irradiation. Scanning electron microscope (SEM) analyses revealed that ES SrTiO3 has a uniform fibrous structure with length and diameter of several microns and 100-200 nm, respectively. After loading of nanoparticulate Ag as a co-catalyst onto the surface of strontium titanates, ES sample exhibited highest photocatalytic activity to degrade methylene orange dye solution in comparison to that of SS and SG ones. These results indicate that Ag-loaded ES SrTiO3, which has a desirable SrTiO3 phase and a facile electron transfer along the preferential direction in fibrous structure, can be a promising photocatalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title="photocatalytic degradation">photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20titanate" title=" strontium titanate"> strontium titanate</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=co-catalyst" title=" co-catalyst"> co-catalyst</a> </p> <a href="https://publications.waset.org/abstracts/63223/photocatalytic-degradation-of-organic-pollutants-using-strontium-titanate-synthesized-by-electrospinning-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Lanthanum Strontium Titanate Based Anode Materials for Intermediate Temperature Solid Oxide Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Saurabh%20Singh">A. Saurabh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Raghvendra"> B. Raghvendra</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Prabhakar%20Singh"> C. Prabhakar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid Oxide Fuel Cells (SOFCs) are one of the most attractive electrochemical energy conversion systems, as these devices present a clean energy production, thus promising high efficiencies and low environmental impact. The electrodes are the main components that decisively control the performance of a SOFC. Conventional, anode materials (like Ni-YSZ) are operates at very high temperature. Therefore, cost-effective materials which operate at relatively lower temperatures are still required. In present study, we have synthesized La doped Strontium Titanate via solid state reaction route. The structural, microstructural and density of the pellet have been investigated employing XRD, SEM and Archimedes Principle, respectively. The electrical conductivity of the systems has been determined by impedance spectroscopy techniques. The electrical conductivity of the Lanthanum Strontium Titanate (LST) has been found to be higher than the composite Ni-YSZ system at 700 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IT-SOFC" title="IT-SOFC">IT-SOFC</a>, <a href="https://publications.waset.org/abstracts/search?q=LST" title=" LST"> LST</a>, <a href="https://publications.waset.org/abstracts/search?q=Lanthanum%20Strontium%20Titanate" title=" Lanthanum Strontium Titanate"> Lanthanum Strontium Titanate</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/21206/lanthanum-strontium-titanate-based-anode-materials-for-intermediate-temperature-solid-oxide-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Liquid-Liquid Transitions in Strontium Tellurite Melts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajinder%20Kaur">Rajinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Khanna"> Atul Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transparent glass-ceramic and crystalline samples of the system: xSrO-(100-x)TeO2; x = 7.5 and 8.5 mol% were prepared by quenching the melts in the temperature range of 700 to 950oC. A very interesting effect of the temperature on the glass-forming ability (GFA) of strontium tellurite melts is observed,and it is found that the melts produce transparent glass-ceramics when it is solidified from lower temperatures in the range of 700-750oC, however, when the melts are cooled from higher temperatures in the range of 850-950oC, the GFA is significantly reduced andanti-glass and/or crystalline phases are produced on solidification.The effect of temperature on GFA of strontium tellurite melts is attributed to short-range structural transformations: TeO₄TeO₃ which procceds towards the right side with an increrase in temperature. This isomerization reaction lowers the melt viscosity and enhances the crystallization tedendency. It is concluded that the high-temperature strontium tellurite meltsfreeze faster into crystalline phases as compared to the melts at a lower temperature; the latter supercooland solidify into glassy phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-glasss" title="anti-glasss">anti-glasss</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic" title=" ceramic"> ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=supercool%20liquid" title=" supercool liquid"> supercool liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/152495/liquid-liquid-transitions-in-strontium-tellurite-melts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Synthesis of Hard Magnetic Material from Secondary Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Awan"> F. M. Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Hanafy"> H. A. Hanafy</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20N.