CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 50 results for author: <span class="mathjax">Bertaux, J -</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bertaux, J -"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bertaux%2C+J+-&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bertaux, J -"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03333">arXiv:2304.03333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.03333">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.icarus.2023.115543">10.1016/j.icarus.2023.115543 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Water Production Rates from SOHO/SWAN Observations of Comets C/2020 S3 (Erasmus), C/2021 A1 (Leonard) and C/2021 O3 (PanSTARRS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Combi%2C+M+R">M. R. Combi</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A4kinen%2C+T">T. M盲kinen</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Qu%C3%A9merais%2C+E">E. Qu茅merais</a>, <a href="/search/?searchtype=author&amp;query=Ferron%2C+S">S. Ferron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03333v1-abstract-short" style="display: inline;"> In 2021 and 2022 the hydrogen comae of three long period comets, C/2020 S3 (Erasmus), C/2021 A1 (Leonard) and C/2021 O3 (PanSTARRS) were observed with the Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyman-alpha camera on the SOlar and Heliosphere Observer (SOHO) satellite. SWAN obtains nearly daily full-sky images of the hydrogen Lyman-alpha distribution of the interstellar hydrogen as it pass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03333v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03333v1-abstract-full" style="display: none;"> In 2021 and 2022 the hydrogen comae of three long period comets, C/2020 S3 (Erasmus), C/2021 A1 (Leonard) and C/2021 O3 (PanSTARRS) were observed with the Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyman-alpha camera on the SOlar and Heliosphere Observer (SOHO) satellite. SWAN obtains nearly daily full-sky images of the hydrogen Lyman-alpha distribution of the interstellar hydrogen as it passes through the solar system yielding information about the solar wind and solar ultraviolet fluxes that eats away at it by ionization and charge exchange. The hydrogen comae of comets, when of sufficient brightness, are also observed. Water production rates have been calculated over time for each of these comets. Of particular interest are comet C/2021 O3 (PanSTARRS) which apparently disintegrated a few days before its perihelion at 0.28 au and C/2021 A1 (Leonard) which also disintegrated beginning about 20 days after its perihelion peak. The behavior of comet C/2020 S3 (Erasmus) was more typical without dramatic fading, but still was asymmetric about perihelion, with a more rapid turn on before perihelion and more extended activity well after perihelion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03333v1-abstract-full').style.display = 'none'; document.getElementById('2304.03333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 Figures, 4 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Icarus 398, 115543, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.00074">arXiv:2102.00074</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.00074">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abd698">10.3847/2041-8213/abd698 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Water Production Rate of C/2020 F3 (NEOWISE) from SOHO/SWAN over Its Active Apparition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Combi%2C+M+R">M. R. Combi</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A4kinen%2C+T">T. M盲kinen</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Qu%C3%A9merais%2C+E">E. Qu茅merais</a>, <a href="/search/?searchtype=author&amp;query=Ferron%2C+S">S. Ferron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.00074v1-abstract-short" style="display: inline;"> C/2020 F3 (NEOWISE) was discovered in images from the Near Earth Object program of the Wide-Field Infrared Survey Explorer (NEOWISE) taken on 27 March 2020 and has become the Great Comet of 2020. The Solar Wind ANisotropies (SWAN) camera on the Solar and Heliospheric Observatory (SOHO) spacecraft, located in a halo orbit around the Earth-Sun L1 Lagrange point, makes daily full-sky images of hydrog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00074v1-abstract-full').style.display = 'inline'; document.getElementById('2102.00074v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.00074v1-abstract-full" style="display: none;"> C/2020 F3 (NEOWISE) was discovered in images from the Near Earth Object program of the Wide-Field Infrared Survey Explorer (NEOWISE) taken on 27 March 2020 and has become the Great Comet of 2020. The Solar Wind ANisotropies (SWAN) camera on the Solar and Heliospheric Observatory (SOHO) spacecraft, located in a halo orbit around the Earth-Sun L1 Lagrange point, makes daily full-sky images of hydrogen Lyman-alpha. Water production rates were determined from the SWAN hydrogen Lyman-alpha brightness and spatial distribution of the comet measured over a 4-month period of time on either side of the comet&#39;s perihelion on 3 July 2020. The water production rate in s^-1 was moderately asymmetric around perihelion and varied with the heliocentric distance, r, in au as (6.9+/-0.5) x 10^28 r^-2.5+/-0.2 and (10.1+/-0.5) x 10^28 r^-3.5+/-0.1 before and after perihelion, respectively. This is consistent with the comet having been through the planetary region of the solar system on one or more previous apparitions. A water production rates as large as 5.27 x 10^30 s^-1 were determined shortly after perihelion, once the comet was outside the solar avoidance area of SWAN, when the comet was 0.324 au from the Sun. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00074v1-abstract-full').style.display = 'none'; document.getElementById('2102.00074v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 Pages, 4 Figures, 1 Table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.05138">arXiv:2007.05138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.05138">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Comet 41P/Tuttle-Giacobini-Kresak, 45P/Honda-Mrkos-Pajdusakova, and 46P/Wirtanen: Water Production Activity over 21 Years with SOHO/SWAN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Combi%2C+M+R">M. R. Combi</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A4kinen%2C+T">T. M盲kinen</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Qu%C3%A9merais%2C+E">E. Qu茅merais</a>, <a href="/search/?searchtype=author&amp;query=Ferron%2C+S">S. Ferron</a>, <a href="/search/?searchtype=author&amp;query=Coronel%2C+R">R. Coronel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.05138v2-abstract-short" style="display: inline;"> In 2017, 2018 and 2019, comets 46P/Wirtanen, 45P/Honda-Mrkos-Pajdusakova, and 41P/Tuttle-Giacobini-Kresak all had perihelion passages. Their hydrogen comae were observed by the Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyman-alpha Camera on the SOlar and Heliospheric Observer (SOHO) satellite: comet 46P for the fourth time and comets 45P and 41P for the third time each since 1997. Comet 46P/&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.05138v2-abstract-full').style.display = 'inline'; document.getElementById('2007.05138v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.05138v2-abstract-full" style="display: none;"> In 2017, 2018 and 2019, comets 46P/Wirtanen, 45P/Honda-Mrkos-Pajdusakova, and 41P/Tuttle-Giacobini-Kresak all had perihelion passages. Their hydrogen comae were observed by the Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyman-alpha Camera on the SOlar and Heliospheric Observer (SOHO) satellite: comet 46P for the fourth time and comets 45P and 41P for the third time each since 1997. Comet 46P/Wirtanen is one of a small class of so-called hyperactive comets whose gas production rates belie their small size. This comet was the original target comet of the Rosetta mission. The Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyman-alpha camera on the SOlar and Heliospheric Observer (SOHO) satellite observed the hydrogen coma of comet 46P/Wirtanen during the apparitions of 1997, 2002, 2008 and 2018. Over the 22 years, the activity decreased and its variation with heliocentric distance has changed markedly in a way very similar to that of another hyperactive comet, 103P/Hartley 2. Comet 45P/Honda-Mrkos-Pajdusakova was observed by SWAN during its perihelion apparitions of 2001, 2011 and 2017. Over this time period the activity level has remained remarkably similar, with no long-term fading or abrupt decreases. Comet 41P/Tuttle-Giacobini-Kresak was observed by SWAN in its perihelion apparitions of 2001, 2006 and 2017 and has decreased in activity markedly over the same time period. In 1973 it was known for large outbursts, which continued during the 2001 (2 outbursts) and 2006 (1 outburst) apparitions. However, over the 2001 to 2017 time period covered by the SOHO/SWAN observations the water production rates have greatly decreased by factors of 10-30 over corresponding times during its orbit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.05138v2-abstract-full').style.display = 'none'; document.getElementById('2007.05138v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 Pages, 6 Figures, 4 Tables, accepted by Planetary Science Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.13577">arXiv:1910.13577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.13577">pdf</a>, <a href="https://arxiv.org/format/1910.13577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab552e">10.3847/1538-3881/ab552e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Upper Limits for Emissions in the Coma of Comet 67P/Churyumov-Gerasimenko Near Perihelion as Measured by Rosetta&#39;s Alice Far-Ultraviolet Spectrograph </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Keeney%2C+B+A">B. A. Keeney</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+S+A">S. A. Stern</a>, <a href="/search/?searchtype=author&amp;query=Vervack%2C%2C+R+J">R. J. Vervack, Jr.</a>, <a href="/search/?searchtype=author&amp;query=Knight%2C+M+M">M. M. Knight</a>, <a href="/search/?searchtype=author&amp;query=Noonan%2C+J">J. Noonan</a>, <a href="/search/?searchtype=author&amp;query=Parker%2C+J+W">J. Wm. Parker</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Feaga%2C+L+M">L. M. Feaga</a>, <a href="/search/?searchtype=author&amp;query=Feldman%2C+P+D">P. D. Feldman</a>, <a href="/search/?searchtype=author&amp;query=Medina%2C+R+A">R. A. Medina</a>, <a href="/search/?searchtype=author&amp;query=Pineau%2C+J+P">J. P. Pineau</a>, <a href="/search/?searchtype=author&amp;query=Schindhelm%2C+R+N">R. N. Schindhelm</a>, <a href="/search/?searchtype=author&amp;query=Steffl%2C+A+J">A. J. Steffl</a>, <a href="/search/?searchtype=author&amp;query=Versteeg%2C+M">M. Versteeg</a>, <a href="/search/?searchtype=author&amp;query=Weaver%2C+H+A">H. A. Weaver</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.13577v2-abstract-short" style="display: inline;"> The Alice far-UV imaging spectrograph (700-2050 A) acquired over 70,000 spectral images during Rosetta&#39;s 2-year escort mission, including over 20,000 in the months surrounding perihelion when the comet activity level was highest. We have developed automated software to fit and remove ubiquitous H, O, C, S, and CO emissions from Alice spectra, along with reflected solar continuum and absorption fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13577v2-abstract-full').style.display = 'inline'; document.getElementById('1910.13577v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.13577v2-abstract-full" style="display: none;"> The Alice far-UV imaging spectrograph (700-2050 A) acquired over 70,000 spectral images during Rosetta&#39;s 2-year escort mission, including over 20,000 in the months surrounding perihelion when the comet activity level was highest. We have developed automated software to fit and remove ubiquitous H, O, C, S, and CO emissions from Alice spectra, along with reflected solar continuum and absorption from gaseous H2O in the comet&#39;s coma, which we apply to a &#34;grand sum&#34; of integrations taken near perihelion. We present upper limits on the presence of one ion and 17 neutral atomic species for this time period. These limits are compared to results obtained by other Rosetta instruments where possible, as well as to CI carbonaceous chondrites and solar photospheric abundances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13577v2-abstract-full').style.display = 'none'; document.getElementById('1910.13577v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures; Astronomical Journal, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2019, AJ, 158:252 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.05252">arXiv:1910.05252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.05252">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab4887">10.3847/2041-8213/ab4887 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comet C/2017 S3 (PanSTARRS): Outbursts and Disintegration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Combi%2C+M+R">M. R. Combi</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A4kinen%2C+T">T. M盲kinen</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Qu%C3%A9merais%2C+E">E. Qu茅merais</a>, <a href="/search/?searchtype=author&amp;query=Ferron%2C+S">S. Ferron</a>, <a href="/search/?searchtype=author&amp;query=Coronel%2C+R">R. Coronel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.05252v1-abstract-short" style="display: inline;"> The Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyman-alpha camera on the SOlar and Heliospheric Observer (SOHO) satellite observed the hydrogen coma of comet C/2017 S3 (PanSTARRS) for the last month of its activity from 2018 July 4 to August 4 and what appears to have been its final disintegration just 11 days before its perihelion on August 15. The hydrogen coma indicated water production ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05252v1-abstract-full').style.display = 'inline'; document.getElementById('1910.05252v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.05252v1-abstract-full" style="display: none;"> The Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyman-alpha camera on the SOlar and Heliospheric Observer (SOHO) satellite observed the hydrogen coma of comet C/2017 S3 (PanSTARRS) for the last month of its activity from 2018 July 4 to August 4 and what appears to have been its final disintegration just 11 days before its perihelion on August 15. The hydrogen coma indicated water production had a small outburst on July 8 at a heliocentric distance of 1.1AU and then a much larger one on July 20 at 0.8 AU. Over the following two weeks the water production dropped by more than a factor of ten after which it was no longer detectable. The behavior is reminiscent of comet C/1999 S4 (LINEAR) in 2000, which had a few small outbursts on its inbound orbit and a major outburst at a heliocentric distance of about 0.8 AU, which was close to its perihelion, followed by its complete disintegration that was documented by several sets of observations including SWAN. C/2017 S3 (PanSTARRS) however had a much larger water production rate than C/ 1999 S4 (LINEAR). Here we estimate the size of the nucleus of C/2017 S3 just before its final outburst and apparent disintegration was estimated using the total amount of water produced during its last weeks for a range of values of the refractory/ice ratio in the nucleus. We also determine the size distribution of the disintegrating particles as the comet faded. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05252v1-abstract-full').style.display = 'none'; document.getElementById('1910.05252v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 tables, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Letters, Volumne 884, Number 2, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.03022">arXiv:1905.03022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.03022">pdf</a>, <a href="https://arxiv.org/format/1905.03022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834869">10.1051/0004-6361/201834869 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tubiana%2C+C">C. Tubiana</a>, <a href="/search/?searchtype=author&amp;query=Rinaldi%2C+G">G. Rinaldi</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCttler%2C+C">C. G眉ttler</a>, <a href="/search/?searchtype=author&amp;query=Snodgrass%2C+C">C. Snodgrass</a>, <a href="/search/?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+X">X. Hu</a>, <a href="/search/?searchtype=author&amp;query=Marschall%2C+R">R. Marschall</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Bockel%C3%A9e-Morvan%2C+D">D. Bockel茅e-Morvan</a>, <a href="/search/?searchtype=author&amp;query=Naletto%2C+G">G. Naletto</a>, <a href="/search/?searchtype=author&amp;query=Capaccioni%2C+F">F. Capaccioni</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Arnold%2C+G">G. Arnold</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Capria%2C+M+T">M. T. Capria</a>, <a href="/search/?searchtype=author&amp;query=Ciarniello%2C+M">M. Ciarniello</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Crovisier%2C+J">J. Crovisier</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.03022v1-abstract-short" style="display: inline;"> On 27 Apr 2015, when 67P/C-G was at 1.76 au from the Sun and moving towards perihelion, the OSIRIS and VIRTIS-M instruments on Rosetta observed the evolving dust and gas coma during a complete rotation of the comet. We aim to characterize the dust, H2O and CO2 gas spatial distribution in the inner coma. To do this we performed a quantitative analysis of the release of dust and gas and compared the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03022v1-abstract-full').style.display = 'inline'; document.getElementById('1905.03022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.03022v1-abstract-full" style="display: none;"> On 27 Apr 2015, when 67P/C-G was at 1.76 au from the Sun and moving towards perihelion, the OSIRIS and VIRTIS-M instruments on Rosetta observed the evolving dust and gas coma during a complete rotation of the comet. We aim to characterize the dust, H2O and CO2 gas spatial distribution in the inner coma. To do this we performed a quantitative analysis of the release of dust and gas and compared the observed H2O production rate with the one calculated using a thermo-physical model. For this study we selected OSIRIS WAC images at 612 nm (dust) and VIRTIS-M image cubes at 612 nm, 2700 nm (H2O) and 4200 nm (CO2). We measured the average signal in a circular annulus, to study spatial variation around the comet, and in a sector of the annulus, to study temporal variation in the sunward direction with comet rotation, both at a fixed distance of 3.1 km from the comet centre. The spatial correlation between dust and water, both coming from the sun-lit side of the comet, shows that water is the main driver of dust activity in this time period. The spatial distribution of CO2 is not correlated with water and dust. There is no strong temporal correlation between the dust brightness and water production rate as the comet rotates. The dust brightness shows a peak at 0deg sub-solar longitude, which is not pronounced in the water production. At the same epoch, there is also a maximum in CO2 production. An excess of measured water production, with respect to the value calculated using a simple thermo-physical model, is observed when the head lobe and regions of the Southern hemisphere with strong seasonal variations are illuminated. A drastic decrease in dust production, when the water production (both measured and from the model) displays a maximum, happens when typical Northern consolidated regions are illuminated and the Southern hemisphere regions with strong seasonal variations are instead in shadow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03022v1-abstract-full').style.display = 'none'; document.getElementById('1905.03022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.09017">arXiv:1903.09017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.09017">pdf</a>, <a href="https://arxiv.org/format/1903.09017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834824">10.1051/0004-6361/201834824 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface evolution of the Anhur region on comet 67P from high-resolution OSIRIS images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Sunshine%2C+J">J. Sunshine</a>, <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Naletto%2C+G">G. Naletto</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+S">S. Ferrari</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Gutierrez%2C+P+J">P. J. Gutierrez</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCttler%2C+C">C. G眉ttler</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.09017v1-abstract-short" style="display: inline;"> The southern hemisphere of comet 67P/Churyumov-Gerasimenko (67P) became observable by the Rosetta mission in March 2015, a few months before cometary southern vernal equinox. The Anhur region in the southern part of the comet&#39;s larger lobe was found to be highly eroded, enriched in volatiles, and highly active. We analyze high-resolution images of the Anhur region pre- and post-perihelion acquired&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.09017v1-abstract-full').style.display = 'inline'; document.getElementById('1903.09017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.09017v1-abstract-full" style="display: none;"> The southern hemisphere of comet 67P/Churyumov-Gerasimenko (67P) became observable by the Rosetta mission in March 2015, a few months before cometary southern vernal equinox. The Anhur region in the southern part of the comet&#39;s larger lobe was found to be highly eroded, enriched in volatiles, and highly active. We analyze high-resolution images of the Anhur region pre- and post-perihelion acquired by the OSIRIS imaging system on board the Rosetta mission. The Narrow Angle Camera is particularly useful for studying the evolution in Anhur in terms of morphological changes and color variations.