CINXE.COM
Search results for: Full Heusler alloy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Full Heusler alloy</title> <meta name="description" content="Search results for: Full Heusler alloy"> <meta name="keywords" content="Full Heusler alloy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Full Heusler alloy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Full Heusler alloy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3010</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Full Heusler alloy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3010</span> Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mst%20Nazmunnahar">Mst Nazmunnahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20del%20Val"> Juan del Val</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20Vimmrova"> Alena Vimmrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Blanca%20Hernando"> Blanca Hernando</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Gonz%C3%A1lez"> Julian González</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the microstructural and magnetic properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 ribbon Heusler alloys. Experimental results were obtained by differential scanning calorymetry, X-ray diffraction and vibrating sample magnetometry techniques. The Ni-Mn-Sn system undergoes a martensitic structural transformation in a wide temperature range. For example, for Ni50Mn39Sn11 the start and finish temperatures of the martensitic and austenite phase transformation for ribbon alloy were Ms = 336K , Mf = 328K, As = 335K and Af = 343K whereas no structural transformation is observed for Ni50Mn36Sn14 alloys. Magnetic measurements show the typical ferromagnetic behavior with Curie temperature 207K at low applied field of 50 Oe. The complex behavior exhibited by these Heusler alloys should be ascribed to the strong coupling between magnetism and structure, being their magnetic behavior determined by the distance between Mn atoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=as-cast%20ribbon" title="as-cast ribbon">as-cast ribbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Heusler%20alloys" title=" Heusler alloys"> Heusler alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20transformation" title=" structural transformation"> structural transformation</a> </p> <a href="https://publications.waset.org/abstracts/23193/microstructural-and-magnetic-properties-of-ni50mn39sn11-and-ni50mn36sn14-heusler-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3009</span> Ab Initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abada">A. Abada</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hiadsi"> S. Hiadsi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ouahrani"> T. Ouahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Amrani"> B. Amrani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Amara"> K. Amara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of some Co2- based full Heusler alloys, namely Co2ZrGe and Co2NbB. The calculations show that these compounds are to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 µB per formula unit, well consistent with the Slater-Pauling rule. Our calculations show indirect band gaps of 0.58 eV and 0.47 eV in the minority spin channel of density of states (DOS) for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half metallicity is found to be robust against volume changes and the two alloys kept a 100% of spin polarization at the Fermi level. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronics field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=half-metallic%20ferromagnets" title="half-metallic ferromagnets">half-metallic ferromagnets</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20Heusler%20alloys" title=" full Heusler alloys"> full Heusler alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a> </p> <a href="https://publications.waset.org/abstracts/24953/ab-initio-study-of-co2zrge-and-co2nbb-full-heusler-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3008</span> First Principles Study of a New Half-Metallic Ferrimagnets Mn2–Based Full Heusler Compounds: Mn2ZrSi and Mn2ZrGe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abada">Ahmed Abada</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadda%20Amara"> Kadda Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Hiadsi"> Said Hiadsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhalouane%20Amrani"> Bouhalouane Amrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Half-metallic properties of new predicted Mn2-based full Heusler alloys Mn2ZrSi and Mn2ZrGe have been studied by first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). Our investigation is focused on the structural, elastic, electronic and magnetic properties of these compounds. The AlCu2Mn-type structure is found to be energetically more favorable than the CuHg2Ti-type structure for both compounds and are half-metallic ferrimagnets (HMFIs) with total magnetic moments of 2.000 µB per formula unit, well consistent with Slater-Pauling rule (Mtot = ( 24 – Ztot ) µB). Calculations show that both the alloys have an indirect band gaps, in the majority-spin channel, with values of 0.505 eV and 0.278 eV for Mn2ZrSi and Mn2ZrGe, respectively. It was found that Mn2ZrSi and Mn2ZrGe preserved their half-metallicity for lattice constants range of 5.85–6.38 Å and 6.05–6.38 Å, respectively, and kept a 100% of spin polarization at the Fermi level. Moreover, the calculated formation energies and elastic constants confirm that these compounds are stable chemically and mechanically, and the good crystallographic compatibility with the lattice of semiconductors used industrially makes them promising magnetic materials in spintronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=first-principles%20calculations" title="first-principles calculations">first-principles calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20Heusler%20structure" title=" full Heusler structure"> full Heusler structure</a>, <a href="https://publications.waset.org/abstracts/search?q=half-metallic%20ferrimagnets" title=" half-metallic ferrimagnets"> half-metallic ferrimagnets</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20properties" title=" elastic properties"> elastic properties</a> </p> <a