%20Alzeghaibi"> O. N. Alzeghaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strontium hexaferrite (SrFe12O19; Sr-ferrite) is one of the well-known materials for permanent magnets. In this study, M-type strontium ferrite was prepared by following the conventional ceramic method from steelmaking by-product. Initial materials; SrCO3 and by-product, were mixed together in the composition of SrFe12O19 in different Sr/Fe ratios. The mixtures of these raw materials were dry-milled for 6h. The blended powder was pre-sintered (i.e. calcination) at 1000°C for different times periods, then cooled down to room temperature. These pre-sintered samples were re-milled in a dry atmosphere for 1h and then fired at different temperatures in atmospheric conditions, and cooled down to room temperature. The produced magnetic powder has a dense hexagonal grain shape structure. The calculated energy product values for the produced samples ranged from 0.3 to 2.4 MGOe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20magnetic%20materials" title="hard magnetic materials">hard magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20route" title=" ceramic route"> ceramic route</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20ferrite" title=" strontium ferrite"> strontium ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/7644/synthesis-of-hard-magnetic-material-from-secondary-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Nickel Catalyst Promoted with Lanthanum- Alumina for Dry Reforming of Methane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Imane%20Fertout">Radia Imane Fertout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the reaction of dry reforming of methane (DRM) has attracted much attention due to its environmental and industrial importance. Various catalysts, including Ni-based catalysts, have been investigated for the DRM. Doping Ni/Al₂O₃ by lanthanum and alkaline earth element may strongly influence solid-state reaction and increases the stability of catalysts due to the lower density and high basicity of these oxides. The effect of SrO on the activity and stability of Ni/Al₂O₃-La₂O₃ in dry reforming of methane was investigated. These catalysts have been prepared with the impregnation method, calcined in air at 450 and 650°C, then characterized by BET surface area, X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques and tested in DRM. The results showed that the addition of strontium to Ni/Al2O₃-La₂O₃ decreased the specific surface area. XRD results revealed the presence of different phases of Al₂O₃, La(OH)₃, La₂O₂CO₃, and SrCO₃. The catalytic evaluation results showed that adding SrO increased the catalytic activity and stability, that explained by the strong basicity of strontium. SEM analysis after the reaction indicates the formation of carbon over the spent catalyst and that the addition of strontium stabilized the surface of the catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20reforming%20of%20methane" title="dry reforming of methane">dry reforming of methane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%2FAl%E2%82%82O%E2%82%83-La%E2%82%82O%E2%82%83%20catalyst" title=" Ni/Al₂O₃-La₂O₃ catalyst"> Ni/Al₂O₃-La₂O₃ catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium" title=" strontium"> strontium</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/162255/nickel-catalyst-promoted-with-lanthanum-alumina-for-dry-reforming-of-methane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Synthesis, Microstructure and Photoluminescence Properties of Yttrium Orthovanadates: Influences of Silica Nano-Particles and Nano-Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mahdi%20Rafiaei">Seyed Mahdi Rafiaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, firstly Eu3+ doped YVO4 phosphor was synthesized using solid-state method. Then silica was coated on the surface of particles via sol-gel method. To study the influence of SiO2 addition on microstructure and photoluminescence characteristics of YVO4:4% Eu3+ phosphor materials, we employed X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmitted Electron Microscope (HRTEM), Focused Ion Beam (FIB), Brunauer Emmett Teller (BET), Inductively coupled plasma (ICP), Electron Spin Resonance (ESR) and Photoluminescence (PL) equipments. The XPS characterization confirmed the formation of Y–O–Si and V-O-Si bondings between YVO4:Eu3+ phosphor particle and SiO2 coating. In addition, it was found that although the amounts of added SiO2 were not remarkable, but it resulted in enhancement of emission intensity of the phosphors. Finally by employing ESR analysis, it was shown that surface oxygen vacancies, result in reduction of V5+ to the lower valence state of V4+. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20state" title="solid state">solid state</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/54006/synthesis-microstructure-and-photoluminescence-properties-of-yttrium-orthovanadates-influences-of-silica-nano-particles-and-nano-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Seth">Pooja Seth</a>, <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Aggarwal"> Shruti Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title="thermoluminescence">thermoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=nanophosphor" title=" nanophosphor"> nanophosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=optically%20stimulated%20luminescence" title=" optically stimulated luminescence"> optically stimulated luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=co-precipitation%20method" title=" co-precipitation method"> co-precipitation method</a> </p> <a href="https://publications.waset.org/abstracts/47511/synthesis-and-thermoluminescence-investigations-of-doped-lif-nanophosphor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Performance of the SrSnO₃/SnO₂ Nanocomposite Catalyst on the Photocatalytic Degradation of Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Boucheloukh">H. Boucheloukh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Aoun"> N. Aoun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Denni"> M. Denni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mahrouk"> A. Mahrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sehili"> T. Sehili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perovskite materials with strontium alkaline earth metal have attracted researchers in photocatalysis. Thus, nanocomposite-based strontium has been synthesized by the sol-gel method, calciened at 700 °C, and characterized by different methods such as X-ray difraction (DRX), Fourier transformed infrared (FTIR), and diffuse relectance spectroscopy (DRS). After that, the photocatlytic performance of SrNO3/SnO2 has been tested under sunlight in an aqueous solution for two dyes methylene blue and congo-red. The results reveal that 70% of methylene blue has