CINXE.COM

Search results for: neutron dose equivalent

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: neutron dose equivalent</title> <meta name="description" content="Search results for: neutron dose equivalent"> <meta name="keywords" content="neutron dose equivalent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="neutron dose equivalent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="neutron dose equivalent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2369</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: neutron dose equivalent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2369</span> Standardization Of Miniature Neutron Research Reactor And Occupational Safety Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Limen%20Njinga">Raymond Limen Njinga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comparator factors (Fc) for miniature research reactors are of great importance in the field of nuclear physics as it provide accurate bases for the evaluation of elements in all form of samples via ko-NAA techniques. The Fc was initially simulated theoretically thereafter, series of experiments were performed to validate the results. In this situation, the experimental values were obtained using the alloy of Au(0.1%) - Al monitor foil and a neutron flux setting of 5.00E+11 cm-2.s-1. As was observed in the inner irradiation position, the average experimental value of 7.120E+05 was reported against the theoretical value of 7.330E+05. In comparison, a percentage deviation of 2.86 (from theoretical value) was observed. In the large case of the outer irradiation position, the experimental value of 1.170E+06 was recorded against the theoretical value of 1.210E+06 with a percentage deviation of 3.310 (from the theoretical value). The estimation of equivalent dose rate at 5m from neutron flux of 5.00E+11 cm-2.s-1 within the neutron energies of 1KeV, 10KeV, 100KeV, 500KeV, 1MeV, 5MeV and 10MeV were calculated to be 0.01 Sv/h, 0.01 Sv/h, 0.03 Sv/h, 0.15 Sv/h, 0.21Sv/h and 0.25 Sv/h respectively with a total dose within a period of an hour was obtained to be 0.66 Sv. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20flux" title="neutron flux">neutron flux</a>, <a href="https://publications.waset.org/abstracts/search?q=comparator%20factor" title=" comparator factor"> comparator factor</a>, <a href="https://publications.waset.org/abstracts/search?q=NAA%20techniques" title=" NAA techniques"> NAA techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20energy" title=" neutron energy"> neutron energy</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20dose" title=" equivalent dose"> equivalent dose</a> </p> <a href="https://publications.waset.org/abstracts/142174/standardization-of-miniature-neutron-research-reactor-and-occupational-safety-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2368</span> Calculation of Secondary Neutron Dose Equivalent in Proton Therapy of Thyroid Gland Using FLUKA Code</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Akbari">M. R. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sadeghi"> M. Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Faghihi"> R. Faghihi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mosleh-Shirazi"> M. A. Mosleh-Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Khorrami-Moghadam"> A. R. Khorrami-Moghadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proton radiotherapy (PRT) is becoming an established treatment modality for cancer. The localized tumors, the same as undifferentiated thyroid tumors are insufficiently handled by conventional radiotherapy, while protons would propose the prospect of increasing the tumor dose without exceeding the tolerance of the surrounding healthy tissues. In spite of relatively high advantages in giving localized radiation dose to the tumor region, in proton therapy, secondary neutron production can have significant contribution on integral dose and lessen advantages of this modality contrast to conventional radiotherapy techniques. Furthermore, neutrons have high quality factor, therefore, even a small physical dose can cause considerable biological effects. Measuring of this neutron dose is a very critical step in prediction of secondary cancer incidence. It has been found that FLUKA Monte Carlo code simulations have been used to evaluate dose due to secondaries in proton therapy. In this study, first, by validating simulated proton beam range in water phantom with CSDA range from NIST for the studied proton energy range (34-54 MeV), a proton therapy in thyroid gland cancer was simulated using FLUKA code. Secondary neutron dose equivalent of some organs and tissues after the target volume caused by 34 and 54 MeV proton interactions were calculated in order to evaluate secondary cancer incidence. A multilayer cylindrical neck phantom considering all the layers of neck tissues and a proton beam impinging normally on the phantom were also simulated. Trachea (accompanied by Larynx) had the greatest dose equivalent (1.24×10-1 and 1.45 pSv per primary 34 and 54 MeV protons, respectively) among the simulated tissues after the target volume in the neck region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLUKA%20code" title="FLUKA code">FLUKA code</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent" title=" neutron dose equivalent"> neutron dose equivalent</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20therapy" title=" proton therapy"> proton therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroid%20gland" title=" thyroid gland"> thyroid gland</a> </p> <a href="https://publications.waset.org/abstracts/11492/calculation-of-secondary-neutron-dose-equivalent-in-proton-therapy-of-thyroid-gland-using-fluka-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2367</span> Neutron Contamination in 18 MV Medical Linear Accelerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onur%20Karaman">Onur Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gunes%20Tanir"> A. Gunes Tanir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photon radiation therapy used to treat cancer is one of the most important methods. However, photon beam collimator materials in Linear Accelerator (LINAC) head generally contains heavy elements is used and the interaction of bremsstrahlung photon with such heavy nuclei, the neutron can be produced inside the treatment rooms. In radiation therapy, neutron contamination contributes to the risk of secondary malignancies in patients, also physicians working in this field. Since the neutron is more dangerous than photon, it is important to determine neutron dose during radiotherapy treatment. In this study, it is aimed to analyze the effect of field size, distance from axis and depth on the amount of in-field and out-field neutron contamination for ElektaVmat accelerator with 18 MV nominal energy. The photon spectra at the distance of 75, 150, 225, 300 cm from target and on the isocenter of beam were scored for 5x5, 10x10, 20x20, 30x30 and 40x40 cm2 fields. Results demonstrated that the neutron spectra and dose are dependent on field size and distances. Beyond 225 cm of isocenter, the dependence of the neutron dose on field size is minimal. As a result, it is concluded that as the open field increases, neutron dose determined decreases. It is important to remember that when treating with high energy photons, the dose from contamination neutrons must be considered as it is much greater than the photon dose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title="radiotherapy">radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20contamination" title=" neutron contamination"> neutron contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20accelerators" title=" linear accelerators"> linear accelerators</a>, <a href="https://publications.waset.org/abstracts/search?q=photon" title=" photon"> photon</a> </p> <a href="https://publications.waset.org/abstracts/70366/neutron-contamination-in-18-mv-medical-linear-accelerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2366</span> Measurement of the Neutron Spectrum of 241AmLi and 241AmF Sources Using the Bonner Sphere Spectrometers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Rocha%20Carvalho">Victor Rocha Carvalho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bonner Sphere Spectrometry was used to obtain the average energy, the fluence rate, and radioprotection quantities such as the personal and ambient dose equivalent of the ²⁴¹AmLi and ²⁴¹AmF isotopic neutron sources used in the Neutron Metrology Laboratory - LN. The counts of the sources were performed with six different spherical moderators around the detector. Through this, the neutron spectrum was obtained by means of the software named NeuraLN, developed by the LN, that uses the neural networks technique. The 241AmLi achieved a result close to the literature, and 241AmF, which contains few published