CINXE.COM

Principia Mathematica - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Principia Mathematica - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"eb852e83-efb2-439a-b3d7-36bae91363d2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Principia_Mathematica","wgTitle":"Principia Mathematica","wgCurRevisionId":1277444943,"wgRevisionId":1277444943,"wgArticleId":24133,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Use British English from September 2013","Use dmy dates from December 2024","Wikipedia articles needing clarification from October 2017","All articles with unsourced statements","Articles with unsourced statements from January 2024","Commons category link from Wikidata","Large-scale mathematical formalization projects","1910 non-fiction books","1912 non-fiction books","1913 non-fiction books","1910 in science","1912 in science","1913 in science","Books by Bertrand Russell","Works by Alfred North Whitehead","Books about philosophy of mathematics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Principia_Mathematica","wgRelevantArticleId":24133,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q163335","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/2/27/Russell%2C_Whitehead_-_Principia_Mathematica_to_56.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1883"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/2/27/Russell%2C_Whitehead_-_Principia_Mathematica_to_56.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1255"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="1004"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Principia Mathematica - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Principia_Mathematica"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Principia_Mathematica&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Principia_Mathematica"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Principia_Mathematica rootpage-Principia_Mathematica skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Principia+Mathematica" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Principia+Mathematica" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Principia+Mathematica" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Principia+Mathematica" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Scope_of_foundations_laid" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Scope_of_foundations_laid"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Scope of foundations laid</span> </div> </a> <ul id="toc-Scope_of_foundations_laid-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Theoretical_basis" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Theoretical_basis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Theoretical basis</span> </div> </a> <button aria-controls="toc-Theoretical_basis-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Theoretical basis subsection</span> </button> <ul id="toc-Theoretical_basis-sublist" class="vector-toc-list"> <li id="toc-Contemporary_construction_of_a_formal_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Contemporary_construction_of_a_formal_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Contemporary construction of a formal theory</span> </div> </a> <ul id="toc-Contemporary_construction_of_a_formal_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Construction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Construction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Construction</span> </div> </a> <ul id="toc-Construction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Primitive_ideas" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Primitive_ideas"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Primitive ideas</span> </div> </a> <ul id="toc-Primitive_ideas-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Primitive_propositions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Primitive_propositions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Primitive propositions</span> </div> </a> <ul id="toc-Primitive_propositions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Ramified_types_and_the_axiom_of_reducibility" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Ramified_types_and_the_axiom_of_reducibility"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Ramified types and the axiom of reducibility</span> </div> </a> <ul id="toc-Ramified_types_and_the_axiom_of_reducibility-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Notation</span> </div> </a> <button aria-controls="toc-Notation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Notation subsection</span> </button> <ul id="toc-Notation-sublist" class="vector-toc-list"> <li id="toc-An_introduction_to_the_notation_of_&quot;Section_A_Mathematical_Logic&quot;_(formulas_✱1–✱5.71)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#An_introduction_to_the_notation_of_&quot;Section_A_Mathematical_Logic&quot;_(formulas_✱1–✱5.71)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>An