already been degraded after 45 minutes of exposure to sun light, while 80% of Congo red has been eliminated by adsorption on SrSnO₃/SnO₂ in 120 minutes of contact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congo-red" title="congo-red">congo-red</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a> </p> <a href="https://publications.waset.org/abstracts/184875/performance-of-the-srsno3sno2-nanocomposite-catalyst-on-the-photocatalytic-degradation-of-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Synthesis of KCaVO4:Sm³⁺/PMMA Luminescent Nanocomposites and Their Optical Property Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumara%20Khursheed">Sumara Khursheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Sharma"> Jitendra Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work reports synthesis of nanocomposites (NCs) of phosphor (KCaVO4:Sm3+) embedded poly(methylmethacrylate) (PMMA) using solution casting method and their optical properties measurements for their possible application in making flexible luminescent films. X-ray diffraction analyses were employed to obtain the structural parameters as crystallinity, shape and size of the obtained NCs. The emission and excitation spectra were obtained using Photoluminescence spectroscopy to quantify the spectral properties of these fluorescent polymer/phosphor films. Optical energy gap has been estimated using UV-VIS spectroscopy while differential scanning calorimetry (DSC) was exploited to measure the thermal properties of the NC films in terms of their thermal stability, glass transition temperature and degree of crystallinity etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimetry" title=" differential scanning calorimetry"> differential scanning calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a> </p> <a href="https://publications.waset.org/abstracts/85404/synthesis-of-kcavo4sm3pmma-luminescent-nanocomposites-and-their-optical-property-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghobeiti-Hasab">M. Ghobeiti-Hasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Shariati"> Z. Shariati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20magnet" title="hard magnet">hard magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sr-ferrite" title=" Sr-ferrite"> Sr-ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20auto-combustion" title=" sol-gel auto-combustion"> sol-gel auto-combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-powder" title=" nano-powder"> nano-powder</a> </p> <a href="https://publications.waset.org/abstracts/13710/magnetic-properties-of-sr-ferrite-nano-powder-synthesized-by-sol-gel-auto-combustion-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Synthesis and Characterization of Magnesium and Strontium Doped Sulphate-Hydroxyapatite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Z.%20Alshemary">Ammar Z. Alshemary</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Fan%20Goh"> Yi-Fan Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafaqat%20Hussain"> Rafaqat Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium (Mg2+), strontium (Sr2+) and sulphate ions (SO42-) were successfully substituted into hydroxyapatite (Ca10-x-y MgxSry(PO4)6-z(SO4)zOH2-z) structure through ion exchange process at cationic and anionic sites. Mg2+and Sr2+ ions concentrations were varied between (0.00-0.10), keeping concentration of SO42- ions at z=0.05. [Mg (NO3)2], [Sr (NO3)2] and (Na2SO4) were used as Mg2+, Sr2+, and SO42- sources respectively. The synthesized white precipitate were subjected to heat treatment at 500ºC and finally characterized by X-ray diffraction (XRD) and Fourier Transform infra-red spectroscopy (FTIR). The results showed that the substitution of Mg2+, Sr2+ and SO42- ions into the HA lattice resulted in an increase in the broadness and reduction of XRD peaks. This confirmed that the crystallinity was reduced due to the substitution of ions. Similarly, FTIR result showed the effect of substitution on phosphate bands as well as exchange of hydroxyl group by SO42- ions to balance the charges on HA surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title="hydroxyapatite">hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=substitution" title=" substitution"> substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/14180/synthesis-and-characterization-of-magnesium-and-strontium-doped-sulphate-hydroxyapatite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Extraction of Strontium Ions through Ligand Assisted Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Kumar">Pradeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Kumar%20Chandra"> Abhishek Kumar Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Khanna"> Ashok Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extraction of Strontium by crown ether (DCH18C6) hasbeen investigated in [BMIM][TF2N] Ionic Liquid (IL) giving higher extraction ~98% and distribution ratio as compared to other organic solvents (Dodecane, Hexane, & Isodecyl alcohol + Dodecane). Distribution ratio of Sr in IL at 0.15M DCH18C6 indicates an enhancement of 20000, 2000, 500 times over Dodecane, Hexane and 5% Isodecyl Alcohol + 95 % Dodecane at 0.01M aqueous acidity respectively. In presence of IL, Sr extraction decreases with increase in HNO3 concentration in aqueous phase whereas opposite trend was observed with organic solvents.Extraction of Sr initially increases with increase in DCH18C6 concentration in IL, finally reaching an asymptotic constant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20ratio" title="distribution ratio">distribution ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=ligand" title=" ligand"> ligand</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvent" title=" organic solvent"> organic solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=stripping" title=" stripping"> stripping</a> </p> <a href="https://publications.waset.org/abstracts/76098/extraction-of-strontium-ions-through-ligand-assisted-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Phase