references, acquired a result with a slight variation from the literature. Therefore, besides fulfilling its objective, the work raises questions about a possible standard of the ²⁴¹AmLi and about the lack of work with the ²⁴¹AmF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20physics" title="nuclear physics">nuclear physics</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20metrology" title=" neutron metrology"> neutron metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20spectrometry" title=" neutron spectrometry"> neutron spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=bonner%20sphere%20spectrometers" title=" bonner sphere spectrometers"> bonner sphere spectrometers</a> </p> <a href="https://publications.waset.org/abstracts/160581/measurement-of-the-neutron-spectrum-of-241amli-and-241amf-sources-using-the-bonner-sphere-spectrometers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2365</span> Radiation Protection Assessment of the Emission of a d-t Neutron Generator: Simulations with MCNP Code and Experimental Measurements in Different Operating Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Contessa">G. M. Contessa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Lepore"> L. Lepore</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gandolfo"> G. Gandolfo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Poggi"> C. Poggi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Cherubini"> N. Cherubini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Remetti"> R. Remetti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sandri"> S. Sandri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Practical guidelines are provided in this work for the safe use of a portable d-t Thermo Scientific MP-320 neutron generator producing pulsed 14.1 MeV neutron beams. The neutron generator’s emission was tested experimentally and reproduced by MCNPX Monte Carlo code. Simulations were particularly accurate, even generator’s internal components were reproduced on the basis of ad-hoc collected X-ray radiographic images. Measurement campaigns were conducted under different standard experimental conditions using an LB 6411 neutron detector properly calibrated at three different energies, and comparing simulated and experimental data. In order to estimate the dose to the operator vs. the operating conditions and the energy spectrum, the most appropriate value of the conversion factor between neutron fluence and ambient dose equivalent has been identified, taking into account both direct and scattered components. The results of the simulations show that, in real situations, when there is no information about the neutron spectrum at the point where the dose has to be evaluated, it is possible - and in any case conservative - to convert the measured value of the count rate by means of the conversion factor corresponding to 14 MeV energy. This outcome has a general value when using this type of generator, enabling a more accurate design of experimental activities in different setups. The increasingly widespread use of this type of device for industrial and medical applications makes the results of this work of interest in different situations, especially as a support for the definition of appropriate radiation protection procedures and, in general, for risk analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instrumentation%20and%20monitoring" title="instrumentation and monitoring">instrumentation and monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20of%20radiological%20safety" title=" management of radiological safety"> management of radiological safety</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20of%20individual%20dose" title=" measurement of individual dose"> measurement of individual dose</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20protection%20of%20workers" title=" radiation protection of workers"> radiation protection of workers</a> </p> <a href="https://publications.waset.org/abstracts/76346/radiation-protection-assessment-of-the-emission-of-a-d-t-neutron-generator-simulations-with-mcnp-code-and-experimental-measurements-in-different-operating-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2364</span> Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharib%20Ahmed">Sharib Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoor%20Rafi"> Mansoor Rafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Ali%20Awan"> Kamran Ali Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Khaskhali"> Faraz Khaskhali</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Maqbool"> Amir Maqbool</a>, <a href="https://publications.waset.org/abstracts/search?q=Altaf%20Hashmi"> Altaf Hashmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20doses" title="equivalent doses">equivalent doses</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20contamination" title=" neutron contamination"> neutron contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20detector" title=" neutron detector"> neutron detector</a>, <a href="https://publications.waset.org/abstracts/search?q=photon%20energy" title=" photon energy "> photon energy </a> </p> <a href="https://publications.waset.org/abstracts/23969/evaluation-of-the-photo-neutron-contamination-inside-and-outside-of-treatment-room-for-high-energy-elekta-synergy-linear-accelerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2363</span> Effect of PMMA Shield on the Patient Dose Equivalent from Photoneutrons Produced by High Energy Medical Linacs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mehdi%20Hashemi">Seyed Mehdi Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Raisali"> Gholamreza Raisali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Taheri"> Mehran Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important problems of using high energy linacs at IMRT is the production of photoneutrons. Besides the clinically useful photon beams, high-energy photon beams from medical linacs produce secondary neutrons. These photoneutrons increase the patient dose and may cause secondary malignancies. The effect of the shield on the reduction of photoneutron dose equivalent produced by a high energy medical linac at the patient plane is investigated in this study. To determine the photoneutron dose equivalent received to the patient a Varian linac working at 18 MV photon mode investigated. Photoneutron dose equivalent measured with Polycarbonate films of 0.25 mm thick. PC films placed at distances of 0, 10, 20, and 50 cm from the center of X-ray field on the patient couch. The results show that by increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreases rapidly for both open and shielded fields and that by inserting the shield in the path of the X-ray beam, the photoneutron dose equivalent was decreased obviously compared to open field. Results show the shield, significantly reduces photoneutron dose equivalent to the patient. Results can be readily generalized to other models of medical linacs. It may be concluded that using this kind of shield can help more safe, inexpensive and efficient employment of high energy linacs in radiotherapy and IMRT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoneutron" title="photoneutron">photoneutron</a>, <a href="https://publications.waset.org/abstracts/search?q=Linac" title=" Linac"> Linac</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA%20shield" title=" PMMA shield"> PMMA shield</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20dose" title=" equivalent dose"> equivalent dose</a> </p> <a href="https://publications.waset.org/abstracts/32830/effect-of-pmma-shield-on-the-patient-dose-equivalent-from-photoneutrons-produced-by-high-energy-medical-linacs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2362</span> Simulation Study of Multiple-Thick Gas Electron Multiplier-Based Microdosimeters for Fast Neutron Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Moslehi">Amir Moslehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Raisali"> Gholamreza Raisali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microdosimetric detectors based on multiple-thick gas electron multiplier (multiple-THGEM) configurations are being used in various fields of radiation protection and dosimetry. In the present work, microdosimetric response of these detectors to fast neutrons has been investigated by Monte Carlo method. Three similar microdosimeters made of A-150 and rexolite as the wall materials are designed; the first based on single-THGEM, the second based on double-THGEM and the third is based on triple-THGEM. Sensitive volume of the three microdosimeters is a right cylinder of 5 mm height and diameter which is filled with the propane-based tissue-equivalent (TE) gas. The TE gas with 0.11 atm pressure at the room temperature simulates 1 µm of tissue. Lineal energy distributions for several neutron energies from 10 keV to 14 MeV including 241Am-Be neutrons are calculated by the Geant4 simulation toolkit. Also, mean quality factor and dose-equivalent value for any neutron energy has been determined by these distributions. Obtained data derived from the three microdosimeters are in agreement. Therefore, we conclude that the multiple-THGEM structures present similar microdosimetric responses to fast neutrons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20neutrons" title="fast neutrons">fast neutrons</a>, <a href="https://publications.waset.org/abstracts/search?q=geant4" title=" geant4"> geant4</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-thick%20gas%20electron%20multiplier" title=" multiple-thick gas electron multiplier"> multiple-thick gas electron multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=microdosimeter" title=" microdosimeter"> microdosimeter</a> </p> <a href="https://publications.waset.org/abstracts/39231/simulation-study-of-multiple-thick-gas-electron-multiplier-based-microdosimeters-for-fast-neutron-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2361</span> Radium Equivalent and External Hazard Indices of Trace Elements Concentrations in Aquatic Species by Neutron Activation Analysis (NAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Muhammad">B. G. Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Jafar"> S. M. Jafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neutron Activation Analysis (NAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were employed to analyze the level of trace elements concentrations in sediment samples and their bioaccumulation in some aquatic species selected randomly from surface water resources in the Northern peninsula of Malaysia. The NAA results of the sediment samples indicated a wide range in concentration of different elements were observed. Fe, K, and Na were found to have major concentration values that ranges between 61,000 ± 1400 to 4,500 ± 100 ppm, 20100±1000 to 3100±600 and 3,100±600 and 200±10 ppm, respectively. Traces of heavy metals with much more contamination health concern, such as Cr and As, were also identified in many of the samples analyzed. The average specific activities of 40K, 232Th and 226Ra in soil and the corresponding radium equivalent activity and the external hazard index were all found to be lower than the maximum permissible limits (370 Bq kg-1 and 1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=external%20hazard%20index" title="external hazard index">external hazard index</a>, <a href="https://publications.waset.org/abstracts/search?q=Neutron%20Activation%20Analysis" title=" Neutron Activation Analysis"> Neutron Activation Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=radium%20equivalent" title=" radium equivalent"> radium equivalent</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elements%20concentrations" title=" trace elements concentrations"> trace elements concentrations</a> </p> <a href="https://publications.waset.org/abstracts/20008/radium-equivalent-and-external-hazard-indices-of-trace-elements-concentrations-in-aquatic-species-by-neutron-activation-analysis-naa-and-inductively-coupled-plasma-mass-spectrometry-icp-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2360</span> X-Ray Diffraction and Precision Dilatometer Study of Neutron-Irradiated Nuclear Graphite Recovery Process up to 1673K</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuhao%20Jin">Yuhao Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Zhou"> Zhou Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsumi%20Yoshida"> Katsumi Yoshida</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengcao%20Li"> Zhengcao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadashi%20Maruyama"> Tadashi Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Toyohiko%20Yano"> Toyohiko Yano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Four kinds of nuclear graphite, IG-110U, ETP-10, CX-2002U and IG-430U were neutron-irradiated at different fluences and temperatures, ranged from 1.38 x 1024 to 7.4 x 1025 n/m2 (E > 1.0 MeV) at 473K, 573K and 673K. To take into account the disorder in the microstructure, such as stacking faults and anisotropic coherent lengths, the X-ray diffraction patterns were interpreted using a comprehensive structural model and a refinement program CARBONXS. The deduced structural parameters show the changes of lattice parameters, coherent lengths along the c-axis and the basal plane, and the degree of turbostratic disorder as a function of the irradiation dose. Our results reveal neutron irradiation effects on the microstructure and macroscopic dimension, which are consistent with previous work. The methodology used in this work enables the quantification of the damage on the microstructure of nuclear graphite induced by neutron irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20graphite" title="nuclear graphite">nuclear graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20irradiation" title=" neutron irradiation"> neutron irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20annealing" title=" thermal annealing"> thermal annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20behavior" title=" recovery behavior"> recovery behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20change" title=" dimensional change"> dimensional change</a>, <a href="https://publications.waset.org/abstracts/search?q=CARBONX" title=" CARBONX"> CARBONX</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD%20analysis" title=" XRD analysis"> XRD analysis</a> </p> <a href="https://publications.waset.org/abstracts/72835/x-ray-diffraction-and-precision-dilatometer-study-of-neutron-irradiated-nuclear-graphite-recovery-process-up-to-1673k" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2359</span> Application Research of Stilbene Crystal for the Measurement of Accelerator Neutron Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Kuo">Zhao Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Liang"> Chen Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Zhongbing"> Zhang Zhongbing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Jinlu.%20He%20Shiyi"> Ruan Jinlu. He Shiyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Mengxuan"> Xu Mengxuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stilbene, C₁₄H₁₂, is well known as one of the most useful organic scintillators for pulse shape discrimination (PSD) technique for its good scintillation properties. An on-line acquisition system and an off-line acquisition system were developed with several CAMAC standard plug-ins, NIM plug-ins, neutron/γ discriminating plug-in named 2160A and a digital oscilloscope with high sampling rate respectively for which stilbene crystals and photomultiplier tube detectors (PMT) as detector for accelerator neutron sources measurement carried out in China Institute of Atomic Energy. Pulse amplitude spectrums and charge amplitude spectrums were real-time recorded after good neutron/γ discrimination whose best PSD figure-of-merits (FoMs) are 1.756 for D-D accelerator neutron source and 1.393 for D-T accelerator neutron source. The probability of neutron events in total events was 80%, and neutron detection efficiency was 5.21% for D-D accelerator neutron sources, which were 50% and 1.44% for D-T accelerator neutron sources after subtracting the background of scattering observed by the on-line acquisition system. Pulse waveform signals were acquired by the off-line acquisition system randomly while the on-line acquisition system working. The PSD FoMs obtained by the off-line acquisition system were 2.158 for D-D accelerator neutron sources and 1.802 for D-T accelerator neutron sources after waveform digitization off-line processing named charge integration method for just 1000 pulses. In addition, the probabilities of neutron events in total events obtained by the off-line acquisition system matched very well with the probabilities of the on-line acquisition system. The pulse information recorded by the off-line acquisition system could be repetitively used to adjust the parameters or methods of PSD research and obtain neutron charge amplitude spectrums or pulse amplitude spectrums after digital analysis with a limited number of pulses. The off-line acquisition system showed equivalent or better measurement effects compared with the online system with a limited number of pulses which indicated a feasible method based on stilbene crystals detectors for the measurement of prompt neutrons neutron sources like prompt accelerator neutron sources emit a number of neutrons in a short time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stilbene%20crystal" title="stilbene crystal">stilbene crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerator%20neutron%20source" title=" accelerator neutron source"> accelerator neutron source</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20%2F%20%CE%B3%20discrimination" title=" neutron / γ discrimination"> neutron / γ discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=figure-of-merits" title=" figure-of-merits"> figure-of-merits</a>, <a href="https://publications.waset.org/abstracts/search?q=CAMAC" title=" CAMAC"> CAMAC</a>, <a href="https://publications.waset.org/abstracts/search?q=waveform%20digitization" title=" waveform digitization"> waveform digitization</a> </p> <a href="https://publications.waset.org/abstracts/86807/application-research-of-stilbene-crystal-for-the-measurement-of-accelerator-neutron-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2358</span> Ground State Properties of Neutron Magic Isotones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Saxena">G. Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaushik"> M. Kaushik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, we have employed RMF+BCS (relativistic mean-field plus BCS) approach to carry out a systematic study for the ground state properties of the entire chains of even-even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126. The main body of the results of our calculations includes the binding energy, deformation, two proton separation energies, rms radii of the proton and neutron distributions as well as the proton and neutron density profiles etc. Several of these results have been given in the form of a series of graphs for a ready reference. In addition, the possible locations of the proton and neutron drip-lines as well as the (Z,N) values for the shell closures as suggested by the detailed analyzes of the single particle spectra, and the two proton and two-neutron separation energies for the different isotonic chains are also discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relativistic%20mean%20field%20theory" title="relativistic mean field theory">relativistic mean field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20magic%20nuclei" title=" neutron magic nuclei"> neutron magic nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20closure" title=" shell closure"> shell closure</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20energy" title=" separation energy"> separation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a> </p> <a href="https://publications.waset.org/abstracts/13497/ground-state-properties-of-neutron-magic-isotones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2357</span> Evolution of Cord Absorbed Dose during Larynx Cancer Radiotherapy, with 3D Treatment Planning and Tissue Equivalent Phantom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hassan%20Heidari">Mohammad Hassan Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Goodarzi"> Amir Hossein Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Azarniush"> Majid Azarniush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation doses to tissues and organs were measured using the anthropomorphic phantom as an equivalent to the human body. When high-energy X-rays are externally applied to treat laryngeal cancer, the absorbed dose at the laryngeal lumen is lower than given dose because of air space which it should pass through before reaching the lesion. Specially in case of high-energy X-rays, the loss of dose is considerable. Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypo pharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20treatment%20planning" title="3D treatment planning">3D treatment planning</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropomorphic%20phantom" title=" anthropomorphic phantom"> anthropomorphic phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=larynx%20cancer" title=" larynx cancer"> larynx cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy "> radiotherapy </a> </p> <a href="https://publications.waset.org/abstracts/3432/evolution-of-cord-absorbed-dose-during-larynx-cancer-radiotherapy-with-3d-treatment-planning-and-tissue-equivalent-phantom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2356</span> Fusion Neutron Generator Dosimetry and Applications for Medical, Security, and Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaouther%20Bergaui">Kaouther Bergaui</a>, <a href="https://publications.waset.org/abstracts/search?q=Nafaa%20Reguigui"> Nafaa Reguigui</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Gary"> Charles Gary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterization and the applications of deuterium-deuterium (DD) neutron generator developed by Adelphie technology and acquired by the National Centre of Nuclear Science and Technology (NCNST) were presented in this work. We study the performance of the neutron generator in terms of neutron yield, production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. We provide the design and optimization of the PGNAA chamber and thus give insight into the capabilities of the planned PGNAA facility. Additional non-destructive techniques were studied employing the DD neutron generator, such as PGNAA and neutron radiography: The PGNAA is used for determining the concentration of 10B in Si and SiO2 matrices by using a germanium detector HPGe and the results obtained are compared with PGNAA system using a Sodium Iodide detector (NaI (Tl)); Neutron radiography facility was tested and simulated, using a camera device CCD and simulated by the Monte Carlo code; and the explosive detection system (EDS) also simulated using the Monte Carlo code. The study allows us to show that the new models of DD neutron generators are feasible and that superior-quality neutron beams could be produced and used for various applications. The feasibility of Boron neutron capture therapy (BNCT) for cancer treatment using a neutron generator was assessed by optimizing Beam Shaping Assembly (BSA) on a phantom using Monte-Carlo (MCNP6) simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20generator%20deuterium-deuterium" title="neutron generator deuterium-deuterium">neutron generator deuterium-deuterium</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title=" Monte Carlo method"> Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20flux" title=" neutron flux"> neutron flux</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20activation%20analysis" title=" neutron activation analysis"> neutron activation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=born" title=" born"> born</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20radiography" title=" neutron radiography"> neutron radiography</a>, <a href="https://publications.waset.org/abstracts/search?q=explosive%20detection" title=" explosive detection"> explosive detection</a>, <a href="https://publications.waset.org/abstracts/search?q=BNCT" title=" BNCT"> BNCT</a> </p> <a href="https://publications.waset.org/abstracts/160335/fusion-neutron-generator-dosimetry-and-applications-for-medical-security-and-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2355</span> Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20Kavetskiy">Aleksandr Kavetskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Galina%20Yakubova"> Galina Yakubova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Sargsyan"> Nikolay Sargsyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20A.%20Prior"> Stephen A. Prior</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Allen%20Torbert"> H. Allen Torbert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title="carbon sequestration">carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20gamma%20analysis" title=" neutron gamma analysis"> neutron gamma analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20effect%20on%20soil" title=" radiation effect on soil"> radiation effect on soil</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte-Carlo%20simulation" title=" Monte-Carlo simulation"> Monte-Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/149497/effects-of-soil-neutron-irradiation-in-soil-carbon-neutron-gamma-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2354</span> Measurement and Simulation of Axial Neutron Flux Distribution in Dry Tube of KAMINI Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Chand">Manish Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhrojit%20Bagchi"> Subhrojit Bagchi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kumar"> R. Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new dry tube (DT) has been installed in the tank of KAMINI research reactor, Kalpakkam India. This tube will be used for neutron activation analysis of small to large samples and testing of neutron detectors. DT tube is 375 cm height and 7.5 cm in diameter, located 35 cm away from the core centre. The experimental thermal flux at various axial positions inside the tube has been measured by irradiating the flux monitor (¹⁹⁷Au) at 20kW reactor power. The measured activity of ¹⁹⁸Au and the thermal cross section of ¹⁹⁷Au (n,γ) ¹⁹⁸Au reaction were used for experimental thermal flux measurement. The flux inside the tube varies from 10⁹ to 10¹⁰ and maximum flux was (1.02 ± 0.023) x10¹⁰ n cm⁻²s⁻¹ at 36 cm from the bottom of the tube. The Au and Zr foils without and with cadmium cover of 1-mm thickness were irradiated at the maximum flux position in the DT to find out the irradiation specific input parameters like sub-cadmium to epithermal neutron flux ratio (f) and the epithermal neutron flux shape factor (α). The f value was 143 ± 5, indicates about 99.3% thermal neutron component and α value was -0.2886 ± 0.0125, indicates hard epithermal neutron spectrum due to insufficient moderation. The measured flux profile has been validated using theoretical model of KAMINI reactor through Monte Carlo N-Particle Code (MCNP). In MCNP, the complex geometry of the entire reactor is modelled in 3D, ensuring minimum approximations for all the components. Continuous energy cross-section data from ENDF-B/VII.1 as well as S (α, β) thermal neutron scattering functions are considered. The neutron flux has been estimated at the corresponding axial locations of the DT using mesh tally. The thermal flux obtained from the experiment shows good agreement with the theoretically predicted values by MCNP, it was within ± 10%. It can be concluded that this MCNP model can be utilized for calculating other important parameters like neutron spectra, dose rate, etc. and multi elemental analysis can be carried out by irradiating the sample at maximum flux position using measured f and α parameters by k₀-NAA standardization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20flux" title="neutron flux">neutron flux</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20activation%20analysis" title=" neutron activation analysis"> neutron activation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20flux%20shape%20factor" title=" neutron flux shape factor"> neutron flux shape factor</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNP" title=" MCNP"> MCNP</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20N-Particle%20Code" title=" Monte Carlo N-Particle Code"> Monte Carlo N-Particle Code</a> </p> <a href="https://publications.waset.org/abstracts/99662/measurement-and-simulation-of-axial-neutron-flux-distribution-in-dry-tube-of-kamini-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2353</span> Estimation of Effective Radiation Dose Following Computed Tomography Urography at Aminu Kano Teaching Hospital, Kano Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idris%20Garba">Idris Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Rabiu%20Abdullahi"> Aisha Rabiu Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Yahuza"> Mansur Yahuza</a>, <a href="https://publications.waset.org/abstracts/search?q=Akintade%20Dare"> Akintade Dare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: CT urography (CTU) is efficient radiological examination for the evaluation of the urinary system disorders. However, patients are exposed to a significant radiation dose which is in a way associated with increased cancer risks. Objectives: To determine Computed Tomography Dose Index following CTU, and to evaluate organs equivalent doses. Materials and Methods: A prospective cohort study was carried at a tertiary institution located in Kano northwestern. Ethical clearance was sought and obtained from the research ethics board of the institution. Demographic, scan parameters and CT radiation dose data were obtained from patients that had CTU procedure. Effective dose, organ equivalent doses, and cancer risks were estimated using SPSS statistical software version 16 and CT dose calculator software. Result: A total of 56 patients were included in the study, consisting of 29 males and 27 females. The common indication for CTU examination was found to be renal cyst seen commonly among young adults (15-44yrs). CT radiation dose values in DLP, CTDI and effective dose for CTU were 2320 mGy cm, CTDIw 9.67 mGy and 35.04 mSv respectively. The probability of cancer risks was estimated to be 600 per a million CTU examinations. Conclusion: In this study, the radiation dose for CTU is considered significantly high, with increase in cancer risks probability. Wide radiation dose variations between patient doses suggest that optimization is not fulfilled yet. Patient radiation dose estimate should be taken into consideration when imaging protocols are established for CT urography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20urography" title="CT urography">CT urography</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20risks" title=" cancer risks"> cancer risks</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20dose" title=" effective dose"> effective dose</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20exposure" title=" radiation exposure"> radiation exposure</a> </p> <a href="https://publications.waset.org/abstracts/61467/estimation-of-effective-radiation-dose-following-computed-tomography-urography-at-aminu-kano-teaching-hospital-kano-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2352</span> Vertebrate Model to Examine the Biological Effectiveness of Different Radiation Qualities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Em%C3%ADlia%20Szab%C3%B3">Rita Emília Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%B3bert%20Polanek"> Róbert Polanek</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%BCnde%20T%C5%91k%C3%A9s"> Tünde Tőkés</a>, <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20Szab%C3%B3"> Zoltán Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=Szabolcs%20Czifrus"> Szabolcs Czifrus</a>, <a href="https://publications.waset.org/abstracts/search?q=Katalin%20Hidegh%C3%A9ty"> Katalin Hideghéty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Several feature of zebrafish are making them amenable for investigation on therapeutic approaches such as ionizing radiation. The establishment of zebrafish model for comprehensive radiobiological research stands in the focus of our investigation, comparing the radiation effect curves of neutron and photon irradiation. Our final aim is to develop an appropriate vertebrate model in order to investigate the relative biological effectiveness of laser driven ionizing radiation. Methods and Materials: After careful dosimetry series of viable zebrafish embryos were exposed to a single fraction whole-body neutron-irradiation (1,25; 1,875; 2; 2,5 Gy) at the research reactor of the Technical University of Budapest and to conventional 6 MeV photon beam at 24 hour post-fertilization (hpf). The survival and morphologic abnormalities (pericardial edema, spine curvature) of each embryo were assessed for each experiment at 24-hour intervals from the point of fertilization up to 168 hpf (defining the dose lethal for 50% (LD50)). Results: In the zebrafish embryo model LD50 at 20 Gy dose level was defined and the same lethality were found at 2 Gy dose from the reactor neutron beam resulting RBE of 10. Dose-dependent organ perturbations were detected on macroscopic (shortening of the body length, spine curvature, microcephaly, micro-ophthalmia, micrognathia, pericardial edema, and inhibition of yolk sac resorption) and microscopic (marked cellular changes in skin, cardiac, gastrointestinal system) with the same magnitude of dose difference. Conclusion: In our observations, we found that zebrafish embryo model can be used for investigating the effects of different type of ionizing radiation and this system proved to be highly efficient vertebrate model for preclinical examinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title="ionizing radiation">ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=LD50" title=" LD50"> LD50</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20biological%20effectiveness" title=" relative biological effectiveness"> relative biological effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish%20embryo" title=" zebrafish embryo"> zebrafish embryo</a> </p> <a href="https://publications.waset.org/abstracts/42445/vertebrate-model-to-examine-the-biological-effectiveness-of-different-radiation-qualities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2351</span> Radiation Annealing of Radiation Embrittlement of the Reactor Pressure Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Krasikov">E. A. Krasikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore – nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance, this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion, controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore, flux effect manifestation depends on fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis, at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result, oscillation arises that in turn leads to enhanced data scatter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annealing" title="annealing">annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=embrittlement" title=" embrittlement"> embrittlement</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=RPV%20steel" title=" RPV