introduction to the notation of "Section A Mathematical Logic" (formulas ✱1–✱5.71)</span> </div> </a> <ul id="toc-An_introduction_to_the_notation_of_&quot;Section_A_Mathematical_Logic&quot;_(formulas_✱1–✱5.71)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-An_introduction_to_the_notation_of_&quot;Section_B_Theory_of_Apparent_Variables&quot;_(formulas_✱8–✱14.34)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#An_introduction_to_the_notation_of_&quot;Section_B_Theory_of_Apparent_Variables&quot;_(formulas_✱8–✱14.34)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>An introduction to the notation of "Section B Theory of Apparent Variables" (formulas ✱8–✱14.34)</span> </div> </a> <ul id="toc-An_introduction_to_the_notation_of_&quot;Section_B_Theory_of_Apparent_Variables&quot;_(formulas_✱8–✱14.34)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Introduction_to_the_notation_of_the_theory_of_classes_and_relations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Introduction_to_the_notation_of_the_theory_of_classes_and_relations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Introduction to the notation of the theory of classes and relations</span> </div> </a> <ul id="toc-Introduction_to_the_notation_of_the_theory_of_classes_and_relations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Consistency_and_criticisms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Consistency_and_criticisms"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Consistency and criticisms</span> </div> </a> <button aria-controls="toc-Consistency_and_criticisms-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Consistency and criticisms subsection</span> </button> <ul id="toc-Consistency_and_criticisms-sublist" class="vector-toc-list"> <li id="toc-Gödel_1930,_1931" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gödel_1930,_1931"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Gödel 1930, 1931</span> </div> </a> <ul id="toc-Gödel_1930,_1931-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Wittgenstein_1919,_1939" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Wittgenstein_1919,_1939"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Wittgenstein 1919, 1939</span> </div> </a> <ul id="toc-Wittgenstein_1919,_1939-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gödel_1944" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gödel_1944"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Gödel 1944</span> </div> </a> <ul id="toc-Gödel_1944-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Contents" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Contents"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Contents</span> </div> </a> <button aria-controls="toc-Contents-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Contents subsection</span> </button> <ul id="toc-Contents-sublist" class="vector-toc-list"> <li id="toc-Part_I_Mathematical_logic._Volume_I_✱1_to_✱43" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Part_I_Mathematical_logic._Volume_I_✱1_to_✱43"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Part I Mathematical logic. Volume I ✱1 to ✱43</span> </div> </a> <ul id="toc-Part_I_Mathematical_logic._Volume_I_✱1_to_✱43-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Part_II_Prolegomena_to_cardinal_arithmetic._Volume_I_✱50_to_✱97" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Part_II_Prolegomena_to_cardinal_arithmetic._Volume_I_✱50_to_✱97"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Part II Prolegomena to cardinal arithmetic. Volume I ✱50 to ✱97</span> </div> </a> <ul id="toc-Part_II_Prolegomena_to_cardinal_arithmetic._Volume_I_✱50_to_✱97-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Part_III_Cardinal_arithmetic._Volume_II_✱100_to_✱126" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Part_III_Cardinal_arithmetic._Volume_II_✱100_to_✱126"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Part III Cardinal arithmetic. Volume II ✱100 to ✱126</span> </div> </a> <ul id="toc-Part_III_Cardinal_arithmetic._Volume_II_✱100_to_✱126-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Part_IV_Relation-arithmetic._Volume_II_✱150_to_✱186" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Part_IV_Relation-arithmetic._Volume_II_✱150_to_✱186"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Part IV Relation-arithmetic. Volume II ✱150 to ✱186</span> </div> </a> <ul id="toc-Part_IV_Relation-arithmetic._Volume_II_✱150_to_✱186-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Part_V_Series._Volume_II_✱200_to_✱234_and_volume_III_✱250_to_✱276" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Part_V_Series._Volume_II_✱200_to_✱234_and_volume_III_✱250_to_✱276"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Part V Series. Volume II ✱200 to ✱234 and volume III ✱250 to ✱276</span> </div> </a> <ul