CINXE.COM
Search results for: Savin Evgeny
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Savin Evgeny</title> <meta name="description" content="Search results for: Savin Evgeny"> <meta name="keywords" content="Savin Evgeny"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Savin Evgeny" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Savin Evgeny"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 27</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Savin Evgeny</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Effect of Citrulline on the Physical Performance of a Soccer-Specific Exercises in Adult Professional Soccer Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bezuglov%20Eduard">Bezuglov Eduard</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryland%20Morgans"> Ryland Morgans</a>, <a href="https://publications.waset.org/abstracts/search?q=Talibov%20Oleg"> Talibov Oleg</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalinin%20Evgeny"> Kalinin Evgeny</a>, <a href="https://publications.waset.org/abstracts/search?q=Butovsky%20Mikhail"> Butovsky Mikhail</a>, <a href="https://publications.waset.org/abstracts/search?q=Savin%20Evgeny"> Savin Evgeny</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzgoev%20Eduard"> Tzgoev Eduard</a>, <a href="https://publications.waset.org/abstracts/search?q=Artemii%20Lazarev"> Artemii Lazarev</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekzhan%20Pirmakhanov"> Bekzhan Pirmakhanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20C.%20Hackney"> Anthony C. Hackney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, there is conflicting evidence regarding the efficacy of citrulline for physical performance and post-exercise recovery. Moreover, the vast majority of studies conducted used physically active volunteers from the general population and heterogeneous exercise protocols that are not specific to most sports. A single use of citrulline, regardless of the dose, will not have a significant effect on physical performance and post-exercise recovery in highly trained soccer players performing sport-specific exercises at maximum intensity. To evaluate the effectiveness of a single administration of citrulline at various doses in adult male professional soccer players performing sport-specific exercise at maximum intensity. A randomized, double-blind, placebo-controlled study analyzing eighteen soccer players from the top divisions of several European countries. The participants were randomized into three groups of six and performed a field-based soccer-specific test at 115% VO2max for 18-minutes. Comparative analysis of the cardiovascular system, physical activity, subjective perceived fatigue and post-exercise recovery was conducted. There were no statistically significant differences in more than one analyzed parameter. A single application of 3 to 6 grams of citrulline does not affect physical performance, subjective feeling of fatigue and post-exercise recovery in adult professional soccer players who have performed a sport-specific test. Currently, citrulline cannot be recommended for use as a supplement in adult professional soccer players <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citrulline" title="citrulline">citrulline</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=soccer%20players" title=" soccer players"> soccer players</a> </p> <a href="https://publications.waset.org/abstracts/153676/effect-of-citrulline-on-the-physical-performance-of-a-soccer-specific-exercises-in-adult-professional-soccer-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Strain Based Failure Criterion for Composite Notched Laminates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20A.%20Elsayed">Ibrahim A. Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Elalfy"> Mohamed H. Elalfy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20M.%20Abdalla"> Mostafa M. Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A strain-based failure criterion for composite notched laminates is introduced where the most critical stress concentration factor for the anisotropic notched laminates could be related to the failure of the corresponding quasi-isotropic laminate and the anisotropy ratio of the laminate. The proposed criterion will simplify the design of composites to meet notched failure requirements by eliminating the need for the detailed specifications of the stacking sequence at the preliminary design stage. The designer will be able to design based on the stiffness of the laminate, then at a later stage, select an appropriate stacking sequence to meet the stiffness requirements. The failure strains for the notched laminates are computed using the material’s Omni-strain envelope. The concept of Omni-strain envelope concerns the region of average strain where the laminate is safe regardless of ply orientation. In this work, we use Hashin’s failure criteria and the strains around the hole are computed using Savin’s analytic solution. A progressive damage analysis study has been conducted where the failure loads for the notched laminates are computed using finite element analysis. The failure strains are computed and used to estimate the concentration factor. It is found that the correlation found using Savin’s analytic solution predicts the same ratio of concentration factors between anisotropic and quasi-isotropic laminates as the more expensive progressive failure analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy%20ratio" title="anisotropy ratio">anisotropy ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20criteria" title=" failure criteria"> failure criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=notched%20laminates" title=" notched laminates"> notched laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=Omni-strain%20envelope" title=" Omni-strain envelope"> Omni-strain envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=savin%E2%80%99s%20solution" title=" savin’s solution"> savin’s solution</a> </p> <a href="https://publications.waset.org/abstracts/145259/strain-based-failure-criterion-for-composite-notched-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Algorithms of ABS-Plastic Extrusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitrii%20Starikov">Dmitrii Starikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Rybakov"> Evgeny Rybakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Zhuravlev"> Denis Zhuravlev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic for 3D printing is very necessary material part for printers. But plastic production is technological process, which implies application of different control algorithms. Possible algorithms of providing set diameter of plastic fiber are proposed and described in the article. Results of research were proved by existing unit of filament production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABS-plastic" title="ABS-plastic">ABS-plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=extruder" title=" extruder"> extruder</a>, <a href="https://publications.waset.org/abstracts/search?q=filament" title=" filament"> filament</a>, <a href="https://publications.waset.org/abstracts/search?q=PID-algorithm" title=" PID-algorithm"> PID-algorithm</a> </p> <a href="https://publications.waset.org/abstracts/17456/algorithms-of-abs-plastic-extrusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Engineering Thermal-Hydraulic Simulator Based on Complex Simulation Suite “Virtual Unit of Nuclear Power Plant”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Obraztsov">Evgeny Obraztsov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilya%20Kremnev"> Ilya