href="https://publications.waset.org/abstracts/36774/first-principles-study-of-a-new-half-metallic-ferrimagnets-mn2-based-full-heusler-compounds-mn2zrsi-and-mn2zrge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3007</span> Ab Initio Study of Structural, Elastic, Electronic and Thermal Properties of Full Heusler </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalfa">M. Khalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khachai"> H. Khachai</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Chiker"> F. Chiker</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bougherara"> K. Bougherara</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khenata"> R. Khenata</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Murtaza"> G. Murtaza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Harmel"> M. Harmel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical study of structural, elastic, electronic and thermodynamic properties of Fe2VX, (with X = Al and Ga), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbitals method. For exchange and correlation potential we used both generalized-gradient approximation (GGA) and local-density approximation (LDA). Our calculated ground state properties like as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA approximation, and these results agree very well with the available experimental and theoretical data. Further, prediction of the thermal effects on some macroscopic properties of Fe2VAl and Fe2VGa are given in this paper using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. We have obtained successfully the variations of the primitive cell volume, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0–40 GPa and 0–1500 K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=full%20Heusler" title="full Heusler">full Heusler</a>, <a href="https://publications.waset.org/abstracts/search?q=FP-LAPW" title=" FP-LAPW"> FP-LAPW</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a> </p> <a href="https://publications.waset.org/abstracts/14171/ab-initio-study-of-structural-elastic-electronic-and-thermal-properties-of-full-heusler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3006</span> Occurrence of Half-Metallicity by Sb-Substitution in Non-Magnetic Fe₂TiSn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chaudhuri">S. Chaudhuri</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Bhobe"> P. A. Bhobe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe₂TiSn is a non-magnetic full Heusler alloy with a small gap (~ 0.07 eV) at the Fermi level. The electronic structure is highly symmetric in both the spin bands and a small percentage of substitution of holes or electrons can push the system towards spin polarization. A stable 100% spin polarization or half-metallicity is very desirable in the field of spintronics, making Fe₂TiSn a highly attractive material. However, this composition suffers from an inherent anti-site disorder between Fe and Ti sites. This paper reports on the method adopted to control the anti-site disorder and the realization of the half-metallic ground state in Fe₂TiSn, achieved by chemical substitution. Here, Sb was substituted at Sn site to obtain Fe₂TiSn₁₋ₓSbₓ compositions with x = 0, 0.1, 0.25, 0.5 and 0.6. All prepared compositions with x ≤ 0.6 exhibit long-range L2₁ ordering and a decrease in Fe – Ti anti-site disorder. The transport and magnetic properties of Fe₂TiSn₁₋ₓSbₓ compositions were investigated as a function of temperature in the range, 5 K to 400 K. Electrical resistivity, magnetization, and Hall voltage measurements were carried out. All the experimental results indicate the presence of the half-metallic ground state in x ≥ 0.25 compositions. However, the value of saturation magnetization is small, indicating the presence of compensated magnetic moments. The observed magnetic moments' values are in close agreement with the Slater–Pauling rule in half-metallic systems. Magnetic interactions in Fe₂TiSn₁₋ₓSbₓ are understood from the local crystal structural perspective using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in bond distances extracted from EXAFS analysis can be correlated with the hybridization between constituent atoms and hence the RKKY type magnetic interactions that govern the magnetic ground state of these alloys. To complement the experimental findings, first principle electronic structure calculations were also undertaken. The spin-polarized DOS complies with the experimental results for Fe₂TiSn₁₋ₓSbₓ. Substitution of Sb (an electron excess element) at Sn–site shifts the majority spin band to the lower energy side of Fermi level, thus making the system 100% spin polarized and inducing long-range magnetic order in an otherwise non-magnetic Fe₂TiSn. The present study concludes that a stable half-metallic system can be realized in Fe₂TiSn with ≥ 50% Sb – substitution at Sn – site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antisite%20disorder" title="antisite disorder">antisite disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=EXAFS" title=" EXAFS"> EXAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy" title=" Full Heusler alloy"> Full Heusler alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=half%20metallic%20ferrimagnetism" title=" half metallic ferrimagnetism"> half metallic ferrimagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=RKKY%20interactions" title=" RKKY interactions"> RKKY interactions</a> </p> <a href="https://publications.waset.org/abstracts/107459/occurrence-of-half-metallicity-by-sb-substitution-in-non-magnetic-fe2tisn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3005</span> Comparative Study of Mechanical and Corrosion Behaviors on Heat Treated Steel Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Robinson">Mario Robinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Moe%20Rabea"> Moe Rabea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research examines the effects of heat treatment processes on the mechanical properties and corrosion resistanceof1045 and 4140 Steel Alloysfor industrial applications. Heat treatment processes of full annealing, normalizing, quenching, and tempering are carried out on the alloy samples. The mechanical and corrosion resistance tests of the heat treated samples are carried out, and the results obtained are related to their SEMmorphologies analysis. The results show that the heat treatment processes have an effect on the tensile strength, impact, and