}{Radiance factor images processed by the OSIRIS pipeline were coregistered, reprojected onto the 3D shape model of the comet, and corrected for the illumination conditions. We find a number of morphological changes in the Anhur region that are related to formation of new scarps; removal of dust coatings; localized resurfacing in some areas, including boulders displacements; and vanishing structures, which implies localized mass loss that we estimate to be higher than 50 million kg. The strongest changes took place in and nearby the Anhur canyon-like structure, where significant dust cover was removed, an entire structure vanished, and many boulders were rearranged. All such changes are potentially associated with one of the most intense outbursts registered by Rosetta during its observations, which occurred one day before perihelion passage. Moreover, in the niche at the foot of a new observed scarp, we also see evidence of water ice exposure that persisted for at least six months. The abundance of water ice, evaluated from a linear mixing model, is relatively high (&gt; 20%). Our results confirm that the Anhur region is volatile-rich and probably is the area on 67P with the most pristine exposures near perihelion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.09017v1-abstract-full').style.display = 'none'; document.getElementById('1903.09017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures; accepted for publication in Astronomy and Astrophysics for the Rosetta 2 special number</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 630, A13 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.06793">arXiv:1903.06793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.06793">pdf</a>, <a href="https://arxiv.org/format/1903.06793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab1097">10.3847/1538-3881/ab1097 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stellar Occultation by Comet 67P/Churyumov-Gerasimenko Observed with Rosetta&#39;s Alice Far-Ultraviolet Spectrograph </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Keeney%2C+B+A">B. A. Keeney</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+S+A">S. A. Stern</a>, <a href="/search/?searchtype=author&amp;query=Feldman%2C+P+D">P. D. Feldman</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Feaga%2C+L+M">L. M. Feaga</a>, <a href="/search/?searchtype=author&amp;query=Knight%2C+M+M">M. M. Knight</a>, <a href="/search/?searchtype=author&amp;query=Medina%2C+R+A">R. A. Medina</a>, <a href="/search/?searchtype=author&amp;query=Noonan%2C+J">J. Noonan</a>, <a href="/search/?searchtype=author&amp;query=Parker%2C+J+W">J. Wm. Parker</a>, <a href="/search/?searchtype=author&amp;query=Pineau%2C+J+P">J. P. Pineau</a>, <a href="/search/?searchtype=author&amp;query=Schindhelm%2C+R+N">R. N. Schindhelm</a>, <a href="/search/?searchtype=author&amp;query=Steffl%2C+A+J">A. J. Steffl</a>, <a href="/search/?searchtype=author&amp;query=Versteeg%2C+M">M. Versteeg</a>, <a href="/search/?searchtype=author&amp;query=Vervack%2C%2C+R+J">R. J. Vervack, Jr.</a>, <a href="/search/?searchtype=author&amp;query=Weaver%2C+H+A">H. A. Weaver</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.06793v1-abstract-short" style="display: inline;"> Following our previous detection of ubiquitous H2O and O2 absorption against the far-UV continuum of stars located near the nucleus of Comet 67P/Churyumov-Gerasimenko, we present a serendipitously observed stellar occultation that occurred on 2015 September 13, approximately one month after the comet&#39;s perihelion passage. The occultation appears in two consecutive 10-minute spectral images obtaine&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06793v1-abstract-full').style.display = 'inline'; document.getElementById('1903.06793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.06793v1-abstract-full" style="display: none;"> Following our previous detection of ubiquitous H2O and O2 absorption against the far-UV continuum of stars located near the nucleus of Comet 67P/Churyumov-Gerasimenko, we present a serendipitously observed stellar occultation that occurred on 2015 September 13, approximately one month after the comet&#39;s perihelion passage. The occultation appears in two consecutive 10-minute spectral images obtained by Alice, Rosetta&#39;s ultraviolet (700-2100 A) spectrograph, both of which show H2O absorption with column density $&gt;10^{17.5} \mathrm{cm}^{-2}$ and significant O2 absorption ($\mathrm{O2/H2O} \approx 5$-10%). Because the projected distance from the star to the nucleus changes between exposures, our ability to study the H2O column density profile near the nucleus (impact parameters $&lt;1$ km) is unmatched by our previous observations. We find that the H2O and O2 column densities decrease with increasing impact parameter, in accordance with expectations, but the O2 column decreases $\sim3$ times more quickly than H2O. When combined with previously published results from stellar appulses, we conclude that the O2 and H2O column densities are highly correlated, and O2/H2O decreases with increasing H2O column. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06793v1-abstract-full').style.display = 'none'; document.getElementById('1903.06793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astronomical Journal; 9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.09415">arXiv:1812.09415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.09415">pdf</a>, <a href="https://arxiv.org/format/1812.09415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833807">10.1051/0004-6361/201833807 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ROSETTA/OSIRIS observations of the 67P nucleus during the April 2016 flyby: high-resolution spectrophotometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+S">S. Ferrari</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+A">A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Massironi%2C+M">M. Massironi</a>, <a href="/search/?searchtype=author&amp;query=Deshapriya%2C+J+D+P">J. D. P Deshapriya</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Naletto%2C+G">G. Naletto</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B+J+R">B. J. R. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Guti%C3%A9rrez%2C+P+J">P. J. Guti茅rrez</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCttler%2C+C">C. G眉ttler</a>, <a href="/search/?searchtype=author&amp;query=Ip%2C+W+-">W. -H. Ip</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.09415v1-abstract-short" style="display: inline;"> In April 2016, the Rosetta spacecraft performed a low-altitude low-phase-angle flyby over the Imhotep-Khepry transition of 67P/Churyumov-Gerasimenko&#39;s nucleus. The OSIRIS/Narrow-Angle-Camera (NAC) acquired 112 images with mainly 3 broadband filters in the visible at a resolution of up to 0.53 m/px and for phase angles between 0.095掳 and 62掳. Using those images, we have investigated the morphologic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09415v1-abstract-full').style.display = 'inline'; document.getElementById('1812.09415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.09415v1-abstract-full" style="display: none;"> In April 2016, the Rosetta spacecraft performed a low-altitude low-phase-angle flyby over the Imhotep-Khepry transition of 67P/Churyumov-Gerasimenko&#39;s nucleus. The OSIRIS/Narrow-Angle-Camera (NAC) acquired 112 images with mainly 3 broadband filters in the visible at a resolution of up to 0.53 m/px and for phase angles between 0.095掳 and 62掳. Using those images, we have investigated the morphological and spectrophotometrical properties of this area. We assembled the images into coregistered color cubes. Using a 3D shape model, we produced the illumination conditions and georeference for each image. We projected the observations on a map to investigate its geomorphology. Observations were photometrically corrected using the Lommel-Seeliger disk law. Spectrophotometric analyses were performed on the coregistered color cubes. These data were used to estimate the local phase reddening. This region of the nucleus hosts numerous and varied types of terrains and features. We observe an association between a feature&#39;s nature, its reflectance, and its spectral slope. Fine material deposits exhibit an average reflectance and spectral slope, while terrains with diamictons, consolidated material, degraded outcrops, or features such as somber boulders, present a lower-than-average reflectance and higher-than-average spectral slope. Bright surfaces present here a spectral behavior consistent with terrains enriched in water-ice. We find a phase-reddening slope of 0.064{\pm}0.001{\%}/100nm/掳 at 2.7 au outbound, similarly to the one obtained at 2.3 au inbound during the February 2015 flyby. Identified as the source region of multiple jets and a host of water-ice material, the Imhotep-Khepry transition appeared in April 2016, close to the frost line, to further harbor several potential locations with exposed water-ice material among its numerous different morphological terrain units. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09415v1-abstract-full').style.display = 'none'; document.getElementById('1812.09415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 14 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.03997">arXiv:1809.03997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.03997">pdf</a>, <a href="https://arxiv.org/format/1809.03997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833803">10.1051/0004-6361/201833803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linking surface morphology, composition, and activity on the nucleus of 67P/Churyumov-Gerasimenko </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Hoang%2C+V+H">V. H. Hoang</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Deshapriya%2C+J+D+P">J. D. P. Deshapriya</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Naletto%2C+G">G. Naletto</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+S">S. Ferrari</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Gutierrez%2C+P+J">P. J. Gutierrez</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.03997v1-abstract-short" style="display: inline;"> The Rosetta space probe accompanied comet 67P/Churyumov-Gerasimenko for more than two years, obtaining an unprecedented amount of unique data of the comet nucleus and inner coma. This work focuses identifying the source regions of faint jets and outbursts and on studying the spectrophotometric properties of some outbursts. We use observations acquired with the OSIRIS/NAC camera during July-October&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03997v1-abstract-full').style.display = 'inline'; document.getElementById('1809.03997v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.03997v1-abstract-full" style="display: none;"> The Rosetta space probe accompanied comet 67P/Churyumov-Gerasimenko for more than two years, obtaining an unprecedented amount of unique data of the comet nucleus and inner coma. This work focuses identifying the source regions of faint jets and outbursts and on studying the spectrophotometric properties of some outbursts. We use observations acquired with the OSIRIS/NAC camera during July-October 2015, that is, close to perihelion. More than 200 jets of different intensities were identified directly on the nucleus. Some of the more intense outbursts appear spectrally bluer than the comet dark terrain in the vivible-to-near-infrared region. We attribute this spectral behavior to icy grains mixed with the ejected dust. Some of the jets have an extremely short lifetime. They appear on the cometary surface during the color sequence observations, and vanish in less than some few minutes after reaching their peak. We also report a resolved dust plume observed in May 2016 at a resolution of 55 cm/pixel, which allowed us to estimate an optical depth of $\sim$0.65 and an ejected mass of $\sim$ 2200 kg. We present the results on the location, duration, and colors of active sources on the nucleus of 67P from the medium-resolution (i.e., 6-10 m/pixel) images acquired close to perihelion passage. The observed jets are mainly located close to boundaries between different morphological regions. Jets depart not only from cliffs, but also from smooth and dust-covered areas, from fractures, pits, or cavities that cast shadows and favor the recondensation of volatiles. This study shows that faint jets or outbursts continuously contribute to the cometary activity close to perihelion passage, and that these events are triggered by illumination conditions. Faint jets or outbursts are not associated with a particular terrain type or morphology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03997v1-abstract-full').style.display = 'none'; document.getElementById('1809.03997v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication on Astronomy and Astrophysics on 27 August 2018. 27 pages, 18 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 630, A7 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10865">arXiv:1808.10865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.10865">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.icarus.2018.08.031">10.1016/j.icarus.2018.08.031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Survey of Water Production in 61 Comets from SOHO/SWAN Observations of Hydrogen Lyman-alpha: Twenty-One Years 1996-2016 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Combi%2C+M+R">M. R. Combi</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A4kinen%2C+T+T">T. T. M盲kinen</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Qu%C3%A9merais%2C+E">E. Qu茅merais</a>, <a href="/search/?searchtype=author&amp;query=Ferron%2C+S">S. Ferron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10865v2-abstract-short" style="display: inline;"> The Solar Wind Anisotropies (SWAN) instrument on the SOlar and Heliospheric Observatory (SOHO) satellite has observed 44 long period and new Oort cloud comets and 36 apparitions of 17 short period comets since its launch in December 1995. Water production rates have been determined from the over 3700 images producing a consistent set of activity variations over large parts of each comet&#39;s orbit. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10865v2-abstract-full').style.display = 'inline'; document.getElementById('1808.10865v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10865v2-abstract-full" style="display: none;"> The Solar Wind Anisotropies (SWAN) instrument on the SOlar and Heliospheric Observatory (SOHO) satellite has observed 44 long period and new Oort cloud comets and 36 apparitions of 17 short period comets since its launch in December 1995. Water production rates have been determined from the over 3700 images producing a consistent set of activity variations over large parts of each comet&#39;s orbit. This has enabled the calculation of exponential power-law variations with heliocentric distance of these comets both before and after perihelion, as well as the absolute values of the water production rates. These various measures of overall water activity including pre- and post-perihelion exponents, absolute water production rates at 1 AU, active surface areas and their variations have been compared with a number of dynamical quantities for each comet including dynamical class, original semi-major axis, nucleus radius (when available), and compositional taxonomic class. Evidence for evolution of cometary nuclei is seen in both long-period and short-period comets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10865v2-abstract-full').style.display = 'none'; document.getElementById('1808.10865v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 9 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Icarus Volume 317, 1 January 2019, Pages 610-620 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.07508">arXiv:1712.07508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.07508">pdf</a>, <a href="https://arxiv.org/format/1712.07508">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201732155">10.1051/0004-6361/201732155 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tensile Strength of 67P/Churyumov-Gerasimenko Nucleus Material from Overhangs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Attree%2C+N">N. Attree</a>, <a href="/search/?searchtype=author&amp;query=Groussin%2C+O">O. Groussin</a>, <a href="/search/?searchtype=author&amp;query=Jorda%2C+L">L. Jorda</a>, <a href="/search/?searchtype=author&amp;query=N%C3%A9bouy%2C+D">D. N茅bouy</a>, <a href="/search/?searchtype=author&amp;query=Thomas%2C+N">N. Thomas</a>, <a href="/search/?searchtype=author&amp;query=Brouet%2C+Y">Y. Brouet</a>, <a href="/search/?searchtype=author&amp;query=K%C3%BChrt%2C+E">E. K眉hrt</a>, <a href="/search/?searchtype=author&amp;query=Preusker%2C+F">F. Preusker</a>, <a href="/search/?searchtype=author&amp;query=Scholten%2C+F">F. Scholten</a>, <a href="/search/?searchtype=author&amp;query=Knollenberg%2C+J">J. Knollenberg</a>, <a href="/search/?searchtype=author&amp;query=Hartogh%2C+P">P. Hartogh</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P">P. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Auger%2C+A+-">A. -T. Auger</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Boudreault%2C+S">S. Boudreault</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.07508v1-abstract-short" style="display: inline;"> We directly measure twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimate the minimum tensile strengths needed to support them against collapse under the comet&#39;s gravity. We find extremely low strengths of around one Pa or less (one to five Pa, when scaled to a metre length). The presence of eroded material at the base of mos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07508v1-abstract-full').style.display = 'inline'; document.getElementById('1712.07508v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.07508v1-abstract-full" style="display: none;"> We directly measure twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimate the minimum tensile strengths needed to support them against collapse under the comet&#39;s gravity. We find extremely low strengths of around one Pa or less (one to five Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features and implied previous collapse of another, suggests that they are prone to failure and that true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of 67P&#39;s nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties with size, over the $\sim10-100$ m range studied here, or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small (tens of km) body. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07508v1-abstract-full').style.display = 'none'; document.getElementById('1712.07508v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures. Accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 611, A33 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10235">arXiv:1710.10235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.10235">pdf</a>, <a href="https://arxiv.org/format/1710.10235">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx2386">10.1093/mnras/stx2386 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of sub-surface energy storage in comet 67P from the outburst of 2016 July 3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Della+Corte%2C+V">V. Della Corte</a>, <a href="/search/?searchtype=author&amp;query=Feldman%2C+P+D">P. D. Feldman</a>, <a href="/search/?searchtype=author&amp;query=Geiger%2C+B">B. Geiger</a>, <a href="/search/?searchtype=author&amp;query=Merouane%2C+S">S. Merouane</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Gruen%2C+E">E. Gruen</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P">P. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Hilchenbach%2C+M">M. Hilchenbach</a>, <a href="/search/?searchtype=author&amp;query=Hoefner%2C+S">S. Hoefner</a>, <a href="/search/?searchtype=author&amp;query=Ivanovski%2C+S">S. Ivanovski</a>, <a href="/search/?searchtype=author&amp;query=Kolokolova%2C+L">L. Kolokolova</a>, <a href="/search/?searchtype=author&amp;query=Pajola%2C+M">M. Pajola</a>, <a href="/search/?searchtype=author&amp;query=Rotundi%2C+A">A. Rotundi</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Steffl%2C+A+J">A. J. Steffl</a>, <a href="/search/?searchtype=author&amp;query=Thomas%2C+N">N. Thomas</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Boudreault%2C+S">S. Boudreault</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10235v1-abstract-short" style="display: inline;"> On 3 July 2016, several instruments on board ESA&#39;s Rosetta spacecraft detected signs of an outburst event on comet 67P, at a heliocentric distance of 3.32 AU from the sun, outbound from perihelion. We here report on the inferred properties of the ejected dust and the surface change at the site of the outburst. The activity coincided with the local sunrise and continued over a time interval of 14 -&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10235v1-abstract-full').style.display = 'inline'; document.getElementById('1710.10235v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10235v1-abstract-full" style="display: none;"> On 3 July 2016, several instruments on board ESA&#39;s Rosetta spacecraft detected signs of an outburst event on comet 67P, at a heliocentric distance of 3.32 AU from the sun, outbound from perihelion. We here report on the inferred properties of the ejected dust and the surface change at the site of the outburst. The activity coincided with the local sunrise and continued over a time interval of 14 - 68 minutes. It left a 10m-sized icy patch on the surface. The ejected material comprised refractory grains of several hundred microns in size, and sub-micron-sized water ice grains. The high dust mass production rate is incompatible with the free sublimation of crystalline water ice under solar illumination as the only acceleration process. Additional energy stored near the surface must have increased the gas density. We suggest a pressurized sub-surface gas reservoir, or the crystallization of amorphous water ice as possible causes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10235v1-abstract-full').style.display = 'none'; document.getElementById('1710.10235v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 19 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS 469, S606-S625, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00985">arXiv:1709.00985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.00985">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.icarus.2017.08.035">10.1016/j.icarus.2017.08.035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Water Production Activity of Nine Long-Period Comets from SOHO/SWAN Observations of Hydrogen Lyman-alpha: 2013-2016 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Combi%2C+M+R">M. R. Combi</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A4kinen%2C+T+T">T. T. M盲kinen</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Qu%C3%A9merais%2C+E">E. Qu茅merais</a>, <a href="/search/?searchtype=author&amp;query=Ferron%2C+S">S. Ferron</a>, <a href="/search/?searchtype=author&amp;query=Avery%2C+M">M. Avery</a>, <a href="/search/?searchtype=author&amp;query=Wright%2C+C">C. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00985v1-abstract-short" style="display: inline;"> Nine recently discovered long-period comets were observed by the Solar Wind Anisotropies (SWAN) Lyman-alpha all-sky camera on board the Solar and Heliosphere Observatory (SOHO) satellite during the period of 2013 to 2016. These were C/2012 K1 (PanSTARRS), C/2013 US10 (Catalina), C/2013 V5 (Oukaimeden), C/2013 R1 (Lovejoy), C/2014 E2 (Jacques), C/2014 Q2 (Lovejoy), C/2015 G2 (MASTER), C/2014 Q1 (Pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00985v1-abstract-full').style.display = 'inline'; document.getElementById('1709.00985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00985v1-abstract-full" style="display: none;"> Nine recently discovered long-period comets were observed by the Solar Wind Anisotropies (SWAN) Lyman-alpha all-sky camera on board the Solar and Heliosphere Observatory (SOHO) satellite during the period of 2013 to 2016. These were C/2012 K1 (PanSTARRS), C/2013 US10 (Catalina), C/2013 V5 (Oukaimeden), C/2013 R1 (Lovejoy), C/2014 E2 (Jacques), C/2014 Q2 (Lovejoy), C/2015 G2 (MASTER), C/2014 Q1 (PanSTARRS) and C/2013 X1 (PanSTARRS). Of these 9 comets 6 were long-period comets and 3 were possibly dynamically new. Water production rates were calculated from each of the 885 images using our standard time-resolved model that accounts for the whole water photodissociation chain, exothermic velocities and collisional escape of H atoms. For most of these comets there were enough observations over a broad enough range of heliocentric distances to calculate power-law fits to the variation of production rate with heliocentric distances for pre- and post-perihelion portions of the orbits. Comet C/2014 Q1 (PanSTARRS), with a perihelion distance of only ~0.3 AU, showed the most unusual variation of water production rate with heliocentric distance and the resulting active area variation, indicating that when the comet was within 0.7 AU its activity was dominated by the continuous release of icy grains and chunks, greatly increasing the active sublimation area by more than a factor of 10 beyond what it had at larger heliocentric distances. A possible interpretation suggests that a large fraction of the comet&#39;s mass was lost during the apparition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00985v1-abstract-full').style.display = 'none'; document.getElementById('1709.00985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication by Icarus, 36 Pages, 3 Tables, 10 Figures, 9 Supplementary Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.06812">arXiv:1707.06812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.06812">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx1726">10.1093/mnras/stx1726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Seasonal Mass Transfer on the Nucleus of Comet 67P/Chuyumov-Gerasimenko </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Mottola%2C+S">S. Mottola</a>, <a href="/search/?searchtype=author&amp;query=Hviid%2C+S+F">S. F. Hviid</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=K%C3%BChrt%2C+E">E. K眉hrt</a>, <a href="/search/?searchtype=author&amp;query=Skorov%2C+Y">Y. Skorov</a>, <a href="/search/?searchtype=author&amp;query=Otto%2C+K">K. Otto</a>, <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=Oklay%2C+N">N. Oklay</a>, <a href="/search/?searchtype=author&amp;query=Schr%C3%B6der%2C+S+E">S. E. Schr枚der</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Pajola%2C+M">M. Pajola</a>, <a href="/search/?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Toth%2C+I">I. Toth</a>, <a href="/search/?searchtype=author&amp;query=Preusker%2C+F">F. Preusker</a>, <a href="/search/?searchtype=author&amp;query=Scholten%2C+F">F. Scholten</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P">P. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.06812v1-abstract-short" style="display: inline;"> We collect observational evidence that supports the scheme of mass transfer on the nucleus of comet 67P/Churyumov-Gerasimenko. The obliquity of the rotation axis of 67P causes strong seasonal variations. During perihelion the southern hemisphere is four times more active than the north. Northern territories are widely covered by granular material that indicates back fall originating from the activ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06812v1-abstract-full').style.display = 'inline'; document.getElementById('1707.06812v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.06812v1-abstract-full" style="display: none;"> We collect observational evidence that supports the scheme of mass transfer on the nucleus of comet 67P/Churyumov-Gerasimenko. The obliquity of the rotation axis of 67P causes strong seasonal variations. During perihelion the southern hemisphere is four times more active than the north. Northern territories are widely covered by granular material that indicates back fall originating from the active south. Decimetre sized chunks contain water ice and their trajectories are influenced by an anti-solar force instigated by sublimation. OSIRIS observations suggest that up to 20 % of the particles directly return to the nucleus surface taking several hours of travel time. The back fall covered northern areas are active if illuminated but produce mainly water vapour. The decimetre chunks from the nucleus surface are too small to contain more volatile compounds such as CO 2 or CO. This causes a north-south dichotomy of the composition measurements in the coma. Active particles are trapped in the gravitational minimum of Hapi during northern winter. They are &#34;shock frozen&#34; and only reactivated when the comet approaches the sun after its aphelion passage. The insolation of the big cavity is enhanced by self-heating, i. e. reflection and IR radiation from the walls. This, together with the pristinity of the active back fall, explains the early observed activity of the Hapi region. Sobek may be a role model for the consolidated bottom of Hapi. Mass transfer in the case of 67P strongly influences the evolution of the nucleus and the interpretation of coma measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06812v1-abstract-full').style.display = 'none'; document.getElementById('1707.06812v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society stx1726, 13 July 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.02945">arXiv:1707.02945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.02945">pdf</a>, <a href="https://arxiv.org/format/1707.02945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx1275">10.1093/mnras/stx1275 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The highly active Anhur-Bes regions in the 67P/Churyumov - Gerasimenko comet: results from OSIRIS/ROSETTA observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+J+C">J. C. Lee</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+S">S. Ferrari</a>, <a href="/search/?searchtype=author&amp;query=Massironi%2C+M">M. Massironi</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Deshapriya%2C+J+D+P">J. D. P Deshapriya</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=El-Maarry%2C+M+R">M. R. El-Maarry</a>, <a href="/search/?searchtype=author&amp;query=Giacomini%2C+L">L. Giacomini</a>, <a href="/search/?searchtype=author&amp;query=Mottola%2C+S">S. Mottola</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Ip%2C+W+H">W. H. Ip</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z+Y">Z. Y. Lin</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M">M. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.02945v1-abstract-short" style="display: inline;"> The Southern hemisphere of the 67P/Churyumov-Gerasimenko comet has become visible from Rosetta only since March 2015. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and erosion rate, thus exposing the subsurface most pristine material. In this work we investigate, thanks to the OSIRIS images, the geomorphology, the spec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02945v1-abstract-full').style.display = 'inline'; document.getElementById('1707.02945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.02945v1-abstract-full" style="display: none;"> The Southern hemisphere of the 67P/Churyumov-Gerasimenko comet has become visible from Rosetta only since March 2015. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and erosion rate, thus exposing the subsurface most pristine material. In this work we investigate, thanks to the OSIRIS images, the geomorphology, the spectrophotometry and some transient events of two Southern hemisphere regions: Anhur and part of Bes. Bes is dominated by outcropping consolidated terrain covered with fine particle deposits, while Anhur appears strongly eroded with elongated canyon-like structures, scarp retreats, different kinds of deposits, and degraded sequences of strata indicating a pervasive layering. We discovered a new 140 m long and 10 m high scarp formed in the Anhur/Bes boundary during/after the perihelion passage, close to the area where exposed CO$_2$ and H$_2$O ices were previously detected. Several jets have been observed originating from these regions, including the strong perihelion outburst, an active pit, and a faint optically thick dust plume. We identify several areas with a relatively bluer slope (i.e. a lower spectral slope value) than their surroundings, indicating a surface composition enriched with some water ice. These spectrally bluer areas are observed especially in talus and gravitational accumulation deposits where freshly exposed material had fallen from nearby scarps and cliffs. The investigated regions become spectrally redder beyond 2 au outbound when the dust mantle became thicker, masking the underlying ice-rich layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02945v1-abstract-full').style.display = 'none'; document.getElementById('1707.02945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures, published online on 24 May 2017 on Mon. Not. R. Astron. Soc. stx1275, https://doi.org/10.1093/mnras/stx1275</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.00734">arXiv:1707.00734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.00734">pdf</a>, <a href="https://arxiv.org/format/1707.00734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx1691">10.1093/mnras/stx1691 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on cometary surface evolution derived from a statistical analysis of 67P&#39;s topography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=Hviid%2C+S+F">S. F. Hviid</a>, <a href="/search/?searchtype=author&amp;query=Mottola%2C+S">S. Mottola</a>, <a href="/search/?searchtype=author&amp;query=Kuehrt%2C+E">E. Kuehrt</a>, <a href="/search/?searchtype=author&amp;query=Preusker%2C+F">F. Preusker</a>, <a href="/search/?searchtype=author&amp;query=Scholten%2C+F">F. Scholten</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Oklay%2C+N">N. Oklay</a>, <a href="/search/?searchtype=author&amp;query=de+Niem%2C+D">D. de Niem</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Pajola%2C+M">M. Pajola</a>, <a href="/search/?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+X">X. Hu</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z+-">Z. -Y. Lin</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Gicquel%2C+A">A. Gicquel</a>, <a href="/search/?searchtype=author&amp;query=Boudreault%2C+S">S. Boudreault</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.00734v2-abstract-short" style="display: inline;"> We present a statistical analysis of the distribution of large scale topographic features on comet 67P/Churyumov-Gerasimenko. We observe that the cumulative cliff height distribution across the surface follows a power law with a slope equal to -1.69 +- 0.02. When this distribution is studied independently for each region, we find a good correlation between the slope of the power law and the orbita&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00734v2-abstract-full').style.display = 'inline'; document.getElementById('1707.00734v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.00734v2-abstract-full" style="display: none;"> We present a statistical analysis of the distribution of large scale topographic features on comet 67P/Churyumov-Gerasimenko. We observe that the cumulative cliff height distribution across the surface follows a power law with a slope equal to -1.69 +- 0.02. When this distribution is studied independently for each region, we find a good correlation between the slope of the power law and the orbital erosion rate of the surface. For instance, the northern hemisphere topography is dominated by structures on the 100~m scale while the southern hemisphere topography, illuminated at perihelion, is dominated by 10~m scale terrain features. Our study suggest that the current size of a cliff is controlled not only by material cohesion but by the dominant erosional process in each region. This observation can be generalized to other comets, where we argue that primitive nuclei are characterized by the presence of large cliffs with a cumulative height power index equal to or above -1.5, while older, eroded cometary surfaces have a power index equal to or below -2.3. In effect, our model shows that a measure of the topography provides a quantitative assessment of a comet&#39;s erosional history, i.e. its evolutionary age. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00734v2-abstract-full').style.display = 'none'; document.getElementById('1707.00734v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.02729">arXiv:1706.02729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.02729">pdf</a>, <a href="https://arxiv.org/ps/1706.02729">ps</a>, <a href="https://arxiv.org/format/1706.02729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx1441">10.1093/mnras/stx1441 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling of the outburst on July 29th, 2015 observed with OSIRIS cameras in the southern hemisphere of comet 67P/Churyumov-Gerasimenko </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gicquel%2C+A">A. Gicquel</a>, <a href="/search/?searchtype=author&amp;query=Rose%2C+M">M. Rose</a>, <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Hearn%2C+M+F+A">M. F. A Hearn</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Fougere%2C+N">N. Fougere</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z+-">Z. -Y. Lin</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Besse%2C+S">S. Besse</a>, <a href="/search/?searchtype=author&amp;query=Boudreault%2C+S">S. Boudreault</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a> , et al. (38 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.02729v1-abstract-short" style="display: inline;"> Images of the nucleus and the coma (gas and dust) of comet 67P/Churyumov- Gerasimenko have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras since March 2014 using both the Wide Angle Camera (WAC) and the Narrow Angle Camera (NAC). We use images from the NAC camera to study a bright outburst observed in the southern hemisphere on July 29, 2015. The hi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.02729v1-abstract-full').style.display = 'inline'; document.getElementById('1706.02729v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.02729v1-abstract-full" style="display: none;"> Images of the nucleus and the coma (gas and dust) of comet 67P/Churyumov- Gerasimenko have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras since March 2014 using both the Wide Angle Camera (WAC) and the Narrow Angle Camera (NAC). We use images from the NAC camera to study a bright outburst observed in the southern hemisphere on July 29, 2015. The high spatial resolution of the NAC is needed to localize the source point of the outburst on the surface of the nucleus. The heliocentric distance is 1.25 au and the spacecraft-comet distance is 186 km. Aiming to better understand the physics that led to the outgassing, we used the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus and the dust trajectories. The goal is to understand the mechanisms producing the outburst. We reproduce the opening angle of the outburst in the model and constrain the outgassing ratio between the outburst source and the local region. The outburst is in fact a combination of both gas and dust, in which the active surface is approximately 10 times more active than the average rate found in the surrounding areas. We need a number of dust particles 7.83 $\times$ 10$^{11}$ - 6.90 $\times$ 10$^{15}$ (radius 1.97 - 185 渭m), which corresponds to a mass of dust 220 - 21 $\times$ 10$^{3}$kg. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.02729v1-abstract-full').style.display = 'none'; document.getElementById('1706.02729v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MN-17-1040-MJ.R1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.03740">arXiv:1705.03740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.03740">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.pss.2017.04.018">10.1016/j.pss.2017.04.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distance determination method of dust particles using Rosetta OSIRIS NAC and WAC data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Drolshagen%2C+E">E. Drolshagen</a>, <a href="/search/?searchtype=author&amp;query=Ott%2C+T">T. Ott</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCttler%2C+C">C. G眉ttler</a>, <a href="/search/?searchtype=author&amp;query=Tubiana%2C+C">C. Tubiana</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+I">P. I. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Gicquel%2C+A">A. Gicquel</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.03740v1-abstract-short" style="display: inline;"> The ESA Rosetta spacecraft has been tracking its target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, in close vicinity for over two years. It hosts the OSIRIS instruments: the Optical, Spectroscopic, and Infrared Remote Imaging System composed of two cameras, see e.g. Keller et al. (2007). In some imaging sequences dedicated to observe dust particles in the comet&#39;s coma, the two cameras to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.03740v1-abstract-full').style.display = 'inline'; document.getElementById('1705.03740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.03740v1-abstract-full" style="display: none;"> The ESA Rosetta spacecraft has been tracking its target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, in close vicinity for over two years. It hosts the OSIRIS instruments: the Optical, Spectroscopic, and Infrared Remote Imaging System composed of two cameras, see e.g. Keller et al. (2007). In some imaging sequences dedicated to observe dust particles in the comet&#39;s coma, the two cameras took images at the same time. The aim of this work is to use these simultaneous double camera observations to calculate the dust particles&#39; distance to the spacecraft. As the two cameras are mounted on the spacecraft with an offset of 70 cm, the distance of particles observed by both cameras can be determined by a shift of the particles&#39; apparent trails on the images. This paper presents first results of the ongoing work, introducing the distance determination method for the OSIRIS instrument and the analysis of an example particle. We note that this method works for particles in the range of about 500 m - 6000 m from the spacecraft. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.03740v1-abstract-full').style.display = 'none'; document.getElementById('1705.03740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00012">arXiv:1611.00012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.00012">pdf</a>, <a href="https://arxiv.org/format/1611.00012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw2511">10.1093/mnras/stw2511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+A">A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Preusker%2C+F">F. Preusker</a>, <a href="/search/?searchtype=author&amp;query=Scholten%2C+F">F. Scholten</a>, <a href="/search/?searchtype=author&amp;query=Jorda%2C+L">L. Jorda</a>, <a href="/search/?searchtype=author&amp;query=Pommerol%2C+A">A. Pommerol</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M">M. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Boudreault%2C+S">S. Boudreault</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B+J+R">B. J. R. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Giquel%2C+A">A. Giquel</a>, <a href="/search/?searchtype=author&amp;query=Groussin%2C+O">O. Groussin</a>, <a href="/search/?searchtype=author&amp;query=Gutierrez%2C+P+J">P. J. Gutierrez</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCttler%2C+C">C. G眉ttler</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00012v1-abstract-short" style="display: inline;"> We present the results of the photometric and spectrophotometric properties of the 67P/Churyumov-Gerasimenko nucleus derived with the OSIRIS instrument during the closest fly-by over the comet, which took place on 14 th February 2015 at a distance of {\~} 6 km from the surface. Several images covering the 0掳-33掳 phase angle range were acquired, and the spatial resolution achieved was 11 cm/pxl. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00012v1-abstract-full').style.display = 'inline'; document.getElementById('1611.00012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00012v1-abstract-full" style="display: none;"> We present the results of the photometric and spectrophotometric properties of the 67P/Churyumov-Gerasimenko nucleus derived with the OSIRIS instrument during the closest fly-by over the comet, which took place on 14 th February 2015 at a distance of {\~} 6 km from the surface. Several images covering the 0掳-33掳 phase angle range were acquired, and the spatial resolution achieved was 11 cm/pxl. The flown-by region is located on the big lobe of the comet, near the borders of the Ash, Apis and Imhotep regions. Our analysis shows that this region features local heterogeneities at the decimetre scale. We observed difference of reflectance up to 40{\%} between bright spots and sombre regions, and spectral slope variations up to 50{\%}. The spectral reddening effect observed globally on the comet surface by Fornasier et al. (2015) is also observed locally on this region, but with a less steep behaviour. We note that numerous metre-sized boulders, which exhibit a smaller opposition effect, also appear spectrally redder than their surroundings. In this region, we found no evidence linking observed bright spots to exposed water-ice-rich material. We fitted our dataset using the Hapke 2008 photometric model. The region overflown is globally as dark as the whole nucleus (geometric albedo of 6.8{\%}) and it has a high porosity value in the uppermost-layers (86{\%}). These results of the photometric analysis at a decimetre scale indicate that the photometric properties of the flown-by region are similar to those previously found for the whole nucleus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00012v1-abstract-full').style.display = 'none'; document.getElementById('1611.00012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures, 5 tables, (also presented at DPS48/ESPC11: http://cdsads.u-strasbg.fr/abs/2016DPS....4830004F)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.07743">arXiv:1609.07743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.07743">pdf</a>, <a href="https://arxiv.org/format/1609.07743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw2409">10.1093/mnras/stw2409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Summer fireworks on comet 67P </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z+-">Z. -Y. Lin</a>, <a href="/search/?searchtype=author&amp;query=El-Maarry%2C+M+R">M. R. El-Maarry</a>, <a href="/search/?searchtype=author&amp;query=Pajola%2C+M">M. Pajola</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Besse%2C+S">S. Besse</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.07743v1-abstract-short" style="display: inline;"> During its two years mission around comet 67P/Churyumov-Gerasimenko, ESA&#39;s Rosetta spacecraft had the unique opportunity to follow closely a comet in the most active part of its orbit. Many studies have presented the typical features associated to the activity of the nucleus, such as localized dust and gas jets. Here we report on series of more energetic transient events observed during the three&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.07743v1-abstract-full').style.display = 'inline'; document.getElementById('1609.07743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.07743v1-abstract-full" style="display: none;"> During its two years mission around comet 67P/Churyumov-Gerasimenko, ESA&#39;s Rosetta spacecraft had the unique opportunity to follow closely a comet in the most active part of its orbit. Many studies have presented the typical features associated to the activity of the nucleus, such as localized dust and gas jets. Here we report on series of more energetic transient events observed during the three months surrounding the comet&#39;s perihelion passage in August 2015. We detected and characterized 34 outbursts with the Rosetta cameras, one every 2.4 nucleus rotation. We identified 3 main dust plume morphologies associated to these events: a narrow jet, a broad fan, and more complex plumes featuring both previous types together. These plumes are comparable in scale and temporal variation to what has been observed on other comets. We present a map of the outbursts source locations, and discuss the associated topography. We find that the spatial distribution sources on the nucleus correlates well with morphological region boundaries, especially in areas marked by steep scarps or cliffs. Outbursts occur either in the early morning or shortly after the local noon, indicating two potential processes: Morning outbursts may be triggered by thermal stresses linked to the rapid change of temperature, afternoon events are most likely related to the diurnal or seasonal heat wave reaching volatiles buried under the first surface layer. In addition, we propose that some events can be the result of a completely different mechanism, in which most of the dust is released upon the collapse of a cliff. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.07743v1-abstract-full').style.display = 'none'; document.getElementById('1609.07743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS (2016)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.00551">arXiv:1609.00551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.00551">pdf</a>, <a href="https://arxiv.org/format/1609.00551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201628764">10.1051/0004-6361/201628764 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of exposed H$_2$O ice on the nucleus of comet 67P/Churyumov-Gerasimenko </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Filacchione%2C+G">G. Filacchione</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Raponi%2C+A">A. Raponi</a>, <a href="/search/?searchtype=author&amp;query=Deshapriya%2C+J+D+P">J. D. P. Deshapriya</a>, <a href="/search/?searchtype=author&amp;query=Tosi%2C+F">F. Tosi</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Ciarniello%2C+M">M. Ciarniello</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Capaccioni%2C+F">F. Capaccioni</a>, <a href="/search/?searchtype=author&amp;query=Pommerol%2C+A">A. Pommerol</a>, <a href="/search/?searchtype=author&amp;query=Massironi%2C+M">M. Massironi</a>, <a href="/search/?searchtype=author&amp;query=Oklay%2C+N">N. Oklay</a>, <a href="/search/?searchtype=author&amp;query=Merlin%2C+F">F. Merlin</a>, <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=Fulchignoni%2C+M">M. Fulchignoni</a>, <a href="/search/?searchtype=author&amp;query=Guilbert-Lepoutre%2C+A">A. Guilbert-Lepoutre</a>, <a href="/search/?searchtype=author&amp;query=Perna%2C+D">D. Perna</a>, <a href="/search/?searchtype=author&amp;query=Capria%2C+M+T">M. T. Capria</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Rousseau%2C+B">B. Rousseau</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Bockelee-Morvan%2C+D">D. Bockelee-Morvan</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=De+Sanctis%2C+C">C. De Sanctis</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.00551v1-abstract-short" style="display: inline;"> Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P/C-G) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet&#39;s nucleus. The aim of this work is to search for the presence of H$_2$O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00551v1-abstract-full').style.display = 'inline'; document.getElementById('1609.00551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.00551v1-abstract-full" style="display: none;"> Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P/C-G) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet&#39;s nucleus. The aim of this work is to search for the presence of H$_2$O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H$_2$O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 micron absorption band of water ice in the VIRTIS spectral cubes. Out of the 13 selected bright spots, eight of them present positive H$_2$O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H$_2$O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H$_2$O ice and dark terrain, using Hapke&#39;s radiative transfer modeling. We also present a detailed analysis of the detected spots. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00551v1-abstract-full').style.display = 'none'; document.getElementById('1609.00551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">paper in press in A&amp;A, 13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 595, A102 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.08774">arXiv:1608.08774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.08774">pdf</a>, <a href="https://arxiv.org/ps/1608.08774">ps</a>, <a href="https://arxiv.org/format/1608.08774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw2117">10.1093/mnras/stw2117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sublimation of icy aggregates in the coma of comet 67P/Churyumov-Gerasimenko detected with the OSIRIS cameras onboard Rosetta </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gicquel%2C+A">A. Gicquel</a>, <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z+-">Z. -Y. Lin</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Besse%2C+S">S. Besse</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Frattin%2C+E">E. Frattin</a>, <a href="/search/?searchtype=author&amp;query=El-Maarry%2C+M+R">M. R. El-Maarry</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.08774v1-abstract-short" style="display: inline;"> Beginning in March 2014, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08774v1-abstract-full').style.display = 'inline'; document.getElementById('1608.08774v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.08774v1-abstract-full" style="display: none;"> Beginning in March 2014, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet&#39;s dust jets. We analyzed the dust monitoring observations shortly after the southern vernal equinox on May 30 and 31, 2015 with the WAC at the heliocentric distance Rh = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this article was that through the sublimation of the aggregates of dirty grains (radius a between 5 microm and 50 microm) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data we needed to inject a number of aggregates between 8.5 x $10^{13}$ and 8.5 x $10^{10}$ for a = 5 microm and 50 microm respectively, or an initial mass of $H_2O$ ice around 22kg. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08774v1-abstract-full').style.display = 'none'; document.getElementById('1608.08774v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, 3 tables, special issue &#34;The ESLAB 50 Symposium - spacecraft at comets from 1P/Halley to 67P/Churyumov-Gerasimenko&#34; in the Monthly Notices of the Royal Astronomical Society</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.07933">arXiv:1608.07933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.07933">pdf</a>, <a href="https://arxiv.org/format/1608.07933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw2179">10.1093/mnras/stw2179 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Acceleration of Individual, Decimetre-sized Aggregates in the Lower Coma of Comet 67P/Churyumov-Gerasimenko </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=Guettler%2C+C">C. Guettler</a>, <a href="/search/?searchtype=author&amp;query=Hoefner%2C+S">S. Hoefner</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Tubiana%2C+C">C. Tubiana</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Boudreault%2C+S">S. Boudreault</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Gicquel%2C+A">A. Gicquel</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.07933v1-abstract-short" style="display: inline;"> We present OSIRIS/NAC observations of decimetre-sized, likely ice-containing aggregates ejected from a confined region on the surface of comet 67P/Churyumov-Gerasimenko. The images were obtained in January 2016 when the comet was at 2 AU from the Sun out-bound from perihelion. We measure the acceleration of individual aggregates through a two-hour image series. Approximately 50% of the aggregates&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07933v1-abstract-full').style.display = 'inline'; document.getElementById('1608.07933v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.07933v1-abstract-full" style="display: none;"> We present OSIRIS/NAC observations of decimetre-sized, likely ice-containing aggregates ejected from a confined region on the surface of comet 67P/Churyumov-Gerasimenko. The images were obtained in January 2016 when the comet was at 2 AU from the Sun out-bound from perihelion. We measure the acceleration of individual aggregates through a two-hour image series. Approximately 50% of the aggregates are accelerated away from the nucleus, and 50% towards it, and likewise towards either horizontal direction. The accelerations are up to one order of magnitude stronger than local gravity, and are most simply explained by the combined effect of gas drag accelerating all aggregates upwards, and the recoil force from asymmetric outgassing, either from rotating aggregates with randomly oriented spin axes and sufficient thermal inertia to shift the temperature maximum away from an aggregate&#39;s subsolar region, or from aggregates with variable ice content. At least 10% of the aggregates will escape the gravity field of the nucleus and feed the comet&#39;s debris trail, while others may fall back to the surface and contribute to the deposits covering parts of the northern hemisphere. The rocket force plays a crucial role in pushing these aggregates back towards the surface. Our observations show the future back fall material in the process of ejection, and provide the first direct measurement of the acceleration of aggregates in the innermost coma (&lt;2km) of a comet, where gas drag is still significant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07933v1-abstract-full').style.display = 'none'; document.getElementById('1608.07933v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 14 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.05632">arXiv:1607.05632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.05632">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-6256/152/5/130">10.3847/0004-6256/152/5/130 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Changes in the physical environment of the inner coma of 67P/Churyumov-Gerasimenko with decreasing heliocentric distance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Lara%2C+L+M">L. M. Lara</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=La+Forgia%2C+F">F. La Forgia</a>, <a href="/search/?searchtype=author&amp;query=Giquel%2C+A">A. Giquel</a>, <a href="/search/?searchtype=author&amp;query=Kovacs%2C+G">G. Kovacs</a>, <a href="/search/?searchtype=author&amp;query=Knollenberg%2C+J">J. Knollenberg</a>, <a href="/search/?searchtype=author&amp;query=Lazzarin%2C+M">M. Lazzarin</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z+-">Z. -Y. Lin</a>, <a href="/search/?