CINXE.COM

Möbius strip - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Möbius strip - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"018aca64-4398-4e76-a1cf-a2102b9e5f5c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Möbius_strip","wgTitle":"Möbius strip","wgCurRevisionId":1250322543,"wgRevisionId":1250322543,"wgArticleId":37817,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Pages with German IPA","CS1 maint: bot: original URL status unknown","Good articles","Articles with short description","Short description is different from Wikidata","Use mdy dates from March 2022","Use list-defined references from March 2022","Pages using multiple image with auto scaled images","Commons link is on Wikidata","Topology","Recreational mathematics","Surfaces","Eponyms in geometry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext", "wgRelevantPageName":"Möbius_strip","wgRelevantArticleId":37817,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":90000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q226843","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness", "fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/79/M%C3%B6bius_Strip.jpg/1200px-M%C3%B6bius_Strip.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="744"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/79/M%C3%B6bius_Strip.jpg/800px-M%C3%B6bius_Strip.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="496"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/79/M%C3%B6bius_Strip.jpg/640px-M%C3%B6bius_Strip.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="397"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Möbius strip - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/M%C3%B6bius_strip"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/M%C3%B6bius_strip"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Möbius_strip rootpage-Möbius_strip skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=M%C3%B6bius+strip" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=M%C3%B6bius+strip" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=M%C3%B6bius+strip" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=M%C3%B6bius+strip" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Constructions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Constructions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Constructions</span> </div> </a> <button aria-controls="toc-Constructions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Constructions subsection</span> </button> <ul id="toc-Constructions-sublist" class="vector-toc-list"> <li id="toc-Sweeping_a_line_segment" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sweeping_a_line_segment"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Sweeping a line segment</span> </div> </a> <ul id="toc-Sweeping_a_line_segment-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polyhedral_surfaces_and_flat_foldings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Polyhedral_surfaces_and_flat_foldings"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Polyhedral surfaces and flat foldings</span> </div> </a> <ul id="toc-Polyhedral_surfaces_and_flat_foldings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Smoothly_embedded_rectangles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Smoothly_embedded_rectangles"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Smoothly embedded rectangles</span> </div> </a> <ul id="toc-Smoothly_embedded_rectangles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Making_the_boundary_circular" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Making_the_boundary_circular"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Making the boundary circular</span> </div> </a> <ul id="toc-Making_the_boundary_circular-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Surfaces_of_constant_curvature" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Surfaces_of_constant_curvature"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Surfaces of constant curvature</span> </div> </a> <ul id="toc-Surfaces_of_constant_curvature-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spaces_of_lines" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spaces_of_lines"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Spaces of lines</span> </div> </a> <ul id="toc-Spaces_of_lines-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_popular_culture" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_popular_culture"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>In popular culture</span> </div> </a> <ul id="toc-In_popular_culture-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Möbius strip</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 62 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-62" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">62 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B4%D8%B1%D9%8A%D8%B7_%D9%85%D9%88%D8%A8%D9%8A%D9%88%D8%B3" title="شريط موبيوس – Arabic" lang="ar" hreflang="ar" data-title="شريط موبيوس" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/M%C3%B6bius_lenti" title="Möbius lenti – Azerbaijani" lang="az" hreflang="az" data-title="Möbius lenti" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A1%D1%82%D1%83%D0%B6%D0%BA%D0%B0_%D0%9C%D1%91%D0%B1%D1%96%D1%83%D1%81%D0%B0" title="Стужка Мёбіуса – Belarusian" lang="be" hreflang="be" data-title="Стужка Мёбіуса" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9B%D0%B8%D1%81%D1%82_%D0%BD%D0%B0_%D0%9C%D1%8C%D0%BE%D0%B1%D0%B8%D1%83%D1%81" title="Лист на Мьобиус – Bulgarian" lang="bg" hreflang="bg" data-title="Лист на Мьобиус" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Cinta_de_M%C3%B6bius" title="Cinta de Möbius – Catalan" lang="ca" hreflang="ca" data-title="Cinta de Möbius" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9C%D1%91%D0%B1%D0%B8%D1%83%D1%81_%D1%85%C4%83%D0%B9%C4%83%D0%B2%C4%95" title="Мёбиус хăйăвĕ – Chuvash" lang="cv" hreflang="cv" data-title="Мёбиус хăйăвĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/M%C3%B6biova_p%C3%A1ska" title="Möbiova páska – Czech" lang="cs" hreflang="cs" data-title="Möbiova páska" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Stribyn_M%C3%B6bius" title="Stribyn Möbius – Welsh" lang="cy" hreflang="cy" data-title="Stribyn Möbius" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/M%C3%B6biusb%C3%A5nd" title="Möbiusbånd – Danish" lang="da" hreflang="da" data-title="Möbiusbånd" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/M%C3%B6biusband" title="Möbiusband – German" lang="de" hreflang="de" data-title="Möbiusband" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/M%C3%B6biuse_leht" title="Möbiuse leht – Estonian" lang="et" hreflang="et" data-title="Möbiuse leht" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9B%CF%89%CF%81%CE%AF%CE%B4%CE%B1_%CF%84%CE%BF%CF%85_%CE%9C%CE%AD%CE%BC%CF%80%CE%B9%CE%BF%CF%85%CF%82" title="Λωρίδα του Μέμπιους – Greek" lang="el" hreflang="el" data-title="Λωρίδα του Μέμπιους" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Banda_de_M%C3%B6bius" title="Banda de Möbius – Spanish" lang="es" hreflang="es" data-title="Banda de Möbius" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Rubando_de_M%C3%B6bius" title="Rubando de Möbius – Esperanto" lang="eo" hreflang="eo" data-title="Rubando de Möbius" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Moebius_banda" title="Moebius banda – Basque" lang="eu" hreflang="eu" data-title="Moebius banda" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D9%88%D8%A7%D8%B1_%D9%85%D9%88%D8%A8%DB%8C%D9%88%D8%B3" title="نوار موبیوس – Persian" lang="fa" hreflang="fa" data-title="نوار موبیوس" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Ruban_de_M%C3%B6bius" title="Ruban de Möbius – French" lang="fr" hreflang="fr" data-title="Ruban de Möbius" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/M%C3%B6biusb%C3%A2n" title="Möbiusbân – Western Frisian" lang="fy" hreflang="fy" data-title="Möbiusbân" data-language-autonym="Frysk" data-language-local-name="Western Frisian" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Stiall_M%C3%B6bius" title="Stiall Möbius – Irish" lang="ga" hreflang="ga" data-title="Stiall Möbius" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Banda_de_M%C3%B6bius" title="Banda de Möbius – Galician" lang="gl" hreflang="gl" data-title="Banda de Möbius" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%9C%D3%A9%D0%B1%D0%B8%D1%83%D1%81%D0%B8%D0%BD_%D0%BA%D2%AF%D1%81%D0%BC" title="Мөбиусин күсм – Kalmyk" lang="xal" hreflang="xal" data-title="Мөбиусин күсм" data-language-autonym="Хальмг" data-language-local-name="Kalmyk" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%AB%BC%EB%B9%84%EC%9A%B0%EC%8A%A4%EC%9D%98_%EB%9D%A0" title="뫼비우스의 띠 – Korean" lang="ko" hreflang="ko" data-title="뫼비우스의 띠" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%B5%D5%B8%D5%A2%D5%AB%D5%B8%D6%82%D5%BD%D5%AB_%D5%A9%D5%A5%D6%80%D5%A9" title="Մյոբիուսի թերթ – Armenian" lang="hy" hreflang="hy" data-title="Մյոբիուսի թերթ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/M%C3%B6biusova_vrpca" title="Möbiusova vrpca – Croatian" lang="hr" hreflang="hr" data-title="Möbiusova vrpca" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Mobius-strio" title="Mobius-strio – Ido" lang="io" hreflang="io" data-title="Mobius-strio" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Pita_M%C3%B6bius" title="Pita Möbius – Indonesian" lang="id" hreflang="id" data-title="Pita Möbius" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Banda_de_M%C3%B6bius" title="Banda de Möbius – Interlingua" lang="ia" hreflang="ia" data-title="Banda de Möbius" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Nastro_di_M%C3%B6bius" title="Nastro di Möbius – Italian" lang="it" hreflang="it" data-title="Nastro di Möbius" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%98%D7%91%D7%A2%D7%AA_%D7%9E%D7%91%D7%99%D7%95%D7%A1" title="טבעת מביוס – Hebrew" lang="he" hreflang="he" data-title="טבעת מביוס" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B1%D0%B8%D1%83%D1%81_%D0%B6%D0%B0%D0%BF%D1%8B%D1%80%D0%B0%D2%93%D1%8B" title="Мбиус жапырағы – Kazakh" lang="kk" hreflang="kk" data-title="Мбиус жапырағы" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Taenia_Moebii" title="Taenia Moebii – Latin" lang="la" hreflang="la" data-title="Taenia Moebii" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/M%C4%93biusa_lente" title="Mēbiusa lente – Latvian" lang="lv" hreflang="lv" data-title="Mēbiusa lente" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/M%C3%B6biusschleef" title="Möbiusschleef – Luxembourgish" lang="lb" hreflang="lb" data-title="Möbiusschleef" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/dasri_pe_la_.mobius." title="dasri pe la .mobius. – Lojban" lang="jbo" hreflang="jbo" data-title="dasri pe la .mobius." data-language-autonym="La .lojban." data-language-local-name="Lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/M%C3%B6bius-szalag" title="Möbius-szalag – Hungarian" lang="hu" hreflang="hu" data-title="Möbius-szalag" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Jalur_M%C3%B6bius" title="Jalur Möbius – Malay" lang="ms" hreflang="ms" data-title="Jalur Möbius" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/M%C3%B6biusband" title="Möbiusband – Dutch" lang="nl" hreflang="nl" data-title="Möbiusband" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%A1%E3%83%93%E3%82%A6%E3%82%B9%E3%81%AE%E5%B8%AF" title="メビウスの帯 – Japanese" lang="ja" hreflang="ja" data-title="メビウスの帯" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/M%C3%B6bius-b%C3%A5nd" title="Möbius-bånd – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Möbius-bånd" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/M%C3%B6biusband" title="Möbiusband – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Möbiusband" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-nov mw-list-item"><a href="https://nov.wikipedia.org/wiki/Mobius-bende" title="Mobius-bende – Novial" lang="nov" hreflang="nov" data-title="Mobius-bende" data-language-autonym="Novial" data-language-local-name="Novial" class="interlanguage-link-target"><span>Novial</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wst%C4%99ga_M%C3%B6biusa" title="Wstęga Möbiusa – Polish" lang="pl" hreflang="pl" data-title="Wstęga Möbiusa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fita_de_M%C3%B6bius" title="Fita de Möbius – Portuguese" lang="pt" hreflang="pt" data-title="Fita de Möbius" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Banda_lui_M%C3%B6bius" title="Banda lui Möbius – Romanian" lang="ro" hreflang="ro" data-title="Banda lui Möbius" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9B%D0%B5%D0%BD%D1%82%D0%B0_%D0%9C%D1%91%D0%B1%D0%B8%D1%83%D1%81%D0%B0" title="Лента Мёбиуса – Russian" lang="ru" hreflang="ru" data-title="Лента Мёбиуса" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Nastru_di_M%C3%B6bius" title="Nastru di Möbius – Sicilian" lang="scn" hreflang="scn" data-title="Nastru di Möbius" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/M%C3%B6bius_strip" title="Möbius strip – Simple English" lang="en-simple" hreflang="en-simple" data-title="Möbius strip" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/M%C3%B6biov_list" title="Möbiov list – Slovak" lang="sk" hreflang="sk" data-title="Möbiov list" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/M%C3%B6biusov_trak" title="Möbiusov trak – Slovenian" lang="sl" hreflang="sl" data-title="Möbiusov trak" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Faborka_M%C3%B6biusa" title="Faborka Möbiusa – Silesian" lang="szl" hreflang="szl" data-title="Faborka Möbiusa" data-language-autonym="Ślůnski" data-language-local-name="Silesian" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B1%D0%B8%D1%98%D1%83%D1%81%D0%BE%D0%B2%D0%B0_%D1%82%D1%80%D0%B0%D0%BA%D0%B0" title="Мебијусова трака – Serbian" lang="sr" hreflang="sr" data-title="Мебијусова трака" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/M%C3%B6biuksen_nauha" title="Möbiuksen nauha – Finnish" lang="fi" hreflang="fi" data-title="Möbiuksen nauha" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/M%C3%B6biusband" title="Möbiusband – Swedish" lang="sv" hreflang="sv" data-title="Möbiusband" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%8B%E0%AE%AA%E0%AE%BF%E0%AE%AF%E0%AE%B8%E0%AF%8D_%E0%AE%A8%E0%AE%BE%E0%AE%9F%E0%AE%BE" title="மோபியஸ் நாடா – Tamil" lang="ta" hreflang="ta" data-title="மோபியஸ் நாடா" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%81%E0%B8%96%E0%B8%9A%E0%B9%80%E0%B8%A1%E0%B8%AD%E0%B8%9A%E0%B8%B4%E0%B8%AD%E0%B8%B8%E0%B8%AA" title="แถบเมอบิอุส – Thai" lang="th" hreflang="th" data-title="แถบเมอบิอุส" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/M%C3%B6bius_%C5%9Feridi" title="Möbius şeridi – Turkish" lang="tr" hreflang="tr" data-title="Möbius şeridi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D1%82%D1%80%D1%96%D1%87%D0%BA%D0%B0_%D0%9C%D0%B5%D0%B1%D1%96%D1%83%D1%81%D0%B0" title="Стрічка Мебіуса – Ukrainian" lang="uk" hreflang="uk" data-title="Стрічка Мебіуса" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/M%E1%BA%B7t_Mobius" title="Mặt Mobius – Vietnamese" lang="vi" hreflang="vi" data-title="Mặt Mobius" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E8%8E%AB%E6%AF%94%E7%83%8F%E6%96%AF%E5%B8%B6" title="莫比烏斯帶 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="莫比烏斯帶" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%8E%AB%E6%AF%94%E4%B9%8C%E6%96%AF%E5%B8%A6" title="莫比乌斯带 – Wu" lang="wuu" hreflang="wuu" data-title="莫比乌斯带" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%8E%AB%E6%AF%94%E7%83%8F%E6%96%AF%E5%B8%B6" title="莫比烏斯帶 – Cantonese" lang="yue" hreflang="yue" data-title="莫比烏斯帶" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%8E%AB%E6%AF%94%E4%B9%8C%E6%96%AF%E5%B8%A6" title="莫比乌斯带 – Chinese" lang="zh" hreflang="zh" data-title="莫比乌斯带" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q226843#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/M%C3%B6bius_strip" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:M%C3%B6bius_strip" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/M%C3%B6bius_strip"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/M%C3%B6bius_strip"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/M%C3%B6bius_strip" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/M%C3%B6bius_strip" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=M%C3%B6bius_strip&amp;oldid=1250322543" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=M%C3%B6bius_strip&amp;id=1250322543&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FM%25C3%25B6bius_strip"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FM%25C3%25B6bius_strip"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=M%C3%B6bius_strip&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=M%C3%B6bius_strip&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Moebius_strip" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q226843" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-good-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Good_articles*" title="This is a good article. Click here for more information."><img alt="This is a good article. Click here for more information." src="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/19px-Symbol_support_vote.svg.png" decoding="async" width="19" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/29px-Symbol_support_vote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/39px-Symbol_support_vote.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Non-orientable surface with one edge</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:M%C3%B6bius_Strip.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/M%C3%B6bius_Strip.jpg/280px-M%C3%B6bius_Strip.jpg" decoding="async" width="280" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/M%C3%B6bius_Strip.jpg/420px-M%C3%B6bius_Strip.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/79/M%C3%B6bius_Strip.jpg/560px-M%C3%B6bius_Strip.jpg 2x" data-file-width="2000" data-file-height="1240" /></a><figcaption>A Möbius strip made with paper and adhesive tape</figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>Möbius strip</b>, <b>Möbius band</b>, or <b>Möbius loop</b><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> is a <a href="/wiki/Surface_(topology)" title="Surface (topology)">surface</a> that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by <a href="/wiki/Johann_Benedict_Listing" title="Johann Benedict Listing">Johann Benedict Listing</a> and <a href="/wiki/August_Ferdinand_M%C3%B6bius" title="August Ferdinand Möbius">August Ferdinand Möbius</a> in 1858, but it had already appeared in <a href="/wiki/Ancient_Rome" title="Ancient Rome">Roman</a> mosaics from the third century <a href="/wiki/Common_Era" title="Common Era">CE</a>. The Möbius strip is a <a href="/wiki/Orientability" title="Orientability">non-orientable</a> surface, meaning that within it one cannot consistently distinguish <a href="/wiki/Clockwise" title="Clockwise">clockwise</a> from counterclockwise turns. Every non-orientable surface contains a Möbius strip. </p><p>As an abstract <a href="/wiki/Topological_space" title="Topological space">topological space</a>, the Möbius strip can be embedded into three-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> in many different ways: a clockwise half-twist is different from a counterclockwise half-twist, and it can also be embedded with odd numbers of twists greater than one, or with a <a href="/wiki/Knot_(mathematics)" title="Knot (mathematics)">knotted</a> centerline. Any two embeddings with the same knot for the centerline and the same number and direction of twists are <a href="/wiki/Ambient_isotopy" title="Ambient isotopy">topologically equivalent</a>. All of these embeddings have only one side, but when embedded in other spaces, the Möbius strip may have two sides. It has only a single <a href="/wiki/Boundary_(topology)" title="Boundary (topology)">boundary curve</a>. </p><p>Several geometric constructions of the Möbius strip provide it with additional structure. It can be swept as a <a href="/wiki/Ruled_surface" title="Ruled surface">ruled surface</a> by a line segment rotating in a rotating plane, with or without self-crossings. A thin paper strip with its ends joined to form a Möbius strip can bend smoothly as a <a href="/wiki/Developable_surface" title="Developable surface">developable surface</a> or be <a href="/wiki/Mathematics_of_paper_folding#Flat_folding" title="Mathematics of paper folding">folded flat</a>; the flattened Möbius strips include the <a href="/wiki/Trihexaflexagon" class="mw-redirect" title="Trihexaflexagon">trihexaflexagon</a>. The Sudanese Möbius strip is a <a href="/wiki/Minimal_surface" title="Minimal surface">minimal surface</a> in a <a href="/wiki/Hypersphere" class="mw-redirect" title="Hypersphere">hypersphere</a>, and the Meeks Möbius strip is a self-intersecting minimal surface in ordinary Euclidean space. Both the Sudanese Möbius strip and another self-intersecting Möbius strip, the cross-cap, have a circular boundary. A Möbius strip without its boundary, called an open Möbius strip, can form <a href="/wiki/Uniformization_theorem" title="Uniformization theorem">surfaces of constant curvature</a>. Certain highly symmetric spaces whose points represent lines in the plane have the shape of a Möbius strip. </p><p>The many applications of Möbius strips include <a href="/wiki/Belt_(mechanical)" title="Belt (mechanical)">mechanical belts</a> that wear evenly on both sides, dual-track <a href="/wiki/Roller_coaster" title="Roller coaster">roller coasters</a> whose carriages alternate between the two tracks, and <a href="/wiki/World_map" title="World map">world maps</a> printed so that <a href="/wiki/Antipodes" title="Antipodes">antipodes</a> appear opposite each other. Möbius strips appear in molecules and devices with novel electrical and electromechanical properties, and have been used to prove impossibility results in <a href="/wiki/Social_choice_theory" title="Social choice theory">social choice theory</a>. In popular culture, Möbius strips appear in artworks by <a href="/wiki/M._C._Escher" title="M. C. Escher">M. C. Escher</a>, <a href="/wiki/Max_Bill" title="Max Bill">Max Bill</a>, and others, and in the design of the <a href="/wiki/Recycling_symbol" title="Recycling symbol">recycling symbol</a>. Many architectural concepts have been inspired by the Möbius strip, including the building design for the <a href="/wiki/NASCAR_Hall_of_Fame" title="NASCAR Hall of Fame">NASCAR Hall of Fame</a>. Performers including <a href="/wiki/Harry_Blackstone_Sr." title="Harry Blackstone Sr.">Harry Blackstone Sr.</a> and <a href="/wiki/Thomas_Nelson_Downs" class="mw-redirect" title="Thomas Nelson Downs">Thomas Nelson Downs</a> have based stage magic tricks on the properties of the Möbius strip. The <a href="/wiki/Canon_(music)" title="Canon (music)">canons</a> of <a href="/wiki/J._S._Bach" class="mw-redirect" title="J. S. Bach">J. S. Bach</a> have been analyzed using Möbius strips. Many works of <a href="/wiki/Speculative_fiction" title="Speculative fiction">speculative fiction</a> feature Möbius strips; more generally, a plot structure based on the Möbius strip, of events that repeat with a twist, is common in fiction. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:472px;max-width:472px"><div class="trow"><div class="tsingle" style="width:274px;max-width:274px"><div class="thumbimage" style="height:248px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Aion_mosaic_Glyptothek_Munich_W504.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Aion_mosaic_Glyptothek_Munich_W504.jpg/272px-Aion_mosaic_Glyptothek_Munich_W504.jpg" decoding="async" width="272" height="249" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Aion_mosaic_Glyptothek_Munich_W504.jpg/408px-Aion_mosaic_Glyptothek_Munich_W504.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Aion_mosaic_Glyptothek_Munich_W504.jpg/544px-Aion_mosaic_Glyptothek_Munich_W504.jpg 2x" data-file-width="2120" data-file-height="1938" /></a></span></div><div class="thumbcaption">Mosaic from ancient <a href="/wiki/Sentinum" title="Sentinum">Sentinum</a> depicting <a href="/wiki/Aion_(deity)" title="Aion (deity)">Aion</a> holding a Möbius strip</div></div><div class="tsingle" style="width:194px;max-width:194px"><div class="thumbimage" style="height:248px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Al-Jazari_Automata_1205.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Al-Jazari_Automata_1205.jpg/192px-Al-Jazari_Automata_1205.jpg" decoding="async" width="192" height="249" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Al-Jazari_Automata_1205.jpg/288px-Al-Jazari_Automata_1205.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/9/96/Al-Jazari_Automata_1205.jpg 2x" data-file-width="292" data-file-height="379" /></a></span></div><div class="thumbcaption"><a href="/wiki/Chain_pump" title="Chain pump">Chain pump</a> with a Möbius drive chain, by <a href="/wiki/Ismail_al-Jazari" title="Ismail al-Jazari">Ismail al-Jazari</a> (1206)</div></div></div></div></div> <p>The discovery of the Möbius strip as a mathematical object is attributed independently to the German mathematicians <a href="/wiki/Johann_Benedict_Listing" title="Johann Benedict Listing">Johann Benedict Listing</a> and <a href="/wiki/August_Ferdinand_M%C3%B6bius" title="August Ferdinand Möbius">August Ferdinand Möbius</a> in <span class="nowrap">1858.<sup id="cite_ref-pickover_3-0" class="reference"><a href="#cite_note-pickover-3"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></span> However, it had been known long before, both as a physical object and in artistic depictions; in particular, it can be seen in several Roman mosaics from the <span class="nowrap">third century CE.<sup id="cite_ref-roman_4-0" class="reference"><a href="#cite_note-roman-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ancient_5-0" class="reference"><a href="#cite_note-ancient-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></span> In many cases these merely depict coiled ribbons as boundaries. When the number of coils is odd, these ribbons are Möbius strips, but for an even number of coils they are topologically equivalent to <a href="/wiki/Annulus_(mathematics)" title="Annulus (mathematics)">untwisted rings</a>. Therefore, whether the ribbon is a Möbius strip may be coincidental, rather than a deliberate choice. In at least one case, a ribbon with different colors on different sides was drawn with an odd number of coils, forcing its artist to make a clumsy fix at the point where the colors did not <span class="nowrap">match up.<sup id="cite_ref-roman_4-1" class="reference"><a href="#cite_note-roman-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></span> Another mosaic from the town of <a href="/wiki/Sentinum" title="Sentinum">Sentinum</a> (depicted) shows the <a href="/wiki/Zodiac" title="Zodiac">zodiac</a>, held by the god <a href="/wiki/Aion_(deity)" title="Aion (deity)">Aion</a>, as a band with only a single twist. There is no clear evidence that the one-sidedness of this visual representation of celestial time was intentional; it could have been chosen merely as a way to make all of the signs of the zodiac appear on the visible side of the strip. Some other ancient depictions of the <a href="/wiki/Ourobouros" class="mw-redirect" title="Ourobouros">ourobouros</a> or of <a href="/wiki/Lemniscate" title="Lemniscate">figure-eight</a>-shaped decorations are also alleged to depict Möbius strips, but whether they were intended to depict flat strips of any type is <span class="nowrap">unclear.<sup id="cite_ref-ancient_5-1" class="reference"><a href="#cite_note-ancient-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></span> </p><p>Independently of the mathematical tradition, machinists have long known that <a href="/wiki/Belt_(mechanical)" title="Belt (mechanical)">mechanical belts</a> wear half as quickly when they form Möbius strips, because they use the entire surface of the belt rather than only the inner surface of an untwisted belt.<sup id="cite_ref-roman_4-2" class="reference"><a href="#cite_note-roman-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Additionally, such a belt may be less prone to curling from side to side. An early written description of this technique dates to 1871, which is after the first mathematical publications regarding the Möbius strip. Much earlier, an image of a <a href="/wiki/Chain_pump" title="Chain pump">chain pump</a> in a work of <a href="/wiki/Ismail_al-Jazari" title="Ismail al-Jazari">Ismail al-Jazari</a> from 1206 depicts a Möbius strip configuration for its drive <span class="nowrap">chain.<sup id="cite_ref-ancient_5-2" class="reference"><a href="#cite_note-ancient-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></span> Another use of this surface was made by seamstresses in Paris (at an unspecified date): they initiated novices by requiring them to stitch a Möbius strip as a collar onto a <span class="nowrap">garment.<sup id="cite_ref-roman_4-3" class="reference"><a href="#cite_note-roman-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></span> </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=2" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Fiddler_crab_mobius_strip.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Fiddler_crab_mobius_strip.gif/170px-Fiddler_crab_mobius_strip.gif" decoding="async" width="170" height="262" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Fiddler_crab_mobius_strip.gif/255px-Fiddler_crab_mobius_strip.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/b/b7/Fiddler_crab_mobius_strip.gif 2x" data-file-width="317" data-file-height="489" /></a><figcaption>A 2D object traversing once around the Möbius strip returns in mirrored form</figcaption></figure> <p>The Möbius strip has several curious properties. It is a <a href="/wiki/Orientability" title="Orientability">non-orientable surface</a>: if an asymmetric two-dimensional object slides one time around the strip, it returns to its starting position as its mirror image. In particular, a curved arrow pointing clockwise (↻) would return as an arrow pointing counterclockwise (↺), implying that, within the Möbius strip, it is impossible to consistently define what it means to be clockwise or counterclockwise. It is the simplest non-orientable surface: any other surface is non-orientable if and only if it has a Möbius strip as a <span class="nowrap">subset.<sup id="cite_ref-chirality_6-0" class="reference"><a href="#cite_note-chirality-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></span> Relatedly, when embedded into <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, the Möbius strip has only one side. A three-dimensional object that slides one time around the surface of the strip is not mirrored, but instead returns to the same point of the strip on what appears locally to be its other side, showing that both positions are really part of a single side. This behavior is different from familiar <a href="/wiki/Orientable_surface" class="mw-redirect" title="Orientable surface">orientable surfaces</a> in three dimensions such as those modeled by flat sheets of paper, cylindrical drinking straws, or hollow balls, for which one side of the surface is not connected to the other.<sup id="cite_ref-FOOTNOTEPickover20058–9_7-0" class="reference"><a href="#cite_note-FOOTNOTEPickover20058–9-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> However, this is a property of its embedding into space rather than an intrinsic property of the Möbius strip itself: there exist other topological spaces in which the Möbius strip can be embedded so that it has two <span class="nowrap">sides.<sup id="cite_ref-woll_8-0" class="reference"><a href="#cite_note-woll-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></span> For instance, if the front and back faces of a cube are glued to each other with a left-right mirror reflection, the result is a three-dimensional topological space (the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> of a Möbius strip with an interval) in which the top and bottom halves of the cube can be separated from each other by a two-sided Möbius <span class="nowrap">strip.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup></span> In contrast to disks, spheres, and cylinders, for which it is possible to simultaneously embed an <a href="/wiki/Uncountable_set" title="Uncountable set">uncountable set</a> of <a href="/wiki/Disjoint_sets" title="Disjoint sets">disjoint</a> copies into three-dimensional space, only a countable number of Möbius strips can be simultaneously <span class="nowrap">embedded.<sup id="cite_ref-frolkina_11-0" class="reference"><a href="#cite_note-frolkina-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-defy_12-0" class="reference"><a href="#cite_note-defy-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-melikhov_13-0" class="reference"><a href="#cite_note-melikhov-13"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup></span> </p><p>A path along the edge of a Möbius strip, traced until it returns to its starting point on the edge, includes all boundary points of the Möbius strip in a single continuous curve. For a Möbius strip formed by gluing and twisting a rectangle, it has twice the length of the centerline of the strip. In this sense, the Möbius strip is different from an untwisted ring and like a circular disk in having only one <span class="nowrap">boundary.<sup id="cite_ref-FOOTNOTEPickover20058–9_7-1" class="reference"><a href="#cite_note-FOOTNOTEPickover20058–9-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></span> A Möbius strip in Euclidean space cannot be moved or stretched into its mirror image; it is a <a href="/wiki/Chirality_(mathematics)" title="Chirality (mathematics)">chiral</a> object with right- or <span class="nowrap">left-handedness.<sup id="cite_ref-FOOTNOTEPickover200552_14-0" class="reference"><a href="#cite_note-FOOTNOTEPickover200552-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></span> Möbius strips with odd numbers of half-twists greater than one, or that are knotted before gluing, are distinct as embedded subsets of three-dimensional space, even though they are all equivalent as two-dimensional topological <span class="nowrap">surfaces.<sup id="cite_ref-FOOTNOTEPickover200512_15-0" class="reference"><a href="#cite_note-FOOTNOTEPickover200512-15"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup></span> More precisely, two Möbius strips are equivalently embedded in three-dimensional space when their centerlines determine the same knot and they have the same number of twists as each <span class="nowrap">other.