a significant effect on the corrosion resistance of the alloy samples. With respect to the strain characteristics, significant improvement in the ductility of the samples is recorded in the full annealing and alloy tempered samples. Thus, for application requiring strength and ductility, such as in aerospace industries, this tempered heat treated alloy could be used. In addition, the quenched sample shows a significant improvement in hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title="heat treatment">heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20appilcations" title=" industrial appilcations"> industrial appilcations</a> </p> <a href="https://publications.waset.org/abstracts/153004/comparative-study-of-mechanical-and-corrosion-behaviors-on-heat-treated-steel-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3004</span> Investigation of Fusion Zone Microstructures in Plasma Arc Welding of Austenitic Stainless Steel (SS-304L) with Low Carbon Steel (A-36) with or without Filler Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan-e-Fatima">Shan-e-Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushtaq%20Khan"> Mushtaq Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Imran%20Hussian"> Syed Imran Hussian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma arc welding technology is used for welding SS-304L with A-36. Two different optimize butt welded joints were produced by using austenitic filler alloy E-309L and with direct fusion at 45 A, 2mm/sec by keeping plasma gas flow rate at 0.5LPM. Microstructure analysis of the weld bead was carried out. The results reveal complex heterogeneous microstructure in austenitic base filler alloy sample where as full martensite was found in directly fused sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusion%20zone%20microstructure" title="fusion zone microstructure">fusion zone microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon%20steel" title=" low carbon steel"> low carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20arc%20welding" title=" plasma arc welding"> plasma arc welding</a> </p> <a href="https://publications.waset.org/abstracts/14603/investigation-of-fusion-zone-microstructures-in-plasma-arc-welding-of-austenitic-stainless-steel-ss-304l-with-low-carbon-steel-a-36-with-or-without-filler-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3003</span> Effect of Aging Treatment on Tensile Properties of AZ91D Mg Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju%20Hyun%20Won">Ju Hyun Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment, could be performed at temperatures from 400 to 450 °C. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420 °C and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y, however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200 °C for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 °C for 10 hrs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg%20alloy" title="Mg alloy">Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ91D" title=" AZ91D"> AZ91D</a>, <a href="https://publications.waset.org/abstracts/search?q=nonflammable%20alloy" title=" nonflammable alloy"> nonflammable alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20equilibrium" title=" phase equilibrium"> phase equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20aging" title=" peak aging"> peak aging</a> </p> <a href="https://publications.waset.org/abstracts/34978/effect-of-aging-treatment-on-tensile-properties-of-az91d-mg-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3002</span> Effect of Aging Condition on Semisolid Cast 2024 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Wisutmethangoon">S. Wisutmethangoon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pannaray"> S. Pannaray</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Plookphol"> T. Plookphol</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Wannasin"> J. Wannasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2024 Aluminium alloy was squeezed cast by the Gas Induced Semi Solid (GISS) process. Effect of artificial aging on microstructure and mechanical properties of this alloy was studied in the present work. The solutionized specimens were aged hardened at temperatures of 175°C, 200°C, and 225°C under various time durations. The highest hardness of about 77.7 HRE was attained from specimen aged at the temperature of 175 °C for 36 h. Upon investigation the microstructure by using Transmission Electron Microscopy (TEM), the phase was mainly attributed to the strengthening effect in the aged alloy. The apparent activation energy for precipitation hardening of the alloy was calculated as 133,805 J/mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2024%20aluminium%20alloy" title="2024 aluminium alloy">2024 aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20induced%20semi%20solid" title=" gas induced semi solid"> gas induced semi solid</a>, <a href="https://publications.waset.org/abstracts/search?q=T6%20heat%20treatment" title=" T6 heat treatment"> T6 heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=aged%20hardening" title=" aged hardening"> aged hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscopy" title=" transmission electron microscopy"> transmission electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/4350/effect-of-aging-condition-on-semisolid-cast-2024-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3001</span> Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Li">Jing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Jin"> Li Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fulin%20Wang"> Fulin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Dong"> Jie Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenjiang%20Ding"> Wenjiang Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic <a> slip in the former one, while basal slip, prismatic <a> slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg-Li-Gd%20dual-phase%20alloy" title="Mg-Li-Gd dual-phase alloy">Mg-Li-Gd dual-phase alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20boundary" title=" phase boundary"> phase boundary</a>, <a href="https://publications.waset.org/abstracts/search?q=HDI%20stress" title=" HDI stress"> HDI stress</a>, <a href="https://publications.waset.org/abstracts/search?q=dislocation%20slip%20activity" title=" dislocation slip activity"> dislocation slip activity</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/145933/microscopic-and-mesoscopic-deformation-behaviors-of-mg-2gd-alloy-with-or-without-li-addition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3000</span> Structure-Phase States of Al-Si Alloy After Electron-Beam Treatment and Multicycle Fatigue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krestina%20V.