CINXE.COM
Search results for: barley
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: barley</title> <meta name="description" content="Search results for: barley"> <meta name="keywords" content="barley"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="barley" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="barley"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 79</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: barley</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Forage Quality of Chickpea - Barley as Affected by Mixed Cropping System in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the quality response of forage to chickpea-barley mixed cropping under drought stress and vermicompost consumption, an experiment was carried out under well watered and %70 water requirement (stress condition) in RCBD as split plot with four replications in temperate condition of Khorramabad in 2013. Chickpea-barley mix cropping (%100 chickpea, %75:25 chickpea:barley, %50:50 chickpea:barley, %25:75 chickpea:barley, and %100 barley) was studied. Results showed that wet and dry forage yield were significantly affected by environment and decreased in stress condition. Also, crude protein content decreased from %26.2 in well watered to %17.3 in stress condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20protein" title="crude protein">crude protein</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20forage%20yield" title=" wet forage yield"> wet forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20forage%20yield" title=" dry forage yield"> dry forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress%20condition" title=" water stress condition"> water stress condition</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20watered" title=" well watered"> well watered</a> </p> <a href="https://publications.waset.org/abstracts/31169/forage-quality-of-chickpea-barley-as-affected-by-mixed-cropping-system-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Evaluation of Forage Yield and Competition Indices for Intercropped Barley and Legumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Javanmard">Abdollah Javanmard</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Shekari"> Fariborz Shekari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Barley (Hordeum vulgare L.), vetch (Vicia villosa), and grass pea (Lathyrus sativus L.) monocultures as well as mixtures of barley with each of the above legumes, in three seeding ratios (i.e., barley: legume 75:25, 50:50 and 25:75 based on seed numbers) were used to investigate forage yield and competition indices. The results showed that intercropping reduced the dry matter yield of the three component plants, compared with their respective monocrops. The greatest value of total dry matter yield was obtained from barley25-grasspea75 (5.44 t ha-1) mixture, followed by grass pea sole crop (4.99 t ha-1). The total AYL values were positive and greater than 0 in all mixtures, indicating an advantage from intercropping over sole crops. Intercropped barley had a higher relative crowding coefficient (K=1.64) than intercropped legumes (K=1.20), indicating that barley was more competitive than legumes in mixtures. Furthermore, grass pea was more competitive than vetch in mixtures with barley. The highest LER, SPI and MAI were obtained when barley was mixed at a rate of 25% with 75% seed rate of grass pea. It is concluded that intercropping of barley with grass pea has a good potential to improve the performance of forage with high land-use efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forage" title="forage">forage</a>, <a href="https://publications.waset.org/abstracts/search?q=grass%20pea" title=" grass pea"> grass pea</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=LER" title=" LER"> LER</a>, <a href="https://publications.waset.org/abstracts/search?q=monetary%20advantage" title=" monetary advantage"> monetary advantage</a> </p> <a href="https://publications.waset.org/abstracts/3557/evaluation-of-forage-yield-and-competition-indices-for-intercropped-barley-and-legumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Interaction of between Cd and Zn in Barley (Hordeum vulgare L.) Plant for Phytoextraction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Adilo%C4%9Flu">S. Adiloğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bellit%C3%BCrk"> K. Bellitürk</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Solmaz"> Y. Solmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Adilo%C4%9Flu"> A. Adiloğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to remediation of the cadmium (Cd) pollution in agricultural soils by using barley (<em>Hordeum vulgare </em>L<em>.</em>) plant. For this purpose, a pot experiment was done in greenhouse conditions. Cadmium (100 mg/kg) as CdSO<sub>4</sub>.8H<sub>2</sub>O forms was applied to each pot and incubated during 30 days. Then Ethylenediamine tetraacetic acid (EDTA) chelate was applied to each pot at five doses (0, 3, 6, 8 and 10 mmol/kg) 20 days before harvesting time of the barley plants. The plants were harvested after two months planting. According to the pot experiment results, Cd and Zn amounts of barley plant increased with increasing EDTA application and Zn and Cd contents of barley 20,13 and 1,35 mg/kg for 0 mmol /kg EDTA; 58,61 and 113,24 mg/kg for 10 mmol/kg EDTA doses, respectively. On the other hand, Cd and Zn concentrations of experiment soil increased with EDTA application to the soil samples. Zinc and Cd concentrations of soil 0,31 and 0,021 mg/kg for 0 mmol /kg EDTA; 2,39 and 67,40 mg/kg for 10 mmol/kg EDTA doses, respectively. These increases were found to be statistically significant at the level of 1 %. According to the results of the pot experiment, some heavy metal especially Cd pollution of barley (<em>Hordeum vulgare </em>L<em>.</em>) plant province can be remediated by the phytoextraction method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barley" title="Barley">Barley</a>, <a href="https://publications.waset.org/abstracts/search?q=Hordeum%20vulgare%20L." title=" Hordeum vulgare L."> Hordeum vulgare L.</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution" title=" soil pollution"> soil pollution</a> </p> <a href="https://publications.waset.org/abstracts/61817/interaction-of-between-cd-and-zn-in-barley-hordeum-vulgare-l-plant-for-phytoextraction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Improvement of Spray Retention on Barley </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassina%20Hafida%20Boukhalfa">Hassina Hafida Boukhalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Belhamra"> Mohamed Belhamra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adjuvants contribute to change the types of impact and thus the amount of spray retained by the leaves of the treated plant. We have performed tests of retention on barley plants on BBCH 12 stage and small pieces of barley leaves at the same stage of growth. Spraying was done in three ways: water without adjuvant, water with Break-Thru® S240 and water with Li700®. The three slurries of fluorescein contained in an amount of 0.2 g/l. Fluorescein retained by the leaves in both cases is then measured by a spectrofluoremeter. The retention tests on whole plants show that it is tripled by the first adjuvant and doubled by the second. By cons on small pieces of barley leaves, the amount was increased by the use of surfactants but not to the same scale. This study concluded that the use of adjuvants in spray pesticides may increase the amount of retention as a function of leaf area and the type of adjuvant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barley" title="Barley">Barley</a>, <a href="https://publications.waset.org/abstracts/search?q=adjuvant" title=" adjuvant"> adjuvant</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20retention" title=" spray retention"> spray retention</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorometry" title=" fluorometry"> fluorometry</a> </p> <a href="https://publications.waset.org/abstracts/45400/improvement-of-spray-retention-on-barley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Land Equivalent Ration of Chickpea - Barley as Affected by Mixed Cropping System and Vermicompost in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of the effect of vermin compost on yield, and Land equivalent ration (LER) of chickpea-barley mixed cropping under normal dry land condition can be useful in order to increase qualitative and quantitative performance. In this case, two factors include