<sup id="cite_ref-kyle_16-0" class="reference"><a href="#cite_note-kyle-16"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></span> With an even number of twists, however, one obtains a different topological surface, called the <span class="nowrap"><a href="/wiki/Annulus_(mathematics)" title="Annulus (mathematics)">annulus</a>.<sup id="cite_ref-FOOTNOTEPickover200511_17-0" class="reference"><a href="#cite_note-FOOTNOTEPickover200511-17"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup></span> </p><p>The Möbius strip can be continuously transformed into its centerline, by making it narrower while fixing the points on the centerline. This transformation is an example of a <a href="/wiki/Deformation_retraction" class="mw-redirect" title="Deformation retraction">deformation retraction</a>, and its existence means that the Möbius strip has many of the same properties as its centerline, which is topologically a circle. In particular, its <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a> is the same as the fundamental group of a circle, an <a href="/wiki/Infinite_cyclic_group" class="mw-redirect" title="Infinite cyclic group">infinite cyclic group</a>. Therefore, paths on the Möbius strip that start and end at the same point can be distinguished topologically (up to <a href="/wiki/Homotopy" title="Homotopy">homotopy</a>) only by the number of times they loop around the strip.<sup id="cite_ref-massey_18-0" class="reference"><a href="#cite_note-massey-18"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:472px;max-width:472px"><div class="trow"><div class="tsingle" style="width:240px;max-width:240px"><div class="thumbimage" style="height:151px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Moebiusband-1s.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Moebiusband-1s.svg/238px-Moebiusband-1s.svg.png" decoding="async" width="238" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Moebiusband-1s.svg/357px-Moebiusband-1s.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/de/Moebiusband-1s.svg/476px-Moebiusband-1s.svg.png 2x" data-file-width="444" data-file-height="283" /></a></span></div><div class="thumbcaption">Cutting the centerline produces a double-length two-sided (non-Möbius) strip</div></div><div class="tsingle" style="width:228px;max-width:228px"><div class="thumbimage" style="height:151px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Moebiusband-2s.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Moebiusband-2s.svg/226px-Moebiusband-2s.svg.png" decoding="async" width="226" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Moebiusband-2s.svg/339px-Moebiusband-2s.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Moebiusband-2s.svg/452px-Moebiusband-2s.svg.png 2x" data-file-width="463" data-file-height="310" /></a></span></div><div class="thumbcaption">A single off-center cut produces a Möbius strip (purple) linked with a double-length two-sided strip</div></div></div></div></div> <p>Cutting a Möbius strip along the centerline with a pair of scissors yields one long strip with four half-twists in it (relative to an untwisted annulus or cylinder) rather than two separate strips. Two of the half-twists come from the fact that this thinner strip goes two times through the half-twist in the original Möbius strip, and the other two come from the way the two halves of the thinner strip wrap around each other. The result is not a Möbius strip, but instead is topologically equivalent to a cylinder. Cutting this double-twisted strip again along its centerline produces two linked double-twisted strips. If, instead, a Möbius strip is cut lengthwise, a third of the way across its width, it produces two linked strips. One of the two is a central, thinner, Möbius strip, while the other has two <span class="nowrap">half-twists.<sup id="cite_ref-FOOTNOTEPickover20058–9_7-2" class="reference"><a href="#cite_note-FOOTNOTEPickover20058–9-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></span> These interlinked shapes, formed by lengthwise slices of Möbius strips with varying widths, are sometimes called <i>paradromic</i> <span class="nowrap"><i>rings</i>.<sup id="cite_ref-rouseball_19-0" class="reference"><a href="#cite_note-rouseball-19"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-paradromic_20-0" class="reference"><a href="#cite_note-paradromic-20"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:472px;max-width:472px"><div class="trow"><div class="tsingle" style="width:234px;max-width:234px"><div class="thumbimage" style="height:174px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Tietze-Moebius.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Tietze-Moebius.svg/232px-Tietze-Moebius.svg.png" decoding="async" width="232" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Tietze-Moebius.svg/348px-Tietze-Moebius.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Tietze-Moebius.svg/464px-Tietze-Moebius.svg.png 2x" data-file-width="735" data-file-height="552" /></a></span></div><div class="thumbcaption">Subdivision into six mutually-adjacent regions, bounded by <a href="/wiki/Tietze%27s_graph" title="Tietze&#39;s graph">Tietze's graph</a></div></div><div class="tsingle" style="width:234px;max-width:234px"><div class="thumbimage" style="height:174px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:3_utilities_problem_moebius.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/3_utilities_problem_moebius.svg/232px-3_utilities_problem_moebius.svg.png" decoding="async" width="232" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/3_utilities_problem_moebius.svg/348px-3_utilities_problem_moebius.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/80/3_utilities_problem_moebius.svg/464px-3_utilities_problem_moebius.svg.png 2x" data-file-width="512" data-file-height="384" /></a></span></div><div class="thumbcaption">Solution to the <a href="/wiki/Three_utilities_problem" title="Three utilities problem">three utilities problem</a> on a Möbius strip</div></div></div></div></div> <p>The Möbius strip can be cut into six mutually-adjacent regions, showing that maps on the surface of the Möbius strip can sometimes require six colors, in contrast to the <a href="/wiki/Four_color_theorem" title="Four color theorem">four color theorem</a> for the <span class="nowrap">plane.<sup id="cite_ref-tietze_21-0" class="reference"><a href="#cite_note-tietze-21"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup></span> Six colors are always enough. This result is part of the <a href="/wiki/Ringel%E2%80%93Youngs_theorem" class="mw-redirect" title="Ringel–Youngs theorem">Ringel–Youngs theorem</a>, which states how many colors each topological surface <span class="nowrap">needs.<sup id="cite_ref-ringel-youngs_22-0" class="reference"><a href="#cite_note-ringel-youngs-22"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></span> The edges and vertices of these six regions form <a href="/wiki/Tietze%27s_graph" title="Tietze&#39;s graph">Tietze's graph</a>, which is a <a href="/wiki/Dual_graph" title="Dual graph">dual graph</a> on this surface for the six-vertex <a href="/wiki/Complete_graph" title="Complete graph">complete graph</a> but cannot be <a href="/wiki/Planar_graph" title="Planar graph">drawn without crossings on a plane</a>. Another family of graphs that can be <a href="/wiki/Graph_embedding" title="Graph embedding">embedded</a> on the Möbius strip, but not on the plane, are the <a href="/wiki/M%C3%B6bius_ladder" title="Möbius ladder">Möbius ladders</a>, the boundaries of subdivisions of the Möbius strip into rectangles meeting <span class="nowrap">end-to-end.<sup id="cite_ref-jab-rad-saz_23-0" class="reference"><a href="#cite_note-jab-rad-saz-23"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup></span> These include the utility graph, a six-vertex <a href="/wiki/Complete_bipartite_graph" title="Complete bipartite graph">complete bipartite graph</a> whose embedding into the Möbius strip shows that, unlike in the plane, the <a href="/wiki/Three_utilities_problem" title="Three utilities problem">three utilities problem</a> can be solved on a transparent Möbius <span class="nowrap">strip.<sup id="cite_ref-larsen_24-0" class="reference"><a href="#cite_note-larsen-24"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></span> The <a href="/wiki/Euler_characteristic" title="Euler characteristic">Euler characteristic</a> of the Möbius strip is <a href="/wiki/Zero" class="mw-redirect" title="Zero">zero</a>, meaning that for any subdivision of the strip by vertices and edges into regions, the numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> of vertices, edges, and regions satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V-E+F=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mo>+</mo> <mi>F</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V-E+F=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a3ec2cf77a129f5cef68b1f6f88b84f400762f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.245ex; height:2.343ex;" alt="{\displaystyle V-E+F=0}"></span>. For instance, Tietze's graph has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 12}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>12</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 12}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a522d3aa5812a136a69f06e1b909d809e849be39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 12}"></span> vertices, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 18}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>18</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 18}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49b85947866bcf8f0368c690f27b785fb20cdd21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 18}"></span> edges, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span> regions; <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 12-18+6=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>12</mn> <mo>&#x2212;<!-- − --></mo> <mn>18</mn> <mo>+</mo> <mn>6</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 12-18+6=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fd0cd2c4e5a33f060e305809f6d37d7295ef7a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.754ex; height:2.343ex;" alt="{\displaystyle 12-18+6=0}"></span>.<sup id="cite_ref-tietze_21-1" class="reference"><a href="#cite_note-tietze-21"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup></span> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Constructions">Constructions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=3" title="Edit section: Constructions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are many different ways of defining geometric surfaces with the topology of the Möbius strip, yielding realizations with additional geometric properties. </p> <div class="mw-heading mw-heading3"><h3 id="Sweeping_a_line_segment">Sweeping a line segment</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=4" title="Edit section: Sweeping a line segment"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="thumb tright"> <div class="thumbinner" style="width: 187px;"> <div class="thumbimage" style="width: 185px; height: 150px; overflow: hidden;"> <div style="position: relative; top: -115px; left: -105px; width: 400px"><div class="noresize"><span typeof="mw:File"><a href="/wiki/File:Mobius_strip.gif" class="mw-file-description"><img alt="A Möbius strip swept out by a rotating line segment in a rotating plane" src="//upload.wikimedia.org/wikipedia/commons/7/73/Mobius_strip.gif" decoding="async" width="400" height="379" class="mw-file-element" data-file-width="392" data-file-height="371" /></a></span></div></div> </div> <div class="thumbcaption"> <div class="magnify"><a href="/wiki/File:Mobius_strip.gif" title="File:Mobius strip.gif"> </a></div>A Möbius strip swept out by a rotating line segment in a rotating plane </div> </div> </div> <div class="thumb tright"> <div class="thumbinner" style="width: 242px;"> <div class="thumbimage" style="width: 240px; height: 240px; overflow: hidden;"> <div style="position: relative; top: -60px; left: -60px; width: 360px"><div class="noresize"><span typeof="mw:File"><a href="/wiki/File:Plucker%27s_conoid_(n%3D2).gif" class="mw-file-description"><img alt="Plücker&#39;s conoid swept out by a different motion of a line segment" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Plucker%27s_conoid_%28n%3D2%29.gif/360px-Plucker%27s_conoid_%28n%3D2%29.gif" decoding="async" width="360" height="396" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/d/d7/Plucker%27s_conoid_%28n%3D2%29.gif 1.5x" data-file-width="394" data-file-height="433" /></a></span></div></div> </div> <div class="thumbcaption"> <div class="magnify"><a href="/wiki/File:Plucker%27s_conoid_(n%3D2).gif" title="File:Plucker&#39;s conoid (n=2).gif"> </a></div><a href="/wiki/Pl%C3%BCcker%27s_conoid" title="Plücker&#39;s conoid">Plücker's conoid</a> swept out by a different motion of a line segment </div> </div> </div> <p>One way to embed the Möbius strip in three-dimensional Euclidean space is to sweep it out by a line segment rotating in a plane, which in turn rotates around one of its <span class="nowrap">lines.<sup id="cite_ref-maschke_25-0" class="reference"><a href="#cite_note-maschke-25"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></span> For the swept surface to meet up with itself after a half-twist, the line segment should rotate around its center at half the angular velocity of the plane's rotation. This can be described as a <a href="/wiki/Parametric_surface" title="Parametric surface">parametric surface</a> defined by equations for the <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> of its points, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x(u,v)&amp;=\left(1+{\frac {v}{2}}\cos {\frac {u}{2}}\right)\cos u\\y(u,v)&amp;=\left(1+{\frac {v}{2}}\cos {\frac {u}{2}}\right)\sin u\\z(u,v)&amp;={\frac {v}{2}}\sin {\frac {u}{2}}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mn>2</mn> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>u</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>u</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mn>2</mn> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>u</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>u</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mn>2</mn> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>u</mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x(u,v)&amp;=\left(1+{\frac {v}{2}}\cos {\frac {u}{2}}\right)\cos u\\y(u,v)&amp;=\left(1+{\frac {v}{2}}\cos {\frac {u}{2}}\right)\sin u\\z(u,v)&amp;={\frac {v}{2}}\sin {\frac {u}{2}}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8b53cbccc386f8f5ca10eb9b1223ac8eee95c31" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:30.523ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}x(u,v)&amp;=\left(1+{\frac {v}{2}}\cos {\frac {u}{2}}\right)\cos u\\y(u,v)&amp;=\left(1+{\frac {v}{2}}\cos {\frac {u}{2}}\right)\sin u\\z(u,v)&amp;={\frac {v}{2}}\sin {\frac {u}{2}}\\\end{aligned}}}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq u&lt;2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>u</mi> <mo>&lt;</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq u&lt;2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8227e96f13d7d97a7dbe7a215b83f5ec070ce25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.184ex; height:2.343ex;" alt="{\displaystyle 0\leq u&lt;2\pi }"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1\leq v\leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>v</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1\leq v\leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c78efe5b7c254d5806ccaf1ba44f98b7a975ab91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.458ex; height:2.343ex;" alt="{\displaystyle -1\leq v\leq 1}"></span>,</span> where one parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> describes the rotation angle of the plane around its central axis and the other parameter <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span></span> describes the position of a point along the rotating line segment. This produces a Möbius strip of width 1, whose center circle has radius 1, lies in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72eb345e496513fb8b2fa4aa8c4d89b855f9a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle xy}"></span>-plane and is centered at <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c6fd55d5621fd95ca93549660fbb355fd9bd22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.365ex; height:2.843ex;" alt="{\displaystyle (0,0,0)}"></span>.<sup id="cite_ref-parameterization_26-0" class="reference"><a href="#cite_note-parameterization-26"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup></span> The same method can produce Möbius strips with any odd number of half-twists, by rotating the segment more quickly in its plane. The rotating segment sweeps out a circular disk in the plane that it rotates within, and the Möbius strip that it generates forms a slice through the <a href="/wiki/Solid_torus" title="Solid torus">solid torus</a> swept out by this disk. Because of the one-sidedness of this slice, the sliced torus remains <span class="nowrap">connected.<sup id="cite_ref-split-tori_27-0" class="reference"><a href="#cite_note-split-tori-27"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup></span> </p><p>A line or line segment swept in a different motion, rotating in a horizontal plane around the origin as it moves up and down, forms <a href="/wiki/Pl%C3%BCcker%27s_conoid" title="Plücker&#39;s conoid">Plücker's conoid</a> or cylindroid, an algebraic <a href="/wiki/Ruled_surface" title="Ruled surface">ruled surface</a> in the form of a self-crossing Möbius <span class="nowrap">strip.<sup id="cite_ref-francis_28-0" class="reference"><a href="#cite_note-francis-28"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup></span> It has applications in the design of <span class="nowrap"><a href="/wiki/Gear" title="Gear">gears</a>.<sup id="cite_ref-dooner-seirig_29-0" class="reference"><a href="#cite_note-dooner-seirig-29"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup></span> </p> <div class="mw-heading mw-heading3"><h3 id="Polyhedral_surfaces_and_flat_foldings">Polyhedral surfaces and flat foldings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=5" title="Edit section: Polyhedral surfaces and flat foldings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Flexagon.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Flexagon.gif/130px-Flexagon.gif" decoding="async" width="130" height="134" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Flexagon.gif/195px-Flexagon.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/a/a1/Flexagon.gif 2x" data-file-width="240" data-file-height="248" /></a><figcaption>Trihexaflexagon being flexed</figcaption></figure> <p>A strip of paper can form a <a href="/wiki/Mathematics_of_paper_folding#Flat_folding" title="Mathematics of paper folding">flattened</a> Möbius strip in the plane by folding it at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 60^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>60</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 60^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08c42292485b447b7f627a7accd90d5b439c11d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.343ex;" alt="{\displaystyle 60^{\circ }}"></span> angles so that its center line lies along an <a href="/wiki/Equilateral_triangle" title="Equilateral triangle">equilateral triangle</a>, and attaching the ends. The shortest strip for which this is possible consists of three equilateral triangles, folded at the edges where two triangles meet. Its <a href="/wiki/Aspect_ratio" title="Aspect ratio">aspect ratio</a>&#160;&#8211;&#32;the ratio of the strip's length<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> to its width&#160;&#8211;&#32;is <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}\approx 1.73}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>1.73</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}\approx 1.73}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b339ab1e263eb16e37516f58c367e2210afb5c0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.331ex; height:2.843ex;" alt="{\displaystyle {\sqrt {3}}\approx 1.73}"></span>,</span> and the same folding method works for any larger aspect <span class="nowrap">ratio.<sup id="cite_ref-barr_31-0" class="reference"><a href="#cite_note-barr-31"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-fuchs-tabachnikov_32-0" class="reference"><a href="#cite_note-fuchs-tabachnikov-32"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup></span> For a strip of nine equilateral triangles, the result is a <a href="/wiki/Trihexaflexagon" class="mw-redirect" title="Trihexaflexagon">trihexaflexagon</a>, which can be flexed to reveal different parts of its <span class="nowrap">surface.<sup id="cite_ref-pook_33-0" class="reference"><a href="#cite_note-pook-33"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup></span> For strips too short to apply this method directly, one can first "accordion fold" the strip in its wide direction back and forth using an even number of folds. With two folds, for example, a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\times 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x00D7;<!-- × --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\times 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b4bf91a527dc01af9ef6ace81199becf1308e00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.165ex; height:2.176ex;" alt="{\displaystyle 1\times 1}"></span> strip would become a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\times {\tfrac {1}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\times {\tfrac {1}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/faf25dcdef83f6c2f9a97989f28f58de45b44033" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:5.661ex; height:3.676ex;" alt="{\displaystyle 1\times {\tfrac {1}{3}}}"></span> folded strip whose <a href="/wiki/Cross_section_(geometry)" title="Cross section (geometry)">cross section</a> is in the shape of an 'N' and would remain an 'N' after a half-twist. The narrower accordion-folded strip can then be folded and joined in the same way that a longer strip <span class="nowrap">would be.<sup id="cite_ref-barr_31-1" class="reference"><a href="#cite_note-barr-31"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-fuchs-tabachnikov_32-1" class="reference"><a href="#cite_note-fuchs-tabachnikov-32"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:392px;max-width:392px"><div class="trow"><div class="tsingle" style="width:191px;max-width:191px"><div class="thumbimage" style="height:188px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:5-vertex_polyhedral_M%C3%B6bius_strip.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/5-vertex_polyhedral_M%C3%B6bius_strip.svg/189px-5-vertex_polyhedral_M%C3%B6bius_strip.svg.png" decoding="async" width="189" height="189" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/5-vertex_polyhedral_M%C3%B6bius_strip.svg/284px-5-vertex_polyhedral_M%C3%B6bius_strip.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ed/5-vertex_polyhedral_M%C3%B6bius_strip.svg/378px-5-vertex_polyhedral_M%C3%B6bius_strip.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div><div class="tsingle" style="width:197px;max-width:197px"><div class="thumbimage" style="height:188px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Pentagonal_M%C3%B6bius_strip.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/57/Pentagonal_M%C3%B6bius_strip.svg/195px-Pentagonal_M%C3%B6bius_strip.svg.png" decoding="async" width="195" height="188" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/57/Pentagonal_M%C3%B6bius_strip.svg/293px-Pentagonal_M%C3%B6bius_strip.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/57/Pentagonal_M%C3%B6bius_strip.svg/390px-Pentagonal_M%C3%B6bius_strip.svg.png 2x" data-file-width="522" data-file-height="504" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Five-vertex polyhedral and flat-folded Möbius strips</div></div></div></div> <p>The Möbius strip can also be embedded as a <a href="/wiki/Polyhedron" title="Polyhedron">polyhedral surface</a> in space or flat-folded in the plane, with only five triangular faces sharing five vertices. In this sense, it is simpler than the <a href="/wiki/Cylinder" title="Cylinder">cylinder</a>, which requires six triangles and six vertices, even when represented more abstractly as a <a href="/wiki/Abstract_simplicial_complex" title="Abstract simplicial complex">simplicial complex</a>.<sup id="cite_ref-9vertex_34-0" class="reference"><a href="#cite_note-9vertex-34"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup> A five-triangle Möbius strip can be represented most symmetrically by five of the ten equilateral triangles of a <a href="/wiki/5-cell" title="5-cell">four-dimensional regular simplex</a>. This four-dimensional polyhedral Möbius strip is the only <i>tight</i> Möbius strip, one that is fully four-dimensional and for which all cuts by <a href="/wiki/Hyperplane" title="Hyperplane">hyperplanes</a> separate it into two parts that are topologically equivalent to disks or <span class="nowrap">circles.<sup id="cite_ref-kuiper_36-0" class="reference"><a href="#cite_note-kuiper-36"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup></span> </p><p>Other polyhedral embeddings of Möbius strips include one with four convex <a href="/wiki/Quadrilateral" title="Quadrilateral">quadrilaterals</a> as faces, another with three non-convex quadrilateral <span class="nowrap">faces,<sup id="cite_ref-szilassi_37-0" class="reference"><a href="#cite_note-szilassi-37"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup></span> and one using the vertices and center point of a regular <a href="/wiki/Octahedron" title="Octahedron">octahedron</a>, with a triangular <span class="nowrap">boundary.<sup id="cite_ref-tuckerman_38-0" class="reference"><a href="#cite_note-tuckerman-38"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup></span> Every abstract triangulation of the <a href="/wiki/Projective_plane" title="Projective plane">projective plane</a> can be embedded into 3D as a polyhedral Möbius strip with a triangular boundary after removing one of its <span class="nowrap">faces;<sup id="cite_ref-bon-nak_39-0" class="reference"><a href="#cite_note-bon-nak-39"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup></span> an example is the six-vertex projective plane obtained by adding one vertex to the five-vertex Möbius strip, connected by triangles to each of its boundary <span class="nowrap">edges.<sup id="cite_ref-9vertex_34-1" class="reference"><a href="#cite_note-9vertex-34"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup></span> However, not every abstract triangulation of the Möbius strip can be represented geometrically, as a polyhedral <span class="nowrap">surface.<sup id="cite_ref-brehm_40-0" class="reference"><a href="#cite_note-brehm-40"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup></span> To be realizable, it is necessary and sufficient that there be no two disjoint non-contractible 3-cycles in the <span class="nowrap">triangulation.<sup id="cite_ref-nak-tsu_41-0" class="reference"><a href="#cite_note-nak-tsu-41"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></span> </p> <div class="mw-heading mw-heading3"><h3 id="Smoothly_embedded_rectangles">Smoothly embedded rectangles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=6" title="Edit section: Smoothly embedded rectangles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A rectangular Möbius strip, made by attaching the ends of a paper rectangle, can be embedded smoothly into three-dimensional space whenever its aspect ratio is greater than <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}\approx 1.73}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>1.73</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}\approx 1.73}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b339ab1e263eb16e37516f58c367e2210afb5c0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.331ex; height:2.843ex;" alt="{\displaystyle {\sqrt {3}}\approx 1.73}"></span>,</span> the same ratio as for the flat-folded equilateral-triangle version of the Möbius <span class="nowrap">strip.<sup id="cite_ref-sadowsky-translation_42-0" class="reference"><a href="#cite_note-sadowsky-translation-42"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup></span> This flat triangular embedding can lift to a smooth<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup> embedding in three dimensions, in which the strip lies flat in three parallel planes between three cylindrical rollers, each tangent to two of the <span class="nowrap">planes.<sup id="cite_ref-sadowsky-translation_42-1" class="reference"><a href="#cite_note-sadowsky-translation-42"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup></span> Mathematically, a smoothly embedded sheet of paper can be modeled as a <a href="/wiki/Developable_surface" title="Developable surface">developable surface</a>, that can bend but cannot <span class="nowrap">stretch.<sup id="cite_ref-bartels-hornung_43-1" class="reference"><a href="#cite_note-bartels-hornung-43"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-starostin-vdh_45-0" class="reference"><a href="#cite_note-starostin-vdh-45"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup></span> As its aspect ratio decreases toward <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b19c09494138b5082459afac7f9a8d99c546fcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:2.843ex;" alt="{\displaystyle {\sqrt {3}}}"></span>, all smooth embeddings seem to approach the same triangular <span class="nowrap">form.<sup id="cite_ref-darkside_46-0" class="reference"><a href="#cite_note-darkside-46"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup></span> </p><p>The lengthwise folds of an accordion-folded flat Möbius strip prevent it from forming a three-dimensional embedding in which the layers are separated from each other and bend smoothly without crumpling or stretching away from the <span class="nowrap">folds.<sup id="cite_ref-fuchs-tabachnikov_32-2" class="reference"><a href="#cite_note-fuchs-tabachnikov-32"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup></span> Instead, unlike in the flat-folded case, there is a lower limit to the aspect ratio of smooth rectangular Möbius strips. Their aspect ratio cannot be less than <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /2\approx 1.57}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2248;<!-- ≈ --></mo> <mn>1.57</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /2\approx 1.57}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a36ff9e1888aa40c1aded554c531ed6c74ac50f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.89ex; height:2.843ex;" alt="{\displaystyle \pi /2\approx 1.57}"></span>,</span> even if self-intersections are allowed. Self-intersecting smooth Möbius strips exist for any aspect ratio above this <span class="nowrap">bound.<sup id="cite_ref-fuchs-tabachnikov_32-3" class="reference"><a href="#cite_note-fuchs-tabachnikov-32"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-halpern-weaver_47-0" class="reference"><a href="#cite_note-halpern-weaver-47"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup></span> Without self-intersections, the aspect ratio must be at <span class="nowrap">least<sup id="cite_ref-schwartz_48-0" class="reference"><a href="#cite_note-schwartz-48"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2}{3}}{\sqrt {3+2{\sqrt {3}}}}\approx 1.695.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </msqrt> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>1.695.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2}{3}}{\sqrt {3+2{\sqrt {3}}}}\approx 1.695.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5e1500db8ca0318d54d02088938ab098970637c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.628ex; height:5.176ex;" alt="{\displaystyle {\frac {2}{3}}{\sqrt {3+2{\sqrt {3}}}}\approx 1.695.}"></span> </p> <style data-mw-deduplicate="TemplateStyles:r1233989161">.mw-parser-output .unsolved{margin:0.5em 0 1em 1em;border:#ccc solid;padding:0.35em 0.35em 0.35em 2.2em;background-color:var(--background-color-interactive-subtle);background-image:url("https://upload.wikimedia.org/wikipedia/commons/2/26/Question%2C_Web_Fundamentals.svg");background-position:top 50%left 0.35em;background-size:1.5em;background-repeat:no-repeat}@media(min-width:720px){.mw-parser-output .unsolved{clear:right;float:right;max-width:25%}}.mw-parser-output .unsolved-label{font-weight:bold}.mw-parser-output .unsolved-body{margin:0.35em;font-style:italic}.mw-parser-output .unsolved-more{font-size:smaller}</style> <div role="note" aria-labelledby="unsolved-label-mathematics" class="unsolved"> <div><span class="unsolved-label" id="unsolved-label-mathematics">Unsolved problem in mathematics</span>:</div> <div class="unsolved-body">Can a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 12\times 7}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>12</mn> <mo>&#x00D7;<!-- × --></mo> <mn>7</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 12\times 7}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e04a403a64170e2656d90bffc99293633e36c06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.328ex; height:2.176ex;" alt="{\displaystyle 12\times 7}"></span> paper rectangle be glued end-to-end to form a smooth Möbius strip embedded in space?&#8201;<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>f<span class="cite-bracket">&#93;</span></a></sup></div> <div class="unsolved-more"><a href="/wiki/List_of_unsolved_problems_in_mathematics" title="List of unsolved problems in mathematics">(more unsolved problems in mathematics)</a></div> </div> <p>For aspect ratios between this bound <span class="nowrap">and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b19c09494138b5082459afac7f9a8d99c546fcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:2.843ex;" alt="{\displaystyle {\sqrt {3}}}"></span>,</span> it has been an open problem whether smooth embeddings, without self-intersection, <span class="nowrap">exist.