Equilibria in the Ln-Sr-Co-O Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasiia%20Maklakova">Anastasiia Maklakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The perovskite type oxides formed in the Ln-Me-Me/-O systems (where Ln – rare-earth, Me – alkaline earth metal, Me/ - 3-d metal) have potential applications as gas sensors, catalysts or cathode materials for IT-SOFCs due to the high values of mixed electronic -ionic conductivity and high oxygen diffusivity. Complex oxides in the Sr-(Pr,Gd)-Co-O systems were prepared via the glycerol-nitrate technique The phase composition was determined using a Shimadzu XRD-7000 diffractometer at room temperature in air. Phase identification was performed using the ICDD database. The structure was refined by the full-profile Rietveld method using Fullprof 2008 software. Gradual substitution of strontium by Pr or Gd leads to the decrease of unit cell parameters and unit cell volume that can be explained by the size factor. An introduction of Pr or Gd into the strontium cobaltite increases the oxygen content in samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20equilibria" title="phase equilibria">phase equilibria</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title=" crystal structure"> crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20nonstoichiometry" title=" oxygen nonstoichiometry"> oxygen nonstoichiometry</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell" title=" solid oxide fuel cell"> solid oxide fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/122949/phase-equilibria-in-the-ln-sr-co-o-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Spectroscopic Study of Tb³⁺ Doped Calcium Aluminozincate Phosphor for Display and Solid-State Lighting Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumandeep%20Kaur">Sumandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Allam%20Srinivasa%20Rao"> Allam Srinivasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mula%20Jayasimhadri"> Mula Jayasimhadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, rare earth (RE) ions doped inorganic luminescent materials are seeking great attention due to their excellent physical and chemical properties. These materials offer high thermal and chemical stability and exhibit good luminescence properties due to the presence of RE ions. The luminescent properties of these materials are attributed to their intra-configurational f-f transitions in RE ions. A series of Tb³⁺ doped calcium aluminozincate has been synthesized via sol-gel method. The structural and morphological studies have been carried out by recording X-ray diffraction patterns and SEM image. The luminescent spectra have been recorded for a comprehensive study of their luminescence properties. The XRD profile reveals the single-phase orthorhombic crystal structure with an average crystallite size of 65 nm as calculated by using DebyeScherrer equation. The SEM image exhibits completely random, irregular morphology of micron size particles of the prepared samples. The optimization of luminescence has been carried out by varying the dopant Tb³⁺ concentration within the range from 0.5 to 2.0 mol%. The as-synthesized phosphors exhibit intense emission at 544 nm pumped at 478 nm excitation wavelength. The optimized Tb³⁺ concentration has been found to be 1.0 mol% in the present host lattice. The decay curves show bi-exponential fitting for the as-synthesized phosphor. The colorimetric studies show green emission with CIE coordinates (0.334, 0.647) lying in green region for the optimized Tb³⁺ concentration. This report reveals the potential utility of Tb³⁺ doped calcium aluminozincate phosphors for display and solid-state lighting devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentration%20quenching" title="concentration quenching">concentration quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphor" title=" phosphor"> phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/88461/spectroscopic-study-of-tb3-doped-calcium-aluminozincate-phosphor-for-display-and-solid-state-lighting-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Effect of Strontium on Surface Roughness and Chip Morphology When Turning Al-Si Cast Alloy Using Carbide Tool Insert</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Marani%20Barzani">Mohsen Marani Barzani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20D.%20Sarhan"> Ahmed A. D. Sarhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Farahany"> Saeed Farahany</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Singh"> Ramesh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface roughness and chip morphology are important output in manufacturing product. In this paper, an experimental investigation was conducted to determine the effects of various cutting speeds and feed rates on surface roughness and chip morphology in turning the Al-Si cast alloy and Sr-containing. Experimental trials carried out using coated carbide inserts. Experiments accomplished under oblique dry cutting when various cutting speeds 70, 130 and 250 m/min and feed rates of 0.05, 0.1 and 0.15 mm/rev were used, whereas depth of cut kept constant at 0.05 mm. The results showed that Sr-containing Al-Si alloy have poor surface roughness in comparison to Al-Si alloy (base alloy). The surface roughness values reduce with cutting speed increment from 70 to 250 m/min. the size of chip changed with changing silicon shape in Al matrix. Also, the surface finish deteriorated with increase in feed rate from 0.5 mm/rev to 0.15 mm/rev. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strontium" title="strontium">strontium</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=chip" title=" chip"> chip</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=turning" title=" turning"> turning</a> </p> <a href="https://publications.waset.org/abstracts/36933/effect-of-strontium-on-surface-roughness-and-chip-morphology-when-turning-al-si-cast-alloy-using-carbide-tool-insert" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghobeiti-Hasab">M. Ghobeiti-Hasab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM, and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and sol-gel auto-combustion methods were 1300 °C and 1000 °C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Sr-ferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sr-ferrite" title="Sr-ferrite">Sr-ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a> </p> <a href="https://publications.waset.org/abstracts/19970/production-of-sr-ferrite-sub-micron-powder-by-conventional-and-sol-gel-auto-combustion-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Heavy Metals of Natural Phosphate Ore and the Way They Affect the Various Mineralurgic Modes of Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bezzi%20Nacer">Bezzi Nacer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study focused on the qualitative and quantitative study of Trace elements contained in the natural phosphate ore of Djebel Onk layer and their behaviour to the various mineralurgic modes of treatment. The main objective is to locate the importance of these contents according to granulometry and their association with the existing mineralogical species and to define how the most appropriate treatment. The raw ore is in first submitted to a prior mechanical treatment consisting of homogenization operations, of grinding and of sifting, in order to separate it into three particle-size classes: fine <100 µm (F); medium 100-500 µm (I) and coarse > 500 µm (G), and then treated by calcination, washing and floatation. The identification of the different mineralogical phases, the chemical composition and the thermal behaviour of these samples were realized by various techniques: MEB, DRX, ATG-ATD, etc. The study of Trace elements, carried out by ICP-MS, identified thirty items, consisting mainly of rare earths and of transition metals. A close relation between trace elements and various minerals phases (apatite, dolomite and silicates), through operations of substitution. These elements are distributed between several mineralogical phases, in particular apatite (strontium, uranium, chrome, barium, cadmium) and silicates (strontium, sodium, nickel, zinc and copper). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=valorization%20of%20natural%20phosphate%20ore" title="valorization of natural phosphate ore">valorization of natural phosphate ore</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20and%20quantitative%20analysis" title=" qualitative and quantitative analysis"> qualitative and quantitative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=various%20mineralurgic" title=" various mineralurgic"> various mineralurgic</a> </p> <a href="https://publications.waset.org/abstracts/60272/heavy-metals-of-natural-phosphate-ore-and-the-way-they-affect-the-various-mineralurgic-modes-of-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Production and Characterization of Ce3+: Si2N2O Phosphors for White Light-Emitting Diodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alparslan%20A.%20Balta">Alparslan A. Balta</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilmi%20Yurdakul"> Hilmi Yurdakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Orkun%20Tunckan"> Orkun Tunckan</a>, <a href="https://publications.waset.org/abstracts/search?q=Servet%20Turan"> Servet Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arife%20Yurdakul"> Arife Yurdakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Si2N2O (Sinoite) is an inorganic-based oxynitride material that reveals promising phosphor candidates for white light-emitting diodes (WLEDs). However, there is now limited knowledge to explain the synthesis of Si2N2O for this purpose. Here, to the best of authors’ knowledge, we report the first time the production of Si2N2O based phosphors by CeO2, SiO2, Si3N4 from main starting powders, and Li2O sintering additive through spark plasma sintering (SPS) route. The processing parameters, e.g., pressure, temperature, and sintering time, were optimized to reach the monophase Si2N2O containing samples. The lattice parameter, crystallite size, and amount of formation phases were characterized in detail by X-ray diffraction (XRD). Grain morphology, particle size, and distribution were analyzed by scanning and transmission electron microscopes (SEM and TEM). Cathodoluminescence (CL) in SEM and photoluminescence (PL) analyses were conducted on the samples to determine the excitation, and emission characteristics of Ce3+ activated Si2N2O. Results showed that the Si2N2O phase in a maximum 90% ratio was obtained by sintering for 15 minutes at 1650oC under 30 MPa pressure. Based on the SEM-CL and PL measurements, Ce3+: Si2N2O phosphor shows a broad emission summit between 400-700 nm that corresponds to white light. The present research was supported by TUBITAK under project number 217M667. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium" title="cerium">cerium</a>, <a href="https://publications.waset.org/abstracts/search?q=oxynitride" title=" oxynitride"> oxynitride</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphors" title=" phosphors"> phosphors</a>, <a href="https://publications.waset.org/abstracts/search?q=sinoite" title=" sinoite"> sinoite</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%E2%82%82N%E2%82%82O" title=" Si₂N₂O"> Si₂N₂O</a> </p> <a href="https://publications.waset.org/abstracts/121688/production-and-characterization-of-ce3-si2n2o-phosphors-for-white-light-emitting-diodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Investigations on Geopolymer Concrete Slabs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akhila%20Jose">Akhila Jose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement industry is one of the major contributors to the global warming due to the release of greenhouse gases. The primary binder in conventional concrete is