CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;11 of 11 results for author: <span class="mathjax">Sahabandu, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Sahabandu%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sahabandu, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sahabandu%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sahabandu, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20466">arXiv:2407.20466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20466">pdf</a>, <a href="https://arxiv.org/format/2407.20466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> A Method for Fast Autonomy Transfer in Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Ramasubramanian%2C+B">Bhaskar Ramasubramanian</a>, <a href="/search/cs?searchtype=author&amp;query=Alexiou%2C+M">Michail Alexiou</a>, <a href="/search/cs?searchtype=author&amp;query=Mertoguno%2C+J+S">J. Sukarno Mertoguno</a>, <a href="/search/cs?searchtype=author&amp;query=Bushnell%2C+L">Linda Bushnell</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20466v1-abstract-short" style="display: inline;"> This paper introduces a novel reinforcement learning (RL) strategy designed to facilitate rapid autonomy transfer by utilizing pre-trained critic value functions from multiple environments. Unlike traditional methods that require extensive retraining or fine-tuning, our approach integrates existing knowledge, enabling an RL agent to adapt swiftly to new settings without requiring extensive computa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20466v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20466v1-abstract-full" style="display: none;"> This paper introduces a novel reinforcement learning (RL) strategy designed to facilitate rapid autonomy transfer by utilizing pre-trained critic value functions from multiple environments. Unlike traditional methods that require extensive retraining or fine-tuning, our approach integrates existing knowledge, enabling an RL agent to adapt swiftly to new settings without requiring extensive computational resources. Our contributions include development of the Multi-Critic Actor-Critic (MCAC) algorithm, establishing its convergence, and empirical evidence demonstrating its efficacy. Our experimental results show that MCAC significantly outperforms the baseline actor-critic algorithm, achieving up to 22.76x faster autonomy transfer and higher reward accumulation. This advancement underscores the potential of leveraging accumulated knowledge for efficient adaptation in RL applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20466v1-abstract-full').style.display = 'none'; document.getElementById('2407.20466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12257">arXiv:2406.12257</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12257">pdf</a>, <a href="https://arxiv.org/format/2406.12257">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> CleanGen: Mitigating Backdoor Attacks for Generation Tasks in Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+Y">Yuetai Li</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Z">Zhangchen Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+F">Fengqing Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Niu%2C+L">Luyao Niu</a>, <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Ramasubramanian%2C+B">Bhaskar Ramasubramanian</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12257v2-abstract-short" style="display: inline;"> The remarkable performance of large language models (LLMs) in generation tasks has enabled practitioners to leverage publicly available models to power custom applications, such as chatbots and virtual assistants. However, the data used to train or fine-tune these LLMs is often undisclosed, allowing an attacker to compromise the data and inject backdoors into the models. In this paper, we develop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12257v2-abstract-full').style.display = 'inline'; document.getElementById('2406.12257v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12257v2-abstract-full" style="display: none;"> The remarkable performance of large language models (LLMs) in generation tasks has enabled practitioners to leverage publicly available models to power custom applications, such as chatbots and virtual assistants. However, the data used to train or fine-tune these LLMs is often undisclosed, allowing an attacker to compromise the data and inject backdoors into the models. In this paper, we develop a novel inference time defense, named CLEANGEN, to mitigate backdoor attacks for generation tasks in LLMs. CLEANGEN is a lightweight and effective decoding strategy that is compatible with the state-of-the-art (SOTA) LLMs. Our insight behind CLEANGEN is that compared to other LLMs, backdoored LLMs assign significantly higher probabilities to tokens representing the attacker-desired contents. These discrepancies in token probabilities enable CLEANGEN to identify suspicious tokens favored by the attacker and replace them with tokens generated by another LLM that is not compromised by the same attacker, thereby avoiding generation of attacker-desired content. We evaluate CLEANGEN against five SOTA backdoor attacks. Our results show that CLEANGEN achieves lower attack success rates (ASR) compared to five SOTA baseline defenses for all five backdoor attacks. Moreover, LLMs deploying CLEANGEN maintain helpfulness in their responses when serving benign user queries with minimal added computational overhead. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12257v2-abstract-full').style.display = 'none'; document.getElementById('2406.12257v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08695">arXiv:2402.08695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08695">pdf</a>, <a href="https://arxiv.org/format/2402.08695">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Game of Trojans: Adaptive Adversaries Against Output-based Trojaned-Model Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+X">Xiaojun Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Rajabi%2C+A">Arezoo Rajabi</a>, <a href="/search/cs?searchtype=author&amp;query=Niu%2C+L">Luyao Niu</a>, <a href="/search/cs?searchtype=author&amp;query=Ramasubramanian%2C+B">Bhaskar Ramasubramanian</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08695v1-abstract-short" style="display: inline;"> We propose and analyze an adaptive adversary that can retrain a Trojaned DNN and is also aware of SOTA output-based Trojaned model detectors. We show that such an adversary can ensure (1) high accuracy on both trigger-embedded and clean samples and (2) bypass detection. Our approach is based on an observation that the high dimensionality of the DNN parameters provides sufficient degrees of freedom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08695v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08695v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08695v1-abstract-full" style="display: none;"> We propose and analyze an adaptive adversary that can retrain a Trojaned DNN and is also aware of SOTA output-based Trojaned model detectors. We show that such an adversary can ensure (1) high accuracy on both trigger-embedded and clean samples and (2) bypass detection. Our approach is based on an observation that the high dimensionality of the DNN parameters provides sufficient degrees of freedom to simultaneously achieve these objectives. We also enable SOTA detectors to be adaptive by allowing retraining to recalibrate their parameters, thus modeling a co-evolution of parameters of a Trojaned model and detectors. We then show that this co-evolution can be modeled as an iterative game, and prove that the resulting (optimal) solution of this interactive game leads to the adversary successfully achieving the above objectives. In addition, we provide a greedy algorithm for the adversary to select a minimum number of input samples for embedding triggers. We show that for cross-entropy or log-likelihood loss functions used by the DNNs, the greedy algorithm provides provable guarantees on the needed number of trigger-embedded input samples. Extensive experiments on four diverse datasets -- MNIST, CIFAR-10, CIFAR-100, and SpeechCommand -- reveal that the adversary effectively evades four SOTA output-based Trojaned model detectors: MNTD, NeuralCleanse, STRIP, and TABOR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08695v1-abstract-full').style.display = 'none'; document.getElementById('2402.08695v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01688">arXiv:2212.01688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01688">pdf</a>, <a href="https://arxiv.org/format/2212.01688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> LDL: A Defense for Label-Based Membership Inference Attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Rajabi%2C+A">Arezoo Rajabi</a>, <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Niu%2C+L">Luyao Niu</a>, <a href="/search/cs?searchtype=author&amp;query=Ramasubramanian%2C+B">Bhaskar Ramasubramanian</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01688v2-abstract-short" style="display: inline;"> The data used to train deep neural network (DNN) models in applications such as healthcare and finance typically contain sensitive information. A DNN model may suffer from overfitting. Overfitted models have been shown to be susceptible to query-based attacks such as membership inference attacks (MIAs). MIAs aim to determine whether a sample belongs to the dataset used to train a classifier (membe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01688v2-abstract-full').style.display = 'inline'; document.getElementById('2212.01688v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01688v2-abstract-full" style="display: none;"> The data used to train deep neural network (DNN) models in applications such as healthcare and finance typically contain sensitive information. A DNN model may suffer from overfitting. Overfitted models have been shown to be susceptible to query-based attacks such as membership inference attacks (MIAs). MIAs aim to determine whether a sample belongs to the dataset used to train a classifier (members) or not (nonmembers). Recently, a new class of label based MIAs (LAB MIAs) was proposed, where an adversary was only required to have knowledge of predicted labels of samples. Developing a defense against an adversary carrying out a LAB MIA on DNN models that cannot be retrained remains an open problem. We present LDL, a light weight defense against LAB MIAs. LDL works by constructing a high-dimensional sphere around queried samples such that the model decision is unchanged for (noisy) variants of the sample within the sphere. This sphere of label-invariance creates ambiguity and prevents a querying adversary from correctly determining whether a sample is a member or a nonmember. We analytically characterize the success rate of an adversary carrying out a LAB MIA when LDL is deployed, and show that the formulation is consistent with experimental observations. We evaluate LDL on seven datasets -- CIFAR-10, CIFAR-100, GTSRB, Face, Purchase, Location, and Texas -- with varying sizes of training data. All of these datasets have been used by SOTA LAB MIAs. Our experiments demonstrate that LDL reduces the success rate of an adversary