%20Alsaraeva">Krestina V. Alsaraeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20E.%20Gromov"> Victor E. Gromov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20V.%20Konovalov"> Sergey V. Konovalov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20A.%20Atroshkina"> Anna A. Atroshkina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Processing of Al-19.4Si alloy by high intensive electron beam has been carried out and multiple increase in fatigue life of the material has been revealed. Investigations of structure and surface modified layer destruction of Al-19.4Si alloy subjected to multicycle fatigue tests to fracture have been carried out by methods of scanning electron microscopy. The factors responsible for the increase of fatigue life of Al-19.4Si alloy have been revealed and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-19.4Si%20alloy" title="Al-19.4Si alloy">Al-19.4Si alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20intensive%20electron%20beam" title=" high intensive electron beam"> high intensive electron beam</a>, <a href="https://publications.waset.org/abstracts/search?q=multicycle%20fatigue" title=" multicycle fatigue"> multicycle fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/18754/structure-phase-states-of-al-si-alloy-after-electron-beam-treatment-and-multicycle-fatigue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2999</span> An Investigation of the Strength Deterioration of Forged Aluminum 6082 (T6) Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajveer">Rajveer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Saxena"> Abhinav Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Das"> Sanjeev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is focused on the strength of forged aluminum alloy (AA) 6082 (T6). Aluminum alloy 6082 belongs to Al-Mg-Si family which has a wide range of automotive applications. A decrease in the strength of AA 6082 alloy was observed after T6 treatment. The as-received (extruded), forged, and forged + heat treated samples were examined to understand the reason. These examinations were accomplished by optical (OM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) studies. It was observed that the defects had an insignificant effect on the alloy strength. The alloy samples were subjected to age hardening treatment and the time to achieve peak hardening was acquired. Standard tensile specimens were prepared from as-received (extruded), forged, forged + solutionized and forged + solutionized + age hardened. Tensile tests were conducted by Instron universal testing machine. It was observed that there was a significant drop in tensile strength in the case of solutionized sample. The detailed study of the fracture samples showed that the solutionizing after forging was not the best way to increase the strength of Al 6082 alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%206082" title="aluminum alloy 6082">aluminum alloy 6082</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=forging" title=" forging"> forging</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20hardening" title=" age hardening"> age hardening</a> </p> <a href="https://publications.waset.org/abstracts/82119/an-investigation-of-the-strength-deterioration-of-forged-aluminum-6082-t6-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2998</span> Characteristic of Ta Alloy Coating Films on Near-Net Shape with Different Current Densities Using MARC Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Jun%20Lee">Young Jun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Hyuk%20Lee"> Tae Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Tae%20Park"> Kyoung Tae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Hyeon%20Lee"> Jong Hyeon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The harsh atmosphere of the sulfur-iodine process used for producing hydrogen requires better corrosion resistance and mechanical properties that is possible to obtain with pure tantalum. Ta-W alloy is superior to pure tantalum but is difficult to alloy due to its high melting temperature. In this study, substrates of near-net shape (Swagelok® tube ISSG8UT4) were coated with Ta-W using the multi-anode reactive alloy coating (MARC) process in molten salt (LiF-NaF-K2TaF7) at different current densities (1, 2 and 4mA/cm2). Ta-4W coating films of uniform coating thicknesses, without any entrapped salt, were successfully deposited on Swagelok tube by electrodeposition at 1 mA/cm2. The resulting coated film with a corrosion rate of less than 0.011 mm/year was attained in hydriodic acid at 160°C, and hardness up to 12.9 % stronger than pure tantalum coated film. The alloy coating films also contributed to significant enhancement of corrosion resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tantalum" title="tantalum">tantalum</a>, <a href="https://publications.waset.org/abstracts/search?q=tantalum%20alloy" title=" tantalum alloy"> tantalum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy" title=" tungsten alloy"> tungsten alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=electroplating" title=" electroplating"> electroplating</a> </p> <a href="https://publications.waset.org/abstracts/32956/characteristic-of-ta-alloy-coating-films-on-near-net-shape-with-different-current-densities-using-marc-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2997</span> Effect of Y Addition on the Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8 Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25 wt. %Y, a large amount of pro-eutectic phases have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8 Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sn-Zn%20eutectic%20alloy" title="Sn-Zn eutectic alloy">Sn-Zn eutectic alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=yttrium" title=" yttrium"> yttrium</a>, <a href="https://publications.waset.org/abstracts/search?q=FactSage%C2%AE" title=" FactSage®"> FactSage®</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/7127/effect-of-y-addition-on-the-microstructure-and-mechanical-properties-of-sn-zn-eutectic-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2996</span> Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20H.