fertilizer (vermicompost biological fertilizer, ammonium phosphate chemical fertilizer, vermicompost + %75 chemical fertilizer) and chickpea + barley mixed cropping (sole chickpea, %75 chickpea: %25 barley, %50 chickpea: %50 barley, %25 chickpea: %75 barley, and sole barley) in RCBD in three replications in two experiments include normal and dry land conditions were studied. Result showed that total LER base on dry matter was affected by environment and mixed cropping interaction and was more than 1 in all mixed cropping treatments. In different mixed cropping rates, wet forage yield decreased by decreasing chickpea ratio as well as increasing barley ratio. Total LER mean in base on forage dry matter in mixed-, chemical-, and vermicompost fertilizer treatments were 1.12, 1.05 and 1.10 in normal condition and 1.15, 1.08 and 1.14 in dry land condition, respectively, represented the important of biological fertilizer in mixed cropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20equivalent%20ration" title="land equivalent ration">land equivalent ration</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20fertilizer" title=" biological fertilizer"> biological fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20cropping%20systems" title=" mixed cropping systems"> mixed cropping systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/37487/land-equivalent-ration-of-chickpea-barley-as-affected-by-mixed-cropping-system-and-vermicompost-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Allelopathic Effects of Eucalyptus camaldulensis and E. gomphocephala on Seed Germination and Seedling Growth of Barley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sallah%20S.%20El-Ammari">Sallah S. El-Ammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona.%20S.%20Hasan"> Mona. S. Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is aimed to study allelopathic effects of two wind breakers Eucalyptus camaldulensis and E.gomphocephala on germination and growth of barley using aqueous extracts of leaves at 0.5, 1, 5, and 10% concentrations for treatment of barley caryopsis in petri dishes incubated in growth chamber. Distilled water was used in the experiment as a control. Seed germination was recorded on daily basis for five days. After ten days measurements of root length, shoot length, fresh and dry weight of root and shoot were taken. With the exception of 0.5% E. gomphocephala extract effect on length and dry weight of barley root, all the tested extract concentrations for both eucalyptus species significantly decreased the percent and speed of germination, root and shoot length, fresh and dry weight of root and shoot of barley compared to the control. For both species the allelopathic effect was significantly increasing with the increase of the extract concentration. Although, higher allelopathic effect was shown by E. camaldulensis, the results indicating that both eucalyptus species should not be recommended as wind breakers for barley fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allelopathy" title="allelopathy">allelopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=eucalyptus" title=" eucalyptus"> eucalyptus</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a>, <a href="https://publications.waset.org/abstracts/search?q=Libya" title=" Libya"> Libya</a> </p> <a href="https://publications.waset.org/abstracts/35602/allelopathic-effects-of-eucalyptus-camaldulensis-and-e-gomphocephala-on-seed-germination-and-seedling-growth-of-barley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Effect of Time and Rate of Nitrogen Application on the Malting Quality of Barley Yield in Sandy Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Talaab">A. S. Talaab</a>, <a href="https://publications.waset.org/abstracts/search?q=Safaa"> Safaa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mahmoud"> A. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20S.%20Siam"> Hanan S. Siam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted during the winter season of 2013/2014 in the barley production area of Dakhala – New Valley Governorate, Egypt to assess the effect of nitrogen rate and time of N fertilizer application on barley grain yield, yield components and N use efficiency of barley and their association with grain yield. The treatments consisted of three levels of nitrogen (0, 70 and 100 kg N/acre) and five application times. The experiment was laid out as a randomized complete block design with three replication. Results revealed that barley grain yield and yield components increased significantly in response to N rate. Splitting N fertilizer amount at several times result in significant effect on grain yield, yield components, protein content and N uptake efficiency when compared with the entire N was applied at once. Application of N at rate of 100 kg N/acre resulted in accumulation of nitrate in the subsurface soil > 30cm. When N application timing considered, less NO3 was found in the soil profile with splitting N application compared with all preplans application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20use%20efficiency" title="nitrogen use efficiency">nitrogen use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer" title=" splitting N fertilizer"> splitting N fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a>, <a href="https://publications.waset.org/abstracts/search?q=NO3" title=" NO3"> NO3</a> </p> <a href="https://publications.waset.org/abstracts/49548/effect-of-time-and-rate-of-nitrogen-application-on-the-malting-quality-of-barley-yield-in-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Analysis of Endogenous Sirevirus in Germinating Barley (Hordeum vulgare L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nermin%20Gozukirmizi">Nermin Gozukirmizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Buket%20Cakmak"> Buket Cakmak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevgi%20Marakli"> Sevgi Marakli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sireviruses are genera of copia LTR retrotransposons with a unique genome structure among retrotransposons. Barley (Hordeum vulgare L.) is an economically important plant and has been studied as a model plant regarding its short annual life cycle and seven chromosome pairs. In this study, we used mature barley embryos, 10-day-old roots and 10-day-old leaves derived from the same barley plant to investigate SIRE1 retrotransposon movements by Inter-Retrotransposon Amplified Polymorphism (IRAP) technique. We found polymorphism rates between 0-64% among embryos, roots and leaves. Polymorphism rates were detected to be 0-27% among embryos, 8-60% among roots, and 11-50% among leaves. Polymorphisms were observed not only among the parts of different individuals, but also on the parts of the same plant (23-64%). The internal domains of SIRE1 (gag, env and rt) were also analyzed in the embryos, roots and leaves. Analysis of band profiles showed no polymorphism for gag, however, different band patterns were observed among samples for rt and env. The sequencing of SIRE1 gag, env and rt domains revealed 79% similarity for gag, 95% for env and 84% for rt to Ty1-copia retrotransposons. SIRE1 retrotransposon was identified in the soybean genome and has been studied on other plants (maize, rice, tomatoe etc.). This study is the first detailed investigation of SIRE1 in barley genome. The obtained findings are expected to contribute to the comprehension of SIRE1 retrotransposon and its role in barley genome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=retrotransposon" title=" retrotransposon"> retrotransposon</a>, <a href="https://publications.waset.org/abstracts/search?q=SIRE1%20virus" title=" SIRE1 virus "> SIRE1 virus </a> </p> <a href="https://publications.waset.org/abstracts/15188/analysis-of-endogenous-sirevirus-in-germinating-barley-hordeum-vulgare-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Viliene">V. Viliene</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sasyte"> V. Sasyte</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Raceviciute-Stupeliene"> A. Raceviciute-Stupeliene</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Gruzauskas"> R. Gruzauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P<0.05) between the oats and barley varieties. The highest total amino acid content between oats was determined in variety Flamingsprofi (4.56 g/kg) and the lowest – variety Circle (3.57 g/kg), and between barley - respectively in varieties Publican (3.50 g/kg) and Sebastian (3.11 g/kg). The different varieties of oats digestible amino acid content