carrying out a LAB MIA in each case. We empirically compare LDL with defenses against LAB MIAs that require retraining of DNN models, and show that LDL performs favorably despite not needing to retrain the DNNs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01688v2-abstract-full').style.display = 'none'; document.getElementById('2212.01688v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in ACM ASIA Conference on Computer and Communications Security (ACM ASIACCS 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05937">arXiv:2207.05937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.05937">pdf</a>, <a href="https://arxiv.org/format/2207.05937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Game of Trojans: A Submodular Byzantine Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Rajabi%2C+A">Arezoo Rajabi</a>, <a href="/search/cs?searchtype=author&amp;query=Niu%2C+L">Luyao Niu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cs?searchtype=author&amp;query=Ramasubramanian%2C+B">Bhaskar Ramasubramanian</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05937v1-abstract-short" style="display: inline;"> Machine learning models in the wild have been shown to be vulnerable to Trojan attacks during training. Although many detection mechanisms have been proposed, strong adaptive attackers have been shown to be effective against them. In this paper, we aim to answer the questions considering an intelligent and adaptive adversary: (i) What is the minimal amount of instances required to be Trojaned by a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05937v1-abstract-full').style.display = 'inline'; document.getElementById('2207.05937v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05937v1-abstract-full" style="display: none;"> Machine learning models in the wild have been shown to be vulnerable to Trojan attacks during training. Although many detection mechanisms have been proposed, strong adaptive attackers have been shown to be effective against them. In this paper, we aim to answer the questions considering an intelligent and adaptive adversary: (i) What is the minimal amount of instances required to be Trojaned by a strong attacker? and (ii) Is it possible for such an attacker to bypass strong detection mechanisms? We provide an analytical characterization of adversarial capability and strategic interactions between the adversary and detection mechanism that take place in such models. We characterize adversary capability in terms of the fraction of the input dataset that can be embedded with a Trojan trigger. We show that the loss function has a submodular structure, which leads to the design of computationally efficient algorithms to determine this fraction with provable bounds on optimality. We propose a Submodular Trojan algorithm to determine the minimal fraction of samples to inject a Trojan trigger. To evade detection of the Trojaned model, we model strategic interactions between the adversary and Trojan detection mechanism as a two-player game. We show that the adversary wins the game with probability one, thus bypassing detection. We establish this by proving that output probability distributions of a Trojan model and a clean model are identical when following the Min-Max (MM) Trojan algorithm. We perform extensive evaluations of our algorithms on MNIST, CIFAR-10, and EuroSAT datasets. The results show that (i) with Submodular Trojan algorithm, the adversary needs to embed a Trojan trigger into a very small fraction of samples to achieve high accuracy on both Trojan and clean samples, and (ii) the MM Trojan algorithm yields a trained Trojan model that evades detection with probability 1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05937v1-abstract-full').style.display = 'none'; document.getElementById('2207.05937v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to GameSec 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.06624">arXiv:2204.06624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.06624">pdf</a>, <a href="https://arxiv.org/format/2204.06624">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Natural Language Processing Approach for Instruction Set Architecture Identification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Mertoguno%2C+S">Sukarno Mertoguno</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.06624v1-abstract-short" style="display: inline;"> Binary analysis of software is a critical step in cyber forensics applications such as program vulnerability assessment and malware detection. This involves interpreting instructions executed by software and often necessitates converting the software&#39;s binary file data to assembly language. The conversion process requires information about the binary file&#39;s target instruction set architecture (ISA&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06624v1-abstract-full').style.display = 'inline'; document.getElementById('2204.06624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.06624v1-abstract-full" style="display: none;"> Binary analysis of software is a critical step in cyber forensics applications such as program vulnerability assessment and malware detection. This involves interpreting instructions executed by software and often necessitates converting the software&#39;s binary file data to assembly language. The conversion process requires information about the binary file&#39;s target instruction set architecture (ISA). However, ISA information might not be included in binary files due to compilation errors, partial downloads, or adversarial corruption of file metadata. Machine learning (ML) is a promising methodology that can be used to