%20Rady">Mohammed H. Rady</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Sukri%20Mustapa"> Mohd Sukri Mustapa</a>, <a href="https://publications.waset.org/abstracts/search?q=S%20Shamsudin"> S Shamsudin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Lajis"> M. A. Lajis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Wagiman"> A. Wagiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA6061" title="AA6061">AA6061</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=DOE" title=" DOE"> DOE</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20extrusion" title=" hot extrusion"> hot extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness"> microhardness</a> </p> <a href="https://publications.waset.org/abstracts/87426/analyses-and-optimization-of-physical-and-mechanical-properties-of-direct-recycled-aluminium-alloy-aa6061-wastes-by-anova-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2995</span> Microswitches with Sputtered Au, Aupd, Au-on-Aupt, and Auptcu Alloy - Electric Contacts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Konukhov">Nikolay Konukhov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper to report on a new analytic model for predicting microcontact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bimetallic (i.e., gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6.3at%)Pt)), binary alloy (i.e., Au-palladium (Pd), (Au-(3.7at%)Pd)), and ternary alloy (i.e., Au-Pt-copper (Cu), (Au-(5.0at%)Pt-(0.5at%)Cu)) electric contacts. The microswitches with bimetallic and binary alloy contacts resulted in contact resistance values between 1–2 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alloys" title="alloys">alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20contacts" title=" electric contacts"> electric contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=microelectromechanical%20systems%20%28MEMS%29" title=" microelectromechanical systems (MEMS)"> microelectromechanical systems (MEMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=microswitch" title=" microswitch"> microswitch</a> </p> <a href="https://publications.waset.org/abstracts/139320/microswitches-with-sputtered-au-aupd-au-on-aupt-and-auptcu-alloy-electric-contacts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2994</span> Relationship between Extrusion Ratio and Mechanical Properties of Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Jeon">C. H. Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Kim"> Y. H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Lee"> G. A. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing resource consumption and carbon dioxide emission are recognized as urgent issues. One way of resolving these issues is to reduce product weight. Magnesium alloys are considered promising candidates because of their lightness. Various studies have been conducted on using magnesium alloy instead of conventional iron or aluminum in mechanical parts, due to the light weight and superior specific strength of magnesium alloy. However, even stronger magnesium alloys are needed for mechanical parts. One common way to enhance the strength of magnesium alloy is by extruding the ingot. In order to enhance the mechanical properties, magnesium alloy ingot were extruded at various extrusion ratios. Relationship between extrusion ratio and mechanical properties was examined on extruded material of magnesium alloy. And Textures and microstructures of the extruded materials were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion%20ratio" title=" extrusion ratio"> extrusion ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20material" title=" lightweight material"> lightweight material</a> </p> <a href="https://publications.waset.org/abstracts/30018/relationship-between-extrusion-ratio-and-mechanical-properties-of-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2993</span> Structural and Electronic Properties of Cd0.75V0.25S Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Baltache">H. Baltache</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Amine.%20Monir"> M. El Amine. Monir</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khenata"> R. Khenata</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rached"> D. Rached</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Seddik"> T. Seddik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first principles calculations based on the density functional theory (DFT) by using the full-potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) in order to investigate the structural and electronic properties of Cd1-xVxS alloy at x = 0.25 in zincblende structure. For the structural properties, we have calculated the equilibrium lattice parameters, such as lattice constant, bulk modulus and first pressure derivatives of the bulk modulus. From the electronic structure, we obtain that Cd0.75V0.25S alloy is nearly half-metallic. The analysis of the density of states (DOS) curves allow to evaluate the spin-exchange splitting energies Δx(d) and Δx(pd) that are generated by V-3d states, where the effective potential for spin-down case is attractive than for spin-up case. Calculations of the exchange constants N0α (valence band) and N0β (conduction band) are served to describe the magnetic behavior of the compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=first-principles%20calculations" title="first-principles calculations">first-principles calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a> </p> <a href="https://publications.waset.org/abstracts/14046/structural-and-electronic-properties-of-cd075v025s-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2992</span> Pressure Induced Phase Transition of Semiconducting Alloy TlxGa1-xAs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Sarwan">Madhu Sarwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Dubey"> Ritu Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadhna%20Singh"> Sadhna Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have investigated the structural phase transition from Zinc-Blende (ZB) to Rock-Salt (RS) structure of TlxGa1-xAs by using Interaction Potential Model (IPM). The IPM consists