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/?searchtype=author&amp;query=Snodgrass%2C+C">C. Snodgrass</a>, <a href="/search/?searchtype=author&amp;query=Tubiana%2C+C">C. Tubiana</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+M">P. M. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Boudreault%2C+S">S. Boudreault</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=DaDeppo%2C+V">V. DaDeppo</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.05632v1-abstract-short" style="display: inline;"> The Wide Angle Camera of the OSIRIS instrument on board the Rosetta spacecraft is equipped with several narrowband filters that are centered on the emission lines and bands of various fragment species. These are used to determine the evolution of the production and spatial distribution of the gas in the inner coma of comet 67P with time and heliocentric distance, here between 2.6 - 1.3 AU pre-peri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05632v1-abstract-full').style.display = 'inline'; document.getElementById('1607.05632v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.05632v1-abstract-full" style="display: none;"> The Wide Angle Camera of the OSIRIS instrument on board the Rosetta spacecraft is equipped with several narrowband filters that are centered on the emission lines and bands of various fragment species. These are used to determine the evolution of the production and spatial distribution of the gas in the inner coma of comet 67P with time and heliocentric distance, here between 2.6 - 1.3 AU pre-perihelion. Our observations indicate that the emission observed in the OH, OI, CN, NH, and NH2 filters is mostly produced by dissociative electron impact excitation of different parent species. We conclude that CO2 rather than H2O is a significant source of the [OI] 630 nm emission. A strong plume-like feature observed in the in CN and [OI] filters is present throughout our observations. This plume is not present in OH emission and indicates a local enhancement of the CO2/H2O ratio by as much as a factor of 3. We observed a sudden decrease in intensity levels after March 2015, which we attribute to decreased electron temperatures in the first kilometers above the nucleus surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05632v1-abstract-full').style.display = 'none'; document.getElementById('1607.05632v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.02095">arXiv:1605.02095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.02095">pdf</a>, <a href="https://arxiv.org/ps/1605.02095">ps</a>, <a href="https://arxiv.org/format/1605.02095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201527784">10.1051/0004-6361/201527784 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lin%2C+Z">Zhong-Yi Lin</a>, <a href="/search/?searchtype=author&amp;query=Lai%2C+I+-">I. -L. Lai</a>, <a href="/search/?searchtype=author&amp;query=Su%2C+C+-">C. -C. Su</a>, <a href="/search/?searchtype=author&amp;query=Ip%2C+W+-">W. -H. Ip</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+J+-">J. -C. Lee</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+J+-">J. -S. Wu</a>, <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=La+Forgia%2C+F">F. La Forgia</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Debet%2C+S">S. Debet</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.02095v1-abstract-short" style="display: inline;"> We analyze the physical properties and dynamical origin of a curved jet of comet 67P/Churyumov-Gerasimenko that was observed repeatedly in several nucleus rotations starting on May 30 and persisting until early August, 2015. We simulated the motion of dust grains ejected from the nucleus surface under the influence of the gravity and viscous drag effect of the expanding gas flow from the rotating&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.02095v1-abstract-full').style.display = 'inline'; document.getElementById('1605.02095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.02095v1-abstract-full" style="display: none;"> We analyze the physical properties and dynamical origin of a curved jet of comet 67P/Churyumov-Gerasimenko that was observed repeatedly in several nucleus rotations starting on May 30 and persisting until early August, 2015. We simulated the motion of dust grains ejected from the nucleus surface under the influence of the gravity and viscous drag effect of the expanding gas flow from the rotating nucleus. The formation of the curved jet is a combination of the size of the dust particles (~0.1-1 mm) and the location of the source region near the nucleus equator. This enhances the spiral feature of the collimated dust stream after the dust is accelerated to a terminal speed on the order of m/s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.02095v1-abstract-full').style.display = 'none'; document.getElementById('1605.02095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.03193">arXiv:1512.03193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.03193">pdf</a>, <a href="https://arxiv.org/format/1512.03193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201527159">10.1051/0004-6361/201527159 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Are fractured cliffs the source of cometary dust jets ? Insights from OSIRIS/Rosetta at 67P </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=Oklay%2C+N">N. Oklay</a>, <a href="/search/?searchtype=author&amp;query=Pajola%2C+M">M. Pajola</a>, <a href="/search/?searchtype=author&amp;query=H%C3%B6fner%2C+S">S. H枚fner</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+X">X. Hu</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Besse%2C+S">S. Besse</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=El-Maarry%2C+M+R">M. R. El-Maarry</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.03193v2-abstract-short" style="display: inline;"> Dust jets, i.e. fuzzy collimated streams of cometary material arising from the nucleus, have been observed in-situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986. Yet their formation mechanism remains unknown. Several solutions have been proposed, from localized physical mechanisms on the surface/sub-surface (see review in Belton (2010)) to purely dynamical processes involv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03193v2-abstract-full').style.display = 'inline'; document.getElementById('1512.03193v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.03193v2-abstract-full" style="display: none;"> Dust jets, i.e. fuzzy collimated streams of cometary material arising from the nucleus, have been observed in-situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986. Yet their formation mechanism remains unknown. Several solutions have been proposed, from localized physical mechanisms on the surface/sub-surface (see review in Belton (2010)) to purely dynamical processes involving the focusing of gas flows by the local topography (Crifo et al. 2002). While the latter seems to be responsible for the larger features, high resolution imagery has shown that broad streams are composed of many smaller features (a few meters wide) that connect directly to the nucleus surface. We monitored these jets at high resolution and over several months to understand what are the physical processes driving their formation, and how this affects the surface. Using many images of the same areas with different viewing angles, we performed a 3-dimensional reconstruction of collimated jets, and linked them precisely to their sources on the nucleus. Results.We show here observational evidence that the Northern hemisphere jets of comet 67P arise from areas with sharp topographic changes and describe the physical processes involved. We propose a model in which active cliffs are the main source of jet-like features, and therefore the regions eroding the fastest on comets. We suggest that this is a common mechanism taking place on all comets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03193v2-abstract-full').style.display = 'none'; document.getElementById('1512.03193v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Astronomy &amp; Astrophysics on 4 December 2015</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 587, A14 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.02794">arXiv:1509.02794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.02794">pdf</a>, <a href="https://arxiv.org/format/1509.02794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201527020">10.1051/0004-6361/201527020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Groussin%2C+O">O. Groussin</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P">P. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Hearn%2C+M+F+A">M. F. A Hearn</a>, <a href="/search/?searchtype=author&amp;query=Auger%2C+A+-">A. -T. Auger</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Besse%2C+S">S. Besse</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=El-Maarry%2C+M+R">M. R. El-Maarry</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Guti%C3%A9rrez%2C+P+J">P. J. Guti茅rrez</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCttler%2C+C">C. G眉ttler</a>, <a href="/search/?searchtype=author&amp;query=Hviid%2C+S">S. Hviid</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.02794v1-abstract-short" style="display: inline;"> We report on the first major temporal morphological changes observed on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, in the smooth terrains of the Imhotep region. We use images of the OSIRIS cameras onboard Rosetta to follow the temporal changes from 24 May 2015 to 11 July 2015. The morphological changes observed on the surface are visible in the form of roundish features, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02794v1-abstract-full').style.display = 'inline'; document.getElementById('1509.02794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.02794v1-abstract-full" style="display: none;"> We report on the first major temporal morphological changes observed on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, in the smooth terrains of the Imhotep region. We use images of the OSIRIS cameras onboard Rosetta to follow the temporal changes from 24 May 2015 to 11 July 2015. The morphological changes observed on the surface are visible in the form of roundish features, which are growing in size from a given location in a preferential direction, at a rate of 5.6 - 8.1$\times$10$^{-5}$ m s$^{-1}$ during the observational period. The location where changes started and the contours of the expanding features are bluer than the surroundings, suggesting the presence of ices (H$_2$O and/or CO$_2$) exposed on the surface. However, sublimation of ices alone is not sufficient to explain the observed expanding features. No significant variations in the dust activity pattern are observed during the period of changes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02794v1-abstract-full').style.display = 'none'; document.getElementById('1509.02794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures; Letter for Astronomy and Astrophysics: accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 583, A36 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.02707">arXiv:1509.02707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.02707">pdf</a>, <a href="https://arxiv.org/format/1509.02707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201526379">10.1051/0004-6361/201526379 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Groussin%2C+O">O. Groussin</a>, <a href="/search/?searchtype=author&amp;query=Jorda%2C+L">L. Jorda</a>, <a href="/search/?searchtype=author&amp;query=Auger%2C+A+-">A. -T. Auger</a>, <a href="/search/?searchtype=author&amp;query=K%C3%BChrt%2C+E">E. K眉hrt</a>, <a href="/search/?searchtype=author&amp;query=Gaskell%2C+R">R. Gaskell</a>, <a href="/search/?searchtype=author&amp;query=Capanna%2C+C">C. Capanna</a>, <a href="/search/?searchtype=author&amp;query=Scholten%2C+F">F. Scholten</a>, <a href="/search/?searchtype=author&amp;query=Preusker%2C+F">F. Preusker</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P">P. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Hviid%2C+S">S. Hviid</a>, <a href="/search/?searchtype=author&amp;query=Knollenberg%2C+J">J. Knollenberg</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+U">U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Huettig%2C+C">C. Huettig</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Hearn%2C+M+F+A">M. F. A Hearn</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Boudreault%2C+S">S. Boudreault</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.02707v1-abstract-short" style="display: inline;"> We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface, using two shape models computed from OSIRIS image&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02707v1-abstract-full').style.display = 'inline'; document.getElementById('1509.02707v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.02707v1-abstract-full" style="display: none;"> We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface, using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies and mechanical considerations. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20 deg) are covered by a fine material and contain a few large ($&gt;$10 m) and isolated boulders, ii) intermediate-slope terrains (20-45 deg) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from $&lt;$1 m to 10 m for the majority of them, and iii) high-slope terrains (45-90 deg) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02707v1-abstract-full').style.display = 'none'; document.getElementById('1509.02707v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 15 figures, 1 table; Astronomy and Astrophysics, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.06888">arXiv:1505.06888</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.06888">pdf</a>, <a href="https://arxiv.org/ps/1505.06888">ps</a>, <a href="https://arxiv.org/format/1505.06888">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201525901">10.1051/0004-6361/201525901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Besse%2C+S">S. Besse</a>, <a href="/search/?searchtype=author&amp;query=Leyrat%2C+C">C. Leyrat</a>, <a href="/search/?searchtype=author&amp;query=Lara%2C+L">L. Lara</a>, <a href="/search/?searchtype=author&amp;query=Gutierrez%2C+P+J">P. J. Gutierrez</a>, <a href="/search/?searchtype=author&amp;query=Oklay%2C+N">N. Oklay</a>, <a href="/search/?searchtype=author&amp;query=Tubiana%2C+C">C. Tubiana</a>, <a href="/search/?searchtype=author&amp;query=Scholten%2C+F">F. Scholten</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.06888v1-abstract-short" style="display: inline;"> The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.06888v1-abstract-full').style.display = 'inline'; document.getElementById('1505.06888v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.06888v1-abstract-full" style="display: none;"> The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13$\pm$0.01 in the HG system formalism and an absolute magnitude $H_v(1,1,0)$ = 15.74$\pm$0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at $\sim$ 290 nm that is possibly due to SO$_2$ ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11\%/(100 nm) to 16\%/(100 nm) in the 1.3$^{\circ}$--54$^{\circ}$ phase angle range. The geometric albedo of the comet is 6.5$\pm$0.2\% at 649 nm, with local variations of up to $\sim$ 16\% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.06888v1-abstract-full').style.display = 'none'; document.getElementById('1505.06888v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18, pages, 14 figures, Astronomy and Astrophysics, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 583, A30 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.5019">arXiv:1111.5019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.5019">pdf</a>, <a href="https://arxiv.org/format/1111.5019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201014704">10.1051/0004-6361/201014704 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bonfils%2C+X">X. Bonfils</a>, <a href="/search/?searchtype=author&amp;query=Delfosse%2C+X">X. Delfosse</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Forveille%2C+T">T. Forveille</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Perrier%2C+C">C. Perrier</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Gillon%2C+M">M. Gillon</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+N+C">N. C. Santos</a>, <a href="/search/?searchtype=author&amp;query=S%C3%A9gransan%2C+D">D. S茅gransan</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.5019v2-abstract-short" style="display: inline;"> (Abridged) Searching for planets around stars with different masses probes the outcome of planetary formation for different initial conditions. This drives observations of a sample of 102 southern nearby M dwarfs, using a fraction of our guaranteed time on the ESO/HARPS spectrograph (Feb. 11th, 2003 to Apr. 1st 2009). This paper makes available the sample&#39;s time series, presents their precision an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.5019v2-abstract-full').style.display = 'inline'; document.getElementById('1111.5019v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.5019v2-abstract-full" style="display: none;"> (Abridged) Searching for planets around stars with different masses probes the outcome of planetary formation for different initial conditions. This drives observations of a sample of 102 southern nearby M dwarfs, using a fraction of our guaranteed time on the ESO/HARPS spectrograph (Feb. 11th, 2003 to Apr. 1st 2009). This paper makes available the sample&#39;s time series, presents their precision and variability. We apply systematic searches and diagnostics to discriminate whether the observed Doppler shifts are caused by stellar surface inhomogeneities or by the radial pull of orbiting planets. We recover the planetary signals corresponding to 9 planets already announced by our group (Gl176b, Gl581b, c, d &amp; e, Gl674b, Gl433b, Gl 667Cb and c). We present radial velocities that confirm GJ 849 hosts a Jupiter-mass planet, plus a long-term radial-velocity variation. We also present RVs that precise