varied from 3.11 g/kg to 4.07 g/kg; barley different varieties varied from 2.59 g/kg to 2.94 g/kg. The average amino acids digestibility of oats varied from 74.4% (Liz) to 95.6% (Fen) and in barley - from 75.8 % (Tre) to 89.6% (Fen). The amount of digestible energy in the analyzed varieties of oats and barley was an average compound 13.74 MJ/kg DM and 14.85 MJ/kg DM, respectively. An analysis of the results showed that different varieties of oats compared with barley are preferable for horse nutrition according to the crude fat, crude fiber, ash and separate amino acids content, but the analyzed barley varieties dominated the higher amounts of crude protein, the digestible Liz amount and higher DE content, and thus, could be recommended for making feed formulation for horses combining oats and barley, taking into account the chemical composition of using cereal varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=digestive%20energy" title=" digestive energy"> digestive energy</a>, <a href="https://publications.waset.org/abstracts/search?q=horses" title=" horses"> horses</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20value" title=" nutritional value"> nutritional value</a>, <a href="https://publications.waset.org/abstracts/search?q=oats" title=" oats"> oats</a> </p> <a href="https://publications.waset.org/abstracts/58639/nutritional-value-determination-of-different-varieties-of-oats-and-barley-using-near-infrared-spectroscopy-method-for-the-horses-nutrition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Effect of Hull-Less Barley Flakes and Malt Extract on Yoghurt Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilze%20Beitane">Ilze Beitane</a>, <a href="https://publications.waset.org/abstracts/search?q=Evita%20Straumite"> Evita Straumite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research was to evaluate the influence of flakes from biologically activated hull-less barley grain and malt extract on quality of yoghurt during its storage. The results showed that the concentration of added malt extract and storage time influenced the changes of pH and lactic acid in yoghurt samples. Sensory properties-aroma, taste, consistency and appearance-of yoghurt enriched with flakes from biologically activated hull-less barley grain and malt extract changed significantly (p<0.05) during storage. Yoghurt with increased proportion of malt extract had sweeter taste and more flowing consistency. Sensory properties (taste, aroma, consistency, and appearance) of yoghurt samples enriched with 5% flakes from biologically activated hull-less barley grain (YFBG 5%) and 5% flakes from biologically activated hull-less barley grain and 2% malt extract (YFBG 5% ME 2%) did not change significantly during one week of storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barley%20flakes" title="Barley flakes">Barley flakes</a>, <a href="https://publications.waset.org/abstracts/search?q=malt%20extract" title=" malt extract"> malt extract</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20analysis" title=" sensory analysis"> sensory analysis</a> </p> <a href="https://publications.waset.org/abstracts/5994/effect-of-hull-less-barley-flakes-and-malt-extract-on-yoghurt-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Genetic Characterization of Barley Genotypes via Inter-Simple Sequence Repeat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Yorganc%C4%B1lar">Mustafa Yorgancılar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Atalay"> Emine Atalay</a>, <a href="https://publications.waset.org/abstracts/search?q=Necdet%20Akg%C3%BCn"> Necdet Akgün</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Topal"> Ali Topal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, polymerase chain reaction based Inter-simple sequence repeat (ISSR) from DNA fingerprinting techniques were used to investigate the genetic relationships among barley crossbreed genotypes in Turkey. It is important that selection based on the genetic base in breeding programs via ISSR, in terms of breeding time. 14 ISSR primers generated a total of 97 bands, of which 81 (83.35%) were polymorphic. The highest total resolution power (RP) value was obtained from the F2 (0.53) and M16 (0.51) primers. According to the ISSR result, the genetic similarity index changed between 0.64–095; Lane 3 with Line 6 genotypes were the closest, while Line 36 were the most distant ones. The ISSR markers were found to be promising for assessing genetic diversity in barley crossbreed genotypes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=crossbreed" title=" crossbreed"> crossbreed</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20similarity" title=" genetic similarity"> genetic similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=ISSR" title=" ISSR"> ISSR</a> </p> <a href="https://publications.waset.org/abstracts/63629/genetic-characterization-of-barley-genotypes-via-inter-simple-sequence-repeat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Root Biomass Growth in Different Growth Stages of Wheat and Barley Cultivars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Akman">H. Akman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Topal"> A. Topal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work was conducted in greenhouse conditions in order to investigate root biomass growth of two bread wheat, two durum wheat and two barley cultivars that were grown in irrigated and dry lands, respectively. This work was planned with four replications at a Completely Randomized Block Design in 2011-2012 growing season. In the study, root biomass growth was evaluated at stages of stem elongation, complete of anthesis and full grain maturity. Results showed that there were significant differences between cultivars grown at dry and irrigated lands in all growth stages in terms of root biomass (P < 0.01). According to research results, all of growth stages, dry typed-bread and durum wheats generally had higher root biomass than irrigated typed-cultivars, furthermore that dry typed-barley cultivar, had higher root biomass at GS 31 and GS 69, however lower at GS 92 than Larende. In all cultivars, root biomass increased between GS 31 and GS 69 so that dry typed-cultivars had more root biomass increase than irrigated typed-cultivars. Root biomass of bread wheat increased between GS 69 and GS 92, however root biomass of barley and durum wheat decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bread%20and%20durum%20wheat" title="bread and durum wheat">bread and durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20biomass" title=" root biomass"> root biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20growth%20stage" title=" different growth stage"> different growth stage</a> </p> <a href="https://publications.waset.org/abstracts/20561/root-biomass-growth-in-different-growth-stages-of-wheat-and-barley-cultivars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> The Effect of Precipitation on Weed Infestation of Spring Barley under Different Tillage Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Winkler">J. Winkler</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chovancov%C3%A1"> S. Chovancová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article deals with the relation between rainfall in selected months and subsequent weed infestation of spring barley. The field experiment was performed at Mendel University agricultural enterprise in Žabčice, Czech Republic. Weed infestation was measured in spring barley vegetation in years 2004 to 2012. Barley was grown in three tillage variants: conventional tillage technology (CT), minimization tillage technology (MT), and no tillage (NT). Precipitation was recorded in one-day intervals. Monthly precipitation was calculated from the measured values in the months of October through to April. The technique of canonical correspondence analysis was applied for further statistical processing. 