<sup id="cite_ref-fuchs-tabachnikov_32-4" class="reference"><a href="#cite_note-fuchs-tabachnikov-32"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-halpern-weaver_47-1" class="reference"><a href="#cite_note-halpern-weaver-47"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-schwartz_48-1" class="reference"><a href="#cite_note-schwartz-48"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup></span> In 2023, <a href="/wiki/Richard_Schwartz_(mathematician)" title="Richard Schwartz (mathematician)">Richard Schwartz</a> announced a proof that they do not exist, but this result still awaits peer review and publication.<sup id="cite_ref-optimal_50-0" class="reference"><a href="#cite_note-optimal-50"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-crowell_51-0" class="reference"><a href="#cite_note-crowell-51"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> If the requirement of smoothness is relaxed to allow <a href="/wiki/Continuously_differentiable" class="mw-redirect" title="Continuously differentiable">continuously differentiable</a> surfaces, the <a href="/wiki/Nash%E2%80%93Kuiper_theorem" class="mw-redirect" title="Nash–Kuiper theorem">Nash–Kuiper theorem</a> implies that any two opposite edges of any rectangle can be glued to form an embedded Möbius strip, no matter how small the aspect ratio <span class="nowrap">becomes.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>g<span class="cite-bracket">&#93;</span></a></sup></span> The limiting case, a surface obtained from an infinite strip of the plane between two parallel lines, glued with the opposite orientation to each other, is called the <i>unbounded Möbius strip</i> or the real <a href="/wiki/Tautological_line_bundle" class="mw-redirect" title="Tautological line bundle">tautological line bundle</a>.<sup id="cite_ref-dundas_53-0" class="reference"><a href="#cite_note-dundas-53"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> Although it has no smooth closed embedding into three-dimensional space, it can be embedded smoothly as a closed subset of four-dimensional Euclidean <span class="nowrap">space.<sup id="cite_ref-blanusa_54-0" class="reference"><a href="#cite_note-blanusa-54"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup></span> </p><p>The minimum-energy shape of a smooth Möbius strip glued from a rectangle does not have a known analytic description, but can be calculated numerically, and has been the subject of much study in <a href="/wiki/Plate_theory" title="Plate theory">plate theory</a> since the initial work on this subject in 1930 by <a href="/wiki/Michael_Sadowsky" title="Michael Sadowsky">Michael Sadowsky</a>.<sup id="cite_ref-bartels-hornung_43-3" class="reference"><a href="#cite_note-bartels-hornung-43"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-starostin-vdh_45-1" class="reference"><a href="#cite_note-starostin-vdh-45"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> It is also possible to find <a href="/wiki/Algebraic_surface" title="Algebraic surface">algebraic surfaces</a> that contain rectangular developable Möbius <span class="nowrap">strips.<sup id="cite_ref-wunderlich_55-0" class="reference"><a href="#cite_note-wunderlich-55"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-schwarz_56-0" class="reference"><a href="#cite_note-schwarz-56"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup></span> </p> <div class="mw-heading mw-heading3"><h3 id="Making_the_boundary_circular">Making the boundary circular</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=7" title="Edit section: Making the boundary circular"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:472px;max-width:472px"><div class="trow"><div class="tsingle" style="width:232px;max-width:232px"><div class="thumbimage" style="height:230px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Mobius_to_Klein.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/8/87/Mobius_to_Klein.gif" decoding="async" width="230" height="230" class="mw-file-element" data-file-width="180" data-file-height="180" /></a></span></div><div class="thumbcaption">Gluing two Möbius strips to form a Klein bottle</div></div><div class="tsingle" style="width:236px;max-width:236px"><div class="thumbimage" style="height:230px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:MobiusStrip-02.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/MobiusStrip-02.png/234px-MobiusStrip-02.png" decoding="async" width="234" height="231" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/8/80/MobiusStrip-02.png 1.5x" data-file-width="276" data-file-height="272" /></a></span></div><div class="thumbcaption">A projection of the Sudanese Möbius strip</div></div></div></div></div> <p>The edge, or <a href="/wiki/Boundary_(topology)" title="Boundary (topology)">boundary</a>, of a Möbius strip is <a href="/wiki/Homeomorphic" class="mw-redirect" title="Homeomorphic">topologically equivalent</a> to a <a href="/wiki/Circle" title="Circle">circle</a>. In common forms of the Möbius strip, it has a different shape from a circle, but it is <a href="/wiki/Unknot" title="Unknot">unknotted</a>, and therefore the whole strip can be stretched without crossing itself to make the edge perfectly <span class="nowrap">circular.<sup id="cite_ref-hilbert-cohn-vossen_57-0" class="reference"><a href="#cite_note-hilbert-cohn-vossen-57"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup></span> One such example is based on the topology of the <a href="/wiki/Klein_bottle" title="Klein bottle">Klein bottle</a>, a one-sided surface with no boundary that cannot be embedded into three-dimensional space, but can be <a href="/wiki/Immersion_(mathematics)" title="Immersion (mathematics)">immersed</a> (allowing the surface to cross itself in certain restricted ways). A Klein bottle is the surface that results when two Möbius strips are glued together edge-to-edge, and&#160;&#8211;&#32;reversing that process&#160;&#8211;&#32;a Klein bottle can be sliced along a carefully chosen cut to produce two Möbius <span class="nowrap">strips.<sup id="cite_ref-spivak_58-0" class="reference"><a href="#cite_note-spivak-58"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup></span> For a form of the Klein bottle known as Lawson's Klein bottle, the curve along which it is sliced can be made circular, resulting in Möbius strips with circular <span class="nowrap">edges.<sup id="cite_ref-ddg_59-0" class="reference"><a href="#cite_note-ddg-59"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup></span> </p><p>Lawson's Klein bottle is a self-crossing <a href="/wiki/Minimal_surface" title="Minimal surface">minimal surface</a> in the <a href="/wiki/Unit_hypersphere" class="mw-redirect" title="Unit hypersphere">unit hypersphere</a> of 4-dimensional space, the set of points of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\cos \theta \cos \phi ,\sin \theta \cos \phi ,\cos 2\theta \sin \phi ,\sin 2\theta \sin \phi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\cos \theta \cos \phi ,\sin \theta \cos \phi ,\cos 2\theta \sin \phi ,\sin 2\theta \sin \phi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfeb68f484bde24a37cd86edde261fd61b8fee96" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.652ex; height:2.843ex;" alt="{\displaystyle (\cos \theta \cos \phi ,\sin \theta \cos \phi ,\cos 2\theta \sin \phi ,\sin 2\theta \sin \phi )}"></span> for <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq \theta &lt;\pi ,0\leq \phi &lt;2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&lt;</mo> <mi>&#x03C0;<!-- π --></mi> <mo>,</mo> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&lt;</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq \theta &lt;\pi ,0\leq \phi &lt;2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f89774a6b4869ce2be7e624e745213384651de88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.055ex; height:2.509ex;" alt="{\displaystyle 0\leq \theta &lt;\pi ,0\leq \phi &lt;2\pi }"></span>.<sup id="cite_ref-lawson_60-0" class="reference"><a href="#cite_note-lawson-60"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup></span> Half of this Klein bottle, the subset with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq \phi &lt;\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&lt;</mo> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq \phi &lt;\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f14866553885d9726ee86a3f073e17663e095dbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.077ex; height:2.509ex;" alt="{\displaystyle 0\leq \phi &lt;\pi }"></span>, gives a Möbius strip embedded in the hypersphere as a minimal surface with a <a href="/wiki/Great_circle" title="Great circle">great circle</a> as its <span class="nowrap">boundary.<sup id="cite_ref-schleimer-segerman_61-0" class="reference"><a href="#cite_note-schleimer-segerman-61"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup></span> This embedding is sometimes called the "Sudanese Möbius strip" after topologists Sue Goodman and Daniel Asimov, who discovered it in the <span class="nowrap">1970s.<sup id="cite_ref-sudanese_62-0" class="reference"><a href="#cite_note-sudanese-62"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup></span> Geometrically Lawson's Klein bottle can be constructed by sweeping a great circle through a great-circular motion in the 3-sphere, and the Sudanese Möbius strip is obtained by sweeping a semicircle instead of a circle, or equivalently by slicing the Klein bottle along a circle that is perpendicular to all of the swept <span class="nowrap">circles.<sup id="cite_ref-ddg_59-1" class="reference"><a href="#cite_note-ddg-59"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-franzoni_63-0" class="reference"><a href="#cite_note-franzoni-63"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup></span> <a href="/wiki/Stereographic_projection" title="Stereographic projection">Stereographic projection</a> transforms this shape from a three-dimensional spherical space into three-dimensional Euclidean space, preserving the circularity of its <span class="nowrap">boundary.<sup id="cite_ref-ddg_59-2" class="reference"><a href="#cite_note-ddg-59"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup></span> The most symmetric projection is obtained by using a projection point that lies on that great circle that runs through the midpoint of each of the semicircles, but produces an unbounded embedding with the projection point removed from its <span class="nowrap">centerline.<sup id="cite_ref-schleimer-segerman_61-1" class="reference"><a href="#cite_note-schleimer-segerman-61"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup></span> Instead, leaving the Sudanese Möbius strip unprojected, in the 3-sphere, leaves it with an infinite group of symmetries isomorphic to the <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/978098671ba9316b57d09845e071c44f221ed52d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.78ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (2)}"></span>,</span> the group of symmetries of a <span class="nowrap">circle.<sup id="cite_ref-lawson_60-1" class="reference"><a href="#cite_note-lawson-60"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup></span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Cross-cap_level_sets.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Cross-cap_level_sets.svg/180px-Cross-cap_level_sets.svg.png" decoding="async" width="180" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Cross-cap_level_sets.svg/270px-Cross-cap_level_sets.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Cross-cap_level_sets.svg/360px-Cross-cap_level_sets.svg.png 2x" data-file-width="306" data-file-height="306" /></a><figcaption>Schematic depiction of a cross-cap with an open bottom, showing its <a href="/wiki/Level_set" title="Level set">level sets</a>. This surface crosses itself along the vertical line segment.</figcaption></figure> <p>The Sudanese Möbius strip extends on all sides of its boundary circle, unavoidably if the surface is to avoid crossing itself. Another form of the Möbius strip, called the <b>cross-cap</b> or <b>crosscap</b>, also has a circular boundary, but otherwise stays on only one side of the plane of this <span class="nowrap">circle,<sup id="cite_ref-huggett-jordan_64-0" class="reference"><a href="#cite_note-huggett-jordan-64"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup></span> making it more convenient for attaching onto circular holes in other surfaces. In order to do so, it crosses itself. It can be formed by removing a <a href="/wiki/Quadrilateral" title="Quadrilateral">quadrilateral</a> from the top of a hemisphere, orienting the edges of the quadrilateral in alternating directions, and then gluing opposite pairs of these edges consistently with this <span class="nowrap">orientation.<sup id="cite_ref-flapan_65-0" class="reference"><a href="#cite_note-flapan-65"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup></span> The two parts of the surface formed by the two glued pairs of edges cross each other with a <a href="/wiki/Pinch_point_(mathematics)" title="Pinch point (mathematics)">pinch point</a> like that of a <a href="/wiki/Whitney_umbrella" title="Whitney umbrella">Whitney umbrella</a> at each end of the crossing <span class="nowrap">segment,<sup id="cite_ref-richeson_66-0" class="reference"><a href="#cite_note-richeson-66"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup></span> the same topological structure seen in Plücker's <span class="nowrap">conoid.<sup id="cite_ref-francis_28-1" class="reference"><a href="#cite_note-francis-28"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup></span> </p> <div class="mw-heading mw-heading3"><h3 id="Surfaces_of_constant_curvature">Surfaces of constant curvature</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=8" title="Edit section: Surfaces of constant curvature"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The open Möbius strip is the <a href="/wiki/Relative_interior" title="Relative interior">relative interior</a> of a standard Möbius strip, formed by omitting the points on its boundary edge. It may be given a <a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a> of constant positive, negative, or zero <a href="/wiki/Gaussian_curvature" title="Gaussian curvature">Gaussian curvature</a>. The cases of negative and zero curvature form geodesically complete surfaces, which means that all <a href="/wiki/Geodesic" title="Geodesic">geodesics</a> ("straight lines" on the surface) may be extended indefinitely in either direction. </p> <dl><dt>Zero curvature</dt> <dd>An open strip with zero curvature may be constructed by gluing the opposite sides of a plane strip between two parallel lines, described above as the tautological line <span class="nowrap">bundle.<sup id="cite_ref-dundas_53-1" class="reference"><a href="#cite_note-dundas-53"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup></span> The resulting metric makes the open Möbius strip into a (geodesically) complete flat surface (i.e., having zero Gaussian curvature everywhere). This is the unique metric on the Möbius strip, up to uniform scaling, that is both flat and complete. It is the <a href="/wiki/Quotient_space_(topology)" title="Quotient space (topology)">quotient space</a> of a plane by a <a href="/wiki/Glide_reflection" title="Glide reflection">glide reflection</a>, and (together with the plane, <a href="/wiki/Cylinder" title="Cylinder">cylinder</a>, <a href="/wiki/Torus" title="Torus">torus</a>, and <a href="/wiki/Klein_bottle" title="Klein bottle">Klein bottle</a>) is one of only five two-dimensional complete <span class="nowrap"><a href="/wiki/Flat_manifold" title="Flat manifold">flat manifolds</a>.<sup id="cite_ref-godinho-natario_67-0" class="reference"><a href="#cite_note-godinho-natario-67"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup></span></dd> <dt>Negative curvature</dt> <dd>The open Möbius strip also admits complete metrics of constant negative curvature. One way to see this is to begin with the <a href="/wiki/Poincar%C3%A9_half-plane_model" title="Poincaré half-plane model">upper half plane (Poincaré) model</a> of the <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic plane</a>, a geometry of constant curvature whose lines are represented in the model by semicircles that meet the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-axis at right angles. Take the subset of the upper half-plane between any two nested semicircles, and identify the outer semicircle with the left-right reversal of the inner semicircle. The result is topologically a complete and non-compact Möbius strip with constant negative curvature. It is a "nonstandard" complete hyperbolic surface in the sense that it contains a complete hyperbolic <a href="/wiki/Half-plane" class="mw-redirect" title="Half-plane">half-plane</a> (actually two, on opposite sides of the axis of glide-reflection), and is one of only 13 nonstandard <span class="nowrap">surfaces.<sup id="cite_ref-cantwell-conlon_68-0" class="reference"><a href="#cite_note-cantwell-conlon-68"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup></span> Again, this can be understood as the quotient of the hyperbolic plane by a glide <span class="nowrap">reflection.<sup id="cite_ref-stillwell_69-0" class="reference"><a href="#cite_note-stillwell-69"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup></span></dd> <dt>Positive curvature</dt> <dd>A Möbius strip of constant positive curvature cannot be complete, since it is known that the only complete surfaces of constant positive curvature are the sphere and the <a href="/wiki/Real_projective_plane" title="Real projective plane">projective plane</a>.<sup id="cite_ref-godinho-natario_67-1" class="reference"><a href="#cite_note-godinho-natario-67"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> However, in a sense it is only one point away from being a complete surface, as the open Möbius strip is homeomorphic to the <a href="/wiki/Once-punctured" class="mw-redirect" title="Once-punctured">once-punctured</a> projective plane, the surface obtained by removing any one point from the projective <span class="nowrap">plane.<sup id="cite_ref-seifert-threlfall_70-0" class="reference"><a href="#cite_note-seifert-threlfall-70"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup></span></dd></dl> <p>The <a href="/wiki/Minimal_surface" title="Minimal surface">minimal surfaces</a> are described as having constant zero <a href="/wiki/Mean_curvature" title="Mean curvature">mean curvature</a> instead of constant Gaussian curvature. The Sudanese Möbius strip was constructed as a minimal surface bounded by a great circle in a 3-sphere, but there is also a unique complete (boundaryless) minimal surface immersed in Euclidean space that has the topology of an open Möbius strip. It is called the Meeks Möbius <span class="nowrap">strip,<sup id="cite_ref-lopez-martin_71-0" class="reference"><a href="#cite_note-lopez-martin-71"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup></span> after its 1982 description by <a href="/wiki/William_Hamilton_Meeks,_III" title="William Hamilton Meeks, III">William Hamilton Meeks, III</a>.<sup id="cite_ref-meeks_72-0" class="reference"><a href="#cite_note-meeks-72"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> Although globally unstable as a minimal surface, small patches of it, bounded by non-contractible curves within the surface, can form stable embedded Möbius strips as minimal <span class="nowrap">surfaces.<sup id="cite_ref-systolic_73-0" class="reference"><a href="#cite_note-systolic-73"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup></span> Both the Meeks Möbius strip, and every higher-dimensional minimal surface with the topology of the Möbius strip, can be constructed using solutions to the <a href="/wiki/Bj%C3%B6rling_problem" title="Björling problem">Björling problem</a>, which defines a minimal surface uniquely from its boundary curve and tangent planes along this <span class="nowrap">curve.<sup id="cite_ref-bjorling_74-0" class="reference"><a href="#cite_note-bjorling-74"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup></span> </p> <div class="mw-heading mw-heading3"><h3 id="Spaces_of_lines">Spaces of lines</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=9" title="Edit section: Spaces of lines"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The family of lines in the plane can be given the structure of a smooth space, with each line represented as a point in this space. The resulting space of lines is <a href="/wiki/Diffeomorphic" class="mw-redirect" title="Diffeomorphic">topologically equivalent</a> to the open Möbius <span class="nowrap">strip.<sup id="cite_ref-parker_75-0" class="reference"><a href="#cite_note-parker-75"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup></span> One way to see this is to extend the Euclidean plane to the <a href="/wiki/Real_projective_plane" title="Real projective plane">real projective plane</a> by adding one more line, the <a href="/wiki/Line_at_infinity" title="Line at infinity">line at infinity</a>. By <a href="/wiki/Projective_duality" class="mw-redirect" title="Projective duality">projective duality</a> the space of lines in the projective plane is equivalent to its space of points, the projective plane itself. Removing the line at infinity, to produce the space of Euclidean lines, punctures this space of projective <span class="nowrap">lines.<sup id="cite_ref-bickel_76-0" class="reference"><a href="#cite_note-bickel-76"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup></span> Therefore, the space of Euclidean lines is a punctured projective plane, which is one of the forms of the open Möbius <span class="nowrap">strip.<sup id="cite_ref-seifert-threlfall_70-1" class="reference"><a href="#cite_note-seifert-threlfall-70"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup></span> The space of lines in the <a href="/wiki/Hyperbolic_plane" class="mw-redirect" title="Hyperbolic plane">hyperbolic plane</a> can be parameterized by <a href="/wiki/Unordered_pair" title="Unordered pair">unordered pairs</a> of distinct points on a circle, the pairs of points at infinity of each line. This space, again, has the topology of an open Möbius <span class="nowrap">strip.<sup id="cite_ref-mangahas_77-0" class="reference"><a href="#cite_note-mangahas-77"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup></span> </p><p>These spaces of lines are highly symmetric. The symmetries of Euclidean lines include the <a href="/wiki/Affine_transformation" title="Affine transformation">affine transformations</a>, and the symmetries of hyperbolic lines include the <span class="nowrap"><a href="/wiki/M%C3%B6bius_transformation" title="Möbius transformation">Möbius transformations</a>.<sup id="cite_ref-ramirez-seade_78-0" class="reference"><a href="#cite_note-ramirez-seade-78"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup></span> The affine transformations and Möbius transformations both form <span class="nowrap">6-dimensional</span> <a href="/wiki/Lie_group" title="Lie group">Lie groups</a>, topological spaces having a compatible <a href="/wiki/Symmetry_group" title="Symmetry group">algebraic structure</a> describing the composition of <span class="nowrap">symmetries.<sup id="cite_ref-fomenko-kunii_79-0" class="reference"><a href="#cite_note-fomenko-kunii-79"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-isham_80-0" class="reference"><a href="#cite_note-isham-80"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup></span> Because every line in the plane is symmetric to every other line, the open Möbius strip is a <a href="/wiki/Homogeneous_space" title="Homogeneous space">homogeneous space</a>, a space with symmetries that take every point to every other point. Homogeneous spaces of Lie groups are called <a href="/wiki/Solvmanifold" title="Solvmanifold">solvmanifolds</a>, and the Möbius strip can be used as a <a href="/wiki/Counterexample" title="Counterexample">counterexample</a>, showing that not every solvmanifold is a <a href="/wiki/Nilmanifold" title="Nilmanifold">nilmanifold</a>, and that not every solvmanifold can be factored into a <a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a> of a <a href="/wiki/Compact_space" title="Compact space">compact</a> solvmanifold <span class="nowrap">with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>.</span> These symmetries also provide another way to construct the Möbius strip itself, as a <i>group model</i> of these Lie groups. A group model consists of a Lie group and a <a href="/wiki/Stabilizer_subgroup" class="mw-redirect" title="Stabilizer subgroup">stabilizer subgroup</a> of its action; contracting the <a href="/wiki/Coset" title="Coset">cosets</a> of the subgroup to points produces a space with the same topology as the underlying homogenous space. In the case of the symmetries of Euclidean lines, the stabilizer of the <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-axis</span> consists of all symmetries that take the axis to itself. Each line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> corresponds to a coset, the set of symmetries that map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> to the <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-axis.</span> Therefore, the <a href="/wiki/Quotient_space_(topology)" title="Quotient space (topology)">quotient space</a>, a space that has one point per coset and inherits its topology from the space of symmetries, is the same as the space of lines, and is again an open Möbius <span class="nowrap">strip.<sup id="cite_ref-gor-oni-vin_81-0" class="reference"><a href="#cite_note-gor-oni-vin-81"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup></span> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=10" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:M%C3%B6bius_resistor.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/M%C3%B6bius_resistor.svg/180px-M%C3%B6bius_resistor.svg.png" decoding="async" width="180" height="162" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/M%C3%B6bius_resistor.svg/270px-M%C3%B6bius_resistor.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7d/M%C3%B6bius_resistor.svg/360px-M%C3%B6bius_resistor.svg.png 2x" data-file-width="500" data-file-height="450" /></a><figcaption>Electrical flow in a <a href="/wiki/M%C3%B6bius_resistor" title="Möbius resistor">Möbius resistor</a></figcaption></figure> <p>Beyond the already-discussed applications of Möbius strips to the design of mechanical belts that wear evenly on their entire surface, and of the Plücker conoid to the design of gears, other applications of Möbius strips include: </p> <ul><li><a href="/wiki/Graphene" title="Graphene">Graphene</a> ribbons twisted to form Möbius strips with new electronic characteristics including helical magnetism<sup id="cite_ref-graphene_82-0" class="reference"><a href="#cite_note-graphene-82"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/M%C3%B6bius_aromaticity" title="Möbius aromaticity">Möbius aromaticity</a>, a property of <a href="/wiki/Organic_chemical" class="mw-redirect" title="Organic chemical">organic chemicals</a> whose molecular structure forms a cycle, with <a href="/wiki/Molecular_orbital" title="Molecular orbital">molecular orbitals</a> aligned along the cycle in the pattern of a Möbius strip<sup id="cite_ref-aromaticity1_83-0" class="reference"><a href="#cite_note-aromaticity1-83"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-aromaticity2_84-0" class="reference"><a href="#cite_note-aromaticity2-84"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/M%C3%B6bius_resistor" title="Möbius resistor">Möbius resistor</a>, a strip of conductive material covering the single side of a <a href="/wiki/Dielectric" title="Dielectric">dielectric</a> Möbius strip, in a way that cancels its own <a href="/wiki/Self-inductance" class="mw-redirect" title="Self-inductance">self-inductance</a><sup id="cite_ref-resistor_85-0" class="reference"><a href="#cite_note-resistor-85"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEPickover200545–46_86-0" class="reference"><a href="#cite_note-FOOTNOTEPickover200545–46-86"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Resonator" title="Resonator">Resonators</a> with a compact design and a resonant frequency that is half that of identically constructed linear coils<sup id="cite_ref-resonator_87-0" class="reference"><a href="#cite_note-resonator-87"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-resonator2_88-0" class="reference"><a href="#cite_note-resonator2-88"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Polarization_(waves)" title="Polarization (waves)">Polarization</a> patterns in light emerging from a <a href="/wiki/Q-plate" title="Q-plate"><i>q</i>-plate</a><sup id="cite_ref-polarization_89-0" class="reference"><a href="#cite_note-polarization-89"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup></li> <li>A proof of the impossibility of continuous, anonymous, and unanimous two-party aggregation rules in <a href="/wiki/Social_choice_theory" title="Social choice theory">social choice theory</a><sup id="cite_ref-can-ind_90-0" class="reference"><a href="#cite_note-can-ind-90"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/M%C3%B6bius_loop_roller_coaster" class="mw-redirect" title="Möbius loop roller coaster">Möbius loop roller coasters</a>, a form of dual-tracked roller coaster in which the two tracks spiral around each other an odd number of times, so that the carriages return to the other track than the one they started on<sup id="cite_ref-coaster1_91-0" class="reference"><a href="#cite_note-coaster1-91"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-coaster2_92-0" class="reference"><a href="#cite_note-coaster2-92"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/World_map" title="World map">World maps</a> projected onto a Möbius strip with the convenient properties that there are no east–west boundaries, and that the <a href="/wiki/Antipodes" title="Antipodes">antipode</a> of any point on the map can be found on the other printed side of the surface at the same point of the Möbius strip<sup id="cite_ref-maps1_93-0" class="reference"><a href="#cite_note-maps1-93"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-maps2_94-0" class="reference"><a href="#cite_note-maps2-94"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>Scientists have also studied the energetics of <a href="/wiki/Soap_film" title="Soap film">soap films</a> shaped as Möbius strips,<sup id="cite_ref-courant_95-0" class="reference"><a href="#cite_note-courant-95"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-soap_96-0" class="reference"><a href="#cite_note-soap-96"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> the <a href="/wiki/Chemical_synthesis" title="Chemical synthesis">chemical synthesis</a> of <a href="/wiki/Molecule" title="Molecule">molecules</a> with a Möbius strip shape,<sup id="cite_ref-synthesis_97-0" class="reference"><a href="#cite_note-synthesis-97"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEPickover200552–58_98-0" class="reference"><a href="#cite_note-FOOTNOTEPickover200552–58-98"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> and the formation of larger <a href="/wiki/Nanoscale" class="mw-redirect" title="Nanoscale">nanoscale</a> Möbius strips using <a href="/wiki/DNA_origami" title="DNA origami">DNA origami</a>.<sup id="cite_ref-dna_99-0" class="reference"><a href="#cite_note-dna-99"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_popular_culture">In popular culture</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=11" title="Edit section: In popular culture"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Middelheim_Max_Bill_Eindeloze_kronkel_1956_03_Cropped.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Middelheim_Max_Bill_Eindeloze_kronkel_1956_03_Cropped.jpg/220px-Middelheim_Max_Bill_Eindeloze_kronkel_1956_03_Cropped.jpg" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Middelheim_Max_Bill_Eindeloze_kronkel_1956_03_Cropped.jpg/330px-Middelheim_Max_Bill_Eindeloze_kronkel_1956_03_Cropped.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Middelheim_Max_Bill_Eindeloze_kronkel_1956_03_Cropped.jpg/440px-Middelheim_Max_Bill_Eindeloze_kronkel_1956_03_Cropped.jpg 2x" data-file-width="1449" data-file-height="1449" /></a><figcaption><i>Endless Twist</i>, <a href="/wiki/Max_Bill" title="Max Bill">Max Bill</a>, 1956, from the <a href="/wiki/Middelheim_Open_Air_Sculpture_Museum" title="Middelheim Open Air Sculpture Museum">Middelheim Open Air Sculpture Museum</a></figcaption></figure> <p>Two-dimensional artworks featuring the Möbius strip include an untitled 1947 painting by <a href="/wiki/Corrado_Cagli" title="Corrado Cagli">Corrado Cagli</a> (memorialized in a poem by <a href="/wiki/Charles_Olson" title="Charles Olson">Charles Olson</a>),<sup id="cite_ref-emmer_100-0" class="reference"><a href="#cite_note-emmer-100"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-olson_101-0" class="reference"><a href="#cite_note-olson-101"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> and two prints by <a href="/wiki/M._C._Escher" title="M. C. Escher">M. C. Escher</a>: <i>Möbius Band I</i> (1961), depicting three folded <a href="/wiki/Flatfish" title="Flatfish">flatfish</a> biting each others' tails; and <i>Möbius Band II</i> (1963), depicting ants crawling around a <a href="/wiki/Lemniscate" title="Lemniscate">lemniscate</a>-shaped Möbius strip.<sup id="cite_ref-escher1_102-0" class="reference"><a href="#cite_note-escher1-102"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-escher2_103-0" class="reference"><a href="#cite_note-escher2-103"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> It is also a popular subject of <a href="/wiki/Mathematical_sculpture" title="Mathematical sculpture">mathematical sculpture</a>, including works by <a href="/wiki/Max_Bill" title="Max Bill">Max Bill</a> (<i>Endless Ribbon</i>, 1953), <a href="/wiki/Jos%C3%A9_de_Rivera" title="José de Rivera">José de Rivera</a> (<i><a href="/wiki/Infinity_(de_Rivera)" title="Infinity (de Rivera)">Infinity</a></i>, 1967), and <a href="/wiki/Sebasti%C3%A1n_(sculptor)" title="Sebastián (sculptor)">Sebastián</a>.<sup id="cite_ref-emmer_100-1" class="reference"><a href="#cite_note-emmer-100"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> A <a href="/wiki/Trefoil_knot" title="Trefoil knot">trefoil-knotted</a> Möbius strip was used in <a href="/wiki/John_Robinson_(sculptor)" title="John Robinson (sculptor)">John Robinson</a><span class="nowrap" style="padding-left:0.1em;">&#39;</span>s <i>Immortality</i> (1982).