Ordinary Portland cement (OPC) and billions of tons are produced annually all over the world. An alternative binding material to OPC is needed to reduce the environmental impact caused during the cement manufacturing process. Geopolymer concrete is an ideal material to substitute cement-based binder. Geopolymer is an inorganic alumino-silicate polymer. Geopolymer Concrete (GPC) is formed by the polymerization of aluminates and silicates formed by the reaction of solid aluminosilicates with alkali hydroxides or alkali silicates. Various Industrial bye- products like Fly Ash (FA), Rice Husk Ash (RHA), Ground granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), Red mud (RM) etc. are rich in aluminates and silicates. Using by-products from other industries reduces the carbon dioxide emission and thus giving a sustainable way of reducing greenhouse gas emissions and also a way to dispose the huge wastes generated from the major industries like thermal plants, steel plants, etc. The earlier research about geopolymer were focused on heat cured fly ash based precast members and this limited its applications. The heat curing mechanism itself is highly cumbersome and costly even though they possess high compressive strength, low drying shrinkage and creep, and good resistance to sulphate and acid environments. GPC having comparable strength and durability characteristics of OPC were able to develop under ambient cured conditions is the solution making it a sustainable alternative in future. In this paper an attempt has been made to review and compare the feasibility of ambient cured GPC over heat cured geopolymer concrete with respect to strength and serviceability characteristics. The variation on the behavior of structural members is also reviewed to identify the research gaps for future development of ambient cured geopolymer concrete. The comparison and analysis of studies showed that GPC most importantly ambient cured type has a comparable behavior with respect to OPC based concrete in terms strength and durability criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20concrete" title="geopolymer concrete">geopolymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=oven%20heated" title=" oven heated"> oven heated</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20properties" title=" durability properties"> durability properties</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/135490/investigations-on-geopolymer-concrete-slabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> The Effect of Substitution of CaO/MgO and CaO/SrO on in vitro Bioactivity of Sol-Gel Derived Bioactive Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Hajifathali">Zeinab Hajifathali</a>, <a href="https://publications.waset.org/abstracts/search?q=Moghan%20Amirhosseinian"> Moghan Amirhosseinian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study had two main aims: firstly, to determine how the individual substitution of CaO/MgO and CaO/SrO can affect the <em>in vitro</em> bioactivity of sol-gel derived substituted 58S bioactive glass (BG) and secondly to introduce a composition in the 60SiO<sub>2</sub>–(36-x)CaO–4P<sub>2</sub>O<sub>5</sub>–(x)MgO and 60SiO<sub>2</sub>–(36-x)CaO–4P<sub>2</sub>O<sub>5</sub>–(x)SrO quaternary systems (where x= 0, 5, 10 mol.%) with enhanced biocompatibility, alkaline phosphatase (ALP) activity, and more efficient antibacterial activity against MRSA bacteria. Results showed that both magnesium-substituted bioactive glasses (M-BGs) and strontium- substituted bioactive glasses (S-BGs) retarded the Hydroxyapatite (HA) formation. Meanwhile, magnesium had more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and ALP assays revealed that the presence of moderate amount (5 mol%) of Mg and Sr had a stimulating effect on increasing of both proliferation and differentiation of MC3T3-E1 cells. Live dead and Dapi/actin staining revealed both substitution of CaO/MgO and CaO/SrO resulted in more biocompatibility and stimulation potential of the MC3T3 cells compared with control. Taken together, among all of the synthesized magnesium substituted (MBGs) and strontium substituted (SBGs), the sample 58- BG with 5 mol% CaO/MgO substitution (BG-5M) was considered as a multifunctional biomaterial in bone tissue regeneration field with enhanced biocompatibility, ALP activity as well as the highest antibacterial efficiency against methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apatite" title="apatite">apatite</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20earth" title=" alkaline earth"> alkaline earth</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=Sol-gel" title=" Sol-gel"> Sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/107769/the-effect-of-substitution-of-caomgo-and-caosro-on-in-vitro-bioactivity-of-sol-gel-derived-bioactive-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> The Effect of Yb3+ Concentration on Spectroscopic properties of Strontium Cerate Doped with Tm3+ and Yb3+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeon%20Woo%20Seo">Yeon Woo Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Haeyoung%20Choi"> Haeyoung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hyun%20%20Jeong"> Jung Hyun Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the UC phosphors have attracted much attention owing to their wide applicability in areas such as biological fluorescence labeling, three-dimensional color displays, temperature sensor, solar cells, white light emitting diodes (WLEDs), fiber optic communication, anti-counterfeiting and other areas. The UC efficiency is mainly dependent on the host lattice and the interaction between the host lattice and doped ions. Up to date, various host matrices, such as oxides, fluorides, vanadates and phosphates, have been investigated as efficient UC luminescent hosts. Recently, oxide materials with low phonon energy have been investigated as the host matrices of UC materials due to their high chemical durability