steel"> RPV steel</a> </p> <a href="https://publications.waset.org/abstracts/43961/radiation-annealing-of-radiation-embrittlement-of-the-reactor-pressure-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2350</span> The Application of the Analytic Basis Function Expansion Triangular-z Nodal Method for Neutron Diffusion Calculation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunpeng%20Wang">Kunpeng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongchun"> Hongchun</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu"> Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liangzhi%20Cao"> Liangzhi Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuanqi%20Zhao"> Chuanqi Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distributions of homogeneous neutron flux within a node were expanded into a set of analytic basis functions which satisfy the diffusion equation at any point in a triangular-z node for each energy group, and nodes were coupled with each other with both the zero- and first-order partial neutron current moments across all the interfaces of the triangular prism at the same time. Based this method, a code TABFEN has been developed and applied to solve the neutron diffusion equation in a complicated geometry. In addition, after a series of numerical derivation, one can get the neutron adjoint diffusion equations in matrix form which is the same with the neutron diffusion equation; therefore, it can be solved by TABFEN, and the low-high scan strategy is adopted to improve the efficiency. Four benchmark problems are tested by this method to verify its feasibility, the results show good agreement with the references which demonstrates the efficiency and feasibility of this method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20basis%20function%20expansion%20method" title="analytic basis function expansion method">analytic basis function expansion method</a>, <a href="https://publications.waset.org/abstracts/search?q=arbitrary%20triangular-z%20node" title=" arbitrary triangular-z node"> arbitrary triangular-z node</a>, <a href="https://publications.waset.org/abstracts/search?q=adjoint%20neutron%20flux" title=" adjoint neutron flux"> adjoint neutron flux</a>, <a href="https://publications.waset.org/abstracts/search?q=complicated%20geometry" title=" complicated geometry"> complicated geometry</a> </p> <a href="https://publications.waset.org/abstracts/63283/the-application-of-the-analytic-basis-function-expansion-triangular-z-nodal-method-for-neutron-diffusion-calculation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2349</span> Thermodynamic Trends in Co-Based Alloys via Inelastic Neutron Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Stonaha">Paul Stonaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariia%20Romashchenko"> Mariia Romashchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Xaio%20Xu"> Xaio Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic shape memory alloys (MSMAs) are promising technological materials for a range of fields, from biomaterials to energy harvesting. We have performed inelastic neutron scattering on two powder samples of cobalt-based high-entropy MSMAs across a range of temperatures in an effort to compare calculations of thermodynamic properties (entropy, specific heat, etc.) to the measured ones. The measurements were correct for multiphonon scattering and multiple scattering contributions. We present herein the neutron-weighted vibrational density of states. Future work will utilize DFT calculations of the disordered lattice to correct for the neutron weighting and retrieve the true thermodynamical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20scattering" title="neutron scattering">neutron scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20dynamics" title=" vibrational dynamics"> vibrational dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20physics" title=" computational physics"> computational physics</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20science" title=" material science"> material science</a> </p> <a href="https://publications.waset.org/abstracts/189169/thermodynamic-trends-in-co-based-alloys-via-inelastic-neutron-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2348</span> A Study of Indoor Radon, Thoron, Their Progeny Concentration Levels and Inhalation Dose in Dwellings of Different Districts of Punjab State, India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komal%20Saini">Komal Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Sahoo"> B. K. Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.S.%20Bajwa"> B.S. Bajwa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, indoor radon and thoron concentrations have been estimated using newly developed twin cup based pin hole dosimeter with single entry face in some areas of Punjab state, India. The equilibrium equivalent concentration (EEC) of radon and thoron has also been estimated directly by using progeny sensors, fabricated by BARC, India. Observed radon and thoron concentrations varied from 38.7±5.79 to 98.7±13.11 Bq/m3 and 25.38±6.56 to 126.56±14.23 Bq/m3 with an average value of 61.59±8.11 & 70.89±9.52 Bq/m3 respectively. Average equilibrium equivalent concentration of radon and thoron was 27.98±4.66 & 2.24±0.61 Bq/m3. Calculated equilibrium factor for radon and thoron was 0.467 and 0.034 in the present study. Annual inhalation dose calculated from the present observed concentrations, varied from 1.80 to 3.60 mSv/year with an average value of 2.52 mSv/year, which is well within reference level. It has been observed from the present study that thoron is a significant contributor to the inhalation dose which is about 25% of the total inhalation dose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radon" title="radon">radon</a>, <a href="https://publications.waset.org/abstracts/search?q=thoron" title=" thoron"> thoron</a>, <a href="https://publications.waset.org/abstracts/search?q=pin%20hole%20cup%20dosimeter" title=" pin hole cup dosimeter"> pin hole cup dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=DTPS%2FDRPS" title=" DTPS/DRPS"> DTPS/DRPS</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20inhalation%20dose" title=" annual inhalation dose"> annual inhalation dose</a> </p> <a href="https://publications.waset.org/abstracts/42356/a-study-of-indoor-radon-thoron-their-progeny-concentration-levels-and-inhalation-dose-in-dwellings-of-different-districts-of-punjab-state-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2347</span> The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Giacometti">V. Giacometti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mirabelli"> R. Mirabelli</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Patera"> V. Patera</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pinci"> D. Pinci</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sarti"> A. Sarti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sciubba"> A. Sciubba</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Traini"> G. Traini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Marafini"> M. Marafini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=secondary%20neutrons" title="secondary neutrons">secondary neutrons</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20therapy" title=" particle therapy"> particle therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20detector" title=" tracking detector"> tracking detector</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title=" elastic scattering"> elastic scattering</a> </p> <a href="https://publications.waset.org/abstracts/71768/the-monitor-for-neutron-dose-in-hadrontherapy-project-secondary-neutron-measurement-in-particle-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2346</span> Water Equivalent from the Point of View of Fast Neutron Removal Cross-Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alrajhi">Mohammed Alrajhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiological properties of gel dosimeters and phantom materials are often evaluated in terms of effective atomic number, electron density, photon mass attenuation coefficient, photon mass energy absorption coefficient and total stopping power of electrons. To evaluate the water equivalence of such materials for fast neutron attenuation 19 different types of gel dosimeters and phantom materials were considered. Macroscopic removal cross-sections for fast neutrons (ΣR cm-1) have been calculated for a range of ferrous-sulphate and polymeric gel dosimeters using Nxcom Program. The study showed that the value of ΣR/ρ (cm2.g-1) for all polymer gels were in close agreement (1.5- 2.8%) with that of water. As such, the slight differences in ΣR/ρ between water and gels are small and may be considered negligible. Also, the removal cross-section of the studied phantom materials were very close (~ ±1.5%) to that of water except bone (cortical) which had about 