id="toc-Part_V_Series._Volume_II_✱200_to_✱234_and_volume_III_✱250_to_✱276-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Part_VI_Quantity._Volume_III_✱300_to_✱375" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Part_VI_Quantity._Volume_III_✱300_to_✱375"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>Part VI Quantity. Volume III ✱300 to ✱375</span> </div> </a> <ul id="toc-Part_VI_Quantity._Volume_III_✱300_to_✱375-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Comparison_with_set_theory" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Comparison_with_set_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Comparison with set theory</span> </div> </a> <ul id="toc-Comparison_with_set_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differences_between_editions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Differences_between_editions"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Differences between editions</span> </div> </a> <ul id="toc-Differences_between_editions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Editions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Editions"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Editions</span> </div> </a> <ul id="toc-Editions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Legacy" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Legacy"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Legacy</span> </div> </a> <ul id="toc-Legacy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Footnotes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Footnotes"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Footnotes</span> </div> </a> <ul id="toc-Footnotes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><i>Principia Mathematica</i></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 29 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-29" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">29 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%A8%D8%A7%D8%AF%D8%A6_%D8%A7%D9%84%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA" title="مبادئ الرياضيات – Arabic" lang="ar" hreflang="ar" data-title="مبادئ الرياضيات" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AA%E0%A7%8D%E0%A7%B0%E0%A6%BF%E0%A6%A8%E0%A7%8D%E0%A6%B8%E0%A6%BF%E0%A6%AA%E0%A6%BF%E0%A6%AF%E0%A6%BC%E0%A6%BE_%E0%A6%AE%E0%A7%87%E0%A6%A5%E0%A7%87%E0%A6%AE%E0%A7%87%E0%A6%9F%E0%A6%BF%E0%A6%95%E0%A6%BE" title="প্ৰিন্সিপিয়া মেথেমেটিকা – Assamese" lang="as" hreflang="as" data-title="প্ৰিন্সিপিয়া মেথেমেটিকা" data-language-autonym="অসমীয়া" data-language-local-name="Assamese" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AA%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%A8%E0%A7%8D%E0%A6%B8%E0%A6%BF%E0%A6%AA%E0%A6%BF%E0%A6%AF%E0%A6%BC%E0%A6%BE_%E0%A6%AE%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%A5%E0%A7%87%E0%A6%AE%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%9F%E0%A6%BF%E0%A6%95%E0%A6%BE" title="প্রিন্সিপিয়া ম্যাথেম্যাটিকা – Bangla" lang="bn" hreflang="bn" data-title="প্রিন্সিপিয়া ম্যাথেম্যাটিকা" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Principia_Mathematica_(Russell-Whitehead)" title="Principia Mathematica (Russell-Whitehead) – Catalan" lang="ca" hreflang="ca" data-title="Principia Mathematica (Russell-Whitehead)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Czech" lang="cs" hreflang="cs" data-title="Principia Mathematica" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Welsh" lang="cy" hreflang="cy" data-title="Principia Mathematica" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Danish" lang="da" hreflang="da" data-title="Principia Mathematica" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – German" lang="de" hreflang="de" data-title="Principia Mathematica" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Spanish" lang="es" hreflang="es" data-title="Principia Mathematica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A8%D8%A7%D8%AF%DB%8C_%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA" title="مبادی ریاضیات – Persian" lang="fa" hreflang="fa" data-title="مبادی ریاضیات" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – French" lang="fr" hreflang="fr" data-title="Principia Mathematica" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%88%98%ED%95%99_%EC%9B%90%EB%A6%AC" title="수학 원리 – Korean" lang="ko" hreflang="ko" data-title="수학 원리" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Icelandic" lang="is" hreflang="is" data-title="Principia Mathematica" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Italian" lang="it" hreflang="it" data-title="Principia Mathematica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%A8%D7%99%D7%A0%D7%A7%D7%99%D7%A4%D7%99%D7%94_%D7%9E%D7%AA%D7%9E%D7%98%D7%99%D7%A7%D7%94_(%D7%A8%D7%90%D7%A1%D7%9C)" title="פרינקיפיה מתמטיקה (ראסל) – Hebrew" lang="he" hreflang="he" data-title="פרינקיפיה מתמטיקה (ראסל)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Hungarian" lang="hu" hreflang="hu" data-title="Principia