41 different species of weeds were found in the course of the 9-year monitoring period. The results clearly show that precipitation affects the incidence of most weed species in the selected months, but acts differently in the monitored variants of tillage technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weeds" title="weeds">weeds</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage" title=" tillage"> tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=weed%20infestation%20forecast" title=" weed infestation forecast"> weed infestation forecast</a> </p> <a href="https://publications.waset.org/abstracts/13194/the-effect-of-precipitation-on-weed-infestation-of-spring-barley-under-different-tillage-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Efficient Callus Induction and Plant Regeneration from Mature Embryo Culture of Barley (Hordeum vulgare L.) Genotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCn%C3%BCre%20Tanur%20Erkoyuncu">Münüre Tanur Erkoyuncu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Yorganc%C4%B1lar"> Mustafa Yorgancılar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crop improvement through genetic engineering depends on effective and reproducible plant regeneration systems. Immature embryos are the most widely used explant source for <em>in vitro</em> regeneration in barley (<em>Hordeum vulgare</em> L.). However, immature embryos require the continuous growth of donor plants and the suitable stage for their culture is also certainly limited. On the other hand, mature embryos can be procured and stored easily; they can be studied throughout the year. In this study, an effective callus induction and plant regeneration were aimed to develop from mature embryos of different barley genotypes. The effect of medium (MS<sub>1</sub> and MS<sub>2</sub>), auxin type (2,4-D, dicamba, picloram and 2,4,5-T) and concentrations (2, 4, 6 mg/l) on callus formation and effect of cytokinin type (TDZ, BAP) and concentrations (0.2, 0.5, 1.0 mg/l) on green plant regeneration were evaluated in mature embryo culture of barley. Callus and shoot formation was successful for all genotypes. By depending on genotype, MS<sub>1 </sub>is the best medium, 4 mg/l dicamba is the best growth regulator in the callus induction and MS<sub>1 </sub>is the best medium, 1 mg/l BAP is the best growth regulator in the shoot formation were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=callus" title=" callus"> callus</a>, <a href="https://publications.waset.org/abstracts/search?q=embryo%20culture" title=" embryo culture"> embryo culture</a>, <a href="https://publications.waset.org/abstracts/search?q=mature%20embryo" title=" mature embryo"> mature embryo</a> </p> <a href="https://publications.waset.org/abstracts/49872/efficient-callus-induction-and-plant-regeneration-from-mature-embryo-culture-of-barley-hordeum-vulgare-l-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Response of Barley Quality Traits, Yield and Antioxidant Enzymes to Water-Stress and Chemical Inducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20Hafez">Emad Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Seleiman"> Mahmoud Seleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two field experiments were carried out in order to investigate the effect of chemical inducers [benzothiadiazole 0.9 mM L-1, oxalic acid 1.0 mM L-1, salicylic acid 0.2 mM L-1] on physiological and technological traits as well as on yields and antioxidant enzyme activities of barley grown under abiotic stress (i.e. water surplus and deficit conditions). Results showed that relative water content, leaf area, chlorophyll and yield as well as technological properties of barley were improved with chemical inducers application under water surplus and water-stress conditions. Antioxidant enzymes activity (i.e. catalase and peroxidase) were significantly increased in barley grown under water-stress and treated with chemical inducers. Yield and related parameters of barley presented also significant decrease under water-stress treatment, while chemical inducers application enhanced the yield-related traits. Starch and protein contents were higher in plants treated with salicylic acid than in untreated plants when water-stress was applied. In conclusion, results show that chemical inducers application have a positive interaction and synergetic influence and should be suggested to improve plant growth, yield and technological properties of water stressed barley. Salicylic acid application was better than oxalic acid and benzothiadiazole in terms of plant growth and yield improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title="antioxidant enzymes">antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Hordeum%20vulgare%20L." title=" Hordeum vulgare L."> Hordeum vulgare L.</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/74163/response-of-barley-quality-traits-yield-and-antioxidant-enzymes-to-water-stress-and-chemical-inducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Reducing the Impact of Pathogenic Fungi on Barley Using Bacteria: Bacterial Biocontrol in the Barley-Malt-Beer Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eus%C3%A8be%20Gnonlonfoun">Eusèbe Gnonlonfoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Framboisier"> Xavier Framboisier</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Fick"> Michel Fick</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Rondags"> Emmanuel Rondags</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pathogenic fungi represent a generic problem for cereals, including barley, as they can produce a number of thermostable toxic metabolites such as mycotoxins that contaminate plants and food products, leading to serious health issues for humans and animals and causing significant losses in global food production. In addition, mycotoxins represent a significant technological concern for the malting and brewing industries, as they may affect the quality and safety of raw materials (barley and malt) and final products (beer). Moreover, this situation is worsening due to the highly variable climatic conditions that favor microbial development and the societal desire to reduce the use of phytosanitary products, including fungicides. In this complex environmental, regulatory and economic context for the French barley-malt-beer industry, this project aims to develop an innovative biocontrol process by using technological bacteria, isolated from infection-resistant barley cultures, that are able to reduce the development of spoilage fungi and the associated mycotoxin production. The experimental approach consists of i) coculturing bacterial and pathogenic fungal strains in solid and liquid media to access the growth kinetics of these microorganisms and to evaluate the impact of these bacteria on fungal growth and mycotoxin production; then ii) the results will be used to carry out a micro-malting process in order to develop the aforementioned process, and iii) the technological and sanitary properties of the generated barley malts will finally be evaluated in order to validate the biocontrol process developed. The process is expected to make it possible to guarantee, with controlled costs, an irreproachable hygienic and technological quality of the malt, despite the increasingly complex and variable conditions for barley production. Thus, the results will not only make it possible to maintain the dominant world position of the French barley-malt chain but will also allow it to conquer emerging markets, mainly in Africa and Asia. The use of this process will also contribute to the reduction of the use of phytosanitary products in the field for barley production while reducing the level of contamination of malting plant effluents. Its environmental impact would therefore be significant, especially considering that barley is the fourth most-produced cereal in the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenic%20fungi" title=" pathogenic fungi"> pathogenic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxins" title=" mycotoxins"> mycotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=malting" title=" malting"> malting</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20biocontrol" title=" bacterial biocontrol"> bacterial biocontrol</a> </p> <a href="https://publications.waset.org/abstracts/142007/reducing-the-impact-of-pathogenic-fungi-on-barley-using-bacteria-bacterial-biocontrol-in-the-barley-malt-beer-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Genetic Trait Analysis of RIL Barley Genotypes to Sort-out the Top Ranked Elites for Advanced Yield Breeding Across Multi Environments of Tigray, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hailekiros%20Tadesse%20Tekle">Hailekiros Tadesse Tekle</a>, <a href="https://publications.waset.org/abstracts/search?q=Yemane%20Tsehaye"> Yemane Tsehaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Fetien%20Abay"> Fetien Abay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, grown for the poor farmers in Tigray with low yield production. The purpose of this research was to estimate the performance of 166 barley genotypes against the quantitative traits with detailed analysis of the variance component, heritability, genetic