<sup id="cite_ref-FOOTNOTEPickover200513_104-0" class="reference"><a href="#cite_note-FOOTNOTEPickover200513-104"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Charles_O._Perry" title="Charles O. Perry">Charles O. Perry</a>'s <i><a href="/wiki/Continuum_(sculpture)" title="Continuum (sculpture)">Continuum</a></i> (1976) is one of several pieces by Perry exploring variations of the Möbius strip.<sup id="cite_ref-brecher_105-0" class="reference"><a href="#cite_note-brecher-105"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:392px;max-width:392px"><div class="trow"><div class="tsingle" style="width:152px;max-width:152px"><div class="thumbimage" style="height:141px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Recycle001.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Recycle001.svg/150px-Recycle001.svg.png" decoding="async" width="150" height="142" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Recycle001.svg/225px-Recycle001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/Recycle001.svg/300px-Recycle001.svg.png 2x" data-file-width="777" data-file-height="733" /></a></span></div><div class="thumbcaption"><a href="/wiki/Recycling_symbol" title="Recycling symbol">Recycling symbol</a></div></div><div class="tsingle" style="width:144px;max-width:144px"><div class="thumbimage" style="height:141px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Logo_of_Google_Drive_(2012-2014).svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Logo_of_Google_Drive_%282012-2014%29.svg/142px-Logo_of_Google_Drive_%282012-2014%29.svg.png" decoding="async" width="142" height="142" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Logo_of_Google_Drive_%282012-2014%29.svg/213px-Logo_of_Google_Drive_%282012-2014%29.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Logo_of_Google_Drive_%282012-2014%29.svg/284px-Logo_of_Google_Drive_%282012-2014%29.svg.png 2x" data-file-width="640" data-file-height="640" /></a></span></div><div class="thumbcaption"><a href="/wiki/Google_Drive" title="Google Drive">Google Drive</a> logo (2012–2014)</div></div><div class="tsingle" style="width:90px;max-width:90px"><div class="thumbimage" style="height:141px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Stamp_of_Brazil_-_1967_-_Colnect_263101_-_Mobius_Symbol.jpeg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Stamp_of_Brazil_-_1967_-_Colnect_263101_-_Mobius_Symbol.jpeg/88px-Stamp_of_Brazil_-_1967_-_Colnect_263101_-_Mobius_Symbol.jpeg" decoding="async" width="88" height="141" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Stamp_of_Brazil_-_1967_-_Colnect_263101_-_Mobius_Symbol.jpeg/132px-Stamp_of_Brazil_-_1967_-_Colnect_263101_-_Mobius_Symbol.jpeg 1.5x, //upload.wikimedia.org/wikipedia/commons/1/1b/Stamp_of_Brazil_-_1967_-_Colnect_263101_-_Mobius_Symbol.jpeg 2x" data-file-width="140" data-file-height="225" /></a></span></div><div class="thumbcaption"><a href="/wiki/Instituto_Nacional_de_Matem%C3%A1tica_Pura_e_Aplicada" title="Instituto Nacional de Matemática Pura e Aplicada">IMPA</a> logo on stamp</div></div></div></div></div> <p>Because of their easily recognized form, Möbius strips are a common element of <a href="/wiki/Graphic_design" title="Graphic design">graphic design</a>.<sup id="cite_ref-FOOTNOTEPickover200513_104-1" class="reference"><a href="#cite_note-FOOTNOTEPickover200513-104"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> The familiar <a href="/wiki/Recycling_symbol" title="Recycling symbol">three-arrow logo</a> for <a href="/wiki/Recycling" title="Recycling">recycling</a>, designed in 1970, is based on the smooth triangular form of the Möbius <span class="nowrap">strip,<sup id="cite_ref-peterson_106-0" class="reference"><a href="#cite_note-peterson-106"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup></span> as was the logo for the environmentally-themed <a href="/wiki/Expo_%2774" title="Expo &#39;74">Expo '74</a>.<sup id="cite_ref-expo74_107-0" class="reference"><a href="#cite_note-expo74-107"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> Some variations of the recycling symbol use a different embedding with three half-twists instead of <span class="nowrap">one,<sup id="cite_ref-peterson_106-1" class="reference"><a href="#cite_note-peterson-106"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup></span> and the original version of the <a href="/wiki/Google_Drive" title="Google Drive">Google Drive</a> logo used a flat-folded three-twist Möbius strip, as have other similar designs.<sup id="cite_ref-gdrive_108-0" class="reference"><a href="#cite_note-gdrive-108"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> The Brazilian <a href="/wiki/Instituto_Nacional_de_Matem%C3%A1tica_Pura_e_Aplicada" title="Instituto Nacional de Matemática Pura e Aplicada">Instituto Nacional de Matemática Pura e Aplicada</a> (IMPA) uses a stylized smooth Möbius strip as their logo, and has a matching large sculpture of a Möbius strip on display in their building.<sup id="cite_ref-impa_109-0" class="reference"><a href="#cite_note-impa-109"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> The Möbius strip has also featured in the artwork for <a href="/wiki/Postage_stamp" title="Postage stamp">postage stamps</a> from countries including Brazil, Belgium, the Netherlands, and <span class="nowrap">Switzerland.<sup id="cite_ref-FOOTNOTEPickover2005156–157_110-0" class="reference"><a href="#cite_note-FOOTNOTEPickover2005156–157-110"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-briefmarken_111-0" class="reference"><a href="#cite_note-briefmarken-111"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup></span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:NASCAR_Hall_of_Fame_(7553589908).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/NASCAR_Hall_of_Fame_%287553589908%29.jpg/170px-NASCAR_Hall_of_Fame_%287553589908%29.jpg" decoding="async" width="170" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/NASCAR_Hall_of_Fame_%287553589908%29.jpg/255px-NASCAR_Hall_of_Fame_%287553589908%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/NASCAR_Hall_of_Fame_%287553589908%29.jpg/340px-NASCAR_Hall_of_Fame_%287553589908%29.jpg 2x" data-file-width="4000" data-file-height="3000" /></a><figcaption><a href="/wiki/NASCAR_Hall_of_Fame" title="NASCAR Hall of Fame">NASCAR Hall of Fame</a> entrance</figcaption></figure> <p>Möbius strips have been a frequent inspiration for the architectural design of buildings and bridges. However, many of these are projects or conceptual designs rather than constructed objects, or stretch their interpretation of the Möbius strip beyond its recognizability as a mathematical form or a functional part of the architecture.<sup id="cite_ref-architecture_112-0" class="reference"><a href="#cite_note-architecture-112"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-bridges_113-0" class="reference"><a href="#cite_note-bridges-113"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> An example is the <a href="/wiki/National_Library_of_Kazakhstan" title="National Library of Kazakhstan">National Library of Kazakhstan</a>, for which a building was planned in the shape of a thickened Möbius strip but refinished with a different design after the original architects pulled out of the project.<sup id="cite_ref-kazakh_114-0" class="reference"><a href="#cite_note-kazakh-114"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup> One notable building incorporating a Möbius strip is the <a href="/wiki/NASCAR_Hall_of_Fame" title="NASCAR Hall of Fame">NASCAR Hall of Fame</a>, which is surrounded by a large twisted ribbon of stainless steel acting as a façade and canopy, and evoking the curved shapes of racing tracks.<sup id="cite_ref-nascar_115-0" class="reference"><a href="#cite_note-nascar-115"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> On a smaller scale, <i>Moebius Chair</i> (2006) by <a href="/wiki/Pedro_Reyes_(artist)" title="Pedro Reyes (artist)">Pedro Reyes</a> is a <a href="/wiki/Courting_bench" class="mw-redirect" title="Courting bench">courting bench</a> whose base and sides have the form of a Möbius strip.<sup id="cite_ref-reyes_116-0" class="reference"><a href="#cite_note-reyes-116"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup> As a form of <a href="/wiki/Mathematics_and_fiber_arts" title="Mathematics and fiber arts">mathematics and fiber arts</a>, <a href="/wiki/Scarf" title="Scarf">scarves</a> have been <a href="/wiki/Knitting" title="Knitting">knit</a> into Möbius strips since the work of <a href="/wiki/Elizabeth_Zimmermann" title="Elizabeth Zimmermann">Elizabeth Zimmermann</a> in the early 1980s.<sup id="cite_ref-zimmermann_117-0" class="reference"><a href="#cite_note-zimmermann-117"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> In <a href="/wiki/Food_styling" class="mw-redirect" title="Food styling">food styling</a>, Möbius strips have been used for slicing <a href="/wiki/Bagel" title="Bagel">bagels</a>,<sup id="cite_ref-bagel_118-0" class="reference"><a href="#cite_note-bagel-118"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> making loops out of <a href="/wiki/Bacon" title="Bacon">bacon</a>,<sup id="cite_ref-bacon_119-0" class="reference"><a href="#cite_note-bacon-119"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup> and creating new shapes for <a href="/wiki/Pasta" title="Pasta">pasta</a>.<sup id="cite_ref-pasta_120-0" class="reference"><a href="#cite_note-pasta-120"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> </p><p>Although mathematically the Möbius strip and the fourth dimension are both purely spatial concepts, they have often been invoked in <a href="/wiki/Speculative_fiction" title="Speculative fiction">speculative fiction</a> as the basis for a <a href="/wiki/Time_loop" title="Time loop">time loop</a> into which unwary victims may become trapped. Examples of this trope include <a href="/wiki/Martin_Gardner" title="Martin Gardner">Martin Gardner</a><span class="nowrap" style="padding-left:0.1em;">&#39;</span>s "No-Sided Professor" (1946), <a href="/wiki/Armin_Joseph_Deutsch" title="Armin Joseph Deutsch">Armin Joseph Deutsch</a><span class="nowrap" style="padding-left:0.1em;">&#39;</span>s "<a href="/wiki/A_Subway_Named_Mobius" title="A Subway Named Mobius">A Subway Named Mobius</a>" (1950) and the film <i><a href="/wiki/Moebius_(1996_film)" title="Moebius (1996 film)">Moebius</a></i> (1996) based on it. An entire world shaped like a Möbius strip is the setting of <a href="/wiki/Arthur_C._Clarke" title="Arthur C. Clarke">Arthur C. Clarke</a>'s "The Wall of Darkness" (1946), while conventional Möbius strips are used as clever inventions in multiple stories of <a href="/wiki/William_Hazlett_Upson" title="William Hazlett Upson">William Hazlett Upson</a> from the 1940s.<sup id="cite_ref-FOOTNOTEPickover2005174–177_121-0" class="reference"><a href="#cite_note-FOOTNOTEPickover2005174–177-121"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup> Other works of fiction have been analyzed as having a Möbius strip–like structure, in which elements of the plot repeat with a twist; these include <a href="/wiki/Marcel_Proust" title="Marcel Proust">Marcel Proust</a><span class="nowrap" style="padding-left:0.1em;">&#39;s</span> <i><a href="/wiki/In_Search_of_Lost_Time" title="In Search of Lost Time">In Search of Lost Time</a></i> (1913–1927), <a href="/wiki/Luigi_Pirandello" title="Luigi Pirandello">Luigi Pirandello</a><span class="nowrap" style="padding-left:0.1em;">&#39;s</span> <i><a href="/wiki/Six_Characters_in_Search_of_an_Author" title="Six Characters in Search of an Author">Six Characters in Search of an Author</a></i> (1921), <a href="/wiki/Frank_Capra" title="Frank Capra">Frank Capra</a><span class="nowrap" style="padding-left:0.1em;">&#39;</span>s <i><a href="/wiki/It%27s_a_Wonderful_Life" title="It&#39;s a Wonderful Life">It's a Wonderful Life</a></i> (1946), <a href="/wiki/John_Barth" title="John Barth">John Barth</a><span class="nowrap" style="padding-left:0.1em;">&#39;s</span> <i><a href="/wiki/Lost_in_the_Funhouse" title="Lost in the Funhouse">Lost in the Funhouse</a></i> (1968), <a href="/wiki/Samuel_R._Delany" title="Samuel R. Delany">Samuel R. Delany</a><span class="nowrap" style="padding-left:0.1em;">&#39;</span>s <i><a href="/wiki/Dhalgren" title="Dhalgren">Dhalgren</a></i> (1975) and the film <i><a href="/wiki/Donnie_Darko" title="Donnie Darko">Donnie Darko</a></i> (2001).<sup id="cite_ref-FOOTNOTEPickover2005179–187_122-0" class="reference"><a href="#cite_note-FOOTNOTEPickover2005179–187-122"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup> </p><p>One of the <a href="/wiki/Canon_(music)" title="Canon (music)">musical canons</a> by <a href="/wiki/J._S._Bach" class="mw-redirect" title="J. S. Bach">J. S. Bach</a>, the fifth of 14 canons (<a href="/wiki/BWV_1087" class="mw-redirect" title="BWV 1087">BWV 1087</a>) discovered in 1974 in Bach's copy of the <i><a href="/wiki/Goldberg_Variations" title="Goldberg Variations">Goldberg Variations</a></i>, features a <a href="/wiki/Glide_reflection" title="Glide reflection">glide-reflect</a> symmetry in which each voice in the canon repeats, with <a href="/wiki/Inversion_(music)" title="Inversion (music)">inverted notes</a>, the same motif from two measures earlier. Because of this symmetry, this canon can be thought of as having its score written on a Möbius strip.<sup id="cite_ref-phillips_123-0" class="reference"><a href="#cite_note-phillips-123"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">&#91;</span>h<span class="cite-bracket">&#93;</span></a></sup> In <a href="/wiki/Music_theory" title="Music theory">music theory</a>, tones that differ by an octave are generally considered to be equivalent notes, and the space of possible notes forms a circle, the <a href="/wiki/Chromatic_circle" title="Chromatic circle">chromatic circle</a>. Because the Möbius strip is the <a href="/wiki/Configuration_space_(mathematics)" title="Configuration space (mathematics)">configuration space</a> of two unordered points on a circle, the space of all <a href="/wiki/Dyad_(music)" title="Dyad (music)">two-note chords</a> takes the shape of a Möbius strip. This conception, and generalizations to more points, is a significant <a href="/wiki/Orbifold#Music_theory" title="Orbifold">application of orbifolds to music theory</a>.<sup id="cite_ref-music_125-0" class="reference"><a href="#cite_note-music-125"><span class="cite-bracket">&#91;</span>117<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-chords_126-0" class="reference"><a href="#cite_note-chords-126"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> Modern musical groups taking their name from the Möbius strip include American electronic rock trio <a href="/wiki/Mobius_Band_(band)" title="Mobius Band (band)">Mobius Band</a><sup id="cite_ref-bandband_127-0" class="reference"><a href="#cite_note-bandband-127"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup> and Norwegian progressive rock band <a href="/wiki/Ring_Van_M%C3%B6bius" title="Ring Van Möbius">Ring Van Möbius</a>.<sup id="cite_ref-ringvan_128-0" class="reference"><a href="#cite_note-ringvan-128"><span class="cite-bracket">&#91;</span>120<span class="cite-bracket">&#93;</span></a></sup> </p><p>Möbius strips and their properties have been used in the design of <a href="/wiki/Magic_(illusion)" title="Magic (illusion)">stage magic</a>. One such trick, known as the Afghan bands, uses the fact that the Möbius strip remains in one piece as a single strip when cut lengthwise. It originated in the 1880s, and was very popular in the first half of the twentieth century. Many versions of this trick exist and have been performed by famous illusionists such as <a href="/wiki/Harry_Blackstone_Sr." title="Harry Blackstone Sr.">Harry Blackstone Sr.</a> and <a href="/wiki/Thomas_Nelson_Downs" class="mw-redirect" title="Thomas Nelson Downs">Thomas Nelson Downs</a>.<sup id="cite_ref-magic_129-0" class="reference"><a href="#cite_note-magic-129"><span class="cite-bracket">&#91;</span>121<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-gardner_130-0" class="reference"><a href="#cite_note-gardner-130"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=12" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/M%C3%B6bius_counter" class="mw-redirect" title="Möbius counter">Möbius counter</a>, a shift register whose output bit is complemented before being fed back into the input bit</li> <li><a href="/wiki/Penrose_triangle" title="Penrose triangle">Penrose triangle</a>, an impossible figure whose boundary appears to wrap around it in a Möbius strip</li> <li><a href="/wiki/Ribbon_theory" class="mw-redirect" title="Ribbon theory">Ribbon theory</a>, the mathematical theory of infinitesimally thin strips that follow knotted space curves</li> <li><a href="/wiki/Smale%E2%80%93Williams_attractor" class="mw-redirect" title="Smale–Williams attractor">Smale–Williams attractor</a>, a fractal formed by repeatedly thickening a space curve to a Möbius strip and then replacing it with the boundary edge</li> <li><a href="/wiki/Umbilic_torus" title="Umbilic torus">Umbilic torus</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=13" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Pronounced <span class="rt-commentedText nowrap"><style data-mw-deduplicate="TemplateStyles:r1177148991">.mw-parser-output .IPA-label-small{font-size:85%}.mw-parser-output .references .IPA-label-small,.mw-parser-output .infobox .IPA-label-small,.mw-parser-output .navbox .IPA-label-small{font-size:100%}</style><span class="IPA-label IPA-label-small"><a href="/wiki/American_English" title="American English">US</a>: </span><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;m&#39; in &#39;my&#39;">m</span><span title="/oʊ/: &#39;o&#39; in &#39;code&#39;">oʊ</span><span title="&#39;b&#39; in &#39;buy&#39;">b</span><span title="/i/: &#39;y&#39; in &#39;happy&#39;">i</span><span title="/ə/: &#39;a&#39; in &#39;about&#39;">ə</span><span title="&#39;s&#39; in &#39;sigh&#39;">s</span></span>,<span class="wrap"> </span><span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;m&#39; in &#39;my&#39;">m</span><span title="/eɪ/: &#39;a&#39; in &#39;face&#39;">eɪ</span></span>-/</a></span></span> <a href="/wiki/Help:Pronunciation_respelling_key" title="Help:Pronunciation respelling key"><i title="English pronunciation respelling"><span style="font-size:90%">MOH</span>-bee-əs, <span style="font-size:90%">MAY</span>-</i></a>, <span class="rt-commentedText nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1177148991"><span class="IPA-label IPA-label-small"><a href="/wiki/British_English" title="British English">UK</a>: </span><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;m&#39; in &#39;my&#39;">m</span><span title="/ɜː/: r-less &#39;ur&#39; in &#39;nurse&#39;">ɜː</span><span title="&#39;b&#39; in &#39;buy&#39;">b</span><span title="/i/: &#39;y&#39; in &#39;happy&#39;">i</span><span title="/ə/: &#39;a&#39; in &#39;about&#39;">ə</span><span title="&#39;s&#39; in &#39;sigh&#39;">s</span></span>/</a></span></span>;<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1177148991"><span class="IPA-label IPA-label-small">German:</span> <span class="IPA nowrap" lang="de-Latn-fonipa"><a href="/wiki/Help:IPA/Standard_German" title="Help:IPA/Standard German">&#91;ˈmøːbi̯ʊs&#93;</a></span>. As is common for words containing an <a href="/wiki/Umlaut_(diacritic)" title="Umlaut (diacritic)">umlaut</a>, it is also often spelled <i>Mobius</i> or <i>Moebius</i>.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Essentially this example, but for a <a href="/wiki/Klein_bottle" title="Klein bottle">Klein bottle</a> rather than a Möbius strip, is given by <a href="#CITEREFBlackett1982">Blackett (1982)</a>.<sup id="cite_ref-blackett_9-0" class="reference"><a href="#cite_note-blackett-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">The length of a strip can be measured at its centerline, or by cutting the resulting Möbius strip perpendicularly to its boundary so that it forms a rectangle</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">The flat-folded Möbius strip formed from three equilateral triangles does not come from an <a href="/wiki/Abstract_simplicial_complex" title="Abstract simplicial complex">abstract simplicial complex</a>, because all three triangles share the same three vertices, while abstract simplicial complexes require each triangle to have a different set of vertices.</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">This piecewise planar and cylindrical embedding has <a href="/wiki/Smoothness" title="Smoothness">smoothness</a> class <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fd6a5946b7e916352b0afc557f992328bac85e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.852ex; height:2.676ex;" alt="{\displaystyle C^{2}}"></span>, and can be approximated arbitrarily accurately by <a href="/wiki/Infinitely_differentiable" class="mw-redirect" title="Infinitely differentiable">infinitely differentiable</a> <span class="nowrap">(class <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971ed05871d69309df32efdfd2020128c9cf69d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.673ex; height:2.343ex;" alt="{\displaystyle C^{\infty }}"></span>)</span> embeddings.<sup id="cite_ref-bartels-hornung_43-0" class="reference"><a href="#cite_note-bartels-hornung-43"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">12/7 is the simplest rational number in the range of aspect ratios, between 1.695 and 1.73, for which the existence of a smooth embedding is unknown.</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text">These surfaces have smoothness class <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd24bae0d7570018e828e19851902c09c618af91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.852ex; height:2.676ex;" alt="{\displaystyle C^{1}}"></span>. For a more fine-grained analysis of the smoothness assumptions that force an embedding to be developable versus the assumptions under which the <a href="/wiki/Nash%E2%80%93Kuiper_theorem" class="mw-redirect" title="Nash–Kuiper theorem">Nash–Kuiper theorem</a> allows arbitrarily flexible embeddings, see remarks by <a href="#CITEREFBartelsHornung2015">Bartels &amp; Hornung (2015)</a>, p. 116, following Theorem 2.2.<sup id="cite_ref-bartels-hornung_43-2" class="reference"><a href="#cite_note-bartels-hornung-43"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text">Möbius strips have also been used to analyze many other canons by Bach and others, but in most of these cases other looping surfaces such as a cylinder could have been used equally well.<sup id="cite_ref-phillips_123-1" class="reference"><a href="#cite_note-phillips-123"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=14" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWells2008" class="citation book cs1"><a href="/wiki/John_C._Wells" title="John C. Wells">Wells, John C.</a> (2008). <i>Longman Pronunciation Dictionary</i> (3rd&#160;ed.). Longman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4058-8118-0" title="Special:BookSources/978-1-4058-8118-0"><bdi>978-1-4058-8118-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Longman+Pronunciation+Dictionary&amp;rft.edition=3rd&amp;rft.pub=Longman&amp;rft.date=2008&amp;rft.isbn=978-1-4058-8118-0&amp;rft.aulast=Wells&amp;rft.aufirst=John+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-pickover-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-pickover_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPickover2005" class="citation book cs1"><a href="/wiki/Clifford_A._Pickover" title="Clifford A. Pickover">Pickover, Clifford A.</a> (2005). <a rel="nofollow" class="external text" href="https://archive.org/details/mbiusstripdrau00pick"><i>The Möbius Strip: Dr. August Möbius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology</i></a>. Thunder's Mouth Press. pp.&#160;28–29. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-56025-826-1" title="Special:BookSources/978-1-56025-826-1"><bdi>978-1-56025-826-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+M%C3%B6bius+Strip%3A+Dr.+August+M%C3%B6bius%27s+Marvelous+Band+in+Mathematics%2C+Games%2C+Literature%2C+Art%2C+Technology%2C+and+Cosmology&amp;rft.pages=28-29&amp;rft.pub=Thunder%27s+Mouth+Press&amp;rft.date=2005&amp;rft.isbn=978-1-56025-826-1&amp;rft.aulast=Pickover&amp;rft.aufirst=Clifford+A.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmbiusstripdrau00pick&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-roman-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-roman_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-roman_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-roman_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-roman_4-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarison1973" class="citation journal cs1">Larison, Lorraine L. (1973). "The Möbius band in Roman mosaics". <i><a href="/wiki/American_Scientist" title="American Scientist">American Scientist</a></i>. <b>61</b> (5): 544–547. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1973AmSci..61..544L">1973AmSci..61..544L</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/27843983">27843983</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Scientist&amp;rft.atitle=The+M%C3%B6bius+band+in+Roman+mosaics&amp;rft.volume=61&amp;rft.issue=5&amp;rft.pages=544-547&amp;rft.date=1973&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F27843983%23id-name%3DJSTOR&amp;rft_id=info%3Abibcode%2F1973AmSci..61..544L&amp;rft.aulast=Larison&amp;rft.aufirst=Lorraine+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-ancient-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-ancient_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ancient_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ancient_5-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCartwrightGonzález2016" class="citation journal cs1"><a href="/wiki/Julyan_Cartwright" title="Julyan Cartwright">Cartwright, Julyan H. E.</a>; González, Diego L. (2016). "Möbius strips before Möbius: topological hints in ancient representations". <i><a href="/wiki/The_Mathematical_Intelligencer" title="The Mathematical Intelligencer">The Mathematical Intelligencer</a></i>. <b>38</b> (2): 69–76. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1609.07779">1609.07779</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016arXiv160907779C">2016arXiv160907779C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00283-016-9631-8">10.1007/s00283-016-9631-8</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3507121">3507121</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119587191">119587191</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Intelligencer&amp;rft.atitle=M%C3%B6bius+strips+before+M%C3%B6bius%3A+topological+hints+in+ancient+representations&amp;rft.volume=38&amp;rft.issue=2&amp;rft.pages=69-76&amp;rft.date=2016&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119587191%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2016arXiv160907779C&amp;rft_id=info%3Aarxiv%2F1609.07779&amp;rft_id=info%3Adoi%2F10.1007%2Fs00283-016-9631-8&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3507121%23id-name%3DMR&amp;rft.aulast=Cartwright&amp;rft.aufirst=Julyan+H.+E.&amp;rft.au=Gonz%C3%A1lez%2C+Diego+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-chirality-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-chirality_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlapan2000" class="citation book cs1"><a href="/wiki/Erica_Flapan" title="Erica Flapan">Flapan, Erica</a> (2000). <a href="/wiki/When_Topology_Meets_Chemistry" title="When Topology Meets Chemistry"><i>When Topology Meets Chemistry: A Topological Look at Molecular Chirality</i></a>. Outlooks. Washington, DC: Mathematical Association of America. pp.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=ytjLCgAAQBAJ&amp;pg=PA82">82–83</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511626272">10.1017/CBO9780511626272</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-66254-0" title="Special:BookSources/0-521-66254-0"><bdi>0-521-66254-0</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1781912">1781912</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=When+Topology+Meets+Chemistry%3A+A+Topological+Look+at+Molecular+Chirality&amp;rft.place=Washington%2C+DC&amp;rft.series=Outlooks&amp;rft.pages=82-83&amp;rft.pub=Mathematical+Association+of+America&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1781912%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1017%2FCBO9780511626272&amp;rft.isbn=0-521-66254-0&amp;rft.aulast=Flapan&amp;rft.aufirst=Erica&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEPickover20058–9-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEPickover20058–9_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPickover20058–9_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPickover20058–9_7-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPickover2005">Pickover (2005)</a>, pp.&#160;8–9.</span> </li> <li id="cite_note-woll-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-woll_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoll1971" class="citation journal cs1">Woll, John W. Jr. (Spring 1971). "One-sided surfaces and orientability". <i><a href="/wiki/The_Two-Year_College_Mathematics_Journal" class="mw-redirect" title="The Two-Year College Mathematics Journal">The Two-Year College Mathematics Journal</a></i>. <b>2</b> (1): 5–18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3026946">10.2307/3026946</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3026946">3026946</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Two-Year+College+Mathematics+Journal&amp;rft.atitle=One-sided+surfaces+and+orientability&amp;rft.ssn=spring&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=5-18&amp;rft.date=1971&amp;rft_id=info%3Adoi%2F10.2307%2F3026946&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3026946%23id-name%3DJSTOR&amp;rft.aulast=Woll&amp;rft.aufirst=John+W.+Jr.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-blackett-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-blackett_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlackett1982" class="citation book cs1">Blackett, Donald W. (1982). <i>Elementary Topology: A Combinatorial and Algebraic Approach</i>. Academic Press. p.&#160;195. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781483262536" title="Special:BookSources/9781483262536"><bdi>9781483262536</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementary+Topology%3A+A+Combinatorial+and+Algebraic+Approach&amp;rft.pages=195&amp;rft.pub=Academic+Press&amp;rft.date=1982&amp;rft.isbn=9781483262536&amp;rft.aulast=Blackett&amp;rft.aufirst=Donald+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-frolkina-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-frolkina_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrolkina2018" class="citation journal cs1">Frolkina, Olga D. (2018). "Pairwise disjoint Moebius bands in space". <i><a href="/wiki/Journal_of_Knot_Theory_and_Its_Ramifications" title="Journal of Knot Theory and Its Ramifications">Journal of Knot Theory and Its Ramifications</a></i>. <b>27</b> (9): 1842005, 9. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2212.02983">2212.02983</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0218216518420051">10.1142/S0218216518420051</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3848635">3848635</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:126421578">126421578</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Knot+Theory+and+Its+Ramifications&amp;rft.atitle=Pairwise+disjoint+Moebius+bands+in+space&amp;rft.volume=27&amp;rft.issue=9&amp;rft.pages=1842005%2C+9&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F2212.02983&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3848635%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A126421578%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1142%2FS0218216518420051&amp;rft.aulast=Frolkina&amp;rft.aufirst=Olga+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-defy-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-defy_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLamb2019" class="citation magazine cs1">Lamb, Evelyn (February 20, 2019). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/mobius-strips-defy-a-link-with-infinity-20190220/">"Möbius strips defy a link with infinity"</a>. <i><a href="/wiki/Quanta_Magazine" title="Quanta Magazine">Quanta Magazine</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quanta+Magazine&amp;rft.atitle=M%C3%B6bius+strips+defy+a+link+with+infinity&amp;rft.date=2019-02-20&amp;rft.aulast=Lamb&amp;rft.aufirst=Evelyn&amp;rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Fmobius-strips-defy-a-link-with-infinity-20190220%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-melikhov-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-melikhov_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMelikhov2019" class="citation journal cs1">Melikhov, Sergey A. (2019). "A note on O. Frolkina's paper "Pairwise disjoint Moebius bands in space"<span class="cs1-kern-right"></span>". <i><a href="/wiki/Journal_of_Knot_Theory_and_Its_Ramifications" title="Journal of Knot Theory and Its Ramifications">Journal of Knot Theory and Its Ramifications</a></i>. <b>28</b> (7): 1971001, 3. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1810.04089">1810.04089</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2Fs0218216519710019">10.1142/s0218216519710019</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3975576">3975576</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119179202">119179202</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Knot+Theory+and+Its+Ramifications&amp;rft.atitle=A+note+on+O.+Frolkina%27s+paper+%22Pairwise+disjoint+Moebius+bands+in+space%22&amp;rft.volume=28&amp;rft.issue=7&amp;rft.pages=1971001%2C+3&amp;rft.date=2019&amp;rft_id=info%3Aarxiv%2F1810.04089&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3975576%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119179202%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1142%2Fs0218216519710019&amp;rft.aulast=Melikhov&amp;rft.aufirst=Sergey+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEPickover200552-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPickover200552_14-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPickover2005">Pickover (2005)</a>, p.&#160;52.</span> </li> <li id="cite_note-FOOTNOTEPickover200512-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPickover200512_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPickover2005">Pickover (2005)</a>, p.&#160;12.