Kremnev</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitaly%20Sokolov"> Vitaly Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Maksim%20Gavrilov"> Maksim Gavrilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Tretyakov"> Evgeny Tretyakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Kukhtevich"> Vladimir Kukhtevich</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Bezlepkin"> Vladimir Bezlepkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last decade, a specific set of connected software tools and calculation codes has been gradually developed. It allows simulating I&C systems, thermal-hydraulic, neutron-physical and electrical processes in elements and systems at the Unit of NPP (initially with WWER (pressurized water reactor)). In 2012 it was called a complex simulation suite “Virtual Unit of NPP” (or CSS “VEB” for short). Proper application of this complex tool should result in a complex coupled mathematical computational model. And for a specific design of NPP, it is called the Virtual Power Unit (or VPU for short). VPU can be used for comprehensive modelling of a power unit operation, checking operator's functions on a virtual main control room, and modelling complicated scenarios for normal modes and accidents. In addition, CSS “VEB” contains a combination of thermal hydraulic codes: the best-estimate (two-liquid) calculation codes KORSAR and CORTES and a homogenous calculation code TPP. So to analyze a specific technological system one can build thermal-hydraulic simulation models with different detalization levels up to a nodalization scheme with real geometry. And the result at some points is similar to the notion “engineering/testing simulator” described by the European utility requirements (EUR) for LWR nuclear power plants. The paper is dedicated to description of the tools mentioned above and an example of the application of the engineering thermal-hydraulic simulator in analysis of the boron acid concentration in the primary coolant (changed by the make-up and boron control system). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=best-estimate%20code" title="best-estimate code">best-estimate code</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20simulation%20suite" title=" complex simulation suite"> complex simulation suite</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20simulator" title=" engineering simulator"> engineering simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20hydraulic" title=" thermal hydraulic"> thermal hydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=VEB" title=" VEB"> VEB</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20power%20unit" title=" virtual power unit"> virtual power unit</a> </p> <a href="https://publications.waset.org/abstracts/63791/engineering-thermal-hydraulic-simulator-based-on-complex-simulation-suite-virtual-unit-of-nuclear-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Infrared Detection Device for Accurate Scanning 3D Objects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20A.%20Rybakov">Evgeny A. Rybakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20P.%20Starikov"> Dmitry P. Starikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article contains information about creating special unit for scanning 3D objects different nature, different materials, for example plastic, plaster, cardboard, wood, metal and etc. The main part of the unit is infrared transducer, which is sends the wave to the object and receive back wave for calculating distance. After that, microcontroller send to PC data, and computer program create model for printing from the plastic, gypsum, brass, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clutch" title="clutch">clutch</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic" title=" plastic"> plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft" title=" shaft"> shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stage" title=" stage"> stage</a> </p> <a href="https://publications.waset.org/abstracts/17459/infrared-detection-device-for-accurate-scanning-3d-objects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aung%20Kyaw%20Moe">Aung Kyaw Moe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukin%20Evgeny%20Stepanovich"> Lukin Evgeny Stepanovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Popova%20Nelya%20Alexandrovna"> Popova Nelya Alexandrovna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of the additive content in the Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic" title="ceramic">ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=corundum" title=" corundum"> corundum</a> </p> <a href="https://publications.waset.org/abstracts/84591/sintering-of-composite-ceramic-based-on-corundum-with-additive-in-the-al2o3-tio2-mno-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Models and Metamodels for Computer-Assisted Natural Language Grammar Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Pyshkin">Evgeny Pyshkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxim%20Mozgovoy"> Maxim Mozgovoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladislav%20Volkov"> Vladislav Volkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-assisted%20instruction" title="computer-assisted instruction">computer-assisted instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20learning" title=" language learning"> language learning</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20grammar%20models" title=" natural language grammar models"> natural language grammar models</a>, <a href="https://publications.waset.org/abstracts/search?q=HCI" title=" HCI"> HCI</a> </p> <a href="https://publications.waset.org/abstracts/15680/models-and-metamodels-for-computer-assisted-natural-language-grammar-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Increase of Energy Efficiency by Means of Application of Active Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Babin">Alexander Babin</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonid%20Savin"> Leonid Savin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, increasing of energy efficiency of a thrust hybrid bearing with a central feeding chamber is considered. The mathematical model was developed to determine the pressure distribution and the reaction forces, based on the Reynolds equation and static characteristics’ equations. The boundary problem of pressure distribution calculation was solved using the method of finite differences. For various types of lubricants, geometry and operational characteristics, axial gaps can be determined, where the minimal friction coefficient is provided. The next part of the study considers the application of servovalves in order to maintain the desired position of the rotor. The report features the calculation results and the analysis of the influence of the operational and geometric parameters on the energy efficiency of mechatronic fluid-film bearings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20bearings" title="active bearings">active bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=mechatronics" title=" mechatronics"> mechatronics</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20multipad%20bearing" title=" thrust multipad bearing"> thrust multipad bearing</a> </p> <a href="https://publications.waset.org/abstracts/51105/increase-of-energy-efficiency-by-means-of-application-of-active-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Binocular Heterogeneity in Saccadic Suppression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Kozubenko">Evgeny Kozubenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Shaposhnikov"> Dmitry Shaposhnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Petrushan"> Mikhail Petrushan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused on the study of the binocular characteristics of the phenomenon of perisaccadic suppression in humans when perceiving visual objects. This phenomenon manifests in a decrease in the subject's ability to perceive visual information during saccades, which play an important role in purpose-driven behavior and visual perception. It was shown that the impairment of perception of visual information in the post-saccadic time window is stronger (p < 0.05) in the ipsilateral eye (the eye towards which the saccade occurs). In addition, the observed heterogeneity of post-saccadic suppression in the contralateral and ipsilateral eyes may relate to depth perception. Taking the studied phenomenon into account is important when developing ergonomic control panels in modern operator systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eye%20movement" title="eye movement">eye movement</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20vision" title=" natural vision"> natural vision</a>, <a href="https://publications.waset.org/abstracts/search?q=saccadic%20suppression" title=" saccadic suppression"> saccadic suppression</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20perception" title=" visual perception"> visual perception</a> </p> <a href="https://publications.waset.org/abstracts/137677/binocular-heterogeneity-in-saccadic-suppression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Chromatography Study of Fundamental Properties of Medical Radioisotope Astatine-211</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20E.%20Tereshatov">Evgeny E. Tereshatov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Astatine-211 is considered one of the most promising radionuclides for Targeted Alpha Therapy. In order to develop reliable procedures to label biomolecules and utilize efficient delivery vehicle principles, one should understand the main chemical characteristics of astatine. The short half-life of 211At (~7.2 h) and absence of any stable isotopes of this element are limiting factors towards studying the behavior of astatine. Our team has developed a procedure for rapid and efficient isolation of astatine from irradiated bismuth material in nitric acid media based on 3-octanone and 1-octanol extraction chromatography resins. This process has been automated and it takes 20 min from the beginning of the target dissolution to the At-211 fraction elution. Our next step is to consider commercially available chromatography resins and their applicability in astatine purification in the same media. Results obtained along with the corresponding sorption mechanisms will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astatine-211" title="astatine-211">astatine-211</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatography" title=" chromatography"> chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceuticals" title=" radiopharmaceuticals"> radiopharmaceuticals</a> </p> <a href="https://publications.waset.org/abstracts/152922/chromatography-study-of-fundamental-properties-of-medical-radioisotope-astatine-211" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> The Comparative Study of Binary Artifact Repository Managers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Chugunnyy">Evgeny Chugunnyy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20Gerasimova"> Alena Gerasimova</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20Chernyavskiy"> Kirill Chernyavskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Krasnov"> Alexander Krasnov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the primary component of Continuous deployment (CD) is a binary artifact repository — the place where artifacts are stored with metadata in a structured way. The binary artifact repository manager (BARM) is a software, which implements this repository logic and exposes a public application programming interface (API) for managing these artifacts. Almost every programming language ecosystem has its own artifact repository kind. During creating Artipie — BARM constructor and server, we analyzed and implemented a lot of different artifact repositories. In this paper we present criterias for comparing artifact repositories, and analyze the most popular repositories using these metrics. We also describe some of the notable features of different repositories. This paper aimed to help people who are creating, maintaining or optimizing software repository and CI tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artifact" title="artifact">artifact</a>, <a href="https://publications.waset.org/abstracts/search?q=repository" title=" repository"> repository</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20deployment" title=" continuous deployment"> continuous deployment</a>, <a href="https://publications.waset.org/abstracts/search?q=build%20automation" title=" build automation"> build automation</a>, <a href="https://publications.waset.org/abstracts/search?q=artifacts%20management" title=" artifacts management"> artifacts management</a> </p> <a href="https://publications.waset.org/abstracts/155047/the-comparative-study-of-binary-artifact-repository-managers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Comparison of the Dynamic Characteristics of Active and Passive Hybrid Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20V.%20Shutin">Denis V. Shutin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Yu.%20Babin"> Alexander Yu. Babin</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonid%20A.%20Savin"> Leonid A. Savin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the ways of reducing vibroactivity of rotor systems is to apply active hybrid bearings. Their design allows correction of the rotor’s location by means of separately controlling the supply pressure of the lubricant into the friction area. In a most simple case, the control system is based on a P-regulator. Increase of the gain coefficient allows decreasing the amplitude of rotor’s vibrations. The same effect can be achieved by means of increasing the pressure in the collector of a traditional passive hybrid bearing. However, these approaches affect the dynamic characteristics of the bearing differently. Theoretical studies show that the increase of the gain coefficient of an active bearing increases the stiffness of the bearing, as well as the increase of the pressure in the collector. Nevertheless, in case of a passive bearing, the damping properties deteriorate, whereas the active hybrid bearings obtain higher damping properties, which allow effectively providing the energy dissipation of the rotor vibrations and reducing the load on the constructional elements of a machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20bearings" title="active bearings">active bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20bearings" title=" hybrid bearings"> hybrid bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/47442/comparison-of-the-dynamic-characteristics-of-active-and-passive-hybrid-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> The Influence of Carbamazepine on the Activity of CYP3A4 in Patients with Alcoholism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20S.%20Zastrozhin">Mikhail S. Zastrozhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Valery%20V.%20Smirnov"> Valery V. Smirnov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20A.%20Sychev"> Dmitry A. Sychev</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludmila%20M.