of Coulomb interaction, Three-Body Interaction (TBI), Van Der Wall (vdW) interaction and overlap repulsive short range interaction. The structural phase transition has been computed by using the vegard’s law. The volume collapse is also computed for this alloy. We have also investigated the second order elastic constants with composition for the alloy TlxGa1-xAs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=III-V%20alloy" title="III-V alloy">III-V alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20moduli" title=" elastic moduli"> elastic moduli</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductors" title=" semiconductors"> semiconductors</a> </p> <a href="https://publications.waset.org/abstracts/30417/pressure-induced-phase-transition-of-semiconducting-alloy-tlxga1-xas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2991</span> Phase Equilibria in Zn-Al-Sn Alloy for Lead-free Solder Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Chan%20Kim">Ji Chan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8 Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25 wt. %Y, a large amount of pro-eutectic phases have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8 Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lead-free%20solder" title="lead-free solder">lead-free solder</a>, <a href="https://publications.waset.org/abstracts/search?q=zn-al-sn%20alloy" title=" zn-al-sn alloy"> zn-al-sn alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20equilibrium" title=" phase equilibrium"> phase equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling" title=" rolling"> rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/35718/phase-equilibria-in-zn-al-sn-alloy-for-lead-free-solder-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2990</span> Effect of Chromium Behavior on Mechanical and Electrical Properties Of P/M Copper-Chromium Alloy Dispersed with VGCF</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hisashi%20Imai">Hisashi Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Yu%20Chen"> Kuan-Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuyoshi%20Kondoh"> Katsuyoshi Kondoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Yin%20Tsai"> Hung-Yin Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Junko%20Umeda"> Junko Umeda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural and electrical properties of copper-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy%20Cu-Cr%20alloy%20powder" title="powder metallurgy Cu-Cr alloy powder">powder metallurgy Cu-Cr alloy powder</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor-grown%20carbon%20fiber" title=" vapor-grown carbon fiber"> vapor-grown carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/24251/effect-of-chromium-behavior-on-mechanical-and-electrical-properties-of-pm-copper-chromium-alloy-dispersed-with-vgcf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2989</span> Reduction of Wear via Hardfacing of Rotavator Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh%20Randhawa">Gurjinder Singh Randhawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonny%20Garg"> Jonny Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhraj%20Singh"> Sukhraj Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh%20Cheema"> Gurmeet Singh Cheema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major problem related to the use of rotavator is wear of rotavator blades due to abrasion by soil hard particles, as it seriously affects tillage quality and agricultural production economy. The objective of this study was to increase the wear resistance by covering the rotavator blades with two different hard facing electrodes. These blades are generally produced from low carbon or low alloy steel. During the field work i.e. preparing land for the cultivation these blades are subjected to severe wear conditions. Comparative wear tests on a regular rotavator blade and two kinds of hardfacing with electrodes were conducted in the field. These two different hardfacing electrodes, which are designated HARD ALLOY-400 and HARD ALLOY-650, were used for hardfacing. The wear rate in the field tests was found to be significantly different statistically. When the cost is taken into consideration; HARD ALLOY-650 and HARD ALLOY-400 have been found to be the best hardfacing electrodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardfacing" title="hardfacing">hardfacing</a>, <a href="https://publications.waset.org/abstracts/search?q=rotavator%20blades" title=" rotavator blades"> rotavator blades</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20alloy-400" title=" hard alloy-400"> hard alloy-400</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasive%20wear" title=" abrasive wear"> abrasive wear</a> </p> <a href="https://publications.waset.org/abstracts/52466/reduction-of-wear-via-hardfacing-of-rotavator-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2988</span> Influence of Titanium Addition on Wear Properties of AM60 Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Zengin">H. Zengin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Turan"> M. E. Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Turen"> Y. Turen</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahlatci"> H. Ahlatci</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Sun"> Y. Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed for improving wear resistance of AM60 magnesium alloy by Ti addition (0, 0.2, 0.5, 1wt%Ti). An electric resistance furnace was used to produce alloys. Pure Mg together with Al, Al-Ti and Al-Mn were melted at 750 <sup>0</sup>C in a stainless steel crucible under controlled Ar gas atmosphere and then poured into a metal mould preheated at 250 <sup>0</sup>C. Microstructure characterizations were performed by light optical (LOM) and scanning electron microscope (SEM) after the wear test. Wear rates and friction coefficients were measured with a pin-on-disk type UTS-10 Tribometer test device under a load of 20N. The results showed that Ti addition altered the morphology and the amount of b-Mg<sub>17</sub>Al<sub>12</sub> phase in the microstructure of AM60 alloy. b-Mg<sub>17</sub>Al<sub>12</sub> phases on the grain boundaries were refined with increasing amount of Ti. An improvement in wear resistance of AM60 alloy was observed due to the alteration in the microstructure by Ti