</span> </li> <li id="cite_note-kyle-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-kyle_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKyle1955" class="citation journal cs1">Kyle, R. H. (1955). "Embeddings of Möbius bands in 3-dimensional space". <i>Proceedings of the Royal Irish Academy, Section A</i>. <b>57</b>: 131–136. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/20488581">20488581</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0091480">0091480</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Irish+Academy%2C+Section+A&amp;rft.atitle=Embeddings+of+M%C3%B6bius+bands+in+3-dimensional+space&amp;rft.volume=57&amp;rft.pages=131-136&amp;rft.date=1955&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F20488581%23id-name%3DJSTOR&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0091480%23id-name%3DMR&amp;rft.aulast=Kyle&amp;rft.aufirst=R.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEPickover200511-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPickover200511_17-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPickover2005">Pickover (2005)</a>, p.&#160;11.</span> </li> <li id="cite_note-massey-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-massey_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMassey1991" class="citation book cs1">Massey, William S. (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=laSfDwAAQBAJ&amp;pg=PA49"><i>A Basic Course in Algebraic Topology</i></a>. Graduate Texts in Mathematics. Vol.&#160;127. New York: Springer-Verlag. p.&#160;49. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-97430-X" title="Special:BookSources/0-387-97430-X"><bdi>0-387-97430-X</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1095046">1095046</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Basic+Course+in+Algebraic+Topology&amp;rft.place=New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pages=49&amp;rft.pub=Springer-Verlag&amp;rft.date=1991&amp;rft.isbn=0-387-97430-X&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1095046%23id-name%3DMR&amp;rft.aulast=Massey&amp;rft.aufirst=William+S.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DlaSfDwAAQBAJ%26pg%3DPA49&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-rouseball-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-rouseball_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRouse_Ball1892" class="citation book cs1"><a href="/wiki/W._W._Rouse_Ball" title="W. W. Rouse Ball">Rouse Ball, W. W.</a> (1892). "Paradromic rings". <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IwDvAAAAMAAJ&amp;pg=PA53"><i>Mathematical Recreations and Problems of Past and Present Times</i></a> (2nd&#160;ed.). London &amp; New York: Macmillan and co. pp.&#160;53–54. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780608377803" title="Special:BookSources/9780608377803"><bdi>9780608377803</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Paradromic+rings&amp;rft.btitle=Mathematical+Recreations+and+Problems+of+Past+and+Present+Times&amp;rft.place=London+%26+New+York&amp;rft.pages=53-54&amp;rft.edition=2nd&amp;rft.pub=Macmillan+and+co.&amp;rft.date=1892&amp;rft.isbn=9780608377803&amp;rft.aulast=Rouse+Ball&amp;rft.aufirst=W.+W.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DIwDvAAAAMAAJ%26pg%3DPA53&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-paradromic-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-paradromic_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBennett1923" class="citation journal cs1"><a href="/wiki/Geoffrey_Thomas_Bennett" title="Geoffrey Thomas Bennett">Bennett, G. T.</a> (June 1923). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F111882b0">"Paradromic rings"</a>. <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <b>111</b> (2800): 882. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1923Natur.111R.882B">1923Natur.111R.882B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F111882b0">10.1038/111882b0</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4099647">4099647</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Paradromic+rings&amp;rft.volume=111&amp;rft.issue=2800&amp;rft.pages=882&amp;rft.date=1923-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4099647%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2F111882b0&amp;rft_id=info%3Abibcode%2F1923Natur.111R.882B&amp;rft.aulast=Bennett&amp;rft.aufirst=G.+T.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F111882b0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-tietze-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-tietze_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-tietze_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTietze1910" class="citation journal cs1"><a href="/wiki/Heinrich_Tietze" title="Heinrich Tietze">Tietze, Heinrich</a> (1910). <a rel="nofollow" class="external text" href="https://sites.math.washington.edu/~mathcircle/circle/2014-15/advanced/mc-14a-w8.pdf">"Einige Bemerkungen zum Problem des Kartenfärbens auf einseitigen Flächen"</a> <span class="cs1-format">(PDF)</span>. <i>Jahresbericht der Deutschen Mathematiker-Vereinigung</i>. <b>19</b>: 155–159.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Jahresbericht+der+Deutschen+Mathematiker-Vereinigung&amp;rft.atitle=Einige+Bemerkungen+zum+Problem+des+Kartenf%C3%A4rbens+auf+einseitigen+Fl%C3%A4chen&amp;rft.volume=19&amp;rft.pages=155-159&amp;rft.date=1910&amp;rft.aulast=Tietze&amp;rft.aufirst=Heinrich&amp;rft_id=https%3A%2F%2Fsites.math.washington.edu%2F~mathcircle%2Fcircle%2F2014-15%2Fadvanced%2Fmc-14a-w8.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-ringel-youngs-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-ringel-youngs_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRingelYoungs1968" class="citation journal cs1"><a href="/wiki/Gerhard_Ringel" title="Gerhard Ringel">Ringel, G.</a>; Youngs, J. W. T. (1968). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC225066">"Solution of the Heawood map-coloring problem"</a>. <i><a href="/wiki/Proceedings_of_the_National_Academy_of_Sciences_of_the_United_States_of_America" title="Proceedings of the National Academy of Sciences of the United States of America">Proceedings of the National Academy of Sciences of the United States of America</a></i>. <b>60</b> (2): 438–445. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1968PNAS...60..438R">1968PNAS...60..438R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.60.2.438">10.1073/pnas.60.2.438</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0228378">0228378</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC225066">225066</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16591648">16591648</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&amp;rft.atitle=Solution+of+the+Heawood+map-coloring+problem&amp;rft.volume=60&amp;rft.issue=2&amp;rft.pages=438-445&amp;rft.date=1968&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC225066%23id-name%3DPMC&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0228378%23id-name%3DMR&amp;rft_id=info%3Abibcode%2F1968PNAS...60..438R&amp;rft_id=info%3Apmid%2F16591648&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.60.2.438&amp;rft.aulast=Ringel&amp;rft.aufirst=G.&amp;rft.au=Youngs%2C+J.+W.+T.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC225066&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-jab-rad-saz-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-jab-rad-saz_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJablanRadovićSazdanović2011" class="citation journal cs1">Jablan, Slavik; Radović, Ljiljana; Sazdanović, Radmila (2011). "Nonplanar graphs derived from Gauss codes of virtual knots and links". <i>Journal of Mathematical Chemistry</i>. <b>49</b> (10): 2250–2267. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10910-011-9884-6">10.1007/s10910-011-9884-6</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2846715">2846715</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121332704">121332704</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Chemistry&amp;rft.atitle=Nonplanar+graphs+derived+from+Gauss+codes+of+virtual+knots+and+links&amp;rft.volume=49&amp;rft.issue=10&amp;rft.pages=2250-2267&amp;rft.date=2011&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2846715%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121332704%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10910-011-9884-6&amp;rft.aulast=Jablan&amp;rft.aufirst=Slavik&amp;rft.au=Radovi%C4%87%2C+Ljiljana&amp;rft.au=Sazdanovi%C4%87%2C+Radmila&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-larsen-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-larsen_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarsen1994" class="citation conference cs1">Larsen, Mogens Esrom (1994). "Misunderstanding my mazy mazes may make me miserable". In <a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard K.</a>; Woodrow, Robert E. (eds.). <i>Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History held at the University of Calgary, Calgary, Alberta, August 1986</i>. MAA Spectrum. Washington, DC: Mathematical Association of America. pp.&#160;289–293. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-88385-516-X" title="Special:BookSources/0-88385-516-X"><bdi>0-88385-516-X</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1303141">1303141</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Misunderstanding+my+mazy+mazes+may+make+me+miserable&amp;rft.btitle=Proceedings+of+the+Eug%C3%A8ne+Strens+Memorial+Conference+on+Recreational+Mathematics+and+its+History+held+at+the+University+of+Calgary%2C+Calgary%2C+Alberta%2C+August+1986&amp;rft.place=Washington%2C+DC&amp;rft.series=MAA+Spectrum&amp;rft.pages=289-293&amp;rft.pub=Mathematical+Association+of+America&amp;rft.date=1994&amp;rft.isbn=0-88385-516-X&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1303141%23id-name%3DMR&amp;rft.aulast=Larsen&amp;rft.aufirst=Mogens+Esrom&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span>. See <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FsH2DwAAQBAJ&amp;pg=PA292">Figure 7, p. 292</a>.</span> </li> <li id="cite_note-maschke-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-maschke_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaschke1900" class="citation journal cs1"><a href="/wiki/Heinrich_Maschke" title="Heinrich Maschke">Maschke, Heinrich</a> (1900). <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1986401">"Note on the unilateral surface of Moebius"</a>. <i><a href="/wiki/Transactions_of_the_American_Mathematical_Society" title="Transactions of the American Mathematical Society">Transactions of the American Mathematical Society</a></i>. <b>1</b> (1): 39. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1986401">10.2307/1986401</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1986401">1986401</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1500522">1500522</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+of+the+American+Mathematical+Society&amp;rft.atitle=Note+on+the+unilateral+surface+of+Moebius&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=39&amp;rft.date=1900&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1500522%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1986401%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1986401&amp;rft.aulast=Maschke&amp;rft.aufirst=Heinrich&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.2307%252F1986401&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-parameterization-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-parameterization_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJunghenn2015" class="citation book cs1">Junghenn, Hugo D. (2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nE63BgAAQBAJ&amp;pg=PA430"><i>A Course in Real Analysis</i></a>. Boca Raton, Florida: CRC Press. p.&#160;430. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4822-1927-2" title="Special:BookSources/978-1-4822-1927-2"><bdi>978-1-4822-1927-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3309241">3309241</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Course+in+Real+Analysis&amp;rft.place=Boca+Raton%2C+Florida&amp;rft.pages=430&amp;rft.pub=CRC+Press&amp;rft.date=2015&amp;rft.isbn=978-1-4822-1927-2&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3309241%23id-name%3DMR&amp;rft.aulast=Junghenn&amp;rft.aufirst=Hugo+D.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnE63BgAAQBAJ%26pg%3DPA430&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-split-tori-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-split-tori_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSéquin2005" class="citation conference cs1"><a href="/wiki/Carlo_H._S%C3%A9quin" title="Carlo H. Séquin">Séquin, Carlo H.</a> (2005). <a rel="nofollow" class="external text" href="https://archive.bridgesmathart.org/2005/bridges2005-211.html">"Splitting tori, knots, and Moebius bands"</a>. In Sarhangi, Reza; Moody, Robert V. (eds.). <i>Renaissance Banff: Mathematics, Music, Art, Culture</i>. Southwestern College, Winfield, Kansas: Bridges Conference. pp.&#160;211–218. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-9665201-6-5" title="Special:BookSources/0-9665201-6-5"><bdi>0-9665201-6-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Splitting+tori%2C+knots%2C+and+Moebius+bands&amp;rft.btitle=Renaissance+Banff%3A+Mathematics%2C+Music%2C+Art%2C+Culture&amp;rft.place=Southwestern+College%2C+Winfield%2C+Kansas&amp;rft.pages=211-218&amp;rft.pub=Bridges+Conference&amp;rft.date=2005&amp;rft.isbn=0-9665201-6-5&amp;rft.aulast=S%C3%A9quin&amp;rft.aufirst=Carlo+H.&amp;rft_id=https%3A%2F%2Farchive.bridgesmathart.org%2F2005%2Fbridges2005-211.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-francis-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-francis_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-francis_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrancis1987" class="citation book cs1">Francis, George K. (1987). "Plücker conoid". <i>A Topological Picturebook</i>. Springer-Verlag, New York. pp.&#160;81–83. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-96426-6" title="Special:BookSources/0-387-96426-6"><bdi>0-387-96426-6</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0880519">0880519</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Pl%C3%BCcker+conoid&amp;rft.btitle=A+Topological+Picturebook&amp;rft.pages=81-83&amp;rft.pub=Springer-Verlag%2C+New+York&amp;rft.date=1987&amp;rft.isbn=0-387-96426-6&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D880519%23id-name%3DMR&amp;rft.aulast=Francis&amp;rft.aufirst=George+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-dooner-seirig-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-dooner-seirig_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoonerSeireg1995" class="citation book cs1">Dooner, David B.; Seireg, Ali (1995). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xcjM2xmxvBAC&amp;pg=PA135">"3.4.2 The cylindroid"</a>. <i>The Kinematic Geometry of Gearing: A Concurrent Engineering Approach</i>. Wiley Series in Design Engineering. Vol.&#160;3. John Wiley &amp; Sons. pp.&#160;135–137. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780471045977" title="Special:BookSources/9780471045977"><bdi>9780471045977</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=3.4.2+The+cylindroid&amp;rft.btitle=The+Kinematic+Geometry+of+Gearing%3A+A+Concurrent+Engineering+Approach&amp;rft.series=Wiley+Series+in+Design+Engineering&amp;rft.pages=135-137&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1995&amp;rft.isbn=9780471045977&amp;rft.aulast=Dooner&amp;rft.aufirst=David+B.&amp;rft.au=Seireg%2C+Ali&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxcjM2xmxvBAC%26pg%3DPA135&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-barr-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-barr_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-barr_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarr1964" class="citation book cs1">Barr, Stephen (1964). <a rel="nofollow" class="external text" href="https://archive.org/details/experimentsintop00barr"><i>Experiments in Topology</i></a>. New York: Thomas Y. Crowell Company. pp.&#160;40–49, 200–201. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780690278620" title="Special:BookSources/9780690278620"><bdi>9780690278620</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Experiments+in+Topology&amp;rft.place=New+York&amp;rft.pages=40-49%2C+200-201&amp;rft.pub=Thomas+Y.+Crowell+Company&amp;rft.date=1964&amp;rft.isbn=9780690278620&amp;rft.aulast=Barr&amp;rft.aufirst=Stephen&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fexperimentsintop00barr&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-fuchs-tabachnikov-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-fuchs-tabachnikov_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-fuchs-tabachnikov_32-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-fuchs-tabachnikov_32-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-fuchs-tabachnikov_32-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-fuchs-tabachnikov_32-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFuchsTabachnikov2007" class="citation book cs1"><a href="/wiki/Dmitry_Fuchs" title="Dmitry Fuchs">Fuchs, Dmitry</a>; <a href="/wiki/Sergei_Tabachnikov" title="Sergei Tabachnikov">Tabachnikov, Serge</a> (2007). "Lecture 14: Paper Möbius band". <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160424020238/http://www.math.psu.edu/tabachni/Books/taba.pdf"><i>Mathematical Omnibus: Thirty Lectures on Classic Mathematics</i></a> <span class="cs1-format">(PDF)</span>. Providence, Rhode Island: American Mathematical Society. pp.&#160;199–206. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fmbk%2F046">10.1090/mbk/046</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-4316-1" title="Special:BookSources/978-0-8218-4316-1"><bdi>978-0-8218-4316-1</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2350979">2350979</a>. Archived from <a rel="nofollow" class="external text" href="http://www.math.psu.edu/tabachni/Books/taba.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-04-24.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Lecture+14%3A+Paper+M%C3%B6bius+band&amp;rft.btitle=Mathematical+Omnibus%3A+Thirty+Lectures+on+Classic+Mathematics&amp;rft.place=Providence%2C+Rhode+Island&amp;rft.pages=199-206&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2007&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2350979%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1090%2Fmbk%2F046&amp;rft.isbn=978-0-8218-4316-1&amp;rft.aulast=Fuchs&amp;rft.aufirst=Dmitry&amp;rft.au=Tabachnikov%2C+Serge&amp;rft_id=http%3A%2F%2Fwww.math.psu.edu%2Ftabachni%2FBooks%2Ftaba.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-pook-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-pook_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPook2003" class="citation book cs1">Pook, Les (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=MlKL1aG781QC&amp;pg=PA33">"4.2: The trihexaflexagon revisited"</a>. <i>Flexagons Inside Out</i>. Cambridge, UK: Cambridge University Press. pp.&#160;33–36. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511543302">10.1017/CBO9780511543302</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-81970-9" title="Special:BookSources/0-521-81970-9"><bdi>0-521-81970-9</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2008500">2008500</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=4.2%3A+The+trihexaflexagon+revisited&amp;rft.btitle=Flexagons+Inside+Out&amp;rft.place=Cambridge%2C+UK&amp;rft.pages=33-36&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2008500%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1017%2FCBO9780511543302&amp;rft.isbn=0-521-81970-9&amp;rft.aulast=Pook&amp;rft.aufirst=Les&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DMlKL1aG781QC%26pg%3DPA33&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-9vertex-34"><span class="mw-cite-backlink">^ <a href="#cite_ref-9vertex_34-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-9vertex_34-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKühnelBanchoff1983" class="citation journal cs1">Kühnel, W.; <a href="/wiki/Thomas_Banchoff" title="Thomas Banchoff">Banchoff, T. F.</a> (1983). <a rel="nofollow" class="external text" href="https://www.math.brown.edu/tbanchof/howison/newbanchoff/publications/pdfs/9Vertex.pdf">"The 9-vertex complex projective plane"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/The_Mathematical_Intelligencer" title="The Mathematical Intelligencer">The Mathematical Intelligencer</a></i>. <b>5</b> (3): 11–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03026567">10.1007/BF03026567</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0737686">0737686</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120926324">120926324</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Intelligencer&amp;rft.atitle=The+9-vertex+complex+projective+plane&amp;rft.volume=5&amp;rft.issue=3&amp;rft.pages=11-22&amp;rft.date=1983&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D737686%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120926324%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF03026567&amp;rft.aulast=K%C3%BChnel&amp;rft.aufirst=W.&amp;rft.au=Banchoff%2C+T.+F.&amp;rft_id=https%3A%2F%2Fwww.math.brown.edu%2Ftbanchof%2Fhowison%2Fnewbanchoff%2Fpublications%2Fpdfs%2F9Vertex.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-kuiper-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-kuiper_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuiper1972" class="citation journal cs1"><a href="/wiki/Nicolaas_Kuiper" title="Nicolaas Kuiper">Kuiper, Nicolaas H.</a> (1972). <a rel="nofollow" class="external text" href="https://doi.org/10.4310%2Fjdg%2F1214430493">"Tight topological embeddings of the Moebius band"</a>. <i><a href="/wiki/Journal_of_Differential_Geometry" title="Journal of Differential Geometry">Journal of Differential Geometry</a></i>. <b>6</b> (3): 271–283. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4310%2Fjdg%2F1214430493">10.4310/jdg/1214430493</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0314057">0314057</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Differential+Geometry&amp;rft.atitle=Tight+topological+embeddings+of+the+Moebius+band&amp;rft.volume=6&amp;rft.issue=3&amp;rft.pages=271-283&amp;rft.date=1972&amp;rft_id=info%3Adoi%2F10.4310%2Fjdg%2F1214430493&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D314057%23id-name%3DMR&amp;rft.aulast=Kuiper&amp;rft.aufirst=Nicolaas+H.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4310%252Fjdg%252F1214430493&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-szilassi-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-szilassi_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSzilassi2008" class="citation journal cs1"><a href="/wiki/Lajos_Szilassi" title="Lajos Szilassi">Szilassi, Lajos</a> (2008). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00454-007-9033-y">"A polyhedral model in Euclidean 3-space of the six-pentagon map of the projective plane"</a>. <i><a href="/wiki/Discrete_%26_Computational_Geometry" title="Discrete &amp; Computational Geometry">Discrete &amp; Computational Geometry</a></i>. <b>40</b> (3): 395–400. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00454-007-9033-y">10.1007/s00454-007-9033-y</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2443291">2443291</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:38606607">38606607</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Discrete+%26+Computational+Geometry&amp;rft.atitle=A+polyhedral+model+in+Euclidean+3-space+of+the+six-pentagon+map+of+the+projective+plane&amp;rft.volume=40&amp;rft.issue=3&amp;rft.pages=395-400&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2443291%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A38606607%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00454-007-9033-y&amp;rft.aulast=Szilassi&amp;rft.aufirst=Lajos&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs00454-007-9033-y&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-tuckerman-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-tuckerman_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTuckerman1948" class="citation journal cs1"><a href="/wiki/Bryant_Tuckerman" title="Bryant Tuckerman">Tuckerman, Bryant</a> (1948). "A non-singular polyhedral Möbius band whose boundary is a triangle". <i>American Mathematical Monthly</i>. <b>55</b> (5): 309–311. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2305482">10.2307/2305482</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2305482">2305482</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0024138">0024138</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Mathematical+Monthly&amp;rft.atitle=A+non-singular+polyhedral+M%C3%B6bius+band+whose+boundary+is+a+triangle&amp;rft.volume=55&amp;rft.issue=5&amp;rft.pages=309-311&amp;rft.date=1948&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D24138%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2305482%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2305482&amp;rft.aulast=Tuckerman&amp;rft.aufirst=Bryant&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-bon-nak-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-bon-nak_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBonningtonNakamoto2008" class="citation journal cs1">Bonnington, C. Paul; Nakamoto, Atsuhiro (2008). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00454-007-9035-9">"Geometric realization of a triangulation on the projective plane with one face removed"</a>. <i><a href="/wiki/Discrete_%26_Computational_Geometry" title="Discrete &amp; Computational Geometry">Discrete &amp; Computational Geometry</a></i>. <b>40</b> (1): 141–157. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00454-007-9035-9">10.1007/s00454-007-9035-9</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2429652">2429652</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10887519">10887519</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Discrete+%26+Computational+Geometry&amp;rft.atitle=Geometric+realization+of+a+triangulation+on+the+projective+plane+with+one+face+removed&amp;rft.volume=40&amp;rft.issue=1&amp;rft.pages=141-157&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2429652%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10887519%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00454-007-9035-9&amp;rft.aulast=Bonnington&amp;rft.aufirst=C.+Paul&amp;rft.au=Nakamoto%2C+Atsuhiro&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs00454-007-9035-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-brehm-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-brehm_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrehm1983" class="citation journal cs1">Brehm, Ulrich (1983). "A nonpolyhedral triangulated Möbius strip". <i><a href="/wiki/Proceedings_of_the_American_Mathematical_Society" title="Proceedings of the American Mathematical Society">Proceedings of the American Mathematical Society</a></i>. <b>89</b> (3): 519–522. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2045508">10.2307/2045508</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2045508">2045508</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0715878">0715878</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+American+Mathematical+Society&amp;rft.atitle=A+nonpolyhedral+triangulated+M%C3%B6bius+strip&amp;rft.volume=89&amp;rft.issue=3&amp;rft.pages=519-522&amp;rft.date=1983&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D715878%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2045508%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2045508&amp;rft.aulast=Brehm&amp;rft.aufirst=Ulrich&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-nak-tsu-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-nak-tsu_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNakamotoTsuchiya2012" class="citation journal cs1">Nakamoto, Atsuhiro; Tsuchiya, Shoichi (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.disc.2011.06.007">"On geometrically realizable Möbius triangulations"</a>. <i><a href="/wiki/Discrete_Mathematics_(journal)" title="Discrete Mathematics (journal)">Discrete Mathematics</a></i>. <b>312</b> (14): 2135–2139. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.disc.2011.06.007">10.1016/j.disc.2011.06.007</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2921579">2921579</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Discrete+Mathematics&amp;rft.atitle=On+geometrically+realizable+M%C3%B6bius+triangulations&amp;rft.volume=312&amp;rft.issue=14&amp;rft.pages=2135-2139&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1016%2Fj.disc.2011.06.007&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2921579%23id-name%3DMR&amp;rft.aulast=Nakamoto&amp;rft.aufirst=Atsuhiro&amp;rft.au=Tsuchiya%2C+Shoichi&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.disc.2011.06.007&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-sadowsky-translation-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-sadowsky-translation_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-sadowsky-translation_42-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHinzFried2015" class="citation journal cs1">Hinz, Denis F.; Fried, Eliot (2015). "Translation of Michael Sadowsky's paper "An elementary proof for the existence of a developable Möbius band and the attribution of the geometric problem to a variational problem"<span class="cs1-kern-right"></span>". <i>Journal of Elasticity</i>. <b>119</b> (1–2): 3–6. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1408.3034">1408.3034</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10659-014-9490-5">10.1007/s10659-014-9490-5</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3326180">3326180</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119733903">119733903</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Elasticity&amp;rft.atitle=Translation+of+Michael+Sadowsky%27s+paper+%22An+elementary+proof+for+the+existence+of+a+developable+M%C3%B6bius+band+and+the+attribution+of+the+geometric+problem+to+a+variational+problem%22&amp;rft.volume=119&amp;rft.issue=1%E2%80%932&amp;rft.pages=3-6&amp;rft.date=2015&amp;rft_id=info%3Aarxiv%2F1408.3034&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3326180%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119733903%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10659-014-9490-5&amp;rft.aulast=Hinz&amp;rft.aufirst=Denis+F.&amp;rft.au=Fried%2C+Eliot&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span> Reprinted in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFosdickFried2016" class="citation book cs1">Fosdick, Roger; Fried, Eliot (2016). <a rel="nofollow" class="external text" href="https://openresearch.lsbu.ac.uk/download/7bba3852893aa5916361a1c98259f2aee64381672fa60a5dcfb7e926228a4197/6644159/Starostin-Heijden2015_Article_EquilibriumShapesWithStressLoc.pdf"><i>The Mechanics of Ribbons and Möbius Bands</i></a> <span class="cs1-format">(PDF)</span>. Springer, Dordrecht. pp.&#160;3–6. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-94-017-7300-3">10.1007/978-94-017-7300-3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-94-017-7299-0" title="Special:BookSources/978-94-017-7299-0"><bdi>978-94-017-7299-0</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3381564">3381564</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Mechanics+of+Ribbons+and+M%C3%B6bius+Bands&amp;rft.pages=3-6&amp;rft.pub=Springer%2C+Dordrecht&amp;rft.date=2016&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3381564%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-94-017-7300-3&amp;rft.isbn=978-94-017-7299-0&amp;rft.aulast=Fosdick&amp;rft.aufirst=Roger&amp;rft.au=Fried%2C+Eliot&amp;rft_id=https%3A%2F%2Fopenresearch.lsbu.ac.uk%2Fdownload%2F7bba3852893aa5916361a1c98259f2aee64381672fa60a5dcfb7e926228a4197%2F6644159%2FStarostin-Heijden2015_Article_EquilibriumShapesWithStressLoc.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-bartels-hornung-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-bartels-hornung_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bartels-hornung_43-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-bartels-hornung_43-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-bartels-hornung_43-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBartelsHornung2015" class="citation journal cs1">Bartels, Sören; Hornung, Peter (2015). "Bending paper and the Möbius strip". <i>Journal of Elasticity</i>. <b>119</b> (1–2): 113–136. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10659-014-9501-6">10.1007/s10659-014-9501-6</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3326187">3326187</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119782792">119782792</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Elasticity&amp;rft.atitle=Bending+paper+and+the+M%C3%B6bius+strip&amp;rft.volume=119&amp;rft.issue=1%E2%80%932&amp;rft.pages=113-136&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3326187%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119782792%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10659-014-9501-6&amp;rft.aulast=Bartels&amp;rft.aufirst=S%C3%B6ren&amp;rft.au=Hornung%2C+Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span> Reprinted in <a href="#CITEREFFosdickFried2016">Fosdick &amp; Fried (2016)</a>, pp. 113–136. See in particular Section 5.2, pp. 129–130.</span> </li> <li id="cite_note-starostin-vdh-45"><span class="mw-cite-backlink">^ <a href="#cite_ref-starostin-vdh_45-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-starostin-vdh_45-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStarostinvan_der_Heijden2015" class="citation journal cs1">Starostin, E. L.; van der Heijden, G. H. M. (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10659-014-9495-0">"Equilibrium shapes with stress localisation for inextensible elastic Möbius and other strips"</a>. <i>Journal of Elasticity</i>. <b>119</b> (1–2): 67–112. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10659-014-9495-0">10.1007/s10659-014-9495-0</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3326186">3326186</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53462568">53462568</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Elasticity&amp;rft.atitle=Equilibrium+shapes+with+stress+localisation+for+inextensible+elastic+M%C3%B6bius+and+other+strips&amp;rft.volume=119&amp;rft.issue=1%E2%80%932&amp;rft.pages=67-112&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3326186%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53462568%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10659-014-9495-0&amp;rft.aulast=Starostin&amp;rft.aufirst=E.