%20Savchenko"> Ludmila M. Savchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20A.%20Bryun"> Evgeny A. Bryun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20O.%20Nechaev"> Mark O. Nechaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cytochrome P-450 isoenzyme 3A4 takes part in the biotransformation of medical drugs. The activity of CYP isoenzymes depends on genetic (polymorphisms of genes which encoded it) and phenotypic factors (a kind of food, a concomitant drug therapy). The aim of the study was to evaluate a carbamazepine effect on the CYP3A4 activity in patients with alcohol addiction. The study included 25 men with alcohol dependence, who received haloperidol during the exacerbation of the addiction. CYP3A4 activity was assessed by urinary 6-beta-hydroxycortisol/cortisol ratios measured by high performance liquid chromatography with mass spectrometry. The study modeled a graph and an equation of the logarithmic regression, that reflects the dependence of CYP3A4 activity on a dose of carbamazepine: y = 5,5 * 9,1 * 10-5 * x2. The study statistically significant demonstrates the effect of carbamazepine on CYP2D6 isozyme activity in patients with alcohol addiction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CYP3A4" title="CYP3A4">CYP3A4</a>, <a href="https://publications.waset.org/abstracts/search?q=biotransformation" title=" biotransformation"> biotransformation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbamazepine" title=" carbamazepine"> carbamazepine</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20abuse" title=" alcohol abuse"> alcohol abuse</a> </p> <a href="https://publications.waset.org/abstracts/56652/the-influence-of-carbamazepine-on-the-activity-of-cyp3a4-in-patients-with-alcoholism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Experience of Using Expanding Polyurethane Resin for Ground Improvement Under Existing Shallow Foundations on The Arabian Peninsula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20N.%20Zakharin">Evgeny N. Zakharin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Majewski"> Bartosz Majewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foaming polyurethane is a ground improvement technology that is increasingly used for foundation stabilization with differential settlement and controlled foundation structure lifting. This technology differs from conventional mineral grout due to its injection composition, which provides high-pressure expansion quickly due to a chemical reaction. The technology has proven efficient in the typical geological conditions of the United Arab Emirates. An in-situ trial foundation load test has been proposed to objectively assess the deformative and load-bearing characteristics of the soil after injection. The article provides a detailed description of the experiment carried out in field conditions. Based on the practical experiment's results and its finite element modeling, the deformation modulus of the soil after treatment was determined, which was more than five times higher than the initial value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20grout" title="chemical grout">chemical grout</a>, <a href="https://publications.waset.org/abstracts/search?q=expanding%20polyurethane%20resin" title=" expanding polyurethane resin"> expanding polyurethane resin</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation%20remediation" title=" foundation remediation"> foundation remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a> </p> <a href="https://publications.waset.org/abstracts/185888/experience-of-using-expanding-polyurethane-resin-for-ground-improvement-under-existing-shallow-foundations-on-the-arabian-peninsula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Recovery of Rare Earths and Scandium from in situ Leaching Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxim%20S.%20Botalov">Maxim S. Botalov</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20%D0%9C.%20Titova"> Svetlana М. Titova</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20V.%20Smyshlyaev"> Denis V. Smyshlyaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Grigory%20M.%20Bunkov"> Grigory M. Bunkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20V.%20Kirillov"> Evgeny V. Kirillov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20V.%20Kirillov"> Sergey V. Kirillov</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxim%20A.%20Mashkovtsev"> Maxim A. Mashkovtsev</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20N.%20Rychkov"> Vladimir N. Rychkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In uranium production, in-situ leaching (ISL) with its relatively low cost has become an important technology. As the orebody containing uranium most often contains a considerable value of other metals, particularly rare earth metals it has rendered feasible to recover the REM from the barren ISL solutions, from which the major uranium content has been removed. Ural Federal University (UrFU, Ekaterinburg, Russia) have performed joint research on the development of industrial technologies for the extraction of REM and Scandium compounds from Uranium ISL solutions. Leaching experiments at UrFU have been supported with multicomponent solution model. The experimental work combines solvent extraction with advanced ion exchange methodology in a pilot facility capable of treating 500 kg/hr of solids. The pilot allows for the recovery of a 99% concentrate of scandium oxide and collective concentrate with over 50 % REM content, with further recovery of heavy and light REM concentrates (99%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=scandium" title=" scandium"> scandium</a> </p> <a href="https://publications.waset.org/abstracts/88125/recovery-of-rare-earths-and-scandium-from-in-situ-leaching-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Beijerinckia indica Extracellular Extract Mediated Green Synthesis of Silver Nanoparticles with Antioxidant and Antibacterial Activities against Clinical Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gopalu%20Karunakaran">Gopalu Karunakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Matheswaran%20Jagathambal"> Matheswaran Jagathambal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Minh"> Nguyen Van Minh</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Kolesnikov"> Evgeny Kolesnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Kuznetsov"> Denis Kuznetsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigated the use of <em>Beijerinckia indica</em> extracellular extract for the synthesis of silver nanoparticles using AgNO<sub>3</sub>. The formation of nanoparticles was confirmed by different methods, such as UV-Vis absorption spectroscopy, XRD, FTIR, EDX, and TEM analysis. The formation of silver nanoparticles (AgNPs) was confirmed by the change in color from light yellow to dark brown. The absorbance peak obtained at 430 nm confirmed the presence of silver nanoparticles. The XRD analysis showed the cubic crystalline phase of the synthesized nanoparticles. FTIR revealed the presence of groups that acts as stabilizing and reducing agents for silver nanoparticles formation. The synthesized silver nanoparticles were generally found to be spherical in shape with size ranging from 5 to 20 nm, as evident by TEM analysis. These nanoparticles were found to inhibit pathogenic bacterial strains. This work proved that the bacterial extract is a potential eco-friendly candidate for the synthesis of silver nanoparticles with promising antibacterial and antioxidant properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Beijerinckia%20indica" title=" Beijerinckia indica"> Beijerinckia indica</a>, <a