addition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloy" title="magnesium alloy">magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/52098/influence-of-titanium-addition-on-wear-properties-of-am60-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2987</span> An ANOVA Approach for the Process Parameters Optimization of Al-Si Alloy Sand Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjinder%20Bajwa">Manjinder Bajwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahipal%20Singh"> Mahipal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%09Nagpal"> Manish Nagpal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper aims to propose a novel approach using ANOVA technique for the strategic investigation of process parameters and their effects on the mechanical properties of Aluminium alloy cast. The two process parameters considered here were permeability of sand and pouring temperature of aluminium alloy. ANOVA has been employed for the first time to determine the effects of these selected parameters on the impact strength of alloy. The experimental results show that this proposed technique has great potential for analyzing sand casting process. Using this approach we have determined the treatment mean square, response mean square and mean square of error as 8.54, 8.255 and 0.435 respectively. The research concluded that at the 5% level of significance, permeability of sand is the more significant parameter influencing the impact strength of cast alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloy" title="aluminium alloy">aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=pouring%20temperature" title=" pouring temperature"> pouring temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability%20of%20sand" title=" permeability of sand"> permeability of sand</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20strength" title=" impact strength"> impact strength</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a> </p> <a href="https://publications.waset.org/abstracts/21631/an-anova-approach-for-the-process-parameters-optimization-of-al-si-alloy-sand-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2986</span> Mechanical Properties of Die-Cast Nonflammable Mg Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myoung-Gon%20Yoon">Myoung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon"> Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tensile specimens of nonflammable AZ91D Mg alloy were fabricated in this study via cold chamber die-casting process. Dimensions of tensile specimens were 25mm in length, 4mm in width, and 0.8 or 3.0mm in thickness. Microstructure observation was conducted before and after tensile tests at room temperature. In the die casting process, various injection distances from 150 to 260mm were employed to obtain optimum process conditions. Distribution of Al12Mg17 phase was the key factor to determine the mechanical properties of die-cast Mg alloy. Specimens with 3mm of thickness showed superior mechanical properties to those with 0.8mm of thickness. Closed networking of Al12Mg17 phase along grain boundary was found to be detrimental to mechanical properties of die-cast Mg alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-flammable%20magnesium%20alloy" title="non-flammable magnesium alloy">non-flammable magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ91D" title=" AZ91D"> AZ91D</a>, <a href="https://publications.waset.org/abstracts/search?q=die-casting" title=" die-casting"> die-casting</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/11152/mechanical-properties-of-die-cast-nonflammable-mg-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2985</span> Evaluation of Formability of AZ61 Magnesium Alloy at Elevated Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramezani%20M.">Ramezani M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Neitzert%20T."> Neitzert T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates mechanical properties and formability of the AZ61 magnesium alloy at high temperatures. Tensile tests were performed at elevated temperatures of up to 400ºC. The results showed that as temperature increases, yield strength and ultimate tensile strength decrease significantly, while the material experiences an increase in ductility (maximum elongation before break). A finite element model has been developed to further investigate the formability of the AZ61 alloy by deep drawing a square cup. Effects of different process parameters such as punch and die geometry, forming speed and temperature as well as blank-holder force on deep drawability of the AZ61 alloy were studied and optimum values for these parameters are achieved which can be used as a design guide for deep drawing of this alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AZ61" title="AZ61">AZ61</a>, <a href="https://publications.waset.org/abstracts/search?q=formability" title=" formability"> formability</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/23114/evaluation-of-formability-of-az61-magnesium-alloy-at-elevated-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2984</span> Effects of Hydrogen-Ion Irritation on the Microstructure and Hardness of Fe-0.2wt.%V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhang">Jing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongqin%20Chang"> Yongqin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongwei%20Wang"> Yongwei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolin%20Li"> Xiaolin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaoning%20Jiang"> Shaoning Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Farong%20Wan"> Farong Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Long"> Yi Long</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural and hardening changes of Fe-0.2wt.%V alloy and pure Fe irradiated with 100 keV hydrogen ions at room temperature were investigated. It was found that dislocation density varies dramatically after irradiation, ranging from dislocation free to dense areas with tangled and complex dislocation configuration. As the irradiated Fe-0.2wt.%V samples were annealed at 773 K, the irradiation-induced dislocation loops disappear, while many small precipitates with enriched C distribute in the matrix. Some large precipitates with enriched V were also observed. The hardness of Fe-0.2wt.