and physical stability. A series of Sr2CeO4: Tm3+/Yb3+ phosphors with different concentrations of Yb3+ ions have been successfully prepared using the high-energy ball milling method. In this study, we reported the UC luminescent properties of Tm3+/Yb3+ ions co-doped Sr2CeO4 phosphors under an excitation wavelength of 975 nm. Furthermore, the structural and morphological characteristics, as well as the UC luminescence mechanism were investigated in detail. The X-ray diffraction patterns confirmed their orthorhombic structure. Under 975 nm excitation, the emission peaks were observed at 478 nm (blue) and 652 nm (red), corresponding to the 1G4 → 3H6 and 1G4 → 3F4 transitions of Tm3+, respectively. The optimized doping concentration of Yb3+ ion was 10 mol%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Strontium%20Cerate" title="Strontium Cerate">Strontium Cerate</a>, <a href="https://publications.waset.org/abstracts/search?q=up-conversion" title=" up-conversion"> up-conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Tm3%2B" title=" Tm3+"> Tm3+</a>, <a href="https://publications.waset.org/abstracts/search?q=Yb3%2B" title=" Yb3+"> Yb3+</a> </p> <a href="https://publications.waset.org/abstracts/75852/the-effect-of-yb3-concentration-on-spectroscopic-properties-of-strontium-cerate-doped-with-tm3-and-yb3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Comparison of Methods for the Synthesis of Eu+++, Tb+++, and Tm+++ Doped Y2O3 Nanophosphors by Sol-Gel and Hydrothermal Methods for Bioconjugation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20P.%20Singh">Ravindra P. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Drupad%20Ram"> Drupad Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20K.%20Gupta"> Dinesh K. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth ions doped metal oxides are a class of luminescent materials which have been proved to be excellent for applications in field emission displays and cathode ray tubes, plasma display panels. Under UV irradiation Eu+++ doped Y2O3 is a red phosphor and Tb+++ doped Y 2O3 is a green phosphor. It is possible that, due to their high quantum efficiency, they might serve as improved luminescent markers for identification of biomolecules, as already reported for CdSe and CdSe/ZnS nanocrystals. However, for any biological applications these particle powders must be suspended in water while retaining their phosphorescence. We hereby report synthesis and characterization of Eu+++ and Tb+++ doped yttrium oxide nanoparticles by sol-gel and hydrothermal processes. Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo isopropoxide [Y5O(OPri)13] (crystallized twice) and it’s acetyl acetone modified product [Y(O)(acac)] as precursors. Generally the sol-gel derived metal oxides are required to be annealed to the temperature ranging from 400°C-800°C in order to develop crystalline phases. However, this annealing also results in the development of aggregates which are undesirable for bio-conjugation experiments. In the hydrothermal process, we have achieved crystallinity of the nanoparticles at 300°C and the development of crystalline phases has been found to be proportional to the time of heating of the reactor. The average particle sizes as calculated from XRD were found to be 28 nm, 32 nm, and 34 nm by hydrothermal process. The particles were successfully suspended in chloroform in the presence of trioctyl phosphene oxide and TEM investigations showed the presence of single particles along with agglomerates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanophosphors" title="nanophosphors">nanophosphors</a>, <a href="https://publications.waset.org/abstracts/search?q=Y2O3%3AEu%2B3" title=" Y2O3:Eu+3"> Y2O3:Eu+3</a>, <a href="https://publications.waset.org/abstracts/search?q=Y2O3%3ATb%2B3" title=" Y2O3:Tb+3"> Y2O3:Tb+3</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20method" title=" hydrothermal method"> hydrothermal method</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD "> XRD </a> </p> <a href="https://publications.waset.org/abstracts/14766/comparison-of-methods-for-the-synthesis-of-eu-tb-and-tm-doped-y2o3-nanophosphors-by-sol-gel-and-hydrothermal-methods-for-bioconjugation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Monte Carlo Simulation Study on Improving the Flatting Filter-Free Radiotherapy Beam Quality Using Filters from Low- z Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Alfrihidi">H. M. Alfrihidi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.A.%20Albarakaty"> H.A. Albarakaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flattening filter-free (FFF) photon beam radiotherapy has increased in the last decade, which is enabled by advancements in treatment planning systems and radiation delivery techniques like multi-leave collimators. FFF beams have higher dose rates, which reduces treatment time. On the other hand, FFF beams have a higher surface dose, which is due to the loss of beam hardening effect caused by the presence of the flatting filter (FF). The possibility of improving FFF beam quality using filters from low-z materials such as steel and aluminium (Al) was investigated using Monte Carlo (MC) simulations. The attenuation coefficient of low-z materials for low-energy photons is higher than that of high-energy photons, which leads to the hardening of the FFF beam and, consequently, a reduction in the surface dose. BEAMnrc user code, based on Electron Gamma Shower (EGSnrc) MC code, is used to simulate the beam of a 6 MV True-Beam linac. A phase-space (phosphor) file provided by Varian Medical Systems was used as a radiation source in the simulation. This phosphor file was scored just above the jaws at 27.88 cm from the target. The linac from the jaw downward was constructed, and radiation passing was simulated and scored at 100 cm from the target. To study the effect of low-z filters, steel and Al filters with a thickness of 1 cm were added below the jaws, and the phosphor file was scored