+L.&amp;rft.au=van+der+Heijden%2C+G.+H.+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs10659-014-9495-0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span> Reprinted in <a href="#CITEREFFosdickFried2016">Fosdick &amp; Fried (2016)</a>, pp. 67–112.</span> </li> <li id="cite_note-darkside-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-darkside_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwarz1990" class="citation journal cs1">Schwarz, Gideon E. (1990). "The dark side of the Moebius strip". <i><a href="/wiki/The_American_Mathematical_Monthly" title="The American Mathematical Monthly">The American Mathematical Monthly</a></i>. <b>97</b> (10): 890–897. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00029890.1990.11995680">10.1080/00029890.1990.11995680</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2324325">2324325</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1079975">1079975</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=The+dark+side+of+the+Moebius+strip&amp;rft.volume=97&amp;rft.issue=10&amp;rft.pages=890-897&amp;rft.date=1990&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1079975%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2324325%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1080%2F00029890.1990.11995680&amp;rft.aulast=Schwarz&amp;rft.aufirst=Gideon+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-halpern-weaver-47"><span class="mw-cite-backlink">^ <a href="#cite_ref-halpern-weaver_47-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-halpern-weaver_47-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalpernWeaver1977" class="citation journal cs1">Halpern, B.; Weaver, C. (1977). <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1997711">"Inverting a cylinder through isometric immersions and isometric embeddings"</a>. <i>Transactions of the American Mathematical Society</i>. <b>230</b>: 41–70. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1997711">10.2307/1997711</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1997711">1997711</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0474388">0474388</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+of+the+American+Mathematical+Society&amp;rft.atitle=Inverting+a+cylinder+through+isometric+immersions+and+isometric+embeddings&amp;rft.volume=230&amp;rft.pages=41-70&amp;rft.date=1977&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D474388%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1997711%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1997711&amp;rft.aulast=Halpern&amp;rft.aufirst=B.&amp;rft.au=Weaver%2C+C.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.2307%252F1997711&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-schwartz-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-schwartz_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-schwartz_48-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwartz2021" class="citation journal cs1"><a href="/wiki/Richard_Schwartz_(mathematician)" title="Richard Schwartz (mathematician)">Schwartz, Richard Evan</a> (2021). "An improved bound on the optimal paper Moebius band". <i><a href="/wiki/Geometriae_Dedicata" title="Geometriae Dedicata">Geometriae Dedicata</a></i>. <b>215</b>: 255–267. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2008.11610">2008.11610</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10711-021-00648-5">10.1007/s10711-021-00648-5</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=4330341">4330341</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220279013">220279013</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geometriae+Dedicata&amp;rft.atitle=An+improved+bound+on+the+optimal+paper+Moebius+band&amp;rft.volume=215&amp;rft.pages=255-267&amp;rft.date=2021&amp;rft_id=info%3Aarxiv%2F2008.11610&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D4330341%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220279013%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10711-021-00648-5&amp;rft.aulast=Schwartz&amp;rft.aufirst=Richard+Evan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-optimal-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-optimal_50-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwartz2023" class="citation arxiv cs1"><a href="/wiki/Richard_Schwartz_(mathematician)" title="Richard Schwartz (mathematician)">Schwartz, Richard</a> (2023). "The optimal paper Moebius band". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2308.12641">2308.12641</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.MG">math.MG</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=The+optimal+paper+Moebius+band&amp;rft.date=2023&amp;rft_id=info%3Aarxiv%2F2308.12641&amp;rft.aulast=Schwartz&amp;rft.aufirst=Richard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-crowell-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-crowell_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrowell2023" class="citation magazine cs1">Crowell, Rachel (September 12, 2023). <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/mathematicians-solve-50-year-old-moebius-strip-puzzle/">"Mathematicians solve 50-year-old Möbius strip puzzle"</a>. <i>Scientific American</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+American&amp;rft.atitle=Mathematicians+solve+50-year-old+M%C3%B6bius+strip+puzzle&amp;rft.date=2023-09-12&amp;rft.aulast=Crowell&amp;rft.aufirst=Rachel&amp;rft_id=https%3A%2F%2Fwww.scientificamerican.com%2Farticle%2Fmathematicians-solve-50-year-old-moebius-strip-puzzle%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-dundas-53"><span class="mw-cite-backlink">^ <a href="#cite_ref-dundas_53-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-dundas_53-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDundas2018" class="citation book cs1">Dundas, Bjørn Ian (2018). "Example 5.1.3: The unbounded Möbius band". <i>A Short Course in Differential Topology</i>. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge. p.&#160;<a rel="nofollow" class="external free" href="https://books.google.com/books?id=7a1eDwAAQBAJ&amp;pg=PA101">https://books.google.com/books?id=7a1eDwAAQBAJ&amp;pg=PA101</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2F9781108349130">10.1017/9781108349130</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-108-42579-7" title="Special:BookSources/978-1-108-42579-7"><bdi>978-1-108-42579-7</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3793640">3793640</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125997451">125997451</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Example+5.1.3%3A+The+unbounded+M%C3%B6bius+band&amp;rft.btitle=A+Short+Course+in+Differential+Topology&amp;rft.series=Cambridge+Mathematical+Textbooks&amp;rft.pages=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7a1eDwAAQBAJ%26pg%3DPA101&amp;rft.pub=Cambridge+University+Press%2C+Cambridge&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1017%2F9781108349130&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3793640%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125997451%23id-name%3DS2CID&amp;rft.isbn=978-1-108-42579-7&amp;rft.aulast=Dundas&amp;rft.aufirst=Bj%C3%B8rn+Ian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-blanusa-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-blanusa_54-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlanuša1954" class="citation journal cs1"><a href="/wiki/Danilo_Blanu%C5%A1a" title="Danilo Blanuša">Blanuša, Danilo</a> (1954). "Le plongement isométrique de la bande de Möbius infiniment large euclidienne dans un espace sphérique, parabolique ou hyperbolique à quatre dimensions". <i>Bulletin International de l'Académie Yougoslave des Sciences et des Beaux-Arts</i>. <b>12</b>: 19–23. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0071060">0071060</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+International+de+l%27Acad%C3%A9mie+Yougoslave+des+Sciences+et+des+Beaux-Arts&amp;rft.atitle=Le+plongement+isom%C3%A9trique+de+la+bande+de+M%C3%B6bius+infiniment+large+euclidienne+dans+un+espace+sph%C3%A9rique%2C+parabolique+ou+hyperbolique+%C3%A0+quatre+dimensions&amp;rft.volume=12&amp;rft.pages=19-23&amp;rft.date=1954&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D71060%23id-name%3DMR&amp;rft.aulast=Blanu%C5%A1a&amp;rft.aufirst=Danilo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-wunderlich-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-wunderlich_55-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWunderlich1962" class="citation journal cs1">Wunderlich, W. (1962). "Über ein abwickelbares Möbiusband". <i><a href="/wiki/Monatshefte_f%C3%BCr_Mathematik" title="Monatshefte für Mathematik">Monatshefte für Mathematik</a></i>. <b>66</b> (3): 276–289. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01299052">10.1007/BF01299052</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0143115">0143115</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122215321">122215321</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monatshefte+f%C3%BCr+Mathematik&amp;rft.atitle=%C3%9Cber+ein+abwickelbares+M%C3%B6biusband&amp;rft.volume=66&amp;rft.issue=3&amp;rft.pages=276-289&amp;rft.date=1962&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D143115%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122215321%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01299052&amp;rft.aulast=Wunderlich&amp;rft.aufirst=W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-schwarz-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-schwarz_56-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwarz1990" class="citation journal cs1">Schwarz, Gideon (1990). <a rel="nofollow" class="external text" href="https://projecteuclid.org/euclid.pjm/1102646207">"A pretender to the title 'canonical Moebius strip'<span class="cs1-kern-right"></span>"</a>. <i><a href="/wiki/Pacific_Journal_of_Mathematics" title="Pacific Journal of Mathematics">Pacific Journal of Mathematics</a></i>. <b>143</b> (1): 195–200. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2140%2Fpjm.1990.143.195">10.2140/pjm.1990.143.195</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1047406">1047406</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pacific+Journal+of+Mathematics&amp;rft.atitle=A+pretender+to+the+title+%27canonical+Moebius+strip%27&amp;rft.volume=143&amp;rft.issue=1&amp;rft.pages=195-200&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.2140%2Fpjm.1990.143.195&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1047406%23id-name%3DMR&amp;rft.aulast=Schwarz&amp;rft.aufirst=Gideon&amp;rft_id=https%3A%2F%2Fprojecteuclid.org%2Feuclid.pjm%2F1102646207&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-hilbert-cohn-vossen-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-hilbert-cohn-vossen_57-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHilbertCohn-Vossen1952" class="citation book cs1"><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, David</a>; Cohn-Vossen, Stephan (1952). <a href="/wiki/Geometry_and_the_Imagination" title="Geometry and the Imagination"><i>Geometry and the Imagination</i></a> (2nd&#160;ed.). Chelsea. pp.&#160;315–316. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8284-1087-8" title="Special:BookSources/978-0-8284-1087-8"><bdi>978-0-8284-1087-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry+and+the+Imagination&amp;rft.pages=315-316&amp;rft.edition=2nd&amp;rft.pub=Chelsea&amp;rft.date=1952&amp;rft.isbn=978-0-8284-1087-8&amp;rft.aulast=Hilbert&amp;rft.aufirst=David&amp;rft.au=Cohn-Vossen%2C+Stephan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-spivak-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-spivak_58-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpivak1979" class="citation book cs1"><a href="/wiki/Michael_Spivak" title="Michael Spivak">Spivak, Michael</a> (1979). <i>A Comprehensive Introduction to Differential Geometry, Volume I</i> (2nd&#160;ed.). Wilmington, Delaware: Publish or Perish. p.&#160;591.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Comprehensive+Introduction+to+Differential+Geometry%2C+Volume+I&amp;rft.place=Wilmington%2C+Delaware&amp;rft.pages=591&amp;rft.edition=2nd&amp;rft.pub=Publish+or+Perish&amp;rft.date=1979&amp;rft.aulast=Spivak&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-ddg-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-ddg_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ddg_59-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ddg_59-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnöppel2019" class="citation web cs1">Knöppel, Felix (Summer 2019). <a rel="nofollow" class="external text" href="https://dgd.service.tu-berlin.de/wordpress/ddg2019/2019/04/29/tutorial-3-lawsons-minimal-surfaces-and-the-sudanese-mobius-band/">"Tutorial 3: Lawson's Minimal Surfaces and the Sudanese Möbius Band"</a>. <i>DDG2019: Visualization course at TU Berlin</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=DDG2019%3A+Visualization+course+at+TU+Berlin&amp;rft.atitle=Tutorial+3%3A+Lawson%27s+Minimal+Surfaces+and+the+Sudanese+M%C3%B6bius+Band&amp;rft.ssn=summer&amp;rft.date=2019&amp;rft.aulast=Kn%C3%B6ppel&amp;rft.aufirst=Felix&amp;rft_id=https%3A%2F%2Fdgd.service.tu-berlin.de%2Fwordpress%2Fddg2019%2F2019%2F04%2F29%2Ftutorial-3-lawsons-minimal-surfaces-and-the-sudanese-mobius-band%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-lawson-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-lawson_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-lawson_60-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLawson1970" class="citation journal cs1"><a href="/wiki/H._Blaine_Lawson" title="H. Blaine Lawson">Lawson, H. Blaine Jr.</a> (1970). "Complete minimal surfaces in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01e57c690f890937838c10ba57853ff21bf30ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.576ex; height:2.676ex;" alt="{\displaystyle S^{3}}"></span>". <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>. Second Series. <b>92</b> (3): 335–374. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1970625">10.2307/1970625</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1970625">1970625</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0270280">0270280</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Mathematics&amp;rft.atitle=Complete+minimal+surfaces+in+MATH+RENDER+ERROR&amp;rft.volume=92&amp;rft.issue=3&amp;rft.pages=335-374&amp;rft.date=1970&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D270280%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1970625%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1970625&amp;rft.aulast=Lawson&amp;rft.aufirst=H.+Blaine+Jr.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span> See Section 7, pp. 350–353, where the Klein bottle is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{1,2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{1,2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e54a50358663cdf0840a19535445510c79077f75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.35ex; height:2.343ex;" alt="{\displaystyle \tau _{1,2}}"></span>.</span> </li> <li id="cite_note-schleimer-segerman-61"><span class="mw-cite-backlink">^ <a href="#cite_ref-schleimer-segerman_61-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-schleimer-segerman_61-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchleimerSegerman2012" class="citation conference cs1">Schleimer, Saul; Segerman, Henry (2012). <a rel="nofollow" class="external text" href="https://archive.bridgesmathart.org/2012/bridges2012-103.html">"Sculptures in <span class="texhtml"><i>S</i><sup>3</sup></span>"</a>. In Bosch, Robert; McKenna, Douglas; Sarhangi, Reza (eds.). <i>Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture</i>. Phoenix, Arizona: Tessellations Publishing. pp.&#160;103–110. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1204.4952">1204.4952</a></span>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-938664-00-7" title="Special:BookSources/978-1-938664-00-7"><bdi>978-1-938664-00-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Sculptures+in+%3Cspan+class%3D%22texhtml+%22+%3ES%3Csup%3E3%3C%2Fsup%3E%3C%2Fspan%3E&amp;rft.btitle=Proceedings+of+Bridges+2012%3A+Mathematics%2C+Music%2C+Art%2C+Architecture%2C+Culture&amp;rft.place=Phoenix%2C+Arizona&amp;rft.pages=103-110&amp;rft.pub=Tessellations+Publishing&amp;rft.date=2012&amp;rft_id=info%3Aarxiv%2F1204.4952&amp;rft.isbn=978-1-938664-00-7&amp;rft.aulast=Schleimer&amp;rft.aufirst=Saul&amp;rft.au=Segerman%2C+Henry&amp;rft_id=https%3A%2F%2Farchive.bridgesmathart.org%2F2012%2Fbridges2012-103.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-sudanese-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-sudanese_62-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGunn2018" class="citation web cs1">Gunn, Charles (August 23, 2018). <a rel="nofollow" class="external text" href="https://vimeo.com/286360639">"Sudanese Möbius Band"</a>. <i>Vimeo</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-03-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Vimeo&amp;rft.atitle=Sudanese+M%C3%B6bius+Band&amp;rft.date=2018-08-23&amp;rft.aulast=Gunn&amp;rft.aufirst=Charles&amp;rft_id=https%3A%2F%2Fvimeo.com%2F286360639&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-franzoni-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-franzoni_63-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranzoni2012" class="citation journal cs1">Franzoni, Gregorio (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fnoti880">"The Klein bottle: variations on a theme"</a>. <i>Notices of the American Mathematical Society</i>. <b>59</b> (8): 1076–1082. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fnoti880">10.1090/noti880</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2985809">2985809</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+American+Mathematical+Society&amp;rft.atitle=The+Klein+bottle%3A+variations+on+a+theme&amp;rft.volume=59&amp;rft.issue=8&amp;rft.pages=1076-1082&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1090%2Fnoti880&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2985809%23id-name%3DMR&amp;rft.aulast=Franzoni&amp;rft.aufirst=Gregorio&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252Fnoti880&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-huggett-jordan-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-huggett-jordan_64-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuggettJordan2009" class="citation book cs1">Huggett, Stephen; Jordan, David (2009). <i>A Topological Aperitif</i> (Revised&#160;ed.). Springer-Verlag. p.&#160;57. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-84800-912-7" title="Special:BookSources/978-1-84800-912-7"><bdi>978-1-84800-912-7</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2483686">2483686</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Topological+Aperitif&amp;rft.pages=57&amp;rft.edition=Revised&amp;rft.pub=Springer-Verlag&amp;rft.date=2009&amp;rft.isbn=978-1-84800-912-7&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2483686%23id-name%3DMR&amp;rft.aulast=Huggett&amp;rft.aufirst=Stephen&amp;rft.au=Jordan%2C+David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-flapan-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-flapan_65-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlapan2016" class="citation book cs1"><a href="/wiki/Erica_Flapan" title="Erica Flapan">Flapan, Erica</a> (2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q4RbCwAAQBAJ&amp;pg=PA99"><i>Knots, Molecules, and the Universe: An Introduction to Topology</i></a>. Providence, Rhode Island: American Mathematical Society. pp.&#160;99–100. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fmbk%2F096">10.1090/mbk/096</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4704-2535-7" title="Special:BookSources/978-1-4704-2535-7"><bdi>978-1-4704-2535-7</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3443369">3443369</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Knots%2C+Molecules%2C+and+the+Universe%3A+An+Introduction+to+Topology&amp;rft.place=Providence%2C+Rhode+Island&amp;rft.pages=99-100&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2016&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3443369%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1090%2Fmbk%2F096&amp;rft.isbn=978-1-4704-2535-7&amp;rft.aulast=Flapan&amp;rft.aufirst=Erica&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq4RbCwAAQBAJ%26pg%3DPA99&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-richeson-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-richeson_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRicheson2008" class="citation book cs1"><a href="/wiki/David_Richeson" title="David Richeson">Richeson, David S.</a> (2008). <a href="/wiki/Euler%27s_Gem" title="Euler&#39;s Gem"><i>Euler's Gem: The Polyhedron Formula and the Birth of Topology</i></a>. Princeton, New Jersey: Princeton University Press. p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=BFeXDwAAQBAJ&amp;pg=PA171">171</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-12677-7" title="Special:BookSources/978-0-691-12677-7"><bdi>978-0-691-12677-7</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2440945">2440945</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Euler%27s+Gem%3A+The+Polyhedron+Formula+and+the+Birth+of+Topology&amp;rft.place=Princeton%2C+New+Jersey&amp;rft.pages=171&amp;rft.pub=Princeton+University+Press&amp;rft.date=2008&amp;rft.isbn=978-0-691-12677-7&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2440945%23id-name%3DMR&amp;rft.aulast=Richeson&amp;rft.aufirst=David+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-godinho-natario-67"><span class="mw-cite-backlink">^ <a href="#cite_ref-godinho-natario_67-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-godinho-natario_67-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGodinhoNatário2014" class="citation book cs1">Godinho, Leonor; Natário, José (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=oV4qBAAAQBAJ&amp;pg=PA152"><i>An Introduction to Riemannian Geometry: With Applications to Mechanics and Relativity</i></a>. Universitext. Springer, Cham. pp.&#160;152–153. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-08666-8">10.1007/978-3-319-08666-8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-08665-1" title="Special:BookSources/978-3-319-08665-1"><bdi>978-3-319-08665-1</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3289090">3289090</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Riemannian+Geometry%3A+With+Applications+to+Mechanics+and+Relativity&amp;rft.series=Universitext&amp;rft.pages=152-153&amp;rft.pub=Springer%2C+Cham&amp;rft.date=2014&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3289090%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-08666-8&amp;rft.isbn=978-3-319-08665-1&amp;rft.aulast=Godinho&amp;rft.aufirst=Leonor&amp;rft.au=Nat%C3%A1rio%2C+Jos%C3%A9&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DoV4qBAAAQBAJ%26pg%3DPA152&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-cantwell-conlon-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-cantwell-conlon_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCantwellConlon2015" class="citation journal cs1">Cantwell, John; Conlon, Lawrence (2015). "Hyperbolic geometry and homotopic homeomorphisms of surfaces". <i><a href="/wiki/Geometriae_Dedicata" title="Geometriae Dedicata">Geometriae Dedicata</a></i>. <b>177</b>: 27–42. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1305.1379">1305.1379</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10711-014-9975-1">10.1007/s10711-014-9975-1</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3370020">3370020</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119640200">119640200</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geometriae+Dedicata&amp;rft.atitle=Hyperbolic+geometry+and+homotopic+homeomorphisms+of+surfaces&amp;rft.volume=177&amp;rft.pages=27-42&amp;rft.date=2015&amp;rft_id=info%3Aarxiv%2F1305.1379&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3370020%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119640200%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10711-014-9975-1&amp;rft.aulast=Cantwell&amp;rft.aufirst=John&amp;rft.au=Conlon%2C+Lawrence&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-stillwell-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-stillwell_69-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStillwell1992" class="citation book cs1"><a href="/wiki/John_Stillwell" title="John Stillwell">Stillwell, John</a> (1992). "4.6 Classification of isometries". <i>Geometry of Surfaces</i>. Universitext. Cham: Springer. pp.&#160;96–98. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4612-0929-4">10.1007/978-1-4612-0929-4</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-97743-0" title="Special:BookSources/0-387-97743-0"><bdi>0-387-97743-0</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1171453">1171453</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=4.6+Classification+of+isometries&amp;rft.btitle=Geometry+of+Surfaces&amp;rft.place=Cham&amp;rft.series=Universitext&amp;rft.pages=96-98&amp;rft.pub=Springer&amp;rft.date=1992&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1171453%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4612-0929-4&amp;rft.isbn=0-387-97743-0&amp;rft.aulast=Stillwell&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-seifert-threlfall-70"><span class="mw-cite-backlink">^ <a href="#cite_ref-seifert-threlfall_70-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-seifert-threlfall_70-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeifertThrelfall1980" class="citation book cs1"><a href="/wiki/Herbert_Seifert" title="Herbert Seifert">Seifert, Herbert</a>; <a href="/wiki/William_Threlfall" title="William Threlfall">Threlfall, William</a> (1980). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=rsb8zjP0XHoC&amp;pg=PA12"><i>A Textbook of Topology</i></a>. Pure and Applied Mathematics. Vol.&#160;89. Translated by Goldman, Michael A. New York &amp; London: Academic Press. p.&#160;12. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-12-634850-2" title="Special:BookSources/0-12-634850-2"><bdi>0-12-634850-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0575168">0575168</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Textbook+of+Topology&amp;rft.place=New+York+%26+London&amp;rft.series=Pure+and+Applied+Mathematics&amp;rft.pages=12&amp;rft.pub=Academic+Press&amp;rft.date=1980&amp;rft.isbn=0-12-634850-2&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D575168%23id-name%3DMR&amp;rft.aulast=Seifert&amp;rft.aufirst=Herbert&amp;rft.au=Threlfall%2C+William&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Drsb8zjP0XHoC%26pg%3DPA12&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-lopez-martin-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-lopez-martin_71-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLópezMartín1997" class="citation journal cs1">López, Francisco J.; Martín, Francisco (1997). "Complete nonorientable minimal surfaces with the highest symmetry group". <i><a href="/wiki/American_Journal_of_Mathematics" title="American Journal of Mathematics">American Journal of Mathematics</a></i>. <b>119</b> (1): 55–81. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1353%2Fajm.1997.0004">10.1353/ajm.1997.0004</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1428058">1428058</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121366986">121366986</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Mathematics&amp;rft.atitle=Complete+nonorientable+minimal+surfaces+with+the+highest+symmetry+group&amp;rft.volume=119&amp;rft.issue=1&amp;rft.pages=55-81&amp;rft.date=1997&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1428058%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121366986%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1353%2Fajm.1997.0004&amp;rft.aulast=L%C3%B3pez&amp;rft.aufirst=Francisco+J.&amp;rft.au=Mart%C3%ADn%2C+Francisco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-meeks-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-meeks_72-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeeks1981" class="citation journal cs1"><a href="/wiki/William_Hamilton_Meeks,_III" title="William Hamilton Meeks, III">Meeks, William H. III</a> (1981). "The classification of complete minimal surfaces in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> with total curvature greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -8\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -8\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a7b0554103789be9de11be5542a8a1469361b63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.303ex; height:2.343ex;" alt="{\displaystyle -8\pi }"></span>". <i><a href="/wiki/Duke_Mathematical_Journal" title="Duke Mathematical Journal">Duke Mathematical Journal</a></i>. <b>48</b> (3): 523–535. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1215%2FS0012-7094-81-04829-8">10.1215/S0012-7094-81-04829-8</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0630583">0630583</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Duke+Mathematical+Journal&amp;rft.atitle=The+classification+of+complete+minimal+surfaces+in+MATH+RENDER+ERROR+with+total+curvature+greater+than+MATH+RENDER+ERROR&amp;rft.volume=48&amp;rft.issue=3&amp;rft.pages=523-535&amp;rft.date=1981&amp;rft_id=info%3Adoi%2F10.1215%2FS0012-7094-81-04829-8&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D630583%23id-name%3DMR&amp;rft.aulast=Meeks&amp;rft.aufirst=William+H.+III&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-systolic-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-systolic_73-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPesciGoldsteinAlexanderMoffatt2015" class="citation journal cs1"><a href="/wiki/Adriana_Pesci" title="Adriana Pesci">Pesci, Adriana I.</a>; <a href="/wiki/Raymond_E._Goldstein" title="Raymond E. Goldstein">Goldstein, Raymond E.</a>; Alexander, Gareth P.; <a href="/wiki/Keith_Moffatt" title="Keith Moffatt">Moffatt, H. Keith</a> (2015). <a rel="nofollow" class="external text" href="http://wrap.warwick.ac.uk/74286/7/WRAP_PRL114_127801_2015_alexander.pdf">"Instability of a Möbius strip minimal surface and a link with systolic geometry"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>114</b> (12): 127801. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PhRvL.114l7801P">2015PhRvL.114l7801P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.114.127801">10.1103/PhysRevLett.114.127801</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3447638">3447638</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25860771">25860771</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Instability+of+a+M%C3%B6bius+strip+minimal+surface+and+a+link+with+systolic+geometry&amp;rft.volume=114&amp;rft.issue=12&amp;rft.pages=127801&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.114.127801&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3447638%23id-name%3DMR&amp;rft_id=info%3Apmid%2F25860771&amp;rft_id=info%3Abibcode%2F2015PhRvL.114l7801P&amp;rft.aulast=Pesci&amp;rft.aufirst=Adriana+I.&amp;rft.au=Goldstein%2C+Raymond+E.&amp;rft.au=Alexander%2C+Gareth+P.&amp;rft.au=Moffatt%2C+H.+Keith&amp;rft_id=http%3A%2F%2Fwrap.warwick.ac.uk%2F74286%2F7%2FWRAP_PRL114_127801_2015_alexander.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-bjorling-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-bjorling_74-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMira2006" class="citation journal cs1">Mira, Pablo (2006). "Complete minimal Möbius strips in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> and the Björling problem". <i>Journal of Geometry and Physics</i>. <b>56</b> (9): 1506–1515. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006JGP....56.1506M">2006JGP....56.1506M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.geomphys.2005.08.001">10.1016/j.geomphys.2005.08.001</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2240407">2240407</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Geometry+and+Physics&amp;rft.atitle=Complete+minimal+M%C3%B6bius+strips+in+MATH+RENDER+ERROR+and+the+Bj%C3%B6rling+problem&amp;rft.volume=56&amp;rft.issue=9&amp;rft.pages=1506-1515&amp;rft.date=2006&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2240407%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1016%2Fj.geomphys.2005.08.001&amp;rft_id=info%3Abibcode%2F2006JGP....56.1506M&amp;rft.aulast=Mira&amp;rft.aufirst=Pablo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-parker-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-parker_75-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParker1993" class="citation book cs1">Parker, Phillip E. (1993). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160313115359/http://www.math.wichita.edu/~pparker/research/sog/sog1.zip">"Spaces of geodesics"</a>. In Del Riego, L. (ed.). <i>Differential Geometry Workshop on Spaces of Geometry (Guanajuato, 1992)</i>. Aportaciones Mat. Notas Investigación. Vol.&#160;8. Soc. Mat. Mexicana, México. pp.&#160;67–79. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1304924">1304924</a>. Archived from the original on 2016-03-13<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-03-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Spaces+of+geodesics&amp;rft.btitle=Differential+Geometry+Workshop+on+Spaces+of+Geometry+%28Guanajuato%2C+1992%29&amp;rft.series=Aportaciones+Mat.+Notas+Investigaci%C3%B3n&amp;rft.pages=67-79&amp;rft.pub=Soc.+Mat.+Mexicana%2C+M%C3%A9xico&amp;rft.date=1993&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1304924%23id-name%3DMR&amp;rft.aulast=Parker&amp;rft.aufirst=Phillip+E.