38% variation. Finally, the variation of removal cross-section with hydrogen content was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-section" title="cross-section">cross-section</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron" title=" neutron"> neutron</a>, <a href="https://publications.waset.org/abstracts/search?q=photon" title=" photon"> photon</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient" title=" coefficient"> coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics" title=" mathematics"> mathematics</a> </p> <a href="https://publications.waset.org/abstracts/5582/water-equivalent-from-the-point-of-view-of-fast-neutron-removal-cross-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2345</span> Simulation and Characterization of Compact Magnetic Proton Recoil Spectrometer for Fast Neutron Spectra Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xingyu%20Peng">Xingyu Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingyuan%20Hu"> Qingyuan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuebin%20Zhu"> Xuebin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xi%20Yuan"> Xi Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neutron spectrometry has contributed much to the development of nuclear physics since 1932 and has also become an importance tool in several other fields, notably nuclear technology, fusion plasma diagnostics and radiation protection. Compared with neutron fluxes, neutron spectra can provide more detailed information on the internal physical process of neutron sources, such as fast neutron reactors, fusion plasma, fission-fusion hybrid reactors, and so on. However, high performance neutron spectrometer is not so commonly available as it requires the use of large and complex instrumentation. This work describes the development and characterization of a compact magnetic proton recoil (MPR) spectrometer for high-resolution measurements of fast neutron spectra. The compact MPR spectrometer is featured by its large recoil angle, small size permanent analysis magnet, short beam transport line and dual-purpose detector array for both steady state and pulsed neutron spectra measurement. A 3-dimensional electromagnetic particle transport code is developed to simulate the response function of the spectrometer. Simulation results illustrate that the performance of the spectrometer is mainly determined by n-p recoil foil and proton apertures, and an overall energy resolution of 3% is achieved for 14 MeV neutrons. Dedicated experiments using alpha source and mono-energetic neutron beam are employed to verify the simulated response function of the compact MPR spectrometer. These experimental results show a good agreement with the simulated ones, which indicates that the simulation code possesses good accuracy and reliability. The compact MPR spectrometer described in this work is a valuable tool for fast neutron spectra measurements for the fission or fusion devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20spectrometry" title="neutron spectrometry">neutron spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer" title=" magnetic proton recoil spectrometer"> magnetic proton recoil spectrometer</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20spectra" title=" neutron spectra"> neutron spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20neutron" title=" fast neutron"> fast neutron</a> </p> <a href="https://publications.waset.org/abstracts/92156/simulation-and-characterization-of-compact-magnetic-proton-recoil-spectrometer-for-fast-neutron-spectra-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2344</span> Production of Neutrons by High Intensity Picosecond Laser Interacting with Thick Solid Target at XingGuangIII</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xi%20Yuan">Xi Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuebin%20Zhu"> Xuebin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojun%20Li"> Bojun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes the experiment to produce high-intensity pulsed neutron beams on XingGuangIII laser facility. The high-intensity laser is utilized to drive protons and deuterons, which hit a thick solid target to produce neutrons. The pulse duration of the laser used in the experiment is about 0.8 ps, and the laser energy is around 100 J. Protons and deuterons are accelerated from a 10-μm-thick deuterated polyethylene (CD₂) foil and diagnosed by a Thomson parabola ion-spectrometer. The energy spectrum of neutrons generated via ⁷Li(d,n) and ⁷Li(p,n) reaction when proton and deuteron beams hit a 5-mm-thick LiF target is measured by a scintillator-based time-of-flight spectrometer. Results from the neuron measurements show that the maximum neutron energy is about 12.5 MeV and the neutron yield is up to 2×10⁹/pulse. The high-intensity pulsed neutron beams demonstrated in this work can provide a valuable neutron source for material research, fast neutron induced fission research, and so on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=picosecond%20laser%20driven" title="picosecond laser driven">picosecond laser driven</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20neutron" title=" fast neutron"> fast neutron</a>, <a href="https://publications.waset.org/abstracts/search?q=time-of-flight%20spectrometry" title=" time-of-flight spectrometry"> time-of-flight spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=XinggungIII" title=" XinggungIII"> XinggungIII</a> </p> <a href="https://publications.waset.org/abstracts/92159/production-of-neutrons-by-high-intensity-picosecond-laser-interacting-with-thick-solid-target-at-xingguangiii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2343</span> Optical Properties of N-(Hydroxymethyl) Acrylamide Polymer Gel Dosimeters for Radiation Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20A.%20Rabaeh">Khalid A. Rabaeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Belal%20Moftah"> Belal Moftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Basfar"> Ahmed A. Basfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20A.%20Almousa"> Akram A. Almousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer gel dosimeters are tissue equivalent martial that fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of absorbed radiation dose. Polymer gel dosimeters can uniquely record the radiation dose distribution in three-dimensions (3D). A novel composition of normoxic polymer gel dosimeters based on radiation-induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) is introduced in this study for radiotherapy treatment planning. The dosimeters were irradiated by 10 MV photon beam of a medical linear accelerator at a constant dose rate of 600 cGy/min with doses up to 30 Gy. The polymerization degree is directly proportional to absorbed dose received by the polymer gel. UV/Vis spectrophotometer was used to investigate the degree of white color of irradiated NHMA gel which is associated to the degree of polymerization of polymer gel dosimeters. The absorbance increases with absorbed dose for all gel dosimeters in the dose range between 0 and 30 Gy. Dose rate , energy of radiation and the stability of the polymerization after irradiation were investigated. No appreciable effects of these parameters on the performance of the novel gel dosimeters were observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dosimeter" title="dosimeter">dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gel" title=" gel"> gel</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometer" title=" spectrophotometer"> spectrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=N-%28Hydroxymethyl%29acrylamide" title=" N-(Hydroxymethyl)acrylamide "> N-(Hydroxymethyl)acrylamide </a> </p> <a href="https://publications.waset.org/abstracts/34646/optical-properties-of-n-hydroxymethyl-acrylamide-polymer-gel-dosimeters-for-radiation-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2342</span> Modeling of Cf-252 and PuBe Neutron Sources by Monte Carlo Method in Order to Develop Innovative BNCT Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marta%20B%C5%82a%C5%BCkiewicz">Marta Błażkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Konefa%C5%82"> Adam Konefał</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, boron-neutron therapy is carried out mainly with the use of a neutron beam generated in research nuclear reactors. This fact limits the possibility of realization of a BNCT in centers distant from the above-mentioned reactors. Moreover, the number of active nuclear reactors in operation in the world is decreasing due to the limited lifetime of their operation and the lack of new installations. Therefore, the possibilities of carrying out boron-neutron therapy based on the neutron beam from the experimental reactor are shrinking. However, the use of nuclear power reactors for BNCT purposes is impossible due to the infrastructure not intended for