%V alloy and pure Fe increases after irradiation, which ascribes to the formation of dislocation loops in the irradiated specimens. Compared with pure Fe, the size of the irradiation-introduced dislocation loops in Fe-0.2wt.%V alloy decreases and the density increases, the change of the hardness also decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irradiation" title="irradiation">irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-0.2wt.%25V%20alloy" title=" Fe-0.2wt.%V alloy"> Fe-0.2wt.%V alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/30363/effects-of-hydrogen-ion-irritation-on-the-microstructure-and-hardness-of-fe-02wtv-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2983</span> Preparation of Alumina (Al2O3) Particles and MMCS of (Al-7% Si– 0.45% Mg) Alloy Using Vortex Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to study the manner of alumina (Al2O3) particles dispersion with (2-10) mm size in (Al-7%Si-0.45% Mg) base of alloy melt employing of classical casting method. The mechanism of particles diffusions by melt turning and stirring that makes vortexes help the particles entrance in the matrix of base alloy also has been studied. The samples of metallic composites (MMCs) with dispersed particles percentages (4% - 6% - 8% - 10% - 15% and 20%) are prepared. The effect of the particles dispersion on the mechanical properties of produced samples were carried out by tension & hardness tests. It is found that the ultimate tensile strength of the produced composites can be increased by increasing the percentages of alumina particles in the matrix of the base alloy. It becomes (232 Mpa) at (20%) of added particles. The results showed that the average hardness of prepared samples increasing with increases the alumina content. Microstructure study of prepared samples was carried out. The results showed particles location and distribution of it in the matrix of base alloy. The dissolution of Alumina particles into liquid base alloy was clear in some cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20alloy" title="base alloy">base alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20metal%20MMCs" title=" base metal MMCs "> base metal MMCs </a> </p> <a href="https://publications.waset.org/abstracts/11123/preparation-of-alumina-al2o3-particles-and-mmcs-of-al-7-si-045-mg-alloy-using-vortex-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2982</span> The Creep and Fracture Behavior of Additively Manufactured Inconel 625 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kassner">Michael Kassner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elevated-temperature creep tests were performed on additively manufactured (AM) Inconel 625 over a relatively wide range of stress. The behavior was compared to conventional wrought alloy. It was found that the steady-state creep rates of the AM alloys were comparable, or even more favorable, than that of the wrought Inconel. However, the ductility of the AM alloy was significantly less than the wrought alloy. The ductility however was recovered with hot isostatic pressing (HIP) of the AM specimens. The basis for the loss and recovery of the ductility will be discussed in terms of the differences in the details of the microstructures. In summary, it appears that HIP AM Inconel 625, over the long-term testing of a year, has very favorable mechanical properties compared to the conventional alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel" title="Inconel">Inconel</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=additive" title=" additive"> additive</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing "> manufacturing </a> </p> <a href="https://publications.waset.org/abstracts/128559/the-creep-and-fracture-behavior-of-additively-manufactured-inconel-625" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2981</span> Design of Advanced Materials for Alternative Cooling Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emilia%20Olivos">Emilia Olivos</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Arroyave"> R. Arroyave</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vargas-Calderon"> A. Vargas-Calderon</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Dominguez-Herrera"> J. E. Dominguez-Herrera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More efficient cooling systems are needed to reduce building energy consumption and environmental impact. At present researchers focus mainly on environmentally-friendly magnetic materials and the potential application in cooling devices. The magnetic materials presented in this project belong to a group known as Heusler alloys. These compounds are characterized by a strong coupling between their structure and magnetic properties. Usually, a change in one of them can alter the other, which implies changes in other electronic or structural properties, such as, shape magnetic memory response or the magnetocaloric effect. Those properties and its dependence with external fields make these materials interesting, both from a fundamental point of view, as well as on their different possible applications. In this work, first principles and Monte Carlo simulations have been used to calculate exchange couplings and magnetic properties as a function of an applied magnetic field on Heusler alloys. As a result, we found a large dependence of the magnetic susceptibility, entropy and heat capacity, indicating that the magnetic field can be used in experiments to trigger particular magnetic properties in materials, which are necessary to develop solid-state refrigeration devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic%20materials" title="ferromagnetic materials">ferromagnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric%20effect" title=" magnetocaloric effect"> magnetocaloric effect</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20design" title=" materials design"> materials design</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20refrigeration" title=" solid state refrigeration"> solid state refrigeration</a> </p> <a href="https://publications.waset.org/abstracts/108024/design-of-advanced-materials-for-alternative-cooling-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=100">100</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=101">101</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Full%20Heusler%20alloy&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>