the planetary mass and period of Gl 832b. We detect long-term RV changes for Gl 367, Gl 680 and Gl 880 betraying yet unknown long-period companions. We identify candidate signals in the radial-velocity time series and demonstrate they are most probably caused by stellar surface inhomogeneities. Finally, we derive a first estimate of the occurrence of M-dwarf planets as a function of their minimum mass and orbital period. In particular, we find that giant planets (m sin i = 100-1,000 Mearth) have a low frequency (e.g. f&lt;1% for P=1-10 d and f=0.02^{+0.03}_{-0.01} for P=10-100 d), whereas super-Earths (m sin i = 1-10 Mearth) are likely very abundant (f=0.36^{+0.25}_{-0.10} for P=1-10 d and f=0.35^{+0.45}_{-0.11} for P=10-100 d). We also obtained eta_earth=0.41^{+0.54}_{-0.13}, the frequency of habitable planets orbiting M dwarfs (1&lt;m sin i&lt;10 Mearth). For the first time, eta_earth is a direct measure and not a number extrapolated from the statistic of more massive and/or shorter-period planets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.5019v2-abstract-full').style.display = 'none'; document.getElementById('1111.5019v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77p, &gt;100 figures, submitted to A&amp;A, typo corrected in conclusion</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.2497">arXiv:1109.2497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1109.2497">pdf</a>, <a href="https://arxiv.org/format/1109.2497">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Marmier%2C+M">M. Marmier</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=S%C3%A9gransan%2C+D">D. S茅gransan</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Benz%2C+W">W. Benz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Dumusque%2C+X">X. Dumusque</a>, <a href="/search/?searchtype=author&amp;query=Curto%2C+G+L">G. Lo Curto</a>, <a href="/search/?searchtype=author&amp;query=Mordasini%2C+C">C. Mordasini</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+N+C">N. C. Santos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.2497v1-abstract-short" style="display: inline;"> We report on the results of an 8-year survey carried out at the La Silla Observatory with the HARPS spectrograph to detect and characterize planets in the super-Earth and Neptune mass regime. The size of our star sample and the precision achieved with HARPS have allowed the detection of a sufficiently large number of low-mass planets to study the statistical properties of their orbital elements, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.2497v1-abstract-full').style.display = 'inline'; document.getElementById('1109.2497v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.2497v1-abstract-full" style="display: none;"> We report on the results of an 8-year survey carried out at the La Silla Observatory with the HARPS spectrograph to detect and characterize planets in the super-Earth and Neptune mass regime. The size of our star sample and the precision achieved with HARPS have allowed the detection of a sufficiently large number of low-mass planets to study the statistical properties of their orbital elements, the correlation of the host-star metallicity with the planet masses, as well as the occurrence rate of planetary systems around solar-type stars. A robust estimate of the frequency of systems shows that more than 50% of solar-type stars harbor at least one planet of any mass and with period up to 100 days. Different properties are observed for the population of planets less massive than about 30M-Earth compared to the population of gaseous giant planets. The mass distribution of Super-Earths and Neptune-mass planets (SEN) is strongly increasing between 30 and 15M-Earth. The SEN occurence rate does not exhibit a preference for metal rich stars. Most of the SEN planets belong to multi-planetary systems. The orbital eccentricities of the SEN planets seems limited to 0.45. At the opposite, the occurence rate of gaseous giant planets is growing with the logarithm of the period, and is strongly increasing with the host-star metallicity. About 14% of solar-type stars have a planetary companion more massive than 50M-Earth? on an orbit with a period shorter than 10 years. Orbital eccentricities of giant planets are observed up to 0.9 and beyond. The precision of HARPS-type spectrographs opens the possibility to detect planets in the habitable zone of solar-type stars. Identification of a significant number of super-Earths orbiting solar-type of the Sun vicinity is achieved by Doppler spectroscopy. 37 newly discovered planets are announced in the Appendix of this paper, among which 15 Super-Earths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.2497v1-abstract-full').style.display = 'none'; document.getElementById('1109.2497v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 18 figures, and many tables, submitted to A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.4906">arXiv:1104.4906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.4906">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2041-8205/734/1/L6">10.1088/2041-8205/734/1/L6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Water Production by Comet 103P/Hartley 2 Observed with the SWAN Instrument on the SOHO Spacecraft </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Combi%2C+M+R">M. R. Combi</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Qu%C3%A9merais%2C+E">E. Qu茅merais</a>, <a href="/search/?searchtype=author&amp;query=Ferron%2C+S">S. Ferron</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A4kinen%2C+J+T+T">J. T. T. M盲kinen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.4906v1-abstract-short" style="display: inline;"> Global water production rates were determined from the Lyman-伪 emission of hydrogen around comet 103P/Hartley 2, observed with the SWAN (Solar Wind ANisotropies) all-sky camera on the SOHO spacecraft from September 14 through December 12, 2010. This time period included the November 4 flyby by the EPOXI spacecraft. Water production was 3 times lower than during the 1997 apparition also measured by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.4906v1-abstract-full').style.display = 'inline'; document.getElementById('1104.4906v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.4906v1-abstract-full" style="display: none;"> Global water production rates were determined from the Lyman-伪 emission of hydrogen around comet 103P/Hartley 2, observed with the SWAN (Solar Wind ANisotropies) all-sky camera on the SOHO spacecraft from September 14 through December 12, 2010. This time period included the November 4 flyby by the EPOXI spacecraft. Water production was 3 times lower than during the 1997 apparition also measured by SWAN. In 2010 it increased by a factor of ~2.5 within one day on September 30 with a similar corresponding drop between November 24 and 30. The total surface area of sublimating water within {\pm}20 days of perihelion was ~0.5 km^2, about half of the mean cross section of the nucleus. Outside this period it was ~0.2 km^2. The peak value was 90%, implying a significant water production by released nucleus icy fragments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.4906v1-abstract-full').style.display = 'none'; document.getElementById('1104.4906v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures, 1 table, accepted for publication in The Astrophysical Journal Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.4994">arXiv:1011.4994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.4994">pdf</a>, <a href="https://arxiv.org/ps/1011.4994">ps</a>, <a href="https://arxiv.org/format/1011.4994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201015577">10.1051/0004-6361/201015577 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=S%C3%A9gransan%2C+D">D. S茅gransan</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Benz%2C+W">W. Benz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Correia%2C+A+C+M">A. C. M. Correia</a>, <a href="/search/?searchtype=author&amp;query=Laskar%2C+J">J. Laskar</a>, <a href="/search/?searchtype=author&amp;query=Curto%2C+G+L">G. Lo Curto</a>, <a href="/search/?searchtype=author&amp;query=Mordasini%2C+C">C. Mordasini</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+N+C">N. C. Santos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.4994v1-abstract-short" style="display: inline;"> Context. Low-mass extrasolar planets are presently being discovered at an increased pace by radial velocity and transit surveys, opening a new window on planetary systems. Aims. We are conducting a high-precision radial velocity survey with the HARPS spectrograph which aims at characterizing the population of ice giants and super-Earths around nearby solar-type stars. This will lead to a better un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.4994v1-abstract-full').style.display = 'inline'; document.getElementById('1011.4994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.4994v1-abstract-full" style="display: none;"> Context. Low-mass extrasolar planets are presently being discovered at an increased pace by radial velocity and transit surveys, opening a new window on planetary systems. Aims. We are conducting a high-precision radial velocity survey with the HARPS spectrograph which aims at characterizing the population of ice giants and super-Earths around nearby solar-type stars. This will lead to a better understanding of their formation and evolution, and yield a global picture of planetary systems from gas giants down to telluric planets. Methods. Progress has been possible in this field thanks in particular to the sub-m/s radial velocity precision achieved by HARPS. We present here new high-quality measurements from this instrument. Results. We report the discovery of a planetary system comprising at least five Neptune-like planets with minimum masses ranging from 12 to 25 M_Earth, orbiting the solar-type star HD 10180 at separations between 0.06 and 1.4 AU. A sixth radial velocity signal is present at a longer period, probably due to a 65-M_Earth object. Moreover, another body with a minimum mass as low as 1.4 M_Earth may be present at 0.02 AU from the star. This is the most populated exoplanetary system known to date. The planets are in a dense but still well-separated configuration, with significant secular interactions. Some of the orbital period ratios are fairly close to integer or half-integer values, but the system does not exhibit any mean-motion resonances. General relativity effects and tidal dissipation play an important role to stabilize the innermost planet and the system as a whole. Numerical integrations show long-term dynamical stability provided true masses are within a factor ~3 from minimum masses. We further note that several low-mass planetary systems exhibit a rather &#34;packed&#34; orbital architecture with little or no space left for additional planets. (Abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.4994v1-abstract-full').style.display = 'none'; document.getElementById('1011.4994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 15 figures, accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.0856">arXiv:1010.0856</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.0856">pdf</a>, <a href="https://arxiv.org/format/1010.0856">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/200913521">10.1051/0004-6361/200913521 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets. XXIV. Companions to HD 85390, HD 90156 and HD 103197: A Neptune analogue and two intermediate mass planets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mordasini%2C+C">C. Mordasini</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Segransan%2C+D">D. Segransan</a>, <a href="/search/?searchtype=author&amp;query=Benz%2C+W">W. Benz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Curto%2C+G+L">G. Lo Curto</a>, <a href="/search/?searchtype=author&amp;query=Moutou%2C+C">C. Moutou</a>, <a href="/search/?searchtype=author&amp;query=Naef%2C+D">D. Naef</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+N+C">N. C. Santos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.0856v1-abstract-short" style="display: inline;"> We report the detection of three new extrasolar planets orbiting the solar type stars HD 85390, HD 90156 and HD 103197 with the HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla observatory. HD 85390 has a planetary companion with a projected intermediate mass (42.0 Earth masses) on a 788-day orbit (a=1.52 AU) with an eccentricity of 0.41, for which there is no analogue in the sola&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.0856v1-abstract-full').style.display = 'inline'; document.getElementById('1010.0856v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.0856v1-abstract-full" style="display: none;"> We report the detection of three new extrasolar planets orbiting the solar type stars HD 85390, HD 90156 and HD 103197 with the HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla observatory. HD 85390 has a planetary companion with a projected intermediate mass (42.0 Earth masses) on a 788-day orbit (a=1.52 AU) with an eccentricity of 0.41, for which there is no analogue in the solar system. A drift in the data indicates the presence of another companion on a long period orbit, which is however not covered by our measurements. HD 90156 is orbited by a warm Neptune analogue with a minimum mass of 17.98 Earth masses (1.05 Neptune masses), a period of 49.8 days (a=0.25 AU) and an eccentricity of 0.31. HD 103197 has an intermediate mass planet on a circular orbit (P=47.8 d, Msini=31.2 Earth masses). We discuss the formation of planets of intermediate mass (about 30-100 Earth masses) which should be rare inside a few AU according to core accretion formation models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.0856v1-abstract-full').style.display = 'none'; document.getElementById('1010.0856v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures. Accepted to A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.0052">arXiv:1003.0052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1003.0052">pdf</a>, <a href="https://arxiv.org/ps/1003.0052">ps</a>, <a href="https://arxiv.org/format/1003.0052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/713/2/935">10.1088/0004-637X/713/2/935 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A multi-site campaign to measure solar-like oscillations in Procyon. II. Mode frequencies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bedding%2C+T+R">T. R. Bedding</a>, <a href="/search/?searchtype=author&amp;query=Kjeldsen%2C+H">H. Kjeldsen</a>, <a href="/search/?searchtype=author&amp;query=Campante%2C+T+L">T. L. Campante</a>, <a href="/search/?searchtype=author&amp;query=Appourchaux%2C+T">T. Appourchaux</a>, <a href="/search/?searchtype=author&amp;query=Bonanno%2C+A">A. Bonanno</a>, <a href="/search/?searchtype=author&amp;query=Chaplin%2C+W+J">W. J. Chaplin</a>, <a href="/search/?searchtype=author&amp;query=Garcia%2C+R+A">R. A. Garcia</a>, <a href="/search/?searchtype=author&amp;query=Martic%2C+M">M. Martic</a>, <a href="/search/?searchtype=author&amp;query=Mosser%2C+B">B. Mosser</a>, <a href="/search/?searchtype=author&amp;query=Butler%2C+R+P">R. P. Butler</a>, <a href="/search/?searchtype=author&amp;query=Bruntt%2C+H">H. Bruntt</a>, <a href="/search/?searchtype=author&amp;query=Kiss%2C+L+L">L. L. Kiss</a>, <a href="/search/?searchtype=author&amp;query=O%27Toole%2C+S+J">S. J. O&#39;Toole</a>, <a href="/search/?searchtype=author&amp;query=Kambe%2C+E">E. Kambe</a>, <a href="/search/?searchtype=author&amp;query=Ando%2C+H">H. Ando</a>, <a href="/search/?searchtype=author&amp;query=Izumiura%2C+H">H. Izumiura</a>, <a href="/search/?searchtype=author&amp;query=Sato%2C+B">B. Sato</a>, <a href="/search/?searchtype=author&amp;query=Hartmann%2C+M">M. Hartmann</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A">A. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Barban%2C+C">C. Barban</a>, <a href="/search/?searchtype=author&amp;query=Berthomieu%2C+G">G. Berthomieu</a>, <a href="/search/?searchtype=author&amp;query=Michel%2C+E">E. Michel</a>, <a href="/search/?searchtype=author&amp;query=Provost%2C+J">J. Provost</a>, <a href="/search/?searchtype=author&amp;query=Turck-Chieze%2C+S">S. Turck-Chieze</a>, <a href="/search/?searchtype=author&amp;query=Lebrun%2C+J+-">J. -C. Lebrun</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.0052v1-abstract-short" style="display: inline;"> We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with eleven telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking the power spectrum in a so-called echelle diagram reveals two clear ridges&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.0052v1-abstract-full').style.display = 'inline'; document.getElementById('1003.0052v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.0052v1-abstract-full" style="display: none;"> We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with eleven telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking the power spectrum in a so-called echelle diagram reveals two clear ridges that we identify with even and odd values of the angular degree (l=0 and 2, and l=1 and 3, respectively). We interpret a strong, narrow peak at 446 muHz that lies close to the l=1 ridge as a mode with mixed character. We show that the frequencies of the ridge centroids and their separations are useful diagnostics for asteroseismology. In particular, variations in the large separation appear to indicate a glitch in the sound-speed profile at an acoustic depth of about 1000 s. We list frequencies for 55 modes extracted from the data spanning 20 radial orders, a range comparable to the best solar data, which will provide valuable constraints for theoretical models. A preliminary comparison with published models shows that the offset between observed and calculated frequencies for the radial modes is very different for Procyon than for the Sun and other cool stars. We find the mean lifetime of the modes in Procyon to be 1.29 +0.55/-0.49 days, which is significantly shorter than the 2-4 days seen in the Sun. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.0052v1-abstract-full').style.display = 'none'; document.getElementById('1003.0052v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ, 713, 935 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1001.4774">arXiv:1001.4774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1001.4774">pdf</a>, <a href="https://arxiv.org/ps/1001.4774">ps</a>, <a href="https://arxiv.org/format/1001.4774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/200912700">10.1051/0004-6361/200912700 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets XIX. Characterization and dynamics of the GJ876 planetary system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Correia%2C+A+C+M">A. C. M. Correia</a>, <a href="/search/?searchtype=author&amp;query=Couetdic%2C+J">J. Couetdic</a>, <a href="/search/?searchtype=author&amp;query=Laskar%2C+J">J. Laskar</a>, <a href="/search/?searchtype=author&amp;query=Bonfils%2C+X">X. Bonfils</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Delfosse%2C+X">X. Delfosse</a>, <a href="/search/?searchtype=author&amp;query=Forveille%2C+T">T. Forveille</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Perrier%2C+C">C. Perrier</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1001.4774v1-abstract-short" style="display: inline;"> Precise radial-velocity measurements for data acquired with the HARPS spectrograph infer that three planets orbit the M4 dwarf star GJ876. In particular, we confirm the existence of planet &#34;d&#34;, which orbits every 1.93785 days. We find that its orbit may have significant eccentricity (e=0.14), and deduce a more accurate estimate of its minimum mass of 6.3 Earth masses. Dynamical modeling of the H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.4774v1-abstract-full').style.display = 'inline'; document.getElementById('1001.4774v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1001.4774v1-abstract-full" style="display: none;"> Precise radial-velocity measurements for data acquired with the HARPS spectrograph infer that three planets orbit the M4 dwarf star GJ876. In particular, we confirm the existence of planet &#34;d&#34;, which orbits every 1.93785 days. We find that its orbit may have significant eccentricity (e=0.14), and deduce a more accurate estimate of its minimum mass of 6.3 Earth masses. Dynamical modeling of the HARPS measurements combined with literature velocities from the Keck Observatory strongly constrain the orbital inclinations of the &#34;b&#34; and &#34;c&#34; planets. We find that i_b = 48.9 degrees and i_c = 48.1 degrees, which infers the true planet masses of M_b = 2.64 Jupiter masses and M_c = 0.83 Jupiter masses, respectively. Radial velocities alone, in this favorable case, can therefore fully determine the orbital architecture of a multi-planet system, without the input from astrometry or transits. The orbits of the two giant planets are nearly coplanar, and their 2:1 mean motion resonance ensures stability over at least 5 Gyr. The libration amplitude is smaller than 2 degrees, suggesting that it was damped by some dissipative process during planet formation. The system has space for a stable fourth planet in a 4:1 mean motion resonance with planet &#34;b&#34;, with a period around 15 days. The radial velocity measurements constrain the mass of this possible additional planet to be at most that of the Earth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.4774v1-abstract-full').style.display = 'none'; document.getElementById('1001.4774v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures, accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 511, A21 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.4572">arXiv:0912.4572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0912.4572">pdf</a>, <a href="https://arxiv.org/ps/0912.4572">ps</a>, <a href="https://arxiv.org/format/0912.4572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/200913950">10.1051/0004-6361/200913950 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultraviolet and visible photometry of asteroid (21) Lutetia using the Hubble Space Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Weaver%2C+H+A">H. A. Weaver</a>, <a href="/search/?searchtype=author&amp;query=Feldman%2C+P+D">P. D. Feldman</a>, <a href="/search/?searchtype=author&amp;query=Merline%2C+W+J">W. J. Merline</a>, <a href="/search/?searchtype=author&amp;query=Mutchler%2C+M+J">M. J. Mutchler</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Feaga%2C+L+M">L. M. Feaga</a>, <a href="/search/?searchtype=author&amp;query=Parker%2C+J+W">J. W. Parker</a>, <a href="/search/?searchtype=author&amp;query=Slater%2C+D+C">D. C. Slater</a>, <a href="/search/?searchtype=author&amp;query=Steffl%2C+A+J">A. J. Steffl</a>, <a href="/search/?searchtype=author&amp;query=Chapman%2C+C+R">C. R. Chapman</a>, <a href="/search/?searchtype=author&amp;query=Drummond%2C+J+D">J. D. Drummond</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+S+A">S. A. Stern</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.4572v2-abstract-short" style="display: inline;"> The asteroid (21) Lutetia is the target of a planned close encounter by the Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been extensively observed by a variety of astronomical facilities. We used the Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety of HST filters and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.4572v2-abstract-full').style.display = 'inline'; document.getElementById('0912.4572v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.4572v2-abstract-full" style="display: none;"> The asteroid (21) Lutetia is the target of a planned close encounter by the Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been extensively observed by a variety of astronomical facilities. We used the Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety of HST filters and a ground-based visible light spectrum, we employed synthetic photometry techniques to derive absolute fluxes for Lutetia. New results from ground-based measurements of Lutetia&#39;s size and shape were used to convert the absolute fluxes into albedos. We present our best model for the spectral energy distribution of Lutetia over the wavelength range 120-800 nm. There appears to be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than ~300 nm. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is considerably larger than that of typical C-chondrite material (~4%). The geometric albedo at 550 nm is 16.5 +/- 1%. Lutetia&#39;s reflectivity is not consistent with a metal-dominated surface at infrared or radar wavelengths, and its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed for typical primitive, chondritic material. We derive a relatively high FUV albedo of ~10%, a result that will be tested by observations with the Alice spectrograph during the Rosetta flyby of Lutetia in July 2010. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.4572v2-abstract-full').style.display = 'none'; document.getElementById('0912.4572v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 2 tables, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0906.2780">arXiv:0906.2780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0906.2780">pdf</a>, <a href="https://arxiv.org/format/0906.2780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/200912172">10.1051/0004-6361/200912172 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets XVIII. An Earth-mass planet in the GJ 581 planetary system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Bonfils%2C+X">X. Bonfils</a>, <a href="/search/?searchtype=author&amp;query=Forveille%2C+T">T. Forveille</a>, <a href="/search/?searchtype=author&amp;query=Delfosse%2C+X">X. Delfosse</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Beust%2C+H">H. Beust</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Perrier%2C+C">C. Perrier</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+N+C">N. C. Santos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0906.2780v1-abstract-short" style="display: inline;"> The GJ 581 planetary system was already known to harbour three planets, including two super-Earths planets which straddle its habitable zone. We report here the detection of an additional planet -- GJ 581e -- with a minimum mass of 1.9 M_earth. With a period of 3.15 days, it is the innermost planet of the system and has a ~5% transit probability. We also correct our previous confusion of the orb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.2780v1-abstract-full').style.display = 'inline'; document.getElementById('0906.2780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0906.2780v1-abstract-full" style="display: none;"> The GJ 581 planetary system was already known to harbour three planets, including two super-Earths planets which straddle its habitable zone. We report here the detection of an additional planet -- GJ 581e -- with a minimum mass of 1.9 M_earth. With a period of 3.15 days, it is the innermost planet of the system and has a ~5% transit probability. We also correct our previous confusion of the orbital period of GJ 581d (the outermost planet) with a one-year alias, thanks to an extended time span and many more measurements. The revised period is 66.8 days, and locates the semi-major axis inside the habitable zone of the low mass star. The dynamical stability of the 4-planet system imposes an upper bound on the orbital plane inclination. The planets cannot be more massive than approximately 1.6 times their minimum mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.2780v1-abstract-full').style.display = 'none'; document.getElementById('0906.2780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, A&amp;A Accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0902.0597">arXiv:0902.0597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0902.0597">pdf</a>, <a href="https://arxiv.org/ps/0902.0597">ps</a>, <a href="https://arxiv.org/format/0902.0597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361:200810774">10.1051/0004-6361:200810774 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HD45364, a pair of planets in a 3:2 mean motion resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Correia%2C+A+C+M">A. C. M. Correia</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Benz%2C+W">W. Benz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Laskar%2C+J">J. Laskar</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Mordasini%2C+C">C. Mordasini</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0902.0597v1-abstract-short" style="display: inline;"> Precise radial-velocity measurements with the HARPS spectrograph reveal the presence of two planets orbiting the solar-type star HD45364. The companion masses are 0.187 Mjup and 0.658 Mjup, with semi-major axes of 0.681 AU and 0.897 AU, and eccentricities of 0.168 and 0.097, respectively. A dynamical analysis of the system further shows a 3:2 mean motion resonance between the two planets, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.0597v1-abstract-full').style.display = 'inline'; document.getElementById('0902.0597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0902.0597v1-abstract-full" style="display: none;"> Precise radial-velocity measurements with the HARPS spectrograph reveal the presence of two planets orbiting the solar-type star HD45364. The companion masses are 0.187 Mjup and 0.658 Mjup, with semi-major axes of 0.681 AU and 0.897 AU, and eccentricities of 0.168 and 0.097, respectively. A dynamical analysis of the system further shows a 3:2 mean motion resonance between the two planets, which prevents close encounters and ensures the stability of the system over 5 Gyr. This is the first time that such a resonant configuration has been observed for extra-solar planets, although there is an analogue in our Solar System formed by Neptune and Pluto. This singular planetary system may provide important constraints on planetary formation and migration scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.0597v1-abstract-full').style.display = 'none'; document.getElementById('0902.0597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0809.0750">arXiv:0809.0750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0809.0750">pdf</a>, <a href="https://arxiv.org/format/0809.0750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361:200810557">10.1051/0004-6361:200810557 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets: XIV. Gl 176b, a super-Earth rather than a Neptune, and at a different period </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Forveille%2C+T">T. Forveille</a>, <a href="/search/?searchtype=author&amp;query=Bonfils%2C+X">X. Bonfils</a>, <a href="/search/?searchtype=author&amp;query=Delfosse%2C+X">X. Delfosse</a>, <a href="/search/?searchtype=author&amp;query=Gillon%2C+M">M. Gillon</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Perrier%2C+C">C. Perrier</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+N">N. Santos</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0809.0750v1-abstract-short" style="display: inline;"> A 10.24 days Neptune-mass planet was recently announced to orbit the nearby M2 dwarf Gl 176, based on 28 radial velocities measured with the HRS spectrograph on the Hobby-Heberly Telescope (HET). We obtained 57 radial velocities of Gl 176 with the ESO 3.6m telescope and the HARPS spectrograph, which is known for its sub-m/s stability. The median photon-noise standard error of our measurements is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0809.0750v1-abstract-full').style.display = 'inline'; document.getElementById('0809.0750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0809.0750v1-abstract-full" style="display: none;"> A 10.24 days Neptune-mass planet was recently announced to orbit the nearby M2 dwarf Gl 176, based on 28 radial velocities measured with the HRS spectrograph on the Hobby-Heberly Telescope (HET). We obtained 57 radial velocities of Gl 176 with the ESO 3.6m telescope and the HARPS spectrograph, which is known for its sub-m/s stability. The median photon-noise standard error of our measurements is 1.1 m/s, significantly lower than the 4.7 m/s of the HET velocities, and the 4 years period over which they were obtained has much overlap with the epochs of the HET measurements. The HARPS measurements show no evidence for a signal at the period of the putative HET planet, suggesting that its detection was spurious. We do find, on the other hand, strong evidence for a lower mass 8.4 Mearth planet, in a quasi-circular orbit and at the different period of 8.78 days. The host star has moderate magnetic activity and rotates on a 39-days period, which we confirm through modulation of both contemporaneous photometry and chromospheric indices. We detect that period as well in the radial velocities, but it is well removed from the orbital period and no cause for confusion. This new detection of a super-Earth (2 Mearth &lt; M sin(i) &lt; 10 Mearth) around an M dwarf adds to the growing evidence that such planets are common around very low mass stars: a third of the 20 known planets with M sin(i) &lt; 0.1 Mjup and 3 of the 7 known planets with M sin(i) &lt; 10 Mearth orbit an M dwarf, in contrast to just 4 of the ~300 known Jupiter-mass planets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0809.0750v1-abstract-full').style.display = 'none'; document.getElementById('0809.0750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resubmitted to A&amp;A after the minor modifications suggested by the referee</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0806.4587">arXiv:0806.4587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0806.4587">pdf</a>, <a href="https://arxiv.org/format/0806.4587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361:200810451">10.1051/0004-6361:200810451 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets. XIII. A planetary system with 3 Super-Earths (4.2, 6.9, &amp; 9.2 Earth masses) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Benz%2C+W">W. Benz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Mordasini%2C+C">C. Mordasini</a>, <a href="/search/?searchtype=author&amp;query=Segransan%2C+D">D. Segransan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0806.4587v1-abstract-short" style="display: inline;"> This paper reports on the detection of a planetary system with three Super-Earths orbiting HD40307. HD40307 is a K2V metal-deficient star at a distance of only 13 parsec, part of the HARPS GTO high-precision planet-search programme. The three planets on circular orbits have very low minimum masses of respectively 4.2, 6.9 and 9.2 Earth masses and periods of 4.3, 9.6 and 20.5 days. The planet wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0806.4587v1-abstract-full').style.display = 'inline'; document.getElementById('0806.4587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0806.4587v1-abstract-full" style="display: none;"> This paper reports on the detection of a planetary system with three Super-Earths orbiting HD40307. HD40307 is a K2V metal-deficient star at a distance of only 13 parsec, part of the HARPS GTO high-precision planet-search programme. The three planets on circular orbits have very low minimum masses of respectively 4.2, 6.9 and 9.2 Earth masses and periods of 4.3, 9.6 and 20.5 days. The planet with the shortest period is the lightest planet detected to-date orbiting a main sequence star. The detection of the correspondingly low amplitudes of the induced radial-velocity variations is completely secured by the 135 very high-quality HARPS observations illustrated by the radial-velocity residuals around the 3-Keplerian solution of only 0.85 m/s. Activity and bisector indicators exclude any significant perturbations of stellar intrinsic origin, which supports the planetary interpretation. Contrary to most planet-host stars, HD40307 has a marked sub-solar metallicity ([Fe/H]=-0.31), further supporting the already raised possibility that the occurrence of very light planets might show a different dependence on host star&#39;s metallicity compared to the population of gas giant planets. In addition to the 3 planets close to the central star, a small drift of the radial-velocity residuals reveals the presence of another companion in the system the nature of which is still unknown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0806.4587v1-abstract-full').style.display = 'none'; document.getElementById('0806.4587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to A&amp;A (6 pages)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0704.3841">arXiv:0704.3841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0704.3841">pdf</a>, <a href="https://arxiv.org/format/0704.3841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361:20077612">10.1051/0004-6361:20077612 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets XI. Super-Earths (5 &amp; 8 M_Earth) in a 3-planet system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Bonfils%2C+X">X. Bonfils</a>, <a href="/search/?searchtype=author&amp;query=Delfosse%2C+X">X. Delfosse</a>, <a href="/search/?searchtype=author&amp;query=Forveille%2C+T">T. Forveille</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Perrier%2C+C">C. Perrier</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0704.3841v1-abstract-short" style="display: inline;"> This Letter reports on the detection of two super-Earth planets in the Gl581 system, already known to harbour a hot Neptune. One of the planets has a mass of 5 M_Earth and resides at the ``warm&#39;&#39; edge of the habitable zone of the star. It is thus the known exoplanet which most resembles our own Earth. The other planet has a 7.7 M_Earth mass and orbits at 0.25 AU from the star, close to the ``col&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0704.3841v1-abstract-full').style.display = 'inline'; document.getElementById('0704.3841v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0704.3841v1-abstract-full" style="display: none;"> This Letter reports on the detection of two super-Earth planets in the Gl581 system, already known to harbour a hot Neptune. One of the planets has a mass of 5 M_Earth and resides at the ``warm&#39;&#39; edge of the habitable zone of the star. It is thus the known exoplanet which most resembles our own Earth. The other planet has a 7.7 M_Earth mass and orbits at 0.25 AU from the star, close to the ``cold&#39;&#39; edge of the habitable zone. These two new light planets around an M3 dwarf further confirm the formerly tentative statistical trend for i) many more very low-mass planets being found around M dwarfs than around solar-type stars and ii) low-mass planets outnumbering Jovian planets around M dwarfs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0704.3841v1-abstract-full').style.display = 'none'; document.getElementById('0704.3841v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version resubmitted to A&amp;A Letters, 5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astron.Astrophys.469:L43-L47,2007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0704.0270">arXiv:0704.0270</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0704.0270">pdf</a>, <a href="https://arxiv.org/format/0704.0270">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361:20077068">10.1051/0004-6361:20077068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets. X. A m sin i = 11 Mearth planet around the nearby spotted M dwarf GJ 674 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bonfils%2C+X">X. Bonfils</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Delfosse%2C+X">X. Delfosse</a>, <a href="/search/?searchtype=author&amp;query=Forveille%2C+T">T. Forveille</a>, <a href="/search/?searchtype=author&amp;query=Gillon%2C+M">M. Gillon</a>, <a