href="https://publications.waset.org/abstracts/search?q=characterisation" title=" characterisation"> characterisation</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20extracts" title=" extracellular extracts"> extracellular extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/66845/beijerinckia-indica-extracellular-extract-mediated-green-synthesis-of-silver-nanoparticles-with-antioxidant-and-antibacterial-activities-against-clinical-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Fast Adjustable Threshold for Uniform Neural Network Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Goncharenko">Alexander Goncharenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Denisov"> Andrey Denisov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Alyamkin"> Sergey Alyamkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Terentev"> Evgeny Terentev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation" title="distillation">distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a> </p> <a href="https://publications.waset.org/abstracts/107507/fast-adjustable-threshold-for-uniform-neural-network-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> An Assessment of Inland Transport Operator's Competitiveness in Phnom Penh, Cambodia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savin%20Phoeun">Savin Phoeun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long time civil war, economic, infrastructure, social, and political structure were destroyed and everything starts from zero. Transport and communication are the key feature of the national economic growth, especially inland transport and other mode take a complementary role which supported by government and international organization both direct and indirect to private sector and small and medium size enterprises. The objectives of this study are to study the general characteristics, capacity and competitive KPIs of Cambodian Inland Transport Operators. Questionnaire and interview were formed from capacity and competitiveness key performance indicators to take apart in survey to Inland Transport Companies in Phnom Penh capital city of Cambodia. And descriptive statistics was applied to identify the data. The result of this study divided into three distinct sectors: 1). Management ability of transport operators – capital management, financial and qualification are in similar level which can compete between local competitors (moderated level). 2). Ability in operation: customer service providing is better but seemed in high cost operation because mostly they are in family size. 3). Local Cambodian Inland Transport Service Providers are able to compete with each other because they are in similar operation level while Thai competitors mostly higher than. The suggestion and recommendation from the result that inland transport companies should access to new technology, improve strategic management, build partnership (join/corporate) to be bigger size of capital and company in order to attract truthfulness from customers and customize the services to satisfy. Inland Service Providers should change characteristic from only cost competitive to cost saving and service enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=competitiveness" title=" competitiveness"> competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=inland%20transport" title=" inland transport"> inland transport</a>, <a href="https://publications.waset.org/abstracts/search?q=operator" title=" operator"> operator</a> </p> <a href="https://publications.waset.org/abstracts/49226/an-assessment-of-inland-transport-operators-competitiveness-in-phnom-penh-cambodia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Quantifying the Second-Level Digital Divide on Sub-National Level with a Composite Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Korovkin">Vladimir Korovkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Park"> Albert Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20%20Kaganer"> Evgeny Kaganer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper studies the second-level digital divide (the one defined by the way how digital technology is used in everyday life) between regions of the Russian Federation. The paper offers a systemic review of literature on the measurement of the digital divide; based upon this it suggests a composite Digital Life Index, that captures the complex multi-dimensional character of the phenomenon. The model of the index studies separately the digital supply and demand across seven independent dimensions providing for 14 subindices. The Index is based on Internet-borne data, a distinction from traditional research approaches that rely on official statistics or surveys. Regression analysis is used to determine the relative importance of factors like income, human capital, and policy in determining the digital divide. The result of the analysis suggests that the digital divide is driven more by the differences in demand (defined by consumer competencies) than in supply; the role of income is insignificant, and the quality of human capital is the key determinant of the divide. The paper advances the existing methodological literature on the issue and can also inform practical decision-making regarding the strategies of national and regional digital development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20transformation" title="digital transformation">digital transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=second-level%20digital%20divide" title=" second-level digital divide"> second-level digital divide</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20index" title=" composite index"> composite index</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20policy" title=" digital policy"> digital policy</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20development" title=" regional development"> regional development</a>, <a href="https://publications.waset.org/abstracts/search?q=Russia" title=" Russia "> Russia </a> </p> <a href="https://publications.waset.org/abstracts/135919/quantifying-the-second-level-digital-divide-on-sub-national-level-with-a-composite-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Modeling and Experimental Verification of Crystal Growth Kinetics in Glass Forming Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20K.%20Galenko">Peter K. Galenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefanie%20Koch"> Stefanie Koch</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Rettenmayr"> Markus Rettenmayr</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Wonneberger"> Robert Wonneberger</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20V.