identify the target ISA using binary data in the object code section of binary files. In this paper we propose a binary code feature extraction model to improve the accuracy and scalability of ML-based ISA identification methods. Our feature extraction model can be used in the absence of domain knowledge about the ISAs. Specifically, we adapt models from natural language processing (NLP) to i) identify successive byte patterns commonly observed in binary codes, ii) estimate the significance of each byte pattern to a binary file, and iii) estimate the relevance of each byte pattern in distinguishing between ISAs. We introduce character-level features of encoded binaries to identify fine-grained bit patterns inherent to each ISA. We use a dataset with binaries from 12 different ISAs to evaluate our approach. Empirical evaluations show that using our byte-level features in ML-based ISA identification results in an 8% higher accuracy than the state-of-the-art features based on byte-histograms and byte pattern signatures. We observe that character-level features allow reducing the size of the feature set by up to 16x while maintaining accuracy above 97%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06624v1-abstract-full').style.display = 'none'; document.getElementById('2204.06624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, submitted to IEEE TIFS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.15894">arXiv:2103.15894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.15894">pdf</a>, <a href="https://arxiv.org/ps/2103.15894">ps</a>, <a href="https://arxiv.org/format/2103.15894">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Scalable Planning in Multi-Agent MDPs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Niu%2C+L">Luyao Niu</a>, <a href="/search/cs?searchtype=author&amp;query=Clark%2C+A">Andrew Clark</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.15894v1-abstract-short" style="display: inline;"> Multi-agent Markov Decision Processes (MMDPs) arise in a variety of applications including target tracking, control of multi-robot swarms, and multiplayer games. A key challenge in MMDPs occurs when the state and action spaces grow exponentially in the number of agents, making computation of an optimal policy computationally intractable for medium- to large-scale problems. One property that has be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15894v1-abstract-full').style.display = 'inline'; document.getElementById('2103.15894v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.15894v1-abstract-full" style="display: none;"> Multi-agent Markov Decision Processes (MMDPs) arise in a variety of applications including target tracking, control of multi-robot swarms, and multiplayer games. A key challenge in MMDPs occurs when the state and action spaces grow exponentially in the number of agents, making computation of an optimal policy computationally intractable for medium- to large-scale problems. One property that has been exploited to mitigate this complexity is transition independence, in which each agent&#39;s transition probabilities are independent of the states and actions of other agents. Transition independence enables factorization of the MMDP and computation of local agent policies but does not hold for arbitrary MMDPs. In this paper, we propose an approximate transition dependence property, called $未$-transition dependence and develop a metric for quantifying how far an MMDP deviates from transition independence. Our definition of $未$-transition dependence recovers transition independence as a special case when $未$ is zero. We develop a polynomial time algorithm in the number of agents that achieves a provable bound on the global optimum when the reward functions are monotone increasing and submodular in the agent actions. We evaluate our approach on two case studies, namely, multi-robot control and multi-agent patrolling example. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15894v1-abstract-full').style.display = 'none'; document.getElementById('2103.15894v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.12327">arXiv:2007.12327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.12327">pdf</a>, <a href="https://arxiv.org/format/2007.12327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Stochastic Dynamic Information Flow Tracking Game using Supervised Learning for Detecting Advanced Persistent Threats </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Moothedath%2C+S">Shana Moothedath</a>, <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Allen%2C+J">Joey Allen</a>, <a href="/search/cs?searchtype=author&amp;query=Bushnell%2C+L">Linda Bushnell</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+W">Wenke Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.12327v2-abstract-short" style="display: inline;"> Advanced persistent threats (APTs) are organized prolonged cyberattacks by sophisticated attackers. Although APT activities are stealthy, they interact with the system components and these interactions lead to information flows. Dynamic Information Flow Tracking (DIFT) has been proposed as one of the effective ways to detect APTs using the information flows. However, wide range security analysis u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12327v2-abstract-full').style.display = 'inline'; document.getElementById('2007.12327v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.12327v2-abstract-full" style="display: none;"> Advanced persistent threats (APTs) are organized prolonged cyberattacks by sophisticated attackers. Although APT activities are stealthy, they interact with the system components and these