advance, and genetic usefulness parameters. The finding of ANOVA was highly significant variation (p ≤ 0:01) for all the genotypes. We found significant differences in coefficient of variance (CV of 15%) for 5 traits out of the 12 quantitative traits. The topmost broad sense heritability (H2) was recorded for seeds per spike (98.8%), followed by thousand seed weight (96.5%) with 79.16% and 56.25%, respectively, of GAM. The traits with H2 ≥ 60% and GA/GAM ≥ 20% suggested the least influenced by the environment, governed by the additive genes and direct selection for improvement of such beneficial traits for the studied genotypes. Hence, the 20 outstanding recombinant inbred lines (RIL) barley genotypes performing early maturity, high yield, and 1000 seed weight traits simultaneously were the top ranked group barley genotypes out of the 166 genotypes. These are; G5, G25, G33, G118, G36, G123, G28, G34, G14, G10, G3, G13, G11, G32, G8, G39, G23, G30, G37, and G26. They were early in maturity, high TSW and GYP (TSW ≥ 55 g, GYP ≥ 15.22 g/plant, and DTM below 106 days). In general, the 166 genotypes were classified as high (group 1), medium (group 2), and low yield production (group 3) genotypes in terms of yield and yield component trait analysis by clustering; and genotype parameter analysis such as the heritability, genetic advance, and genetic usefulness traits in this investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20advance" title=" genetic advance"> genetic advance</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=usefulness" title=" usefulness"> usefulness</a>, <a href="https://publications.waset.org/abstracts/search?q=variability" title=" variability"> variability</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/167264/genetic-trait-analysis-of-ril-barley-genotypes-to-sort-out-the-top-ranked-elites-for-advanced-yield-breeding-across-multi-environments-of-tigray-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Synthesis and Applications of Biosorbent from Barley Husk for Adsorption of Heavy Metals and Bacteria from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudarshan%20Kalsulkar">Sudarshan Kalsulkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20S.%20Bhagwat"> Sunil S. Bhagwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosorption is a physiochemical process that occurs naturally in certain biomass which allows it to passively concentrate and bind contaminants onto its cellular structure. Activated carbons (AC) are one such efficient biosorbents made by utilizing lignocellulosic materials from agricultural waste. Steam activated carbon (AC) was synthesized from Barley husk. Its synthesis parameters of time and temperature were optimized. Its physico-chemical properties like density, surface area, pore volume, Methylene blue and Iodine values were characterized. BET surface area was found to be 42 m²/g. Batch Adsorption tests were carried out to determine the maximum adsorption capacity (qmax) for various metal ions. Cd+2 48.74 mg/g, Pb+2 19.28 mg/g, Hg+2 39.1mg/g were the respective qmax values. pH and time were optimized for adsorption of each ion. Column Adsorptions were carried for each to obtain breakthrough data. Microbial adsorption was carried using E. coli K12 strain. 78% reduction in cell count was observed at operating conditions. Thus the synthesized Barley husk AC can be an economically feasible replacement for commercially available AC prepared from the costlier coconut shells. Breweries and malting industries where barley husk is a primary waste generated on a large scale can be a good source for bulk raw material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Barley%20husk" title=" Barley husk"> Barley husk</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20removal" title=" heavy metal removal"> heavy metal removal</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/19980/synthesis-and-applications-of-biosorbent-from-barley-husk-for-adsorption-of-heavy-metals-and-bacteria-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Classification of Barley Varieties by Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alper%20Taner">Alper Taner</a>, <a href="https://publications.waset.org/abstracts/search?q=Yesim%20Benal%20Oztekin"> Yesim Benal Oztekin</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Duran"> Huseyin Duran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title="physical properties">physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/96350/classification-of-barley-varieties-by-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Efficacy of Three Different Herbicides to the Control of Wild Barley (Hordeum spontaneum C. Koch) in Relation to Plant Growth Stage and Nitrogen Fertilizer Additive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Edrisi">Sh. Edrisi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moeeni"> M. Moeeni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Farahbakhsh"> A. Farahbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the effect of nitrogenous additive spray solution on the efficacy of three herbicides i.e. pinoxaden (Trade name: Axial), sulfosulfuron+metsulfuron-methyl (Trade name: Total) and sulfosulfuron (Trade name: Apirus) in controlling wild barley (<em>Hordeum spontaneum</em> C. Koch), in different growth stages, a greenhouse experiment as a split plot in a completely randomized design in three replications was conducted. One month after treatments, all plants were harvested and growth parameters were determined. The data were analyzed with computer. The results showed that the herbicide applications with and without nitrogen additive caused significant reductions in growth parameters of wild barley at 2-4 leaf stage. However, the plants were not killed by this herbicide. Plants were killed completely due to applications of the two other herbicides i.e. Apirus and Total at 2-4 leaf. There was no significant difference between the effect of these two herbicides. There was no significant difference between the highest rate of each herbicide used alone and that of the lowest rate with nitrogenous additive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20stage" title="growth stage">growth stage</a>, <a href="https://publications.waset.org/abstracts/search?q=herbicide" title=" herbicide"> herbicide</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20barley" title=" wild barley"> wild barley</a> </p> <a href="https://publications.waset.org/abstracts/55036/efficacy-of-three-different-herbicides-to-the-control-of-wild-barley-hordeum-spontaneum-c-koch-in-relation-to-plant-growth-stage-and-nitrogen-fertilizer-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Biostimulant and Abiotic Plant Stress Interactions in Malting Barley: A Glasshouse Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Conor%20Blunt">Conor Blunt</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariluz%20del%20Pino-de%20Elias"> Mariluz del Pino-de Elias</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Cott"> Grace Cott</a>, <a href="https://publications.waset.org/abstracts/search?q=Saoirse%20Tracy"> Saoirse Tracy</a>, <a href="https://publications.waset.org/abstracts/search?q=Rainer%20Melzer"> Rainer Melzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The European Green Deal announced in 2021 details agricultural chemical pesticide use and synthetic fertilizer application to be reduced by 50% and 20% by 2030. Increasing and maintaining expected yields under these ambitious goals has strained the agricultural sector. This intergovernmental plan has identified plant biostimulants as one potential input to facilitate this new phase of sustainable agriculture; these products are defined as microorganisms or substances that can stimulate soil and plant functioning to enhance crop nutrient use efficiency, quality and tolerance to abiotic stresses. Spring barley is Ireland’s most widely sown tillage crop, and grain destined for malting commands the most significant market price. Heavy erratic rainfall is forecasted in Ireland’s climate future, and barley is particularly susceptible to waterlogging. Recent findings suggest that plant receptivity to biostimulants may depend on the level of stress inflicted on crops to elicit an assisted plant response. In this study, three biostimulants of different genesis (seaweed, protein hydrolysate and bacteria) are applied to ‘RGT Planet’ malting barley fertilized at three different rates (0 kg/ha, 40 kg/ha, 75 kg/ha) of calcium ammonium nitrogen (27% N) under non-stressed and waterlogged conditions. This 