%20%20Kharanzhevskiy"> Evgeny V. Kharanzhevskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20%20Zamoryanskaya"> Maria Zamoryanskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Ankudinov"> Vladimir Ankudinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analyze the structure of undercooled melts, crystal growth kinetics and amorphous/crystalline microstructure of rapidly solidifying glass-forming Pd-based and CuZr-based alloys. A dendrite growth model is developed using a combination of the kinetic phase-field model and mesoscopic sharp interface model. The model predicts features of crystallization kinetics in alloys from thermodynamically controlled growth (governed by the Gibbs free energy change on solidification) to the kinetically limited regime (governed by atomic attachment-detachment processes at the solid/liquid interface). Comparing critical undercoolings observed in the crystallization kinetics with experimental data on melt viscosity, atomistic simulation's data on liquid microstructure and theoretically predicted dendrite growth velocity allows us to conclude that the dendrite growth kinetics strongly depends on the cluster structure changes of the melt. The obtained data of theoretical and experimental investigations are used for interpretation of microstructure of samples processed in electro-magnetic levitator on board International Space Station in the frame of the project "MULTIPHAS" (European Space Agency and German Aerospace Center, 50WM1941) and "KINETIKA" (ROSKOSMOS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrite" title="dendrite">dendrite</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a> </p> <a href="https://publications.waset.org/abstracts/130040/modeling-and-experimental-verification-of-crystal-growth-kinetics-in-glass-forming-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Interaction of Metals with Non-Conventional Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20E.%20Tereshatov">Evgeny E. Tereshatov</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Folden"> C. M. Folden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic liquids and deep eutectic mixtures represent so-called non-conventional solvents. The former, composed of discrete ions, is a salt with a melting temperature below 100°С. The latter, consisting of hydrogen bond donors and acceptors, is a mixture of at least two compounds, resulting in a melting temperature depression in comparison with that of the individual moiety. These systems also can be water-immiscible, which makes them applicable for metal extraction. This work will cover interactions of In, Tl, Ir, and Rh in hydrochloric acid media with eutectic mixtures and Er, Ir, and At in a gas phase with chemically modified α-detectors. The purpose is to study chemical systems based on non-conventional solvents in terms of their interaction with metals. Once promising systems are found, the next step is to modify the surface of α-detectors used in the online element production at cyclotrons to get the detector chemical selectivity. Initially, the metal interactions are studied by means of the liquid-liquid extraction technique. Then appropriate molecules are chemisorbed on the surrogate surface first to understand the coating quality. Finally, a detector is covered with the same molecule, and the metal sorption on such detectors is studied in the online regime. It was found that chemical treatment of the surface can result in 99% coverage with a monolayer formation. This surface is chemically active and can adsorb metals from hydrochloric acid solutions. Similarly, a detector surface was modified and tested during cyclotron-based experiments. Thus, a procedure of detectors functionalization has been developed, and this opens an interesting opportunity of studying chemisorption of elements which do not have stable isotopes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=radioisotopes" title=" radioisotopes"> radioisotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20phase%20sorption" title=" gas phase sorption"> gas phase sorption</a> </p> <a href="https://publications.waset.org/abstracts/152945/interaction-of-metals-with-non-conventional-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Perspective for the Creation of Molecular Imprinted Polymers from Coal Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alma%20Khasenovna%20Zhakina">Alma Khasenovna Zhakina</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnt%20Oxana%20Vasilievna"> Arnt Oxana Vasilievna</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasilets%20Evgeny%20Petrovich"> Vasilets Evgeny Petrovich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this project is to develop methods for obtaining new molecularly imprinted polymers from coal waste to study their structure, structural and morphological features and properties. Recently, the development of molecularly imprinted polymers has become one of the hot topics for researchers. Modern research indicates the broad prospects of rapidly developing molecular imprinting technologies for creating a new generation of sorption materials. The attractiveness of this area of research lies in the fact that the use of imprinted polymers is not limited to scientific research; they are already being introduced in the chemical, pharmaceutical and biotechnological industries, primarily at the stages of purification of the final product. For the use of molecularly imprinted polymers in the development of sorption material, their ability to selectively remove pollutants, including trace concentrations, is of fundamental importance, and the exceptional stability of polymeric materials under harsh conditions makes it possible to simplify the process of water purification as a whole. The scientific and technical effect is associated with the development of technologies for the production of new molecularly imprinted polymers, the establishment of optimal conditions for their production and the creation of effective imprinted sorbents on their basis for wastewater treatment from heavy metals. The social effect is due to the fact that the use of coal waste as a feedstock for the production of imprinted sorbents will make it possible in the future to create new industries with additional jobs and obtain competitive multi-purpose products. The economic and multiplier effect is associated with the low cost of the final product due to the involvement of local coal waste in the production, reduction of transport, customs and other costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers" title="imprinted polymers">imprinted polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20waste" title=" coal waste"> coal waste</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=template" title=" template"> template</a>, <a href="https://publications.waset.org/abstracts/search?q=customized%20sorbents" title=" customized sorbents"> customized sorbents</a> </p> <a href="https://publications.waset.org/abstracts/172852/perspective-for-the-creation-of-molecular-imprinted-polymers-from-coal-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Optimizing Glycemic Control with AI-Guided Dietary Supplements: A Randomized Trial in Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Pokushalov">Evgeny Pokushalov</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Garcia"> Claire Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Ponomarenko"> Andrey Ponomarenko</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Smith"> John Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Johnson"> Michael Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Inessa%20Pak"> Inessa Pak</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgenya%20Shrainer"> Evgenya Shrainer</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Kudlay"> Dmitry Kudlay</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Kasimova"> Leila Kasimova</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Miller"> Richard Miller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluated the efficacy of an AI-guided dietary supplement regimen compared to a standard physician-guided regimen in managing Type 2 diabetes (T2D). A total of 160 patients were randomly assigned to either the AI-guided group (n=80) or the physician-guided group (n=80) and followed over 90 days. The AI-guided group received 5.3 ± 1.2 supplements per patient, while the physician-guided group received 2.7 ± 0.6 supplements per patient. The AI system personalized supplement types and dosages based on individual genetic and metabolic profiles. The AI-guided