Mathematica" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AA%E0%B5%8D%E0%B4%B0%E0%B4%BF%E0%B5%BB%E0%B4%B8%E0%B4%BF%E0%B4%AA%E0%B4%BF%E0%B4%AF_%E0%B4%AE%E0%B4%BE%E0%B4%A4%E0%B5%8D%E0%B4%A4%E0%B4%AE%E0%B4%BE%E0%B4%B1%E0%B5%8D%E0%B4%B1%E0%B4%BF%E0%B4%95%E0%B5%8D%E0%B4%95" title="പ്രിൻസിപിയ മാത്തമാറ്റിക്ക – Malayalam" lang="ml" hreflang="ml" data-title="പ്രിൻസിപിയ മാത്തമാറ്റിക്ക" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Dutch" lang="nl" hreflang="nl" data-title="Principia Mathematica" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%97%E3%83%AA%E3%83%B3%E3%82%AD%E3%83%94%E3%82%A2%E3%83%BB%E3%83%9E%E3%83%86%E3%83%9E%E3%83%86%E3%82%A3%E3%82%AB" title="プリンキピア・マテマティカ – Japanese" lang="ja" hreflang="ja" data-title="プリンキピア・マテマティカ" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Principia_mathematica" title="Principia mathematica – Polish" lang="pl" hreflang="pl" data-title="Principia mathematica" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Portuguese" lang="pt" hreflang="pt" data-title="Principia Mathematica" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17559452 badge-recommendedarticle mw-list-item" title="recommended article"><a href="https://ru.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Russian" lang="ru" hreflang="ru" data-title="Principia Mathematica" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Simple English" lang="en-simple" hreflang="en-simple" data-title="Principia Mathematica" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Finnish" lang="fi" hreflang="fi" data-title="Principia Mathematica" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Swedish" lang="sv" hreflang="sv" data-title="Principia Mathematica" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AE%BF%E0%AE%B0%E0%AE%BF%E0%AE%A9%E0%AF%8D%E0%AE%9A%E0%AE%BF%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AE%BF%E0%AE%AF%E0%AE%BE_%E0%AE%AE%E0%AE%BE%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AE%AE%E0%AE%BE%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AE%BF%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%BE" title="பிரின்சிப்பியா மாத்தமாட்டிக்கா – Tamil" lang="ta" hreflang="ta" data-title="பிரின்சிப்பியா மாத்தமாட்டிக்கா" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/Principia_Mathematica" title="Principia Mathematica – Ukrainian" lang="uk" hreflang="uk" data-title="Principia Mathematica" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%8E%9F%E7%90%86" title="数学原理 – Wu" lang="wuu" hreflang="wuu" data-title="数学原理" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%8E%9F%E7%90%86" title="数学原理 – Chinese" lang="zh" hreflang="zh" data-title="数学原理" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q163335#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Principia_Mathematica" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Principia_Mathematica" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Principia_Mathematica"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Principia_Mathematica&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Principia_Mathematica"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Principia_Mathematica&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Principia_Mathematica" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Principia_Mathematica" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Principia_Mathematica&amp;oldid=1277444943" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Principia_Mathematica&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Principia_Mathematica&amp;id=1277444943&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPrincipia_Mathematica"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPrincipia_Mathematica"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Principia_Mathematica&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Principia_Mathematica&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Principia_Mathematica" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Principia_Mathematica" hreflang="en"><span>Wikiquote</span></a></li><li class="wb-otherproject-link wb-otherproject-wikisource mw-list-item"><a href="https://en.wikisource.org/wiki/Russell_%26_Whitehead%27s_Principia_Mathematica" hreflang="en"><span>Wikisource</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q163335" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">3-volume treatise on mathematics, 1910–1913</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For Isaac Newton's 1687 book, see <a href="/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica" title="Philosophiæ Naturalis Principia Mathematica">Philosophiæ Naturalis Principia Mathematica</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/The_Principles_of_Mathematics" title="The Principles of Mathematics">The Principles of Mathematics</a> – another book by Russell, published in 1903.