radiotherapy. Therefore, a serious challenge is to find ways to perform boron-neutron therapy based on neutrons generated outside the research nuclear reactor. This work meets this challenge. Its goal is to develop a BNCT technique based on commonly available neutron sources such as Cf-252 and PuBe, which will enable the above-mentioned therapy in medical centers unrelated to nuclear research reactors. Advances in the field of neutron source fabrication make it possible to achieve strong neutron fluxes. The current stage of research focuses on the development of virtual models of the above-mentioned sources using the Monte Carlo simulation method. In this study, the GEANT4 tool was used, including the model for simulating neutron-matter interactions - High Precision Neutron. Models of neutron sources were developed on the basis of experimental verification based on the activation detectors method with the use of indium foil and the cadmium differentiation method allowing to separate the indium activation contribution from thermal and resonance neutrons. Due to the large number of factors affecting the result of the verification experiment, the 10% discrepancy between the simulation and experiment results was accepted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BNCT" title="BNCT">BNCT</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20models" title=" virtual models"> virtual models</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20sources" title=" neutron sources"> neutron sources</a>, <a href="https://publications.waset.org/abstracts/search?q=monte%20carlo" title=" monte carlo"> monte carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=GEANT4" title=" GEANT4"> GEANT4</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20activation%20detectors" title=" neutron activation detectors"> neutron activation detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectroscopy" title=" gamma spectroscopy"> gamma spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/143406/modeling-of-cf-252-and-pube-neutron-sources-by-monte-carlo-method-in-order-to-develop-innovative-bnct-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2341</span> Solar and Galactic Cosmic Ray Impacts on Ambient Dose Equivalent Considering a Flight Path Statistic Representative to World-Traffic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Hubert">G. Hubert</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Aubry"> S. Aubry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earth is constantly bombarded by cosmic rays that can be of either galactic or solar origin. Thus, humans are exposed to high levels of galactic radiation due to altitude aircraft. The typical total ambient dose equivalent for a transatlantic flight is about 50 μSv during quiet solar activity. On the contrary, estimations differ by one order of magnitude for the contribution induced by certain solar particle events. Indeed, during Ground Level Enhancements (GLE) event, the Sun can emit particles of sufficient energy and intensity to raise radiation levels on Earth's surface. Analyses of GLE characteristics occurring since 1942 showed that for the worst of them, the dose level is of the order of 1 mSv and more. The largest of these events was observed on February 1956 for which the ambient dose equivalent rate is in the orders of 10 mSv/hr. The extra dose at aircraft altitudes for a flight during this event might have been about 20 mSv, i.e. comparable with the annual limit for aircrew. The most recent GLE, occurred on September 2017 resulting from an X-class solar flare, and it was measured on the surface of both the Earth and Mars using the Radiation Assessment Detector on the Mars Science Laboratory's Curiosity Rover. Recently, Hubert et al. proposed a GLE model included in a particle transport platform (named ATMORAD) describing the extensive air shower characteristics and allowing to assess the ambient dose equivalent. In this approach, the GCR is based on the Force-Field approximation model. The physical description of the Solar Cosmic Ray (i.e. SCR) considers the primary differential rigidity spectrum and the distribution of primary particles at the top of the atmosphere. ATMORAD allows to determine the spectral fluence rate of secondary particles induced by extensive showers, considering altitude range from ground to 45 km. Ambient dose equivalent can be determined using fluence-to-ambient dose equivalent conversion coefficients. The objective of this paper is to analyze the GCR and SCR impacts on ambient dose equivalent considering a high number statistic of world-flight paths. Flight trajectories are based on the Eurocontrol Demand Data Repository (DDR) and consider realistic flight plan with and without regulations or updated with Radar Data from CFMU (Central Flow Management Unit). The final paper will present exhaustive analyses implying solar impacts on ambient dose equivalent level and will propose detailed analyses considering route and airplane characteristics (departure, arrival, continent, airplane type etc.), and the phasing of the solar event. Preliminary results show an important impact of the flight path, particularly the latitude which drives the cutoff rigidity variations. Moreover, dose values vary drastically during GLE events, on the one hand with the route path (latitude, longitude altitude), on the other hand with the phasing of the solar event. Considering the GLE occurred on 23 February 1956, the average ambient dose equivalent evaluated for a flight Paris - New York is around 1.6 mSv, which is relevant to previous works This point highlights the importance of monitoring these solar events and of developing semi-empirical and particle transport method to obtain a reliable calculation of dose levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20ray" title="cosmic ray">cosmic ray</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20dose" title=" human dose"> human dose</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20flare" title=" solar flare"> solar flare</a>, <a href="https://publications.waset.org/abstracts/search?q=aviation" title=" aviation"> aviation</a> </p> <a href="https://publications.waset.org/abstracts/83651/solar-and-galactic-cosmic-ray-impacts-on-ambient-dose-equivalent-considering-a-flight-path-statistic-representative-to-world-traffic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2340</span> Comparison of Breast Surface Doses for Full-Field Digital Mammography and Digital Breast Tomosynthesis Using Breast Phantoms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Hui%20Chen">Chia-Hui Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20Wang"> Chien-Kuo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Full field digital mammography (FFDM) is widely used in diagnosis of breast cancer. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Hence, the radiation dose delivered to the patients involved in an imaging protocol is of utmost concern. Aim: To compare the surface radiation dose (ESD) of digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) by using breast phantoms. Method: We analyzed the average entrance surface dose (ESD) of FFDM and DBT by using breast phantoms. Optically Stimulated luminescent Dosimeters (OSLD) were placed in a tissue-equivalent Breast phantom at difference sites of interest. Absorbed dose measurements were obtained after digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) exposures. Results: An automatic exposure control (AEC) is proposed for surface dose measurement during DBT and FFDM. The mean ESD values for DBT and FFDM were 6.37 mGy and 3.51mGy, respectively. Using of OSLD measured for surface dose during DBT and FFDM. There were 19.87 mGy and 11.36 mGy, respectively. The surface exposure dose of DBT could possibly be increased by two times with FFDM. Conclusion: The radiation dose from DBT was higher than that of FFDM and the difference in dose between AEC and OSLD measurements at phantom surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=full-field%20digital%20mammography" title="full-field digital mammography">full-field digital mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20breast%20tomosynthesis" title=" digital breast tomosynthesis"> digital breast tomosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=optically%20stimulated%20luminescent%20dosimeters" title=" optically stimulated luminescent dosimeters"> optically stimulated luminescent dosimeters</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20dose" title=" surface dose"> surface dose</a> </p> <a href="https://publications.waset.org/abstracts/73090/comparison-of-breast-surface-doses-for-full-field-digital-mammography-and-digital-breast-tomosynthesis-using-breast-phantoms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=78">78</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=79">79</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10