interactions lead to information flows. Dynamic Information Flow Tracking (DIFT) has been proposed as one of the effective ways to detect APTs using the information flows. However, wide range security analysis using DIFT results in a significant increase in performance overhead and high rates of false-positives and false-negatives generated by DIFT. In this paper, we model the strategic interaction between APT and DIFT as a non-cooperative stochastic game. The game unfolds on a state space constructed from an information flow graph (IFG) that is extracted from the system log. The objective of the APT in the game is to choose transitions in the IFG to find an optimal path in the IFG from an entry point of the attack to an attack target. On the other hand, the objective of DIFT is to dynamically select nodes in the IFG to perform security analysis for detecting APT. Our game model has imperfect information as the players do not have information about the actions of the opponent. We consider two scenarios of the game (i) when the false-positive and false-negative rates are known to both players and (ii) when the false-positive and false-negative rates are unknown to both players. Case (i) translates to a game model with complete information and we propose a value iteration-based algorithm and prove the convergence. Case (ii) translates to a game with unknown transition probabilities. In this case, we propose Hierarchical Supervised Learning (HSL) algorithm that integrates a neural network, to predict the value vector of the game, with a policy iteration algorithm to compute an approximate equilibrium. We implemented our algorithms on real attack datasets and validated the performance of our approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12327v2-abstract-full').style.display = 'none'; document.getElementById('2007.12327v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00076">arXiv:2007.00076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.00076">pdf</a>, <a href="https://arxiv.org/format/2007.00076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> A Reinforcement Learning Approach for Dynamic Information Flow Tracking Games for Detecting Advanced Persistent Threats </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Moothedath%2C+S">Shana Moothedath</a>, <a href="/search/cs?searchtype=author&amp;query=Allen%2C+J">Joey Allen</a>, <a href="/search/cs?searchtype=author&amp;query=Bushnell%2C+L">Linda Bushnell</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+W">Wenke Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00076v2-abstract-short" style="display: inline;"> Advanced Persistent Threats (APTs) are stealthy attacks that threaten the security and privacy of sensitive information. Interactions of APTs with victim system introduce information flows that are recorded in the system logs. Dynamic Information Flow Tracking (DIFT) is a promising detection mechanism for detecting APTs. DIFT taints information flows originating at system entities that are suscept&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00076v2-abstract-full').style.display = 'inline'; document.getElementById('2007.00076v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00076v2-abstract-full" style="display: none;"> Advanced Persistent Threats (APTs) are stealthy attacks that threaten the security and privacy of sensitive information. Interactions of APTs with victim system introduce information flows that are recorded in the system logs. Dynamic Information Flow Tracking (DIFT) is a promising detection mechanism for detecting APTs. DIFT taints information flows originating at system entities that are susceptible to an attack, tracks the propagation of the tainted flows, and authenticates the tainted flows at certain system components according to a pre-defined security policy. Deployment of DIFT to defend against APTs in cyber systems is limited by the heavy resource and performance overhead associated with DIFT. In this paper, we propose a resource-efficient model for DIFT by incorporating the security costs, false-positives, and false-negatives associated with DIFT. Specifically, we develop a game-theoretic framework and provide an analytical model of DIFT that enables the study of trade-off between resource efficiency and the effectiveness of detection. Our game model is a nonzero-sum, infinite-horizon, average reward stochastic game. Our model incorporates the information asymmetry between players that arises from DIFT&#39;s inability to distinguish malicious flows from benign flows and APT&#39;s inability to know the locations where DIFT performs a security analysis. Additionally, the game has incomplete information as the transition probabilities (false-positive and false-negative rates) are unknown. We propose a multiple-time scale stochastic approximation algorithm to learn an equilibrium solution of the game. We prove that our algorithm converges to an average reward Nash equilibrium. We evaluate our proposed model and algorithm on a real-world ransomware dataset and validate the effectiveness of the proposed approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00076v2-abstract-full').style.display = 'none'; document.getElementById('2007.00076v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12327">arXiv:2006.12327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.12327">pdf</a>, <a href="https://arxiv.org/format/2006.12327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Information Flow Tracking for Detection of Advanced Persistent Threats: A Stochastic Game Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Moothedath%2C+S">Shana