group showed a significant reduction in HbA1c levels from 7.5 ± 0.8% to 7.1 ± 0.7%, compared to a reduction from 7.6 ± 0.9% to 7.4 ± 0.8% in the physician-guided group (mean difference: -0.3%, 95% CI: -0.5% to -0.1%; p < 0.01). Secondary outcomes, including fasting plasma glucose, HOMA-IR, and insulin levels, also improved more in the AI-guided group. Subgroup analyses revealed that the AI-guided regimen was particularly effective in patients with specific genetic polymorphisms and elevated metabolic markers. Safety profiles were comparable between both groups, with no serious adverse events reported. In conclusion, the AI-guided dietary supplement regimen significantly improved glycemic control and metabolic health in T2D patients compared to the standard physician-guided approach, demonstrating the potential of personalized AI-driven interventions in diabetes management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Type%202%20diabetes" title="Type 2 diabetes">Type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=AI-guided%20supplementation" title=" AI-guided supplementation"> AI-guided supplementation</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20medicine" title=" personalized medicine"> personalized medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20control" title=" glycemic control"> glycemic control</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20health" title=" metabolic health"> metabolic health</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20polymorphisms" title=" genetic polymorphisms"> genetic polymorphisms</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20supplements" title=" dietary supplements"> dietary supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=HbA1c" title=" HbA1c"> HbA1c</a>, <a href="https://publications.waset.org/abstracts/search?q=fasting%20plasma%20glucose" title=" fasting plasma glucose"> fasting plasma glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMA-IR" title=" HOMA-IR"> HOMA-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20nutrition" title=" personalized nutrition"> personalized nutrition</a> </p> <a href="https://publications.waset.org/abstracts/194485/optimizing-glycemic-control-with-ai-guided-dietary-supplements-a-randomized-trial-in-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Investigation of the Working Processes in Thermocompressor Operating on Cryogenic Working Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20V.%20Blagin">Evgeny V. Blagin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20I.%20Dovgjallo"> Aleksandr I. Dovgjallo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20A.%20Uglanov"> Dmitry A. Uglanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with research of the working process in the thermocompressor which operates on cryogenic working fluid. Thermocompressor is device suited for the conversation of heat energy directly to the potential energy of pressure. Suggested thermocompressor is suited for operation during liquid natural gas (LNG) re-gasification and is placed after evaporator. Such application of thermocompressor allows using of the LNG cold energy for rising of working fluid pressure, which then can be used for electricity generation or another purpose. Thermocompressor consists of two chambers divided by the regenerative heat exchanger. Calculation algorithm for unsteady calculation of thermocompressor working process was suggested. The results of this investigation are to change of thermocompressor’s chambers temperature and pressure during the working cycle. These distributions help to find out the parameters, which significantly influence thermocompressor efficiency. These parameters include regenerative heat exchanger coefficient of the performance (COP) dead volume of the chambers, working frequency of the thermocompressor etc. Exergy analysis was performed to estimate thermocompressor efficiency. Cryogenic thermocompressor operated on nitrogen working fluid was chosen as a prototype. Calculation of the temperature and pressure change was performed with taking into account heat fluxes through regenerator and thermocompressor walls. Temperature of the cold chamber significantly differs from the results of steady calculation, which is caused by friction of the working fluid in regenerator and heat fluxes from the hot chamber. The rise of the cold chamber temperature leads to decreasing of thermocompressor delivery volume. Temperature of hot chamber differs negligibly because losses due to heat fluxes to a cold chamber are compensated by the friction of the working fluid in the regenerator. Optimal working frequency was selected. Main results of the investigation: -theoretical confirmation of thermocompressor operation capability on the cryogenic working fluid; -optimal working frequency was found; -value of the cold chamber temperature differs from the starting value much more than the temperature of the hot chamber; -main parameters which influence thermocompressor performance are regenerative heat exchanger COP and heat fluxes through regenerator and thermocompressor walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20energy" title="cold energy">cold energy</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20natural%20gas" title=" liquid natural gas"> liquid natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=thermocompressor" title=" thermocompressor"> thermocompressor</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20heat%20exchanger" title=" regenerative heat exchanger"> regenerative heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/38355/investigation-of-the-working-processes-in-thermocompressor-operating-on-cryogenic-working-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Optimizing Weight Loss with AI (GenAISᵀᴹ): A Randomized Trial of Dietary Supplement Prescriptions in Obese Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Pokushalov">Evgeny Pokushalov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Ponomarenko"> Andrey Ponomarenko</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Smith"> John Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Johnson"> Michael Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Garcia"> Claire Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Inessa%20Pak"> Inessa Pak</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgenya%20Shrainer"> Evgenya Shrainer</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Kudlay"> Dmitry Kudlay</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Bayramova"> Sevda Bayramova</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Miller"> Richard Miller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Obesity is a complex, multifactorial chronic disease that poses significant health risks. Recent advancements in artificial intelligence (AI) offer the potential for more personalized and effective dietary supplement (DS) regimens to promote weight loss. This study aimed to evaluate the efficacy of AI-guided DS prescriptions compared to standard physician-guided DS prescriptions in obese patients. Methods: This randomized, parallel-group pilot study enrolled 60 individuals aged 40 to 60 years with a body mass index (BMI) of 25 or greater. Participants were randomized to receive either AI-guided DS prescriptions (n = 30) or physician-guided DS prescriptions (n = 30) for 180 days. The primary endpoints were the percentage change in body weight and the proportion of participants achieving a ≥5% weight reduction. Secondary endpoints included changes in BMI, fat mass, visceral fat rating, systolic and diastolic blood pressure, lipid profiles, fasting plasma