href="/search/?searchtype=author&amp;query=Perrier%2C+C">C. Perrier</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+N+C">N. C. Santos</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0704.0270v1-abstract-short" style="display: inline;"> Context: How planet properties depend on stellar mass is a key diagnostic of planetary formation mechanisms. Aims: This motivates planet searches around stars which are significantly more massive or less massive than the Sun, and in particular our radial velocity search for planets around very-low mass stars. Methods: As part of that program, we obtained measurements of GJ 674, an M2.5 dwarf at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0704.0270v1-abstract-full').style.display = 'inline'; document.getElementById('0704.0270v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0704.0270v1-abstract-full" style="display: none;"> Context: How planet properties depend on stellar mass is a key diagnostic of planetary formation mechanisms. Aims: This motivates planet searches around stars which are significantly more massive or less massive than the Sun, and in particular our radial velocity search for planets around very-low mass stars. Methods: As part of that program, we obtained measurements of GJ 674, an M2.5 dwarf at d=4.5 pc, which have a dispersion much in excess of their internal errors. An intensive observing campaign demonstrates that the excess dispersion is due to two superimposed coherent signals, with periods of 4.69 and 35 days. Results: These data are well described by a 2-planet Keplerian model where each planet has a ~11 Mearth minimum mass. A careful analysis of the (low level) magnetic activity of GJ 674 however demonstrates that the 35-day period coincides with the stellar rotation period. This signal therefore originates in a spot inhomogeneity modulated by stellar rotation. The 4.69-day signal on the other hand is caused by a bona-fide planet, GJ 674b. Conclusion: Its detection adds to the growing number of Neptune-mass planets around M-dwarfs, and reinforces the emerging conclusion that this mass domain is much more populated than the jovian mass range. We discuss the metallicity distributions of M dwarf with and without planets and find a low 11% probability that they are drawn from the same parent distribution. Moreover, we find tentative evidence that the host star metallicity correlates with the total mass of their planetary system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0704.0270v1-abstract-full').style.display = 'none'; document.getElementById('0704.0270v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to A&amp;A (January 09, 2007)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/0703024">arXiv:astro-ph/0703024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/0703024">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature04828">10.1038/nature04828 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An extrasolar planetary system with three Neptune-mass planets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Alibert%2C+Y">Y. Alibert</a>, <a href="/search/?searchtype=author&amp;query=Benz%2C+W">W. Benz</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Correia%2C+A+C+M">A. C. M. Correia</a>, <a href="/search/?searchtype=author&amp;query=Laskar%2C+J">J. Laskar</a>, <a href="/search/?searchtype=author&amp;query=Mordasini%2C+C">C. Mordasini</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+N+C">N. C. Santos</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Sivan%2C+J+-">J. -P. Sivan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/0703024v1-abstract-short" style="display: inline;"> Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called &#39;hot Neptunes&#39; or &#39;super-Earths&#39; around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0703024v1-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/0703024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/0703024v1-abstract-full" style="display: none;"> Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called &#39;hot Neptunes&#39; or &#39;super-Earths&#39; around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 AU (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0703024v1-abstract-full').style.display = 'none'; document.getElementById('astro-ph/0703024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures, preprint of the paper published in Nature on May 18, 2006</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 441:305-309,2006 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/0608396">arXiv:astro-ph/0608396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/0608396">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/0608396">ps</a>, <a href="https://arxiv.org/format/astro-ph/0608396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361:20066194">10.1051/0004-6361:20066194 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets. IX. mu Ara, a system with four planets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Correia%2C+A+C+M">A. C. M. Correia</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Tamuz%2C+O">O. Tamuz</a>, <a href="/search/?searchtype=author&amp;query=Benz%2C+W">W. Benz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Couetdic%2C+J">J. Couetdic</a>, <a href="/search/?searchtype=author&amp;query=Laskar%2C+J">J. Laskar</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Naef%2C+D">D. Naef</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+N+C">N. C. Santos</a>, <a href="/search/?searchtype=author&amp;query=Sivan%2C+J+-">J. -P. Sivan</a>, <a href="/search/?searchtype=author&amp;query=Sosnowska%2C+D">D. Sosnowska</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/0608396v1-abstract-short" style="display: inline;"> The mu Ara planetary system is rather complex: It contains two already known planets, mu Ara b with P=640 days and mu Ara c with P=9.64 days, and a third companion on a wide but still poorly defined orbit. Even with three planets in the system, the data points keep anomalously high dispersion around the fitted solution. The high residuals are only partially due to the strong p-mode oscillations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0608396v1-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/0608396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/0608396v1-abstract-full" style="display: none;"> The mu Ara planetary system is rather complex: It contains two already known planets, mu Ara b with P=640 days and mu Ara c with P=9.64 days, and a third companion on a wide but still poorly defined orbit. Even with three planets in the system, the data points keep anomalously high dispersion around the fitted solution. The high residuals are only partially due to the strong p-mode oscillations of the host star. We have therefore studied in this paper the possible presence of a fourth planet in the system. During the past years we have carried out additional and extremely precise radial-velocity measurements with the HARPS spectrograph. We provide in this paper a full orbital solution of the planetary system around mu Ara. It turns out to be the second system known to harbor 4 planetary companions. Thanks to the new data points acquired with HARPS we can confirm the presence of mu Ara c at P=9.64 days, which produces a coherent RV signal over more than two years. The new orbital fit sets the mass of mu Ara c to 10.5 M_Earth. Furthermore, we present the discovery of mu Ara d, a new planet on an almost circular 310 days-period and with a mass of 0.52 M_Jup. Finally, we give completely new orbital parameters for the longest-period planet, mu Ara e. It is the first time that this companion is constrained by radial-velocity data into a dynamical stable orbit, which leaves no doubt about its planetary nature. (Abridged). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0608396v1-abstract-full').style.display = 'none'; document.getElementById('astro-ph/0608396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 low-resolution figures. Submitted to A&amp;A on August 5, 2006</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/0510354">arXiv:astro-ph/0510354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/0510354">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/0510354">ps</a>, <a href="https://arxiv.org/format/astro-ph/0510354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361:20054084">10.1051/0004-6361:20054084 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets V. A 14 Earth-masses planet orbiting HD 4308 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Benz%2C+W">W. Benz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Mordasini%2C+C">C. Mordasini</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Sivan%2C+J+-">J. -P. Sivan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/0510354v1-abstract-short" style="display: inline;"> We present here the discovery and characterisation of a very light planet around HD4308. The planet orbits its star in 15.56 days. The circular radial-velocity variation presents a tiny semi-amplitude of 4.1 m/s that corresponds to a planetary minimum mass m2sin(i)=14.1 Earth masses. The planet was unveiled by high-precision radial-velocity measurements obtained with the HARPS spectrograph on th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0510354v1-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/0510354v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/0510354v1-abstract-full" style="display: none;"> We present here the discovery and characterisation of a very light planet around HD4308. The planet orbits its star in 15.56 days. The circular radial-velocity variation presents a tiny semi-amplitude of 4.1 m/s that corresponds to a planetary minimum mass m2sin(i)=14.1 Earth masses. The planet was unveiled by high-precision radial-velocity measurements obtained with the HARPS spectrograph on the ESO 3.6-m telescope. The radial-velocity residuals around the Keplerian solution are 1.3 m/s, demonstrating the very high quality of the HARPS measurements. Activity and bisector indicators exclude any significant perturbations of stellar intrinsic origin, which supports the planetary interpretation. Contrary to most planet-host stars, HD4308 has a marked sub-solar metallicity ([Fe/H]=-0.31), raising the possibility that very light planet occurrence might show a different coupling with the parent star&#39;s metallicity than do giant gaseous extra-solar planets. Together with Neptune-mass planets close to their parent stars, the new planet occupies a position in the mass-separation parameter space that is constraining for planet-formation and evolution theories. The question of whether they can be considered as residuals of evaporated gaseous giant planets, ice giants, or super-earth planets is discussed in the context of the latest core-accretion models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0510354v1-abstract-full').style.display = 'none'; document.getElementById('astro-ph/0510354v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A (8 pages, 7 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/0509211">arXiv:astro-ph/0509211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/0509211">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/0509211">ps</a>, <a href="https://arxiv.org/format/astro-ph/0509211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361:200500193">10.1051/0004-6361:200500193 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets. VI. A Neptune-mass planet around the nearby M dwarf Gl 581 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bonfils%2C+X">X. Bonfils</a>, <a href="/search/?searchtype=author&amp;query=Forveille%2C+T">T. Forveille</a>, <a href="/search/?searchtype=author&amp;query=Delfosse%2C+X">X. Delfosse</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Perrier%2C+C">C. Perrier</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/0509211v1-abstract-short" style="display: inline;"> We report the discovery of a Neptune-mass planet around Gl 581 (M3V, M = 0.31 Msol), based on precise Doppler measurements with the HARPS spectrograph at La Silla Observatory. The radial velocities reveal a circular orbit of period P = 5.366 days and semi-amplitude K1 = 13.2 m/s. The resulting minimum mass of the planet (m2 sin i) is only 0.052 Mjup = 0.97 Mnep = 16.6 Mearth making Gl 581b one o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0509211v1-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/0509211v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/0509211v1-abstract-full" style="display: none;"> We report the discovery of a Neptune-mass planet around Gl 581 (M3V, M = 0.31 Msol), based on precise Doppler measurements with the HARPS spectrograph at La Silla Observatory. The radial velocities reveal a circular orbit of period P = 5.366 days and semi-amplitude K1 = 13.2 m/s. The resulting minimum mass of the planet (m2 sin i) is only 0.052 Mjup = 0.97 Mnep = 16.6 Mearth making Gl 581b one of the lightest extra-solar planet known to date. The Gl 581 planetary system is only the third centered on an M dwarf, joining the Gl 876 three-planet system and the lone planet around Gl 436. Its discovery reinforces the emerging tendency of such planets to be of low mass, and found at short orbital periods. The statistical properties of the planets orbiting M dwarfs do not seem to match a simple mass scaling of their counterparts around solar-type stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0509211v1-abstract-full').style.display = 'none'; document.getElementById('astro-ph/0509211v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">letter submitted to A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/0503660">arXiv:astro-ph/0503660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/0503660">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/0503660">ps</a>, <a href="https://arxiv.org/format/astro-ph/0503660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361:20052864">10.1051/0004-6361:20052864 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS search for southern extra-solar planets. III. Three Saturn-mass planets around HD 93083, HD 101930 and HD 102117 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+N+C">N. C. Santos</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Benz%2C+W">W. Benz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Mordasini%2C+C">C. Mordasini</a>, <a href="/search/?searchtype=author&amp;query=Sivan%2C+J+-">J. -P. Sivan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/0503660v1-abstract-short" style="display: inline;"> We report on the detection of three Saturn-mass planets discovered with the HARPS instrument. HD 93083 shows radial-velocity (RV) variations best explained by the presence of a companion of 0.37 M_Jup orbiting in 143.6 days. HD 101930 b has an orbital period of 70.5 days and a minimum mass of 0.30 M_Jup. For HD 102117, we present the independent detection of a companion with m2sini = 0.14 M_Jup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0503660v1-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/0503660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/0503660v1-abstract-full" style="display: none;"> We report on the detection of three Saturn-mass planets discovered with the HARPS instrument. HD 93083 shows radial-velocity (RV) variations best explained by the presence of a companion of 0.37 M_Jup orbiting in 143.6 days. HD 101930 b has an orbital period of 70.5 days and a minimum mass of 0.30 M_Jup. For HD 102117, we present the independent detection of a companion with m2sini = 0.14 M_Jup and orbital period P = 20.7 days. This planet was recently detected by Tinney et al. (2004). Activity and bisector indicators exclude any significant RV perturbations of stellar origin, reinforcing the planetary interpretation of the RV variations. The radial-velocity residuals around the Keplerian fits are 2.0, 1.8 and 0.9 m/s respectively, showing the unprecedented RV accuracy achieved with HARPS. A sample of stable stars observed with HARPS is also presented to illustrate the long-term precision of the instrument. All three stars are metal-rich, confirming the now well-established relation between planet occurrence and metallicity. The new planets are all in the Saturn-mass range, orbiting at moderate distance from their parent star, thereby occupying an area of the parameter space which seems difficult to populate according to planet formation theories. A systematic exploration of these regions will provide new constraints on formation scenarios in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0503660v1-abstract-full').style.display = 'none'; document.getElementById('astro-ph/0503660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, accepted for publication in Astronomy &amp; Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/0408471">arXiv:astro-ph/0408471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/0408471">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/0408471">ps</a>, <a href="https://arxiv.org/format/astro-ph/0408471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361:200400076">10.1051/0004-6361:200400076 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HARPS survey for southern extra-solar planets II. A 14 Earth-masses exoplanet around mu Arae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Santos%2C+N+C">N. C. Santos</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Mayor%2C+M">M. Mayor</a>, <a href="/search/?searchtype=author&amp;query=Pepe%2C+F">F. Pepe</a>, <a href="/search/?searchtype=author&amp;query=Queloz%2C+D">D. Queloz</a>, <a href="/search/?searchtype=author&amp;query=Udry%2C+S">S. Udry</a>, <a href="/search/?searchtype=author&amp;query=Lovis%2C+C">C. Lovis</a>, <a href="/search/?searchtype=author&amp;query=Bazot%2C+M">M. Bazot</a>, <a href="/search/?searchtype=author&amp;query=Benz%2C+W">W. Benz</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Curto%2C+G+L">G. Lo Curto</a>, <a href="/search/?searchtype=author&amp;query=Delfosse%2C+X">X. Delfosse</a>, <a href="/search/?searchtype=author&amp;query=Mordasini%2C+C">C. Mordasini</a>, <a href="/search/?searchtype=author&amp;query=Naef%2C+D">D. Naef</a>, <a href="/search/?searchtype=author&amp;query=Sivan%2C+J+-">J. -P. Sivan</a>, <a href="/search/?searchtype=author&amp;query=Vauclair%2C+S">S. Vauclair</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/0408471v2-abstract-short" style="display: inline;"> In this letter we present the discovery of a very light planetary companion to the star mu Ara (HD160691). The planet orbits its host once every 9.5days, and induces a sinusoidal radial velocity signal with a semi-amplitude of 4.1 m/s, the smallest Doppler amplitude detected so far. These values imply a mass of m2 sini = 14 earth-masses. This detection represents the discovery of a planet with a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0408471v2-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/0408471v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/0408471v2-abstract-full" style="display: none;"> In this letter we present the discovery of a very light planetary companion to the star mu Ara (HD160691). The planet orbits its host once every 9.5days, and induces a sinusoidal radial velocity signal with a semi-amplitude of 4.1 m/s, the smallest Doppler amplitude detected so far. These values imply a mass of m2 sini = 14 earth-masses. This detection represents the discovery of a planet with a mass slightly smaller than that of Uranus, the smallest ``ice giant&#34; in our Solar System. Whether this planet can be considered an ice giant or a super-earth planet is discussed in the context of the core-accretion and migration models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0408471v2-abstract-full').style.display = 'none'; document.getElementById('astro-ph/0408471v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Replaced on 2004-09-10 by final version, accepted for publication in A&amp;A Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astron.Astrophys.426:L19-L23,2004 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10