Moothedath</a>, <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Allen%2C+J">Joey Allen</a>, <a href="/search/cs?searchtype=author&amp;query=Clark%2C+A">Andrew Clark</a>, <a href="/search/cs?searchtype=author&amp;query=Bushnell%2C+L">Linda Bushnell</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+W">Wenke Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12327v2-abstract-short" style="display: inline;"> Advanced Persistent Threats (APTs) are stealthy customized attacks by intelligent adversaries. This paper deals with the detection of APTs that infiltrate cyber systems and compromise specifically targeted data and/or infrastructures. Dynamic information flow tracking is an information trace-based detection mechanism against APTs that taints suspicious information flows in the system and generates&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12327v2-abstract-full').style.display = 'inline'; document.getElementById('2006.12327v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12327v2-abstract-full" style="display: none;"> Advanced Persistent Threats (APTs) are stealthy customized attacks by intelligent adversaries. This paper deals with the detection of APTs that infiltrate cyber systems and compromise specifically targeted data and/or infrastructures. Dynamic information flow tracking is an information trace-based detection mechanism against APTs that taints suspicious information flows in the system and generates security analysis for unauthorized use of tainted data. In this paper, we develop an analytical model for resource-efficient detection of APTs using an information flow tracking game. The game is a nonzero-sum, turn-based, stochastic game with asymmetric information as the defender cannot distinguish whether an incoming flow is malicious or benign and hence has only partial state observation. We analyze equilibrium of the game and prove that a Nash equilibrium is given by a solution to the minimum capacity cut set problem on a flow-network derived from the system, where the edge capacities are obtained from the cost of performing security analysis. Finally, we implement our algorithm on the real-world dataset for a data exfiltration attack augmented with false-negative and false-positive rates and compute an optimal defender strategy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12327v2-abstract-full').style.display = 'none'; document.getElementById('2006.12327v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05622">arXiv:1811.05622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.05622">pdf</a>, <a href="https://arxiv.org/format/1811.05622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> A Game Theoretic Approach for Dynamic Information Flow Tracking to Detect Multi-Stage Advanced Persistent Threats </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Moothedath%2C+S">Shana Moothedath</a>, <a href="/search/cs?searchtype=author&amp;query=Sahabandu%2C+D">Dinuka Sahabandu</a>, <a href="/search/cs?searchtype=author&amp;query=Allen%2C+J">Joey Allen</a>, <a href="/search/cs?searchtype=author&amp;query=Clark%2C+A">Andrew Clark</a>, <a href="/search/cs?searchtype=author&amp;query=Bushnell%2C+L">Linda Bushnell</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+W">Wenke Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Poovendran%2C+R">Radha Poovendran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05622v1-abstract-short" style="display: inline;"> Advanced Persistent Threats (APTs) infiltrate cyber systems and compromise specifically targeted data and/or resources through a sequence of stealthy attacks consisting of multiple stages. Dynamic information flow tracking has been proposed to detect APTs. In this paper, we develop a dynamic information flow tracking game for resource-efficient detection of APTs via multi-stage dynamic games. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05622v1-abstract-full').style.display = 'inline'; document.getElementById('1811.05622v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05622v1-abstract-full" style="display: none;"> Advanced Persistent Threats (APTs) infiltrate cyber systems and compromise specifically targeted data and/or resources through a sequence of stealthy attacks consisting of multiple stages. Dynamic information flow tracking has been proposed to detect APTs. In this paper, we develop a dynamic information flow tracking game for resource-efficient detection of APTs via multi-stage dynamic games. The game evolves on an information flow graph, whose nodes are processes and objects (e.g. file, network endpoints) in the system and the edges capture the interaction between different processes and objects. Each stage of the game has pre-specified targets which are characterized by a set of nodes of the graph and the goal of the APT is to evade detection and reach a target node of that stage. The goal of the defender is to maximize the detection probability while minimizing performance overhead on the system. The resource costs of the players are different and the information structure is asymmetric resulting in a nonzero-sum imperfect information game. We first calculate the best responses of the players and characterize the set of Nash equilibria for single stage attacks. Subsequently, we provide a polynomial-time algorithm to compute a correlated equilibrium for the multi-stage attack case. Finally, we experiment our model and algorithms on real-world nation state attack data obtained from Refinable Attack Investigation system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05622v1-abstract-full').style.display = 'none'; document.getElementById('1811.05622v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10