4x3x2 factorial trial design was planted in a completed randomized block with one plant per experimental unit. Leaf gas exchange data and key agronomic and grain quality parameters were analyzed via ANOVA. No penalty on productivity was evident on plants receiving 40 kg/ha of N and bio stimulant compared to 75 kg/ha of N treatments. The main effects of nitrogen application and waterlogging provided the most significant variation in the dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biostimulant" title="biostimulant">biostimulant</a>, <a href="https://publications.waset.org/abstracts/search?q=Barley" title=" Barley"> Barley</a>, <a href="https://publications.waset.org/abstracts/search?q=malting" title=" malting"> malting</a>, <a href="https://publications.waset.org/abstracts/search?q=NUE" title=" NUE"> NUE</a>, <a href="https://publications.waset.org/abstracts/search?q=waterlogging" title=" waterlogging"> waterlogging</a> </p> <a href="https://publications.waset.org/abstracts/162676/biostimulant-and-abiotic-plant-stress-interactions-in-malting-barley-a-glasshouse-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Effect of Deficit Irrigation on Barley Yield and Water Productivity through Field Experiment and Modeling at Koga Irrigation Scheme, Amhara Region, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bekalu%20Melis%20Alehegn">Bekalu Melis Alehegn</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagnenet%20Sultan%20Alemu"> Dagnenet Sultan Alemu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The insufficiency of water is the most severe restraint for the expansion of agriculture in arid and semi-arid areas. An important strategy for increasing water productivity and improving water productivity deficit irrigation at different growth stages is important to advance the yield and Water Productivity of barley in water scarce areas. A field experiment was conducted at the Koga irrigation scheme in Ethiopia to examine barley yield response to different irrigation regimes and validate the aqua crop model. The experimental setup comprised six randomized treatments (T) with three replications for one irrigation season because of financial limitations. The irrigation regimes were selected 100%, 75%, and 50% application levels in different growth stages of gross irrigation requirements using trial and error in order to select the optimal water application level. The treatments were: no stress at all (T1), 25% stressed during all crop stages (T2), 50% stressed at all stages (T3), 50% stressed at the development stage (T4), 50% stressed at mid-stage (T5) and 50% stress at initial and late season (T6). The agronomic parameters, including canopy cover, biomass, and grain yield, were collected to compare the ground-based crop yield and the aqua crop model. The results showed that the initial and late stages and stress 25% through the whole season were the right time for practice deficit irrigation without significant yield reduction. The highest (2.62kg/m³) and the lowest (2.03 kg/m³) water productivity were found under T3 and T4, respectively. The stress of 50% at the mid-growth stage and stress 50% of the full irrigation water requirement at all growth stages significantly (α=5%) affected the canopy expansion, biomass and yield production. The aqua Crop model performed well in simulating the yield of barley for most of the treatments (R2 = 0.84 and RMSE = 0.7 t ha–¹). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqua%20crop" title="aqua crop">aqua crop</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a>, <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title=" deficit irrigation"> deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20regimes" title=" irrigation regimes"> irrigation regimes</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20productivity" title=" water productivity"> water productivity</a> </p> <a href="https://publications.waset.org/abstracts/189154/effect-of-deficit-irrigation-on-barley-yield-and-water-productivity-through-field-experiment-and-modeling-at-koga-irrigation-scheme-amhara-region-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Contribution to the Study of the Fungal Flora Seed-Borne in Cereal: Wheat and Barley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%E2%80%99lik%20Randa">M’lik Randa</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdari%20Wassima"> Lakhdari Wassima</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahliz%20Abderrahm%C3%A8ne"> Dahliz Abderrahmène</a>, <a href="https://publications.waset.org/abstracts/search?q=Soud%20Adila"> Soud Adila</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammi%20Hamida"> Hammi Hamida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In cereal culture, as in the most the vegetal productions the seeds play an important role in the development of the future plant. The healthy seeds are very important for the quality and quantity production. This study on a media (P.D.A) shows that an important mycoflora exists in the crops. Among the identified fungical, we notice the presence of Helminthosporium sp, Alternaria sp, Botrytis and Macrosporium. The use of the illness causing facies, especially for Helminthosporium, Alternaria and Botrytis emphasizes the relation between the seminicole inoculums and the appearance of symptoms on young plants noted by authors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seeds" title="seeds">seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=fungical%20flora" title=" fungical flora"> fungical flora</a> </p> <a href="https://publications.waset.org/abstracts/14121/contribution-to-the-study-of-the-fungal-flora-seed-borne-in-cereal-wheat-and-barley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> RNA-Seq Analysis of the Wild Barley (H. spontaneum) Leaf Transcriptome under Salt Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bahieldin">Ahmed Bahieldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Atef"> Ahmed Atef</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20S.%20M.%20Sabir"> Jamal S. M. Sabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Nour%20O.%20Gadalla"> Nour O. Gadalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Edris"> Sherif Edris</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Alzohairy"> Ahmed M. Alzohairy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezar%20A.%20Radhwan"> Nezar A. Radhwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20N.%20Baeshen"> Mohammed N. Baeshen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Ramadan"> Ahmed M. Ramadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20F.%20Eissa"> Hala F. Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabah%20M.%20Hassan"> Sabah M. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabih%20A.%20Baeshen"> Nabih A. Baeshen</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Abuzinadah"> Osama Abuzinadah</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdy%20A.%20Al-Kordy"> Magdy A. Al-Kordy</a>, <a href="https://publications.waset.org/abstracts/search?q=Fotouh%20M.%20El-Domyati"> Fotouh M. El-Domyati</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20K.%20Jansen"> Robert K. Jansen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500 mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resultedin94.3 to 95.3%oftheunmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were uni gene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were ‘response to external stimulus’ and ‘electron-carrier activity’. Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20transport" title="electron transport">electron transport</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20biosynthesis" title=" flavonoid biosynthesis"> flavonoid biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=rnaseq" title=" rnaseq"> rnaseq</a> </p> <a href="https://publications.waset.org/abstracts/42511/rna-seq-analysis-of-the-wild-barley-h-spontaneum-leaf-transcriptome-under-salt-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Yield, Biochemical Responses and Evaluation of Drought Tolerance of Two Barley Accessions 'Ardhaoui' under Deficit Drip Irrigation Using Saline Water in Southern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bagues">Mohamed Bagues</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikbel%20Souli"> Ikbel Souli</a>, <a href="https://publications.waset.org/abstracts/search?q=Feiza%20Boussora"> Feiza Boussora</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Nagaz"> Kamel Nagaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In southern Tunisia, two local barley accessions CV. Ardhaoui; 'Bengardeni' and 'Karkeni' were cultivated in the field under deficit drip irrigation with saline water. Three treatments were used: control or full irrigation T0 (100%ETc) and stressed T1 (75%ETc), T2 (50%ETc). Proline and soluble sugars contents increase significantly under drought between accessions compared to control and varies between growth stages. Moreover, the increasing of Ca2+ concentration enhances the absorption of Na+ ion, consequently K+/Na+ decrease significantly between accessions, these results suggest that a high tolerance of Bengardeni accession to drought stress. Therefore, drought tolerance indices (STI, SSI, MP, GMP, YSI and TOL) were used to identify high yielding and drought tolerant between accessions. MP explained the variation of GYi. GMP and STI explained the variation of GYs. The high values of MP, STI and GMP were associated with higher yielding accession. Higher TOL value is associated with significant grain yield reduction in stressed environment suggesting higher stress responses of accessions. Significant positive correlations between MP, STI and GMP and negative between YSI and SSI. MP, STI, GMP and YSI, TOL, SSI are not correlated with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought" title="drought">drought</a>, <a href="https://publications.waset.org/abstracts/search?q=proline" title=" proline"> proline</a>, <a href="https://publications.waset.org/abstracts/search?q=soluble%20sugars" title=" soluble sugars"> soluble sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=minerals" title=" minerals"> minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20tolerance%20indices" title=" drought tolerance indices"> drought tolerance indices</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a> </p> <a href="https://publications.waset.org/abstracts/53059/yield-biochemical-responses-and-evaluation-of-drought-tolerance-of-two-barley-accessions-ardhaoui-under-deficit-drip-irrigation-using-saline-water-in-southern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Environmental Impact Assessment of Ambient Particle Industrial Complex Upon Vegetation Near Settling at El-Fatyah,Libya </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20M.%20S.%20Soliman">Ashraf M. S. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Elhasadi"> Mohsen Elhasadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was undertaken to evaluate the impact of ambient particles emitted from an industrial complex located at El-Fatyah on growth, phytomass partitioning and accumulation, pigment content and nutrient uptake of two economically important crop species; barley (Hordeum vulgare L.Family: Poaceae) and broad bean (Vicia faba L. Family: Fabaceae) growing in the region. It was obvious from the present investigation that chlorophyll and carotenoid content showed significant responses to the industrial dust. Generally, the total pigment content of the two investigated crops in the two locations continually increased till the plant age reached 70 days after sowing then begins to decrease till the end of the growing season..The total uptake of N, P and K in the two studied species decreased in response to industrial dust in the study area compared to control location. In conclusion, barley and broad bean are very sensitive to air pollutants, and may consider as bioindicators for atmospheric pollution. Pollutants caused damage of their leaves, impair plant growth, hindered nutrient uptake and consequently limit primary productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Effect%20of%20Industrial%20Complex%20on%20barley%20and%20broad%20bean" title="Effect of Industrial Complex on barley and broad bean">Effect of Industrial Complex on barley and broad bean</a> </p> <a href="https://publications.waset.org/abstracts/19906/environmental-impact-assessment-of-ambient-particle-industrial-complex-upon-vegetation-near-settling-at-el-fatyahlibya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Exogenous Application of Silicon through the Rooting Medium Modulate Growth, Ion Uptake, and Antioxidant Activity of Barley (Hordeum vulgare L.) Under Salt Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibgha%20Noreen">Sibgha Noreen</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Salim%20Akhter"> Muhammad Salim Akhter</a>, <a href="https://publications.waset.org/abstracts/search?q=Seema%20Mahmood"> Seema Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salt stress is an abiotic stress that causes a heavy toll on growth and development and also reduces the productivity of arable and horticultural crops. Globally, a quarter of total arable land has fallen prey to this menace, and more is being encroached because of the usage of brackish water for irrigation purposes. Though barley is categorized as salt-tolerant crop, but cultivars show a wide genetic variability in response to it. In addressing salt stress, silicon nutrition would be a facile tool for enhancing salt tolerant to sustain crop production. A greenhouse study was conducted to evaluate the response of barley (Hordeum vulgare L.) cultivars to silicon nutrition under salt stress. The treatments included [(a) four barley cultivars (Jou-87, B-14002, B-14011, B-10008); (b) two salt levels (0, 200 mM, NaCl); and (c) two silicon levels (0, 200ppm, K2SiO3. nH2O), arranged in a factorial experiment in a completely randomized design with 16 treatments and repeated 4 times. Plants were harvested at 15 days after exposure to different experimental salinity and silicon foliar conditions. Results revealed that various physiological and biochemical attributes differed significantly (p<0.05) in response to different treatments and their interactive effects. Cultivar “B-10008” excelled in biological yield, chlorophyll constituents, antioxidant enzymes, and grain yield compared to other cultivars. The biological yield of shoot and root organs was reduced by 27.3 and 26.5 percent under salt stress, while it was increased by 14.5 and 18.5 percent by exogenous application of silicon over untreated check, respectively. The imposition of salt stress at 200 mM caused a reduction in total chlorophyll content, chl ‘a’ , ‘b’ and ratio a/b by 10.6,16.8,17.1 and 7.1, while spray of 200 ppm silicon improved the quantum of the constituents by 10.4,12.1,10.2,10.3 over untreated check, respectively. The quantum of free amino acids and protein content was enhanced in response to salt stress and the spray of silicon nutrients. The amounts of superoxide dismutase, catalases, peroxidases, hydrogen peroxide, and malondialdehyde contents rose to 18.1, 25.7, 28.1, 29.5, and 17.6 percent over non-saline conditions under salt stress. However, the values of these antioxidants were reduced in proportion to salt stress by 200 ppm silicon applied as rooting medium on barley crops. The salt stress caused a reduction in the number of tillers, number of grains per spike, and 100-grain weight to the amount of 29.4, 8.6, and 15.8 percent; however, these parameters were improved by 7.1, 10.3, and 9.6 percent by foliar spray of silicon over untreated crop, respectively. It is concluded that the barley cultivar “B-10008” showed greater tolerance and adaptability to saline conditions. The yield of barley crops could be potentiated by a foliar spray of 200 ppm silicon at the vegetative growth stage under salt stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt%20stress" title="salt stress">salt stress</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20nutrition" title=" silicon nutrition"> silicon nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20constituents" title=" chlorophyll constituents"> chlorophyll constituents</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title=" antioxidant enzymes"> antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=barley%20crop" title=" barley crop"> barley crop</a> </p> <a href="https://publications.waset.org/abstracts/185211/exogenous-application-of-silicon-through-the-rooting-medium-modulate-growth-ion-uptake-and-antioxidant-activity-of-barley-hordeum-vulgare-l-under-salt-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Estimation of Microbial-N Supply to Small Intestine in Angora Goats Fed by Different Roughage Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurcan%20Cetinkaya">Nurcan Cetinkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to estimate the microbial-N flow to small intestine based on daily urinary purine derivatives(PD) mainly xanthine, hypoxanthine, uric acid and allantoin excretion in Angora goats fed by grass hay and concentrate (Period I); barley straw and concentrate (Period II). Daily urine samples were collected during last 3 days of each period from 10 individually penned Angora bucks( LW 30-35 Kg, 2-3 years old) receiving ad libitum grass hay or barley straw and 300 g/d concentrate. Fresh water was always available. 