at 100 cm from the target. For comparison, the FF beam was simulated using a similar setup. (BEAM Data Processor (BEAMdp) is used to analyse the energy spectrum in the phosphorus files. Then, the dose distribution resulting from these beams was simulated in a homogeneous water phantom using DOSXYZnrc. The dose profile was evaluated according to the surface dose, the lateral dose distribution, and the percentage depth dose (PDD). The energy spectra of the beams show that the FFF beam is softer than the FF beam. The energy peaks for the FFF and FF beams are 0.525 MeV and 1.52 MeV, respectively. The FFF beam's energy peak becomes 1.1 MeV using a steel filter, while the Al filter does not affect the peak position. Steel and Al's filters reduced the surface dose by 5% and 1.7%, respectively. The dose at a depth of 10 cm (D10) rises by around 2% and 0.5% due to using a steel and Al filter, respectively. On the other hand, steel and Al filters reduce the dose rate of the FFF beam by 34% and 14%, respectively. However, their effect on the dose rate is less than that of the tungsten FF, which reduces the dose rate by about 60%. In conclusion, filters from low-z material decrease the surface dose and increase the D10 dose, allowing for a high-dose delivery to deep tumors with a low skin dose. Although using these filters affects the dose rate, this effect is much lower than the effect of the FF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flattening%20filter%20free" title="flattening filter free">flattening filter free</a>, <a href="https://publications.waset.org/abstracts/search?q=monte%20carlo" title=" monte carlo"> monte carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy"> radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20dose" title=" surface dose"> surface dose</a> </p> <a href="https://publications.waset.org/abstracts/162793/monte-carlo-simulation-study-on-improving-the-flatting-filter-free-radiotherapy-beam-quality-using-filters-from-low-z-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Visetpotjanakit">S. Visetpotjanakit</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Khrautongkieo"> C. Khrautongkieo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting ³H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs and developed radiochemical techniques for analysing ¹³⁴Cs, ¹³⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained ‘Accepted’ statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=international%20atomic%20energy%20agency" title="international atomic energy agency">international atomic energy agency</a>, <a href="https://publications.waset.org/abstracts/search?q=proficiency%20test" title=" proficiency test"> proficiency test</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20monitoring" title=" radiation monitoring"> radiation monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater" title=" seawater"> seawater</a> </p> <a href="https://publications.waset.org/abstracts/93787/participation-in-iaea-proficiency-test-to-analyse-cobalt-strontium-and-caesium-in-seawater-using-direct-counting-and-radiochemical-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> The Synthesis and Analysis of Two Long Lasting Phosphorescent Compounds: SrAl2O4: Eu2+, Dy3+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghayah%20Alsaleem">Ghayah Alsaleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research project focussed on specific compounds, whereas a literature review was completed on the broader subject of long-lasting phosphorescence. For the review and subsequent laboratory work, long lasting phosphorescence compounds were defined as materials that have an afterglow decay time greater than a few minutes. The decay time is defined as the time between the end of excitation and the moment the light intensity drops below 0.32mcd/m2. This definition is widely used in industry and in most research studies. The experimental work focused on known long-lasting phosphorescence compounds – strontium aluminate (SrAl2O4: Eu2+, Dy3+). At first, preparation was similar to literary methods. Temperature, dopant levels and mixing methods were then varied in order to expose their effects on long-lasting phosphorescence. The effect of temperature was investigated for SrAl2O4: Eu2+, Dy3+, and resulted in the discovery that 1350°C was the only temperature that the compound could be heated to in the Differential scanning calorimetry (DSC) in order to achieve any phosphorescence. However, no temperatures above 1350°C were investigated. The variation of mixing method and co-dopant level in the strontium aluminate compounds resulted in the finding that the dry mixing method using a Turbula mixer resulted in the longest afterglow. It was also found that an increase of europium inclusion, from 1mol% to 2mol% in these compounds, increased the brightest of the phosphorescence. As this increased batch was mixed using sonication, the phosphorescent time was actually reduced which produced green long-lasting phosphorescence for up to 20 minutes following 30 minutes excitation and 50 minutes when the europium content was doubled and mixed using sonication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=long%20lasting" title="long lasting">long lasting</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorescence" title=" phosphorescence"> phosphorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation" title=" excitation"> excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=europium" title=" europium"> europium</a> </p> <a href="https://publications.waset.org/abstracts/86841/the-synthesis-and-analysis-of-two-long-lasting-phosphorescent-compounds-sral2o4-eu2-dy3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strontium%20aluminates%20phosphor&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strontium%20aluminates%20phosphor&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strontium%20aluminates%20phosphor&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>