</div> <p class="mw-empty-elt"> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Russell,_Whitehead_-_Principia_Mathematica_to_56.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Russell%2C_Whitehead_-_Principia_Mathematica_to_56.jpg/200px-Russell%2C_Whitehead_-_Principia_Mathematica_to_56.jpg" decoding="async" width="200" height="314" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Russell%2C_Whitehead_-_Principia_Mathematica_to_56.jpg/300px-Russell%2C_Whitehead_-_Principia_Mathematica_to_56.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/2/27/Russell%2C_Whitehead_-_Principia_Mathematica_to_56.jpg 2x" data-file-width="348" data-file-height="546" /></a><figcaption>The title page of the shortened <i>Principia Mathematica to</i> ✱56</figcaption></figure> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Principia_Mathematica_54-43.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Principia_Mathematica_54-43.png/500px-Principia_Mathematica_54-43.png" decoding="async" width="500" height="208" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Principia_Mathematica_54-43.png/750px-Principia_Mathematica_54-43.png 1.5x, //upload.wikimedia.org/wikipedia/commons/d/d7/Principia_Mathematica_54-43.png 2x" data-file-width="800" data-file-height="333" /></a><figcaption><b>✱54.43</b>: "From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2." – Volume I, 1st edition, <a rel="nofollow" class="external text" href="http://quod.lib.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath&amp;cc=umhistmath&amp;idno=aat3201.0001.001&amp;frm=frameset&amp;view=image&amp;seq=401">p. 379</a> (p.&#160;362 in 2nd edition; p.&#160;360 in abridged version). (The proof is actually completed in Volume II, 1st edition, <a rel="nofollow" class="external text" href="http://quod.lib.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath&amp;cc=umhistmath&amp;idno=aat3201.0002.001&amp;frm=frameset&amp;view=image&amp;seq=126">page 86</a>, accompanied by the comment, "The above proposition is occasionally useful." They go on to say "It is used at least three times, in ✱113.66 and ✱120.123.472.")</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1224211176">.mw-parser-output .quotebox{background-color:#F9F9F9;border:1px solid #aaa;box-sizing:border-box;padding:10px;font-size:88%;max-width:100%}.mw-parser-output .quotebox.floatleft{margin:.5em 1.4em .8em 0}.mw-parser-output .quotebox.floatright{margin:.5em 0 .8em 1.4em}.mw-parser-output .quotebox.centered{overflow:hidden;position:relative;margin:.5em auto .8em auto}.mw-parser-output .quotebox.floatleft span,.mw-parser-output .quotebox.floatright span{font-style:inherit}.mw-parser-output .quotebox>blockquote{margin:0;padding:0;border-left:0;font-family:inherit;font-size:inherit}.mw-parser-output .quotebox-title{text-align:center;font-size:110%;font-weight:bold}.mw-parser-output .quotebox-quote>:first-child{margin-top:0}.mw-parser-output .quotebox-quote:last-child>:last-child{margin-bottom:0}.mw-parser-output .quotebox-quote.quoted:before{font-family:"Times New Roman",serif;font-weight:bold;font-size:large;color:gray;content:" “ ";vertical-align:-45%;line-height:0}.mw-parser-output .quotebox-quote.quoted:after{font-family:"Times New Roman",serif;font-weight:bold;font-size:large;color:gray;content:" ” ";line-height:0}.mw-parser-output .quotebox .left-aligned{text-align:left}.mw-parser-output .quotebox .right-aligned{text-align:right}.mw-parser-output .quotebox .center-aligned{text-align:center}.mw-parser-output .quotebox .quote-title,.mw-parser-output .quotebox .quotebox-quote{display:block}.mw-parser-output .quotebox cite{display:block;font-style:normal}@media screen and (max-width:640px){.mw-parser-output .quotebox{width:100%!important;margin:0 0 .8em!important;float:none!important}}</style><div class="quotebox pullquote floatright" style="width:35%; ;"> <blockquote class="quotebox-quote left-aligned" style=""> <p>I can remember Bertrand Russell telling me of a horrible dream. He was in the top floor of the University Library, about A.D. 2100. A library assistant was going round the shelves carrying an enormous bucket, taking down books, glancing at them, restoring them to the shelves or dumping them into the bucket. At last he came to three large volumes which Russell could recognize as the last surviving copy of <i>Principia Mathematica</i>. He took down one of the volumes, turned over a few pages, seemed puzzled for a moment by the curious symbolism, closed the volume, balanced it in his hand and hesitated.... </p> </blockquote> <div style="padding-bottom: 0; padding-top: 0.5em"><cite class="right-aligned" style=""><a href="/wiki/G._H._Hardy" title="G. H. Hardy">G. H. Hardy</a>,&#32;<i><a href="/wiki/A_Mathematician%27s_Apology" title="A Mathematician&#39;s Apology">A Mathematician's Apology</a></i> (1940)<sup id="cite_ref-FOOTNOTEHardy200483_1-0" class="reference"><a