&amp;rft_id=http%3A%2F%2Fwww.math.wichita.edu%2F~pparker%2Fresearch%2Fsog%2Fsog1.zip&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: bot: original URL status unknown (<a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">link</a>)</span></span> </li> <li id="cite_note-bickel-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-bickel_76-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBickel1999" class="citation journal cs1">Bickel, Holger (1999). "Duality in stable planes and related closure and kernel operations". <i>Journal of Geometry</i>. <b>64</b> (1–2): 8–15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01229209">10.1007/BF01229209</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1675956">1675956</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122209943">122209943</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Geometry&amp;rft.atitle=Duality+in+stable+planes+and+related+closure+and+kernel+operations&amp;rft.volume=64&amp;rft.issue=1%E2%80%932&amp;rft.pages=8-15&amp;rft.date=1999&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1675956%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122209943%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01229209&amp;rft.aulast=Bickel&amp;rft.aufirst=Holger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-mangahas-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-mangahas_77-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMangahas2017" class="citation book cs1">Mangahas, Johanna (July 2017). "Office Hour Five: The Ping-Pong Lemma". In Clay, Matt; Margalit, Dan (eds.). <i>Office Hours with a Geometric Group Theorist</i>. Princeton University Press. pp.&#160;85–105. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2F9781400885398">10.1515/9781400885398</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781400885398" title="Special:BookSources/9781400885398"><bdi>9781400885398</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Office+Hour+Five%3A+The+Ping-Pong+Lemma&amp;rft.btitle=Office+Hours+with+a+Geometric+Group+Theorist&amp;rft.pages=85-105&amp;rft.pub=Princeton+University+Press&amp;rft.date=2017-07&amp;rft_id=info%3Adoi%2F10.1515%2F9781400885398&amp;rft.isbn=9781400885398&amp;rft.aulast=Mangahas&amp;rft.aufirst=Johanna&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span> See in particular Project 7, pp. 104–105.</span> </li> <li id="cite_note-ramirez-seade-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-ramirez-seade_78-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRamírez_GalarzaSeade2007" class="citation book cs1">Ramírez Galarza, Ana Irene; Seade, José (2007). <i>Introduction to Classical Geometries</i>. Basel: Birkhäuser Verlag. pp.&#160;83–88, 157–163. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-7643-7517-1" title="Special:BookSources/978-3-7643-7517-1"><bdi>978-3-7643-7517-1</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2305055">2305055</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Classical+Geometries&amp;rft.place=Basel&amp;rft.pages=83-88%2C+157-163&amp;rft.pub=Birkh%C3%A4user+Verlag&amp;rft.date=2007&amp;rft.isbn=978-3-7643-7517-1&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2305055%23id-name%3DMR&amp;rft.aulast=Ram%C3%ADrez+Galarza&amp;rft.aufirst=Ana+Irene&amp;rft.au=Seade%2C+Jos%C3%A9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-fomenko-kunii-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-fomenko-kunii_79-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFomenkoKunii2013" class="citation book cs1"><a href="/wiki/Anatoly_Fomenko" title="Anatoly Fomenko">Fomenko, Anatolij T.</a>; Kunii, Tosiyasu L. (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8bn0CAAAQBAJ&amp;pg=PA269"><i>Topological Modeling for Visualization</i></a>. Springer. p.&#160;269. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9784431669562" title="Special:BookSources/9784431669562"><bdi>9784431669562</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Modeling+for+Visualization&amp;rft.pages=269&amp;rft.pub=Springer&amp;rft.date=2013&amp;rft.isbn=9784431669562&amp;rft.aulast=Fomenko&amp;rft.aufirst=Anatolij+T.&amp;rft.au=Kunii%2C+Tosiyasu+L.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8bn0CAAAQBAJ%26pg%3DPA269&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-isham-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-isham_80-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIsham1999" class="citation book cs1">Isham, Chris J. (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8bn0CAAAQBAJ&amp;pg=PA269"><i>Modern Differential Geometry for Physicists</i></a>. World Scientific lecture notes in physics. Vol.&#160;61 (2nd&#160;ed.). World Scientific. p.&#160;269. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/981-02-3555-0" title="Special:BookSources/981-02-3555-0"><bdi>981-02-3555-0</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1698234">1698234</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modern+Differential+Geometry+for+Physicists&amp;rft.series=World+Scientific+lecture+notes+in+physics&amp;rft.pages=269&amp;rft.edition=2nd&amp;rft.pub=World+Scientific&amp;rft.date=1999&amp;rft.isbn=981-02-3555-0&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1698234%23id-name%3DMR&amp;rft.aulast=Isham&amp;rft.aufirst=Chris+J.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8bn0CAAAQBAJ%26pg%3DPA269&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-gor-oni-vin-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-gor-oni-vin_81-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGorbatsevichOnishchikVinberg1993" class="citation book cs1">Gorbatsevich, V. V.; Onishchik, A. L.; Vinberg, È. B. (1993). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9UCOjHdD_hgC&amp;pg=PA164"><i>Lie groups and Lie algebras I: Foundations of Lie Theory; Lie Transformation Groups</i></a>. Encyclopaedia of Mathematical Sciences. Vol.&#160;20. Springer-Verlag, Berlin. pp.&#160;164–166. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-57999-8">10.1007/978-3-642-57999-8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-18697-2" title="Special:BookSources/3-540-18697-2"><bdi>3-540-18697-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1306737">1306737</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+groups+and+Lie+algebras+I%3A+Foundations+of+Lie+Theory%3B+Lie+Transformation+Groups&amp;rft.series=Encyclopaedia+of+Mathematical+Sciences&amp;rft.pages=164-166&amp;rft.pub=Springer-Verlag%2C+Berlin&amp;rft.date=1993&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1306737%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-57999-8&amp;rft.isbn=3-540-18697-2&amp;rft.aulast=Gorbatsevich&amp;rft.aufirst=V.+V.&amp;rft.au=Onishchik%2C+A.+L.&amp;rft.au=Vinberg%2C+%C3%88.+B.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9UCOjHdD_hgC%26pg%3DPA164&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-graphene-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-graphene_82-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYamashiroShimoiHarigayaWakabayashi2004" class="citation journal cs1">Yamashiro, Atsushi; Shimoi, Yukihiro; Harigaya, Kikuo; Wakabayashi, Katsunori (2004). "Novel electronic states in graphene ribbons: competing spin and charge orders". <i>Physica E</i>. <b>22</b> (1–3): 688–691. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/0309636">cond-mat/0309636</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004PhyE...22..688Y">2004PhyE...22..688Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physe.2003.12.100">10.1016/j.physe.2003.12.100</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17102453">17102453</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physica+E&amp;rft.atitle=Novel+electronic+states+in+graphene+ribbons%3A+competing+spin+and+charge+orders&amp;rft.volume=22&amp;rft.issue=1%E2%80%933&amp;rft.pages=688-691&amp;rft.date=2004&amp;rft_id=info%3Aarxiv%2Fcond-mat%2F0309636&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17102453%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.physe.2003.12.100&amp;rft_id=info%3Abibcode%2F2004PhyE...22..688Y&amp;rft.aulast=Yamashiro&amp;rft.aufirst=Atsushi&amp;rft.au=Shimoi%2C+Yukihiro&amp;rft.au=Harigaya%2C+Kikuo&amp;rft.au=Wakabayashi%2C+Katsunori&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-aromaticity1-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-aromaticity1_83-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRzepa2005" class="citation journal cs1">Rzepa, Henry S. (September 2005). "Möbius aromaticity and delocalization". <i>Chemical Reviews</i>. <b>105</b> (10): 3697–3715. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcr030092l">10.1021/cr030092l</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16218564">16218564</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Reviews&amp;rft.atitle=M%C3%B6bius+aromaticity+and+delocalization&amp;rft.volume=105&amp;rft.issue=10&amp;rft.pages=3697-3715&amp;rft.date=2005-09&amp;rft_id=info%3Adoi%2F10.1021%2Fcr030092l&amp;rft_id=info%3Apmid%2F16218564&amp;rft.aulast=Rzepa&amp;rft.aufirst=Henry+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-aromaticity2-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-aromaticity2_84-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYoonOsukaKim2009" class="citation journal cs1">Yoon, Zin Seok; Osuka, Atsuhiro; Kim, Dongho (May 2009). "Möbius aromaticity and antiaromaticity in expanded porphyrins". <i>Nature Chemistry</i>. <b>1</b> (2): 113–122. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009NatCh...1..113Y">2009NatCh...1..113Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnchem.172">10.1038/nchem.172</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21378823">21378823</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Chemistry&amp;rft.atitle=M%C3%B6bius+aromaticity+and+antiaromaticity+in+expanded+porphyrins&amp;rft.volume=1&amp;rft.issue=2&amp;rft.pages=113-122&amp;rft.date=2009-05&amp;rft_id=info%3Apmid%2F21378823&amp;rft_id=info%3Adoi%2F10.1038%2Fnchem.172&amp;rft_id=info%3Abibcode%2F2009NatCh...1..113Y&amp;rft.aulast=Yoon&amp;rft.aufirst=Zin+Seok&amp;rft.au=Osuka%2C+Atsuhiro&amp;rft.au=Kim%2C+Dongho&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-resistor-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-resistor_85-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation magazine cs1"><a rel="nofollow" class="external text" href="https://content.time.com/time/subscriber/article/0,33009,876181,00.html">"Making resistors with math"</a>. <i><a href="/wiki/Time_(magazine)" title="Time (magazine)">Time</a></i>. Vol.&#160;84, no.&#160;13. September 25, 1964.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Time&amp;rft.atitle=Making+resistors+with+math&amp;rft.volume=84&amp;rft.issue=13&amp;rft.date=1964-09-25&amp;rft_id=https%3A%2F%2Fcontent.time.com%2Ftime%2Fsubscriber%2Farticle%2F0%2C33009%2C876181%2C00.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEPickover200545–46-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPickover200545–46_86-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPickover2005">Pickover (2005)</a>, pp.&#160;45–46.</span> </li> <li id="cite_note-resonator-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-resonator_87-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPond2000" class="citation journal cs1">Pond, J. M. (2000). "Mobius dual-mode resonators and bandpass filters". <i>IEEE Transactions on Microwave Theory and Techniques</i>. <b>48</b> (12): 2465–2471. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000ITMTT..48.2465P">2000ITMTT..48.2465P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F22.898999">10.1109/22.898999</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Microwave+Theory+and+Techniques&amp;rft.atitle=Mobius+dual-mode+resonators+and+bandpass+filters&amp;rft.volume=48&amp;rft.issue=12&amp;rft.pages=2465-2471&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1109%2F22.898999&amp;rft_id=info%3Abibcode%2F2000ITMTT..48.2465P&amp;rft.aulast=Pond&amp;rft.aufirst=J.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-resonator2-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-resonator2_88-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRohdePoddarSundararajan2013" class="citation journal cs1">Rohde, Ulrich L.; Poddar, Ajay; Sundararajan, D. (November 2013). <a rel="nofollow" class="external text" href="https://synergymwave.com/articles/2013/11/article.pdf">"Printed resonators: Möbius strip theory and applications"</a> <span class="cs1-format">(PDF)</span>. <i>Microwave Journal</i>. <b>56</b> (11).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Microwave+Journal&amp;rft.atitle=Printed+resonators%3A+M%C3%B6bius+strip+theory+and+applications&amp;rft.volume=56&amp;rft.issue=11&amp;rft.date=2013-11&amp;rft.aulast=Rohde&amp;rft.aufirst=Ulrich+L.&amp;rft.au=Poddar%2C+Ajay&amp;rft.au=Sundararajan%2C+D.&amp;rft_id=https%3A%2F%2Fsynergymwave.com%2Farticles%2F2013%2F11%2Farticle.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-polarization-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-polarization_89-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBauerBanzerKarimiOrlov2015" class="citation journal cs1">Bauer, Thomas; Banzer, Peter; Karimi, Ebrahim; Orlov, Sergej; Rubano, Andrea; Marrucci, Lorenzo; Santamato, Enrico; Boyd, Robert W.; Leuchs, Gerd (February 2015). "Observation of optical polarization Möbius strips". <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i>. <b>347</b> (6225): 964–966. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015Sci...347..964B">2015Sci...347..964B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1260635">10.1126/science.1260635</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25636796">25636796</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206562350">206562350</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Observation+of+optical+polarization+M%C3%B6bius+strips&amp;rft.volume=347&amp;rft.issue=6225&amp;rft.pages=964-966&amp;rft.date=2015-02&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1260635&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206562350%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F25636796&amp;rft_id=info%3Abibcode%2F2015Sci...347..964B&amp;rft.aulast=Bauer&amp;rft.aufirst=Thomas&amp;rft.au=Banzer%2C+Peter&amp;rft.au=Karimi%2C+Ebrahim&amp;rft.au=Orlov%2C+Sergej&amp;rft.au=Rubano%2C+Andrea&amp;rft.au=Marrucci%2C+Lorenzo&amp;rft.au=Santamato%2C+Enrico&amp;rft.au=Boyd%2C+Robert+W.&amp;rft.au=Leuchs%2C+Gerd&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-can-ind-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-can-ind_90-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCandealInduráin1994" class="citation journal cs1">Candeal, Juan Carlos; Induráin, Esteban (January 1994). "The Moebius strip and a social choice paradox". <i><a href="/wiki/Economics_Letters" title="Economics Letters">Economics Letters</a></i>. <b>45</b> (3): 407–412. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0165-1765%2894%2990045-0">10.1016/0165-1765(94)90045-0</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Economics+Letters&amp;rft.atitle=The+Moebius+strip+and+a+social+choice+paradox&amp;rft.volume=45&amp;rft.issue=3&amp;rft.pages=407-412&amp;rft.date=1994-01&amp;rft_id=info%3Adoi%2F10.1016%2F0165-1765%2894%2990045-0&amp;rft.aulast=Candeal&amp;rft.aufirst=Juan+Carlos&amp;rft.au=Indur%C3%A1in%2C+Esteban&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-coaster1-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-coaster1_91-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEasdown2012" class="citation book cs1">Easdown, Martin (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jjTDCwAAQBAJ&amp;pg=PA43"><i>Amusement Park Rides</i></a>. Bloomsbury Publishing. p.&#160;43. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781782001522" title="Special:BookSources/9781782001522"><bdi>9781782001522</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Amusement+Park+Rides&amp;rft.pages=43&amp;rft.pub=Bloomsbury+Publishing&amp;rft.date=2012&amp;rft.isbn=9781782001522&amp;rft.aulast=Easdown&amp;rft.aufirst=Martin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjjTDCwAAQBAJ%26pg%3DPA43&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-coaster2-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-coaster2_92-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHook2019" class="citation book cs1">Hook, Patrick (2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=a7vdDwAAQBAJ&amp;pg=PA20"><i>Ticket To Ride: The Essential Guide to the World's Greatest Roller Coasters and Thrill Rides</i></a>. Chartwell Books. p.&#160;20. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780785835776" title="Special:BookSources/9780785835776"><bdi>9780785835776</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ticket+To+Ride%3A+The+Essential+Guide+to+the+World%27s+Greatest+Roller+Coasters+and+Thrill+Rides&amp;rft.pages=20&amp;rft.pub=Chartwell+Books&amp;rft.date=2019&amp;rft.isbn=9780785835776&amp;rft.aulast=Hook&amp;rft.aufirst=Patrick&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Da7vdDwAAQBAJ%26pg%3DPA20&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-maps1-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-maps1_93-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTobler1961" class="citation journal cs1"><a href="/wiki/Waldo_R._Tobler" title="Waldo R. Tobler">Tobler, Waldo R.</a> (1961). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=2j44AAAAIAAJ&amp;pg=PA486">"A world map on a Möbius strip"</a>. <i>Surveying &amp; Mapping</i>. <b>21</b>: 486.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Surveying+%26+Mapping&amp;rft.atitle=A+world+map+on+a+M%C3%B6bius+strip&amp;rft.volume=21&amp;rft.pages=486&amp;rft.date=1961&amp;rft.aulast=Tobler&amp;rft.aufirst=Waldo+R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D2j44AAAAIAAJ%26pg%3DPA486&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-maps2-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-maps2_94-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKumlerTobler1991" class="citation journal cs1"><a href="/wiki/Waldo_R._Tobler" title="Waldo R. Tobler">Kumler, Mark P.</a>; Tobler, Waldo R. (January 1991). "Three world maps on a Moebius strip". <i>Cartography and Geographic Information Systems</i>. <b>18</b> (4): 275–276. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1559%2F152304091783786781">10.1559/152304091783786781</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cartography+and+Geographic+Information+Systems&amp;rft.atitle=Three+world+maps+on+a+Moebius+strip&amp;rft.volume=18&amp;rft.issue=4&amp;rft.pages=275-276&amp;rft.date=1991-01&amp;rft_id=info%3Adoi%2F10.1559%2F152304091783786781&amp;rft.aulast=Kumler&amp;rft.aufirst=Mark+P.&amp;rft.au=Tobler%2C+Waldo+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-courant-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-courant_95-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCourant1940" class="citation journal cs1"><a href="/wiki/Richard_Courant" title="Richard Courant">Courant, Richard</a> (1940). "Soap film experiments with minimal surfaces". <i><a href="/wiki/The_American_Mathematical_Monthly" title="The American Mathematical Monthly">The American Mathematical Monthly</a></i>. <b>47</b> (3): 167–174. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00029890.1940.11990957">10.1080/00029890.1940.11990957</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2304225">2304225</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0001622">0001622</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Soap+film+experiments+with+minimal+surfaces&amp;rft.volume=47&amp;rft.issue=3&amp;rft.pages=167-174&amp;rft.date=1940&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1622%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2304225%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1080%2F00029890.1940.11990957&amp;rft.aulast=Courant&amp;rft.aufirst=Richard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-soap-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-soap_96-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldsteinMoffattPesciRicca2010" class="citation journal cs1"><a href="/wiki/Raymond_E._Goldstein" title="Raymond E. Goldstein">Goldstein, Raymond E.</a>; <a href="/wiki/Keith_Moffatt" title="Keith Moffatt">Moffatt, H. Keith</a>; <a href="/wiki/Adriana_Pesci" title="Adriana Pesci">Pesci, Adriana I.</a>; <a href="/wiki/Renzo_L._Ricca" title="Renzo L. Ricca">Ricca, Renzo L.</a> (December 2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009808">"Soap-film Möbius strip changes topology with a twist singularity"</a>. <i><a href="/wiki/Proceedings_of_the_National_Academy_of_Sciences" class="mw-redirect" title="Proceedings of the National Academy of Sciences">Proceedings of the National Academy of Sciences</a></i>. <b>107</b> (51): 21979–21984. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010PNAS..10721979G">2010PNAS..10721979G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.1015997107">10.1073/pnas.1015997107</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009808">3009808</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&amp;rft.atitle=Soap-film+M%C3%B6bius+strip+changes+topology+with+a+twist+singularity&amp;rft.volume=107&amp;rft.issue=51&amp;rft.pages=21979-21984&amp;rft.date=2010-12&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3009808%23id-name%3DPMC&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.1015997107&amp;rft_id=info%3Abibcode%2F2010PNAS..10721979G&amp;rft.aulast=Goldstein&amp;rft.aufirst=Raymond+E.&amp;rft.au=Moffatt%2C+H.+Keith&amp;rft.au=Pesci%2C+Adriana+I.&amp;rft.au=Ricca%2C+Renzo+L.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3009808&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-synthesis-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-synthesis_97-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWalbaRichardsHaltiwanger1982" class="citation journal cs1">Walba, David M.; Richards, Rodney M.; Haltiwanger, R. Curtis (June 1982). "Total synthesis of the first molecular Moebius strip". <i><a href="/wiki/Journal_of_the_American_Chemical_Society" title="Journal of the American Chemical Society">Journal of the American Chemical Society</a></i>. <b>104</b> (11): 3219–3221. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fja00375a051">10.1021/ja00375a051</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Chemical+Society&amp;rft.atitle=Total+synthesis+of+the+first+molecular+Moebius+strip&amp;rft.volume=104&amp;rft.issue=11&amp;rft.pages=3219-3221&amp;rft.date=1982-06&amp;rft_id=info%3Adoi%2F10.1021%2Fja00375a051&amp;rft.aulast=Walba&amp;rft.aufirst=David+M.&amp;rft.au=Richards%2C+Rodney+M.&amp;rft.au=Haltiwanger%2C+R.+Curtis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEPickover200552–58-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPickover200552–58_98-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPickover2005">Pickover (2005)</a>, pp.&#160;52–58.</span> </li> <li id="cite_note-dna-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-dna_99-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGitig2010" class="citation web cs1">Gitig, Diana (October 18, 2010). <a rel="nofollow" class="external text" href="https://arstechnica.com/science/2010/10/chemical-origami-used-to-create-a-dna-mobius-strip/">"Chemical origami used to create a DNA Möbius strip"</a>. <i><a href="/wiki/Ars_Technica" title="Ars Technica">Ars Technica</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Ars+Technica&amp;rft.atitle=Chemical+origami+used+to+create+a+DNA+M%C3%B6bius+strip&amp;rft.date=2010-10-18&amp;rft.aulast=Gitig&amp;rft.aufirst=Diana&amp;rft_id=https%3A%2F%2Farstechnica.com%2Fscience%2F2010%2F10%2Fchemical-origami-used-to-create-a-dna-mobius-strip%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-emmer-100"><span class="mw-cite-backlink">^ <a href="#cite_ref-emmer_100-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-emmer_100-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEmmer1980" class="citation journal cs1">Emmer, Michele (Spring 1980). <a rel="nofollow" class="external text" href="https://muse.jhu.edu/article/599337/summary">"Visual art and mathematics: the Moebius band"</a>. <i><a href="/wiki/Leonardo_(journal)" title="Leonardo (journal)">Leonardo</a></i>. <b>13</b> (2): 108–111. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1577979">10.2307/1577979</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1577979">1577979</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123908555">123908555</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Leonardo&amp;rft.atitle=Visual+art+and+mathematics%3A+the+Moebius+band&amp;rft.ssn=spring&amp;rft.volume=13&amp;rft.issue=2&amp;rft.pages=108-111&amp;rft.date=1980&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123908555%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1577979%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1577979&amp;rft.aulast=Emmer&amp;rft.aufirst=Michele&amp;rft_id=https%3A%2F%2Fmuse.jhu.edu%2Farticle%2F599337%2Fsummary&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-olson-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-olson_101-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFByers2018" class="citation book cs1">Byers, Mark (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=U1ZYDwAAQBAJ&amp;pg=PA77"><i>Charles Olson and American Modernism: The Practice of the Self</i></a>. Oxford University Press. pp.&#160;77–78. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780198813255" title="Special:BookSources/9780198813255"><bdi>9780198813255</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Charles+Olson+and+American+Modernism%3A+The+Practice+of+the+Self&amp;rft.pages=77-78&amp;rft.pub=Oxford+University+Press&amp;rft.date=2018&amp;rft.isbn=9780198813255&amp;rft.aulast=Byers&amp;rft.aufirst=Mark&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DU1ZYDwAAQBAJ%26pg%3DPA77&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-escher1-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-escher1_102-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrato2010" class="citation book cs1">Crato, Nuno (2010). "Escher and the Möbius strip". <i>Figuring It Out: Entertaining Encounters with Everyday Math</i>. Springer. pp.&#160;123–126. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-04833-3_29">10.1007/978-3-642-04833-3_29</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Escher+and+the+M%C3%B6bius+strip&amp;rft.btitle=Figuring+It+Out%3A+Entertaining+Encounters+with+Everyday+Math&amp;rft.pages=123-126&amp;rft.pub=Springer&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-04833-3_29&amp;rft.aulast=Crato&amp;rft.aufirst=Nuno&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-escher2-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-escher2_103-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKersten2017" class="citation web cs1">Kersten, Erik (March 13, 2017). <a rel="nofollow" class="external text" href="https://www.escherinhetpaleis.nl/escher-today/mobius-strip-i/?lang=en">"Möbius Strip I"</a>. <a href="/wiki/Escher_in_the_Palace" title="Escher in the Palace">Escher in the Palace</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-04-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=M%C3%B6bius+Strip+I&amp;rft.pub=Escher+in+the+Palace&amp;rft.date=2017-03-13&amp;rft.aulast=Kersten&amp;rft.aufirst=Erik&amp;rft_id=https%3A%2F%2Fwww.escherinhetpaleis.nl%2Fescher-today%2Fmobius-strip-i%2F%3Flang%3Den&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEPickover200513-104"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEPickover200513_104-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPickover200513_104-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPickover2005">Pickover (2005)</a>, p.&#160;13.</span> </li> <li id="cite_note-brecher-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-brecher_105-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrecher2017" class="citation conference cs1">Brecher, Kenneth (2017). <a rel="nofollow" class="external text" href="https://archive.bridgesmathart.org/2017/bridges2017-153.html">"Art of infinity"</a>. In Swart, David; Séquin, Carlo H.; Fenyvesi, Kristóf (eds.). <i>Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture</i>. Phoenix, Arizona: Tessellations Publishing. pp.&#160;153–158. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-938664-22-9" title="Special:BookSources/978-1-938664-22-9"><bdi>978-1-938664-22-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Art+of+infinity&amp;rft.btitle=Proceedings+of+Bridges+2017%3A+Mathematics%2C+Art%2C+Music%2C+Architecture%2C+Education%2C+Culture&amp;rft.place=Phoenix%2C+Arizona&amp;rft.pages=153-158&amp;rft.pub=Tessellations+Publishing&amp;rft.date=2017&amp;rft.isbn=978-1-938664-22-9&amp;rft.aulast=Brecher&amp;rft.aufirst=Kenneth&amp;rft_id=https%3A%2F%2Farchive.bridgesmathart.org%2F2017%2Fbridges2017-153.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-peterson-106"><span class="mw-cite-backlink">^ <a href="#cite_ref-peterson_106-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-peterson_106-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeterson2002" class="citation book cs1"><a href="/wiki/Ivars_Peterson" title="Ivars Peterson">Peterson, Ivars</a> (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RMH2DwAAQBAJ&amp;pg=PA31">"Recycling topology"</a>. <i>Mathematical Treks: From Surreal Numbers to Magic Circles</i>. MAA Spectrum. Mathematical Association of America, Washington, DC. pp.&#160;31–35. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-88385-537-2" title="Special:BookSources/0-88385-537-2"><bdi>0-88385-537-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1874198">1874198</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Recycling+topology&amp;rft.btitle=Mathematical+Treks%3A+From+Surreal+Numbers+to+Magic+Circles&amp;rft.series=MAA+Spectrum&amp;rft.pages=31-35&amp;rft.pub=Mathematical+Association+of+America%2C+Washington%2C+DC&amp;rft.date=2002&amp;rft.isbn=0-88385-537-2&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1874198%23id-name%3DMR&amp;rft.aulast=Peterson&amp;rft.aufirst=Ivars&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRMH2DwAAQBAJ%26pg%3DPA31&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-expo74-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-expo74_107-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://news.google.com/newspapers?id=v9kvAAAAIBAJ&amp;pg=5133%2C4421507">"Expo '74 symbol selected"</a>. <i><a href="/wiki/The_Spokesman-Review" title="The Spokesman-Review">The Spokesman-Review</a></i>. March 12, 1972. p.&#160;1.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Spokesman-Review&amp;rft.atitle=Expo+%2774+symbol+selected&amp;rft.pages=1&amp;rft.date=1972-03-12&amp;rft_id=https%3A%2F%2Fnews.google.com%2Fnewspapers%3Fid%3Dv9kvAAAAIBAJ%26pg%3D5133%252C4421507&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-gdrive-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-gdrive_108-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMillward2012" class="citation news cs1">Millward, Steven (April 30, 2012). <a rel="nofollow" class="external text" href="https://sg.news.yahoo.com/did-google-drive-copy-icon-091053776.html">"Did Google Drive Copy its Icon From a Chinese App?"</a>. <i>Tech in Asia</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-03-27</span></span> &#8211; via Yahoo! News.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Tech+in+Asia&amp;rft.atitle=Did+Google+Drive+Copy+its+Icon+From+a+Chinese+App%3F&amp;rft.date=2012-04-30&amp;rft.aulast=Millward&amp;rft.aufirst=Steven&amp;rft_id=https%3A%2F%2Fsg.news.yahoo.com%2Fdid-google-drive-copy-icon-091053776.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-impa-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-impa_109-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://impa.br/en_US/noticias/para-quem-e-fa-do-impa-dez-curiosidades-sobre-o-instituto/">"Símbolo do IMPA"</a>. <i>Para quem é fã do IMPA, dez curiosidades sobre o instituto</i>. IMPA. May 7, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-03-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Para+quem+%C3%A9+f%C3%A3+do+IMPA%2C+dez+curiosidades+sobre+o+instituto&amp;rft.atitle=S%C3%ADmbolo+do+IMPA&amp;rft.date=2020-05-07&amp;rft_id=https%3A%2F%2Fimpa.br%2Fen_US%2Fnoticias%2Fpara-quem-e-fa-do-impa-dez-curiosidades-sobre-o-instituto%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEPickover2005156–157-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPickover2005156–157_110-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPickover2005">Pickover (2005)</a>, pp.&#160;156–157.</span> </li> <li id="cite_note-briefmarken-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-briefmarken_111-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeckerStark1983" class="citation journal cs1">Decker, Heinz; Stark, Eberhard (1983). "Möbius-Bänder: ...und natürlich auch auf Briefmarken". <i>Praxis der Mathematik</i>. <b>25</b> (7): 207–215. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0720681">0720681</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Praxis+der+Mathematik&amp;rft.atitle=M%C3%B6bius-B%C3%A4nder%3A+...und+nat%C3%BCrlich+auch+auf+Briefmarken&amp;rft.volume=25&amp;rft.issue=7&amp;rft.pages=207-215&amp;rft.date=1983&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D720681%23id-name%3DMR&amp;rft.aulast=Decker&amp;rft.aufirst=Heinz&amp;rft.au=Stark%2C+Eberhard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-architecture-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-architecture_112-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThulaseedasKrawczyk2003" class="citation conference cs1">Thulaseedas, Jolly; Krawczyk, Robert J. (2003). <a rel="nofollow" class="external text" href="https://archive.bridgesmathart.org/2003/bridges2003-353.html">"Möbius concepts in architecture"</a>. In Barrallo, Javier; Friedman, Nathaniel; Maldonado, Juan Antonio; Mart\'\inez-Aroza, José; Sarhangi, Reza; Séquin, Carlo (eds.). <i>Meeting Alhambra, ISAMA-BRIDGES Conference Proceedings</i>. Granada, Spain: University of Granada. pp.&#160;353–360. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/84-930669-1-5" title="Special:BookSources/84-930669-1-5"><bdi>84-930669-1-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=M%C3%B6bius+concepts+in+architecture&amp;rft.btitle=Meeting+Alhambra%2C+ISAMA-BRIDGES+Conference+Proceedings&amp;rft.place=Granada%2C+Spain&amp;rft.pages=353-360&amp;rft.pub=University+of+Granada&amp;rft.date=2003&amp;rft.isbn=84-930669-1-5&amp;rft.aulast=Thulaseedas&amp;rft.aufirst=Jolly&amp;rft.au=Krawczyk%2C+Robert+J.&amp;rft_id=https%3A%2F%2Farchive.bridgesmathart.org%2F2003%2Fbridges2003-353.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-bridges-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-bridges_113-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSéquin2018" class="citation journal cs1"><a href="/wiki/Carlo_H._S%C3%A9quin" title="Carlo H. Séquin">Séquin, Carlo H.