glucose, hsCRP levels, and postprandial appetite ratings. Adverse events were monitored throughout the study. Results: Both groups were well balanced in terms of baseline characteristics. Significant weight loss was observed in the AI-guided group, with a mean reduction of -12.3% (95% CI: -13.1 to -11.5%) compared to -7.2% (95% CI: -8.1 to -6.3%) in the physician-guided group, resulting in a treatment difference of -5.1% (95% CI: -6.4 to -3.8%; p < 0.01). At day 180, 84.7% of the AI-guided group achieved a weight reduction of ≥5%, compared to 54.5% in the physician-guided group (Odds Ratio: 4.3; 95% CI: 3.1 to 5.9; p < 0.01). Significant improvements were also observed in BMI, fat mass, and visceral fat rating in the AI-guided group (p < 0.01 for all). Postprandial appetite suppression was greater in the AI-guided group, with significant reductions in hunger and prospective food consumption, and increases in fullness and satiety (p < 0.01 for all). Adverse events were generally mild-to-moderate, with higher incidences of gastrointestinal symptoms in the AI-guided group, but these were manageable and did not impact adherence. Conclusion: The AI-guided dietary supplement regimen was more effective in promoting weight loss, improving body composition, and suppressing appetite compared to the physician-guided regimen. These findings suggest that AI-guided, personalized supplement prescriptions could offer a more effective approach to managing obesity. Further research with larger sample sizes is warranted to confirm these results and optimize AI-based interventions for weight loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obesity" title="obesity">obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=AI-guided" title=" AI-guided"> AI-guided</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20supplements" title=" dietary supplements"> dietary supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20loss" title=" weight loss"> weight loss</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20medicine" title=" personalized medicine"> personalized medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20health" title=" metabolic health"> metabolic health</a>, <a href="https://publications.waset.org/abstracts/search?q=appetite%20suppression" title=" appetite suppression"> appetite suppression</a> </p> <a href="https://publications.waset.org/abstracts/194486/optimizing-weight-loss-with-ai-genais-a-randomized-trial-of-dietary-supplement-prescriptions-in-obese-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Anti-DNA Antibodies from Patients with Schizophrenia Hydrolyze DNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20A.%20Ermakov">Evgeny A. Ermakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyudmila%20P.%20Smirnova"> Lyudmila P. Smirnova</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20N.%20Buneva"> Valentina N. Buneva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schizophrenia associated with dysregulation of neurotransmitter processes in the central nervous system and disturbances in the humoral immune system resulting in the formation of antibodies (Abs) to the various components of the nervous tissue. Abs to different neuronal receptors and DNA were detected in the blood of patients with schizophrenia. Abs hydrolyzing DNA were detected in pool of polyclonal autoantibodies in autoimmune and infectious diseases, such catalytic Abs were named abzymes. It is believed that DNA-hydrolyzing abzymes are cytotoxic, cause nuclear DNA fragmentation and induce cell death by apoptosis. Abzymes with DNAase activity are interesting because of the mechanism of formation and the possibility of use as diagnostic markers. Therefore, in our work we have set following goals: to determine the level anti-DNA Abs in the serum of patients with schizophrenia and to study DNA-hydrolyzing activity of IgG of patients with schizophrenia. Materials and methods: In our study there were included 41 patients with a verified diagnosis of paranoid or simple schizophrenia and 24 healthy donors. Electrophoretically and immunologically homogeneous IgGs were obtained by sequential affinity chromatography of the serum proteins on protein G-Sepharose and gel filtration. The levels of anti-DNA Abs were determined using ELISA. DNA-hydrolyzing activity was detected as the level of supercoiled pBluescript DNA transition in circular and linear forms, the hydrolysis products were analyzed by agarose electrophoresis followed by ethidium bromide stain. To correspond the registered catalytic activity directly to the antibodies we carried out a number of strict criteria: electrophoretic homogeneity of the antibodies, gel filtration (acid shock analysis) and in situ activity. Statistical analysis was performed in ‘Statistica 9.0’ using the non-parametric Mann-Whitney test. Results: The sera of approximately 30% of schizophrenia patients displayed a higher level of Abs interacting with single-stranded (ssDNA) and double-stranded DNA (dsDNA) compared with healthy donors. The average level of Abs interacting with ssDNA was only 1.1-fold lower than that for interacting with dsDNA. IgG of patient with schizophrenia were shown to possess DNA hydrolyzing activity. Using affinity chromatography, electrophoretic analysis of isolated IgG homogeneity, gel filtration in acid shock conditions and in situ DNAse activity analysis we proved that the observed activity is intrinsic property of studied antibodies. We have shown that the relative DNAase activity of IgG in patients with schizophrenia averaged 55.4±32.5%, IgG of healthy donors showed much lower activity (average of 9.1±6.5%). It should be noted that DNAase activity of IgG in patients with schizophrenia with a negative symptoms was significantly higher (73.3±23.8%), than in patients with positive symptoms (43.3±33.1%). Conclusion: Anti-DNA Abs of patients with schizophrenia not only bind DNA, but quite efficiently hydrolyze the substrate. The data show a correlation with the level of DNase activity and leading symptoms of patients with schizophrenia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-DNA%20antibodies" title="anti-DNA antibodies">anti-DNA antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=abzymes" title=" abzymes"> abzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20hydrolysis" title=" DNA hydrolysis"> DNA hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=schizophrenia" title=" schizophrenia"> schizophrenia</a> </p> <a href="https://publications.waset.org/abstracts/38482/anti-dna-antibodies-from-patients-with-schizophrenia-hydrolyze-dna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vitaliy%20Petrov">Vitaliy Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Shusharina"> Natalia Shusharina</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitaliy%20Kasymov"> Vitaliy Kasymov</a>, <a href="https://publications.waset.org/abstracts/search?q=Maksim%20Patrushev"> Maksim Patrushev</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Bogdanov"> Evgeny Bogdanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS%20sensor" title="MEMS sensor">MEMS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20power" title=" RF power"> RF power</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20data" title=" wireless data"> wireless data</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillator-based%20circuit" title=" oscillator-based circuit"> oscillator-based circuit</a> </p> <a href="https://publications.waset.org/abstracts/29153/the-implantable-mems-blood-pressure-sensor-model-with-wireless-powering-and-data-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>