4N H2SO4 was added to collected daily urine .samples to keep pH under 3 to avoid of uric acid precipitation. Diluted urine samples were stored at -20°C until analysis. Urine samples were analyzed for xanthine, hypoxanthine, uric acid, allantoin and creatinine by High-Performance Liquid Chromatographic Method (HPLC). Urine was diluted 1:15 in ratio with water and duplicate samples were prepared for HPLC analysis. Calculated mean levels (n=60) for urinary xanthine, hypoxanthine, uric acid, allantoin, total PD and creatinine excretion were 0.39±0.02 , 0.26±0.03, 0.59±0.06, 5.91±0.50, 7.15±0.57 and 3.75±0.40 mmol/L for Period I respectively; 0.35±0.03, 0.21±0.02, 0.55±0.05, 5.60±0.47, 6.71±0.46 and 3.73±0.41 mmol/L for Period II respectively.Mean values of Period I and II were significantly different (P< 0.05) except creatinine excretion. Estimated mean microbial-N supply to the small intestine for Period I and II in Angora goats were 5.72±0.46 and 5.41±0.61 g N/d respectively. The effects of grass hay and barley straw feeding on microbial-N supply to small intestine were found significantly different (P< 0.05). In conclusion, grass hay showed a better effect on the ruminal microbial protein synthesis compared to barley straw, therefore; grass hay is suggested as roughage source in Angora goat feeding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angora%20goat" title="angora goat">angora goat</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC%20method" title=" HPLC method"> HPLC method</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial-N%20supply%20to%20small%20intestine" title=" microbial-N supply to small intestine"> microbial-N supply to small intestine</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary%20purine%20derivatives" title=" urinary purine derivatives"> urinary purine derivatives</a> </p> <a href="https://publications.waset.org/abstracts/54369/estimation-of-microbial-n-supply-to-small-intestine-in-angora-goats-fed-by-different-roughage-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> In vivo Alterations in Ruminal Parameters by Megasphaera Elsdenii Inoculation on Subacute Ruminal Acidosis (SARA)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Alatas">M. S. Alatas</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20D.%20Umucalilar"> H. D. Umucalilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SARA is a common and serious metabolic disorder in early lactation in dairy cattle and in finishing beef cattle, caused by diets with high inclusion of cereal grain. This experiment was performed to determine the efficacy of Megasphaera elsdenii, a major lactate-utilizing bacterium in prevention/treatment of SARA in vivo. In vivo experimentation, it was used eight ruminally cannulated rams and it was applied the rapid adaptation with the mixture of grain based on wheat (%80 wheat, %20 barley) and barley (%80 barley, %20 wheat). During the systematic adaptation, it was followed the probability of SARA formation by being measured the rumen pH with two hours intervals after and before feeding. After being evaluated the data, it was determined the ruminal pH ranged from 5,2-5,6 on the condition of feeding with 60 percentage of grain mixture based on barley and wheat, that assured the definite form of subacute acidosis. In four days SARA period, M. elsdenii (1010 cfu ml-1) was inoculated during the first two days. During the SARA period, it was observed the decrease of feed intake with M. elsdenii inoculation. Inoculation of M. elsdenii was caused to differentiation of rumen pH (P < 0,0001), while it was found the pH level approximately 5,55 in animals applied the inoculation, it was 5,63 pH in other animals. It was observed that total VFA with the bacterium inoculation tended to change in terms of grain feed (P < 0,07). It increased with the effect of total VFA inoculation in barley based diet, but it was more stabilized in wheat based diet. Bacterium inoculation increased the ratio of propionic acid (18,33%-21,38%) but it caused to decrease the butyric acid, and acetic/propionic acid. During the rapid adaptation, the concentration of lactic acid in the rumen liquid increased depending upon grain level (P<0,0001). On the other hand bacterium inoculation did not have an effect on concentration of lactic acid. M. elsdenii inoculation did not affect ruminal ammonia concentration. In the group that did not apply inoculation, the level of ruminal ammonia concentration was higher than the others applied inoculation. M. elsdenii inoculation did not changed protozoa count in barley-based diet whereas it decreased in wheat-based diet. In the period of SARA, it was observed that the level of blood glucose, lactate and hematocrit increased greatly after inoculation (P < 0,0001). When it is generally evaluated, it is seen that M. elsdenii inoculation has not a positive impact on rumen parameters. Therefore, to reveal the full impact of the inoculation with different strains, feedstuffs and animal groups, further research is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%20vivo" title="In vivo">In vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=Subactute%20ruminal%20acidosis" title=" Subactute ruminal acidosis"> Subactute ruminal acidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Megasphaera%20elsdenii" title=" Megasphaera elsdenii"> Megasphaera elsdenii</a>, <a href="https://publications.waset.org/abstracts/search?q=Rumen%20fermentation" title=" Rumen fermentation"> Rumen fermentation</a> </p> <a href="https://publications.waset.org/abstracts/26011/in-vivo-alterations-in-ruminal-parameters-by-megasphaera-elsdenii-inoculation-on-subacute-ruminal-acidosis-sara" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">645</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Inclusive Business and Its Contribution to Farmers Wellbeing in Arsi Ethiopia: Empirical Evidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Senait%20G.%20Worku">Senait G. Worku</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Mangnus"> Ellen Mangnus </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inclusive business models which integrates low-income people with companies value chain in a commercially viable way has gained momentum for the perceived potential to contribute to poverty alleviation and food security in developing countries. This article investigates the impact of Community Revenue Enhancement through Technology Extension (CREATE) project of Heineken brewery on smallholder farmers’ wellbeing in Arsi zone Oromia regional state of Ethiopia. CREATE is a Public-Private Partnership (PPP) between Ministry of Foreign Affairs of the Netherlands and Heineken N.V. which source malt barely from smallholder farmers in three zones of Oromia. The study assessed the impact of CREATE on malt barley productivity, food security and new asset purchase in Arsi zone by comparing households that participate in the project with non-participating households using propensity score matching method. The finding indicated that households that participated in the CREATE project had higher malt barley productivity and purchased more new assets than non-participating households. However, there is no significant difference on food security status of participating and non-participating households indicating that the project has a profound impact on asset accumulation than on food security improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclusive%20business" title="inclusive business">inclusive business</a>, <a href="https://publications.waset.org/abstracts/search?q=malt%20barley" title=" malt barley"> malt barley</a>, <a href="https://publications.waset.org/abstracts/search?q=propensity%20score%20matching" title=" propensity score matching"> propensity score matching</a>, <a href="https://publications.waset.org/abstracts/search?q=wellbeing" title=" wellbeing"> wellbeing</a> </p> <a href="https://publications.waset.org/abstracts/89780/inclusive-business-and-its-contribution-to-farmers-wellbeing-in-arsi-ethiopia-empirical-evidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=barley&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=barley&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=barley&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>