</a> (January 2018). "Möbius bridges". <i><a href="/wiki/Journal_of_Mathematics_and_the_Arts" title="Journal of Mathematics and the Arts">Journal of Mathematics and the Arts</a></i>. <b>12</b> (2–3): 181–194. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F17513472.2017.1419331">10.1080/17513472.2017.1419331</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:216116708">216116708</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematics+and+the+Arts&amp;rft.atitle=M%C3%B6bius+bridges&amp;rft.volume=12&amp;rft.issue=2%E2%80%933&amp;rft.pages=181-194&amp;rft.date=2018-01&amp;rft_id=info%3Adoi%2F10.1080%2F17513472.2017.1419331&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A216116708%23id-name%3DS2CID&amp;rft.aulast=S%C3%A9quin&amp;rft.aufirst=Carlo+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-kazakh-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-kazakh_114-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWainwright2017" class="citation news cs1">Wainwright, Oliver (October 17, 2017). <a rel="nofollow" class="external text" href="https://www.theguardian.com/cities/2017/oct/17/norman-foster-president-pyramid-architects-built-astana">"<span class="cs1-kern-left"></span>'Norman said the president wants a pyramid': how starchitects built Astana"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Guardian&amp;rft.atitle=%27Norman+said+the+president+wants+a+pyramid%27%3A+how+starchitects+built+Astana&amp;rft.date=2017-10-17&amp;rft.aulast=Wainwright&amp;rft.aufirst=Oliver&amp;rft_id=https%3A%2F%2Fwww.theguardian.com%2Fcities%2F2017%2Foct%2F17%2Fnorman-foster-president-pyramid-architects-built-astana&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-nascar-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-nascar_115-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuret2010" class="citation magazine cs1">Muret, Don (May 17, 2010). <a rel="nofollow" class="external text" href="https://www.sportsbusinessjournal.com/Journal/Issues/2010/05/17/This-Weeks-News/NASCAR-Hall-Of-Fame-Looks-Fast-Sitting-Still.aspx">"NASCAR Hall of Fame 'looks fast sitting still'<span class="cs1-kern-right"></span>"</a>. <i>Sports Business Journal</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sports+Business+Journal&amp;rft.atitle=NASCAR+Hall+of+Fame+%27looks+fast+sitting+still%27&amp;rft.date=2010-05-17&amp;rft.aulast=Muret&amp;rft.aufirst=Don&amp;rft_id=https%3A%2F%2Fwww.sportsbusinessjournal.com%2FJournal%2FIssues%2F2010%2F05%2F17%2FThis-Weeks-News%2FNASCAR-Hall-Of-Fame-Looks-Fast-Sitting-Still.aspx&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-reyes-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-reyes_116-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGopnik2014" class="citation web cs1">Gopnik, Blake (October 17, 2014). <a rel="nofollow" class="external text" href="https://news.artnet.com/art-world/pedro-reyes-makes-an-infinite-love-seat-133150">"Pedro Reyes Makes an Infinite Love Seat"</a>. <i>Artnet News</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Artnet+News&amp;rft.atitle=Pedro+Reyes+Makes+an+Infinite+Love+Seat&amp;rft.date=2014-10-17&amp;rft.aulast=Gopnik&amp;rft.aufirst=Blake&amp;rft_id=https%3A%2F%2Fnews.artnet.com%2Fart-world%2Fpedro-reyes-makes-an-infinite-love-seat-133150&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-zimmermann-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-zimmermann_117-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomas1998" class="citation news cs1">Thomas, Nancy J. (October 4, 1998). <a rel="nofollow" class="external text" href="https://infoweb.newsbank.com/apps/news/openurl?ctx_ver=z39.88-2004&amp;rft_id=info%3Asid/infoweb.newsbank.com&amp;svc_dat=AWNB&amp;req_dat=0F1B56E1B179D300&amp;rft_val_format=info%3Aofi/fmt%3Akev%3Amtx%3Actx&amp;rft_dat=document_id%3Anews%252F11B7A8B696793450">"Making a Mobius a matter of mathematics"</a>. <i><a href="/wiki/The_Times_(Trenton)" title="The Times (Trenton)">The Times (Trenton)</a></i>. p.&#160;aa3 &#8211; via <a href="/wiki/NewsBank" title="NewsBank">NewsBank</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Times+%28Trenton%29&amp;rft.atitle=Making+a+Mobius+a+matter+of+mathematics&amp;rft.pages=aa3&amp;rft.date=1998-10-04&amp;rft.aulast=Thomas&amp;rft.aufirst=Nancy+J.&amp;rft_id=https%3A%2F%2Finfoweb.newsbank.com%2Fapps%2Fnews%2Fopenurl%3Fctx_ver%3Dz39.88-2004%26rft_id%3Dinfo%253Asid%2Finfoweb.newsbank.com%26svc_dat%3DAWNB%26req_dat%3D0F1B56E1B179D300%26rft_val_format%3Dinfo%253Aofi%2Ffmt%253Akev%253Amtx%253Actx%26rft_dat%3Ddocument_id%253Anews%25252F11B7A8B696793450&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-bagel-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-bagel_118-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPashman2015" class="citation web cs1">Pashman, Dan (August 6, 2015). <a rel="nofollow" class="external text" href="https://www.npr.org/sections/thesalt/2015/08/06/429437860/cut-your-bagel-the-mathematically-correct-way">"Cut Your Bagel The Mathematically Correct Way"</a>. <i>The Salt</i>. NPR.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Salt&amp;rft.atitle=Cut+Your+Bagel+The+Mathematically+Correct+Way&amp;rft.date=2015-08-06&amp;rft.aulast=Pashman&amp;rft.aufirst=Dan&amp;rft_id=https%3A%2F%2Fwww.npr.org%2Fsections%2Fthesalt%2F2015%2F08%2F06%2F429437860%2Fcut-your-bagel-the-mathematically-correct-way&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-bacon-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-bacon_119-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller2014" class="citation web cs1">Miller, Ross (September 5, 2014). <a rel="nofollow" class="external text" href="https://www.theverge.com/2014/9/5/6110563/mobius-bacon-recipe">"How to make a mathematically-endless strip of bacon"</a>. <i>The Verge</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Verge&amp;rft.atitle=How+to+make+a+mathematically-endless+strip+of+bacon&amp;rft.date=2014-09-05&amp;rft.aulast=Miller&amp;rft.aufirst=Ross&amp;rft_id=https%3A%2F%2Fwww.theverge.com%2F2014%2F9%2F5%2F6110563%2Fmobius-bacon-recipe&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-pasta-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-pasta_120-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChang2012" class="citation news cs1">Chang, Kenneth (January 9, 2012). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2012/01/10/science/pasta-inspires-scientists-to-use-their-noodle.html">"Pasta Graduates From Alphabet Soup to Advanced Geometry"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=Pasta+Graduates+From+Alphabet+Soup+to+Advanced+Geometry&amp;rft.date=2012-01-09&amp;rft.aulast=Chang&amp;rft.aufirst=Kenneth&amp;rft_id=https%3A%2F%2Fwww.nytimes.com%2F2012%2F01%2F10%2Fscience%2Fpasta-inspires-scientists-to-use-their-noodle.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEPickover2005174–177-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPickover2005174–177_121-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPickover2005">Pickover (2005)</a>, pp.&#160;174–177.</span> </li> <li id="cite_note-FOOTNOTEPickover2005179–187-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPickover2005179–187_122-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPickover2005">Pickover (2005)</a>, pp.&#160;179–187.</span> </li> <li id="cite_note-phillips-123"><span class="mw-cite-backlink">^ <a href="#cite_ref-phillips_123-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-phillips_123-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPhillips2016" class="citation magazine cs1">Phillips, Tony (November 25, 2016). <a rel="nofollow" class="external text" href="https://plus.maths.org/content/topology-music-m-bius-strip">"Bach and the musical Möbius strip"</a>. <i><a href="/wiki/Plus_Magazine" title="Plus Magazine">Plus Magazine</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Plus+Magazine&amp;rft.atitle=Bach+and+the+musical+M%C3%B6bius+strip&amp;rft.date=2016-11-25&amp;rft.aulast=Phillips&amp;rft.aufirst=Tony&amp;rft_id=https%3A%2F%2Fplus.maths.org%2Fcontent%2Ftopology-music-m-bius-strip&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span> Reprinted from an American Mathematical Society Feature Column.</span> </li> <li id="cite_note-music-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-music_125-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoskowitz2008" class="citation web cs1"><a href="/wiki/Clara_Moskowitz" title="Clara Moskowitz">Moskowitz, Clara</a> (May 6, 2008). <a rel="nofollow" class="external text" href="https://www.livescience.com/strangenews/080507-math-music.html">"Music reduced to beautiful math"</a>. <i><a href="/wiki/Live_Science" title="Live Science">Live Science</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-03-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Live+Science&amp;rft.atitle=Music+reduced+to+beautiful+math&amp;rft.date=2008-05-06&amp;rft.aulast=Moskowitz&amp;rft.aufirst=Clara&amp;rft_id=https%3A%2F%2Fwww.livescience.com%2Fstrangenews%2F080507-math-music.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-chords-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-chords_126-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTymoczko2006" class="citation journal cs1"><a href="/wiki/Dmitri_Tymoczko" title="Dmitri Tymoczko">Tymoczko, Dmitri</a> (July 7, 2006). <a rel="nofollow" class="external text" href="http://dmitri.mycpanel.princeton.edu/voiceleading.pdf">"The geometry of musical chords"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i>. <b>313</b> (5783): 72–4. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Sci...313...72T">2006Sci...313...72T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1126287">10.1126/science.1126287</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3846592">3846592</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16825563">16825563</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2877171">2877171</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=The+geometry+of+musical+chords&amp;rft.volume=313&amp;rft.issue=5783&amp;rft.pages=72-4&amp;rft.date=2006-07-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2877171%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2006Sci...313...72T&amp;rft_id=info%3Apmid%2F16825563&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1126287&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3846592%23id-name%3DJSTOR&amp;rft.aulast=Tymoczko&amp;rft.aufirst=Dmitri&amp;rft_id=http%3A%2F%2Fdmitri.mycpanel.princeton.edu%2Fvoiceleading.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-bandband-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-bandband_127-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParks2007" class="citation magazine cs1">Parks, Andrew (August 30, 2007). <a rel="nofollow" class="external text" href="https://magnetmagazine.com/2007/08/30/mobius-band-friendly-fire/">"Mobius Band: Friendly Fire"</a>. <i><a href="/wiki/Magnet_(magazine)" title="Magnet (magazine)">Magnet</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Magnet&amp;rft.atitle=Mobius+Band%3A+Friendly+Fire&amp;rft.date=2007-08-30&amp;rft.aulast=Parks&amp;rft.aufirst=Andrew&amp;rft_id=https%3A%2F%2Fmagnetmagazine.com%2F2007%2F08%2F30%2Fmobius-band-friendly-fire%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-ringvan-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-ringvan_128-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLawson2021" class="citation magazine cs1">Lawson, Dom (February 9, 2021). <a rel="nofollow" class="external text" href="https://www.pressreader.com/uk/prog/20210209/281535113669133">"Ring Van Möbius"</a>. <i><a href="/wiki/Prog_(magazine)" title="Prog (magazine)">Prog</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Prog&amp;rft.atitle=Ring+Van+M%C3%B6bius&amp;rft.date=2021-02-09&amp;rft.aulast=Lawson&amp;rft.aufirst=Dom&amp;rft_id=https%3A%2F%2Fwww.pressreader.com%2Fuk%2Fprog%2F20210209%2F281535113669133&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-magic-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-magic_129-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrevos2018" class="citation book cs1">Prevos, Peter (2018). <a rel="nofollow" class="external text" href="https://magicperspectives.net/afghan-bands/"><i>The Möbius Strip in Magic: A Treatise on the Afghan Bands</i></a>. Kangaroo Flat: Third Hemisphere.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+M%C3%B6bius+Strip+in+Magic%3A+A+Treatise+on+the+Afghan+Bands&amp;rft.place=Kangaroo+Flat&amp;rft.pub=Third+Hemisphere&amp;rft.date=2018&amp;rft.aulast=Prevos&amp;rft.aufirst=Peter&amp;rft_id=https%3A%2F%2Fmagicperspectives.net%2Fafghan-bands%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> <li id="cite_note-gardner-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-gardner_130-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGardner1956" class="citation book cs1"><a href="/wiki/Martin_Gardner" title="Martin Gardner">Gardner, Martin</a> (1956). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=WkS4BQAAQBAJ&amp;pg=PA70">"The Afghan Bands"</a>. <i>Mathematics, Magic and Mystery</i>. New York: Dover Books. pp.&#160;70–73.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Afghan+Bands&amp;rft.btitle=Mathematics%2C+Magic+and+Mystery&amp;rft.place=New+York&amp;rft.pages=70-73&amp;rft.pub=Dover+Books&amp;rft.date=1956&amp;rft.aulast=Gardner&amp;rft.aufirst=Martin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DWkS4BQAAQBAJ%26pg%3DPA70&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%B6bius_strip&amp;action=edit&amp;section=15" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/M%C3%B6bius_strip" class="extiw" title="wiktionary:Möbius strip">Möbius strip</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Moebius_Strip" class="extiw" title="commons:Moebius Strip">Moebius Strip</a> at Wikimedia Commons</li> <li><span class="citation mathworld" id="Reference-Mathworld-Möbius_Strip"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/MoebiusStrip.html">"Möbius Strip"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=M%C3%B6bius+Strip&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FMoebiusStrip.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AM%C3%B6bius+strip" class="Z3988"></span></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Compact_topological_surfaces_and_their_immersions_in_3D" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Compact_topological_surfaces" title="Template:Compact topological surfaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Compact_topological_surfaces" title="Template talk:Compact topological surfaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Compact_topological_surfaces" title="Special:EditPage/Template:Compact topological surfaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Compact_topological_surfaces_and_their_immersions_in_3D" style="font-size:114%;margin:0 4em">Compact topological surfaces and their immersions in 3D</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Without boundary</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Orientable</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sphere" title="Sphere">Sphere</a> (genus 0)</li> <li><a href="/wiki/Torus" title="Torus">Torus</a> (genus 1)</li> <li>Number 8 (genus 2)</li> <li>Pretzel (genus 3) ...</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Non-orientable</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Real_projective_plane" title="Real projective plane">Real projective plane</a> <ul><li>genus 1; <a href="/wiki/Boy%27s_surface" title="Boy&#39;s surface">Boy's surface</a></li> <li><a href="/wiki/Roman_surface" title="Roman surface">Roman surface</a></li></ul></li> <li><a href="/wiki/Klein_bottle" title="Klein bottle">Klein bottle</a> (genus 2)</li> <li><a href="/wiki/Dyck%27s_surface" class="mw-redirect" title="Dyck&#39;s surface">Dyck's surface</a> (genus 3) ...</li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">With boundary</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Disk_(mathematics)" title="Disk (mathematics)">Disk</a> <ul><li>Semisphere</li></ul></li> <li>Ribbon <ul><li><a href="/wiki/Annulus_(mathematics)" title="Annulus (mathematics)">Annulus</a></li> <li><a href="/wiki/Cylinder" title="Cylinder">Cylinder</a></li></ul></li> <li><a class="mw-selflink selflink">Möbius strip</a> <ul><li><a href="/wiki/Cross-cap" class="mw-redirect" title="Cross-cap">Cross-cap</a></li></ul></li> <li><a href="/wiki/Pair_of_pants_(mathematics)" title="Pair of pants (mathematics)">Sphere with three holes</a> ...</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related<br />notions</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Properties</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Connected_space" title="Connected space">Connectedness</a></li> <li><a href="/wiki/Compact_space" title="Compact space">Compactness</a></li> <li><a href="/wiki/Triangulation_(topology)" title="Triangulation (topology)">Triangulatedness</a> or <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">smoothness</a></li> <li><a href="/wiki/Orientability" title="Orientability">Orientability</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Characteristics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Number of <a href="/wiki/Boundary_(topology)" title="Boundary (topology)">boundary</a> components</li> <li><a href="/wiki/Genus_(mathematics)" title="Genus (mathematics)">Genus</a></li> <li><a href="/wiki/Euler_characteristic" title="Euler characteristic">Euler characteristic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Operations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Connected_sum" title="Connected sum">Connected sum</a></li> <li>Making a hole</li> <li>Gluing a <a href="/wiki/Handle_decomposition" title="Handle decomposition">handle</a></li> <li>Gluing a <a href="/wiki/Cross-cap" class="mw-redirect" title="Cross-cap">cross-cap</a></li> <li><a href="/wiki/Immersion_(mathematics)" title="Immersion (mathematics)">Immersion</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Mathematics_of_paper_folding" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Mathematics_of_paper_folding" title="Template:Mathematics of paper folding"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Mathematics_of_paper_folding" title="Template talk:Mathematics of paper folding"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Mathematics_of_paper_folding" title="Special:EditPage/Template:Mathematics of paper folding"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Mathematics_of_paper_folding" style="font-size:114%;margin:0 4em"><a href="/wiki/Mathematics_of_paper_folding" title="Mathematics of paper folding">Mathematics of paper folding</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Flat folding</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Big-little-big_lemma" title="Big-little-big lemma">Big-little-big lemma</a></li> <li><a href="/wiki/Crease_pattern" title="Crease pattern">Crease pattern</a></li> <li><a href="/wiki/Huzita%E2%80%93Hatori_axioms" title="Huzita–Hatori axioms">Huzita–Hatori axioms</a></li> <li><a href="/wiki/Kawasaki%27s_theorem" title="Kawasaki&#39;s theorem">Kawasaki's theorem</a></li> <li><a href="/wiki/Maekawa%27s_theorem" title="Maekawa&#39;s theorem">Maekawa's theorem</a></li> <li><a href="/wiki/Map_folding" title="Map folding">Map folding</a></li> <li><a href="/wiki/Napkin_folding_problem" title="Napkin folding problem">Napkin folding problem</a></li> <li><a href="/wiki/Pureland_origami" title="Pureland origami">Pureland origami</a></li> <li><a href="/wiki/Yoshizawa%E2%80%93Randlett_system" title="Yoshizawa–Randlett system">Yoshizawa–Randlett system</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Strip folding</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dragon_curve" title="Dragon curve">Dragon curve</a></li> <li><a href="/wiki/Flexagon" title="Flexagon">Flexagon</a></li> <li><a class="mw-selflink selflink">Möbius strip</a></li> <li><a href="/wiki/Regular_paperfolding_sequence" title="Regular paperfolding sequence">Regular paperfolding sequence</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">3d structures</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Miura_fold" title="Miura fold">Miura fold</a></li> <li><a href="/wiki/Modular_origami" title="Modular origami">Modular origami</a></li> <li><a href="/wiki/Paper_bag_problem" title="Paper bag problem">Paper bag problem</a></li> <li><a href="/wiki/Rigid_origami" title="Rigid origami">Rigid origami</a></li> <li><a href="/wiki/Schwarz_lantern" title="Schwarz lantern">Schwarz lantern</a></li> <li><a href="/wiki/Sonobe" title="Sonobe">Sonobe</a></li> <li><a href="/wiki/Yoshimura_buckling" title="Yoshimura buckling">Yoshimura buckling</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Polyhedra</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alexandrov%27s_uniqueness_theorem" title="Alexandrov&#39;s uniqueness theorem">Alexandrov's uniqueness theorem</a></li> <li><a href="/wiki/Flexible_polyhedron" title="Flexible polyhedron">Flexible polyhedron</a> (<a href="/wiki/Bricard_octahedron" title="Bricard octahedron">Bricard octahedron</a>, <a href="/wiki/Steffen%27s_polyhedron" title="Steffen&#39;s polyhedron">Steffen's polyhedron</a>)</li> <li><a href="/wiki/Net_(polyhedron)" title="Net (polyhedron)">Net</a> <ul><li><a href="/wiki/Blooming_(geometry)" title="Blooming (geometry)">Blooming</a></li> <li><a href="/wiki/Common_net" title="Common net">Common net</a></li> <li><a href="/wiki/Source_unfolding" title="Source unfolding">Source unfolding</a></li> <li><a href="/wiki/Star_unfolding" title="Star unfolding">Star unfolding</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Miscellaneous</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fold-and-cut_theorem" title="Fold-and-cut theorem">Fold-and-cut theorem</a></li> <li><a href="/wiki/Lill%27s_method" title="Lill&#39;s method">Lill's method</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Publications</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Geometric_Exercises_in_Paper_Folding" title="Geometric Exercises in Paper Folding">Geometric Exercises in Paper Folding</a></i></li> <li><i><a href="/wiki/Geometric_Folding_Algorithms" title="Geometric Folding Algorithms">Geometric Folding Algorithms</a></i></li> <li><i><a href="/wiki/Geometric_Origami" title="Geometric Origami">Geometric Origami</a></i></li> <li><i><a href="/wiki/A_History_of_Folding_in_Mathematics" title="A History of Folding in Mathematics">A History of Folding in Mathematics</a></i></li> <li><i><a href="/wiki/Origami_Polyhedra_Design" title="Origami Polyhedra Design">Origami Polyhedra Design</a></i></li> <li><i><a href="/wiki/Origamics" title="Origamics">Origamics</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">People</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Roger_C._Alperin" title="Roger C. Alperin">Roger C. Alperin</a></li> <li><a href="/wiki/Margherita_Piazzola_Beloch" title="Margherita Piazzola Beloch">Margherita Piazzola Beloch</a></li> <li><a href="/wiki/Yan_Chen_(mechanical_engineer)" title="Yan Chen (mechanical engineer)">Yan Chen</a></li> <li><a href="/wiki/Robert_Connelly" title="Robert Connelly">Robert Connelly</a></li> <li><a href="/wiki/Erik_Demaine" title="Erik Demaine">Erik Demaine</a></li> <li><a href="/wiki/Martin_Demaine" title="Martin Demaine">Martin Demaine</a></li> <li><a href="/wiki/Rona_Gurkewitz" title="Rona Gurkewitz">Rona Gurkewitz</a></li> <li><a href="/wiki/David_A._Huffman" title="David A. Huffman">David A. Huffman</a></li> <li><a href="/wiki/Tom_Hull_(mathematician)" title="Tom Hull (mathematician)">Tom Hull</a></li> <li><a href="/wiki/K%C3%B4di_Husimi" title="Kôdi Husimi">Kôdi Husimi</a></li> <li><a href="/wiki/Humiaki_Huzita" title="Humiaki Huzita">Humiaki Huzita</a></li> <li><a href="/wiki/Toshikazu_Kawasaki" title="Toshikazu Kawasaki">Toshikazu Kawasaki</a></li> <li><a href="/wiki/Robert_J._Lang" title="Robert J. Lang">Robert J. Lang</a></li> <li><a href="/wiki/Anna_Lubiw" title="Anna Lubiw">Anna Lubiw</a></li> <li><a href="/wiki/Jun_Maekawa" title="Jun Maekawa">Jun Maekawa</a></li> <li><a href="/wiki/K%C5%8Dry%C5%8D_Miura" title="Kōryō Miura">Kōryō Miura</a></li> <li><a href="/wiki/Joseph_O%27Rourke_(professor)" title="Joseph O&#39;Rourke (professor)">Joseph O'Rourke</a></li> <li><a href="/wiki/Tomohiro_Tachi" title="Tomohiro Tachi">Tomohiro Tachi</a></li> <li><a href="/wiki/Eve_Torrence" title="Eve Torrence">Eve Torrence</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q226843#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/1106880307">Germany</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐f2r5r Cached time: 20241124053315 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.203 seconds Real time usage: 2.476 seconds Preprocessor visited node count: 40634/1000000 Post‐expand include size: 330997/2097152 bytes Template argument size: 18067/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 16/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 482158/5000000 bytes Lua time usage: 1.158/10.000 seconds Lua memory usage: 17124056/52428800 bytes Lua Profile: ? 200 ms 20.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 140 ms 14.0% recursiveClone <mwInit.lua:45> 100 ms 10.0% tostring 60 ms 6.0% dataWrapper <mw.lua:672> 60 ms 6.0% makeMessage <mw.message.lua:76> 60 ms 6.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 40 ms 4.0% gsub 40 ms 4.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 20 ms 2.0% concat 20 ms 2.0% [others] 260 ms 26.0% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2119.751 1 -total 43.32% 918.304 2 Template:Reflist 21.87% 463.549 116 Template:R 20.53% 435.270 141 Template:R/ref 16.09% 340.970 92 Template:Nowrap 14.37% 304.683 51 Template:Cite_journal 13.41% 284.215 35 Template:Cite_book 8.34% 176.792 8 Template:Efn 6.70% 142.087 13 Template:Sfnp 6.31% 133.658 141 Template:R/superscript --> <!-- Saved in parser cache with key enwiki:pcache:idhash:37817-0!canonical and timestamp 20241124053315 and revision id 1250322543. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Möbius_strip&amp;oldid=1250322543">https://en.wikipedia.org/w/index.php?title=Möbius_strip&amp;oldid=1250322543</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Topology" title="Category:Topology">Topology</a></li><li><a href="/wiki/Category:Recreational_mathematics" title="Category:Recreational mathematics">Recreational mathematics</a></li><li><a href="/wiki/Category:Surfaces" title="Category:Surfaces">Surfaces</a></li><li><a href="/wiki/Category:Eponyms_in_geometry" title="Category:Eponyms in geometry">Eponyms in geometry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Pages_with_German_IPA" title="Category:Pages with German IPA">Pages with German IPA</a></li><li><a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">CS1 maint: bot: original URL status unknown</a></li><li><a href="/wiki/Category:Good_articles" title="Category:Good articles">Good articles</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_mdy_dates_from_March_2022" title="Category:Use mdy dates from March 2022">Use mdy dates from March 2022</a></li><li><a href="/wiki/Category:Use_list-defined_references_from_March_2022" title="Category:Use list-defined references from March 2022">Use list-defined references from March 2022</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_auto_scaled_images" title="Category:Pages using multiple image with auto scaled images">Pages using multiple image with auto scaled images</a></li><li><a href="/wiki/Category:Commons_link_is_on_Wikidata" title="Category:Commons link is on Wikidata">Commons link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 9 October 2024, at 18:51<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=M%C3%B6bius_strip&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-f2r5r","wgBackendResponseTime":2694,"wgPageParseReport":{"limitreport":{"cputime":"2.203","walltime":"2.476","ppvisitednodes":{"value":40634,"limit":1000000},"postexpandincludesize":{"value":330997,"limit":2097152},"templateargumentsize":{"value":18067,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":16,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":482158,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2119.751 1 -total"," 43.32% 918.304 2 Template:Reflist"," 21.87% 463.549 116 Template:R"," 20.53% 435.270 141 Template:R/ref"," 16.09% 340.970 92 Template:Nowrap"," 14.37% 304.683 51 Template:Cite_journal"," 13.41% 284.215 35 Template:Cite_book"," 8.34% 176.792 8 Template:Efn"," 6.70% 142.087 13 Template:Sfnp"," 6.31% 133.658 141 Template:R/superscript"]},"scribunto":{"limitreport-timeusage":{"value":"1.158","limit":"10.000"},"limitreport-memusage":{"value":17124056,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBarr1964\"] = 1,\n [\"CITEREFBartelsHornung2015\"] = 1,\n [\"CITEREFBauerBanzerKarimiOrlov2015\"] = 1,\n [\"CITEREFBennett1923\"] = 1,\n [\"CITEREFBickel1999\"] = 1,\n [\"CITEREFBlackett1982\"] = 1,\n [\"CITEREFBlanuša1954\"] = 1,\n [\"CITEREFBonningtonNakamoto2008\"] = 1,\n [\"CITEREFBrecher2017\"] = 1,\n [\"CITEREFBrehm1983\"] = 1,\n [\"CITEREFByers2018\"] = 1,\n [\"CITEREFCandealInduráin1994\"] = 1,\n [\"CITEREFCantwellConlon2015\"] = 1,\n [\"CITEREFCartwrightGonzález2016\"] = 1,\n [\"CITEREFChang2012\"] = 1,\n [\"CITEREFCourant1940\"] = 1,\n [\"CITEREFCrato2010\"] = 1,\n [\"CITEREFCrowell2023\"] = 1,\n [\"CITEREFDeckerStark1983\"] = 1,\n [\"CITEREFDoonerSeireg1995\"] = 1,\n [\"CITEREFDundas2018\"] = 1,\n [\"CITEREFEasdown2012\"] = 1,\n [\"CITEREFEmmer1980\"] = 1,\n [\"CITEREFFlapan2000\"] = 1,\n [\"CITEREFFlapan2016\"] = 1,\n [\"CITEREFFomenkoKunii2013\"] = 1,\n [\"CITEREFFosdickFried2016\"] = 1,\n [\"CITEREFFrancis1987\"] = 1,\n [\"CITEREFFranzoni2012\"] = 1,\n [\"CITEREFFrolkina2018\"] = 1,\n [\"CITEREFFuchsTabachnikov2007\"] = 1,\n [\"CITEREFGardner1956\"] = 1,\n [\"CITEREFGitig2010\"] = 1,\n [\"CITEREFGodinhoNatário2014\"] = 1,\n [\"CITEREFGoldsteinMoffattPesciRicca2010\"] = 1,\n [\"CITEREFGopnik2014\"] = 1,\n [\"CITEREFGorbatsevichOnishchikVinberg1993\"] = 1,\n [\"CITEREFGunn2018\"] = 1,\n [\"CITEREFHalpernWeaver1977\"] = 1,\n [\"CITEREFHilbertCohn-Vossen1952\"] = 1,\n [\"CITEREFHinzFried2015\"] = 1,\n [\"CITEREFHook2019\"] = 1,\n [\"CITEREFHuggettJordan2009\"] = 1,\n [\"CITEREFIsham1999\"] = 1,\n [\"CITEREFJablanRadovićSazdanović2011\"] = 1,\n [\"CITEREFJunghenn2015\"] = 1,\n [\"CITEREFKersten2017\"] = 1,\n [\"CITEREFKnöppel2019\"] = 1,\n [\"CITEREFKuiper1972\"] = 1,\n [\"CITEREFKumlerTobler1991\"] = 1,\n [\"CITEREFKyle1955\"] = 1,\n [\"CITEREFKühnelBanchoff1983\"] = 1,\n [\"CITEREFLamb2019\"] = 1,\n [\"CITEREFLarison1973\"] = 1,\n [\"CITEREFLarsen1994\"] = 1,\n [\"CITEREFLawson1970\"] = 1,\n [\"CITEREFLawson2021\"] = 1,\n [\"CITEREFLópezMartín1997\"] = 1,\n [\"CITEREFMangahas2017\"] = 1,\n [\"CITEREFMaschke1900\"] = 1,\n [\"CITEREFMassey1991\"] = 1,\n [\"CITEREFMeeks1981\"] = 1,\n [\"CITEREFMelikhov2019\"] = 1,\n [\"CITEREFMiller2014\"] = 1,\n [\"CITEREFMillward2012\"] = 1,\n [\"CITEREFMira2006\"] = 1,\n [\"CITEREFMoskowitz2008\"] = 1,\n [\"CITEREFMuret2010\"] = 1,\n [\"CITEREFNakamotoTsuchiya2012\"] = 1,\n [\"CITEREFParker1993\"] = 1,\n [\"CITEREFParks2007\"] = 1,\n [\"CITEREFPashman2015\"] = 1,\n [\"CITEREFPesciGoldsteinAlexanderMoffatt2015\"] = 1,\n [\"CITEREFPeterson2002\"] = 1,\n [\"CITEREFPhillips2016\"] = 1,\n [\"CITEREFPickover2005\"] = 1,\n [\"CITEREFPond2000\"] = 1,\n [\"CITEREFPook2003\"] = 1,\n [\"CITEREFPrevos2018\"] = 1,\n [\"CITEREFRamírez_GalarzaSeade2007\"] = 1,\n [\"CITEREFRicheson2008\"] = 1,\n [\"CITEREFRingelYoungs1968\"] = 1,\n [\"CITEREFRohdePoddarSundararajan2013\"] = 1,\n [\"CITEREFRouse_Ball1892\"] = 1,\n [\"CITEREFRzepa2005\"] = 1,\n [\"CITEREFSchleimerSegerman2012\"] = 1,\n [\"CITEREFSchwartz2021\"] = 1,\n [\"CITEREFSchwartz2023\"] = 1,\n [\"CITEREFSchwarz1990\"] = 2,\n [\"CITEREFSeifertThrelfall1980\"] = 1,\n [\"CITEREFSpivak1979\"] = 1,\n [\"CITEREFStarostinvan_der_Heijden2015\"] = 1,\n [\"CITEREFStillwell1992\"] = 1,\n [\"CITEREFSzilassi2008\"] = 1,\n [\"CITEREFSéquin2005\"] = 1,\n [\"CITEREFSéquin2018\"] = 1,\n [\"CITEREFThomas1998\"] = 1,\n [\"CITEREFThulaseedasKrawczyk2003\"] = 1,\n [\"CITEREFTietze1910\"] = 1,\n [\"CITEREFTobler1961\"] = 1,\n [\"CITEREFTuckerman1948\"] = 1,\n [\"CITEREFTymoczko2006\"] = 1,\n [\"CITEREFWainwright2017\"] = 1,\n [\"CITEREFWalbaRichardsHaltiwanger1982\"] = 1,\n [\"CITEREFWoll1971\"] = 1,\n [\"CITEREFWunderlich1962\"] = 1,\n [\"CITEREFYamashiroShimoiHarigayaWakabayashi2004\"] = 1,\n [\"CITEREFYoonOsukaKim2009\"] = 1,\n}\ntemplate_list = table#1 {\n [\"'\"] = 5,\n [\"'s\"] = 3,\n [\"-\"] = 1,\n [\"Authority control\"] = 1,\n [\"CSS image crop\"] = 2,\n [\"Cite LPD\"] = 1,\n [\"Cite arXiv\"] = 1,\n [\"Cite book\"] = 34,\n [\"Cite conference\"] = 5,\n [\"Cite journal\"] = 51,\n [\"Cite magazine\"] = 7,\n [\"Cite news\"] = 5,\n [\"Cite web\"] = 9,\n [\"Commonsinline\"] = 1,\n [\"Compact topological surfaces\"] = 1,\n [\"DEFAULTSORT:Mobius Strip\"] = 1,\n [\"Efn\"] = 8,\n [\"Good article\"] = 1,\n [\"Harvtxt\"] = 4,\n [\"IPA\"] = 1,\n [\"IPAc-en\"] = 2,\n [\"Math\"] = 1,\n [\"MathWorld\"] = 1,\n [\"Mathematics of paper folding\"] = 1,\n [\"Multiple image\"] = 6,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 92,\n [\"R\"] = 116,\n [\"Reflist\"] = 1,\n [\"Respell\"] = 1,\n [\"Sfnp\"] = 13,\n [\"Short description\"] = 1,\n [\"Snd\"] = 4,\n [\"Unsolved\"] = 1,\n [\"Use list-defined references\"] = 1,\n [\"Use mdy dates\"] = 1,\n [\"Wiktionary\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["?","200","20.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","140","14.0"],["recursiveClone \u003CmwInit.lua:45\u003E","100","10.0"],["tostring","60","6.0"],["dataWrapper \u003Cmw.lua:672\u003E","60","6.0"],["makeMessage \u003Cmw.message.lua:76\u003E","60","6.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","40","4.0"],["gsub","40","4.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","20","2.0"],["concat","20","2.0"],["[others]","260","26.0"]]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-f2r5r","timestamp":"20241124053315","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"M\u00f6bius strip","url":"https:\/\/en.wikipedia.org\/wiki\/M%C3%B6bius_strip","sameAs":"http:\/\/www.wikidata.org\/entity\/Q226843","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q226843","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-06-01T22:17:03Z","dateModified":"2024-10-09T18:51:47Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/79\/M%C3%B6bius_Strip.jpg","headline":"two-dimensional surface with only one side and only one edge"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10