href="#cite_note-FOOTNOTEHardy200483-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></cite></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1224211176" /><div class="quotebox pullquote floatright" style="width:35%; ;"> <blockquote class="quotebox-quote left-aligned" style=""> <p>He [Russell] said once, after some contact with the Chinese language, that he was horrified to find that the language of <i>Principia Mathematica</i> was an Indo-European one. </p> </blockquote> <div style="padding-bottom: 0; padding-top: 0.5em"><cite class="right-aligned" style=""><a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">John Edensor Littlewood</a>,&#32;<i><a href="/wiki/Littlewood%27s_Miscellany" class="mw-redirect" title="Littlewood&#39;s Miscellany">Littlewood's Miscellany</a></i> (1986)<sup id="cite_ref-FOOTNOTELittlewood1986130_2-0" class="reference"><a href="#cite_note-FOOTNOTELittlewood1986130-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></cite></div> </div> <p>The <i><b>Principia Mathematica</b></i> (often abbreviated <i><b>PM</b></i>) is a three-volume work on the <a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">foundations of mathematics</a> written by the mathematician–philosophers <a href="/wiki/Alfred_North_Whitehead" title="Alfred North Whitehead">Alfred North Whitehead</a> and <a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Bertrand Russell</a> and published in 1910, 1912, and 1913. In 1925–1927, it appeared in a second edition with an important <i>Introduction to the Second Edition</i>, an <i>Appendix A</i> that replaced <b>✱9</b> with a new <i>Appendix B</i> and <i>Appendix C</i>. <i>PM</i> was conceived as a sequel to Russell's 1903 <i><a href="/wiki/The_Principles_of_Mathematics" title="The Principles of Mathematics">The Principles of Mathematics</a></i>, but as <i>PM</i> states, this became an unworkable suggestion for practical and philosophical reasons: "The present work was originally intended by us to be comprised in a second volume of <i>Principles of Mathematics</i>... But as we advanced, it became increasingly evident that the subject is a very much larger one than we had supposed; moreover on many fundamental questions which had been left obscure and doubtful in the former work, we have now arrived at what we believe to be satisfactory solutions." </p><p><i>PM</i>, according to its introduction, had three aims: (1) to analyze to the greatest possible extent the ideas and methods of mathematical logic and to minimize the number of <a href="/wiki/Primitive_notion" title="Primitive notion">primitive notions</a>, <a href="/wiki/Axiom" title="Axiom">axioms</a>, and <a href="/wiki/Inference_rule" class="mw-redirect" title="Inference rule">inference rules</a>; (2) to precisely express mathematical propositions in <a href="/wiki/Mathematical_logic" title="Mathematical logic">symbolic logic</a> using the most convenient notation that precise expression allows; (3) to solve the paradoxes that plagued logic and <a href="/wiki/Set_theory" title="Set theory">set theory</a> at the turn of the 20th century, like <a href="/wiki/Russell%27s_paradox" title="Russell&#39;s paradox">Russell's paradox</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>This third aim motivated the adoption of the theory of <a href="/wiki/System_of_types" class="mw-redirect" title="System of types">types</a> in <i>PM</i>. The theory of types adopts grammatical restrictions on formulas that rule out the unrestricted comprehension of classes, properties, and functions. The effect of this is that formulas such as would allow the comprehension of objects like the Russell set turn out to be ill-formed: they violate the grammatical restrictions of the system of <i>PM</i>. </p><p><i>PM</i> sparked interest in symbolic logic and advanced the subject, popularizing it and demonstrating its power.<sup id="cite_ref-SEP_4-0" class="reference"><a href="#cite_note-SEP-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Modern_Library" title="Modern Library">Modern Library</a> placed <i>PM</i> 23rd in their list of the top 100 English-language nonfiction books of the twentieth century.<sup id="cite_ref-ML_5-0" class="reference"><a href="#cite_note-ML-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Scope_of_foundations_laid">Scope of foundations laid</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=1" title="Edit section: Scope of foundations laid"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>Principia</i> covered only <a href="/wiki/Set_theory" title="Set theory">set theory</a>, <a href="/wiki/Cardinal_numbers" class="mw-redirect" title="Cardinal numbers">cardinal numbers</a>, <a href="/wiki/Ordinal_numbers" class="mw-redirect" title="Ordinal numbers">ordinal numbers</a>, and <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">real numbers</a>. Deeper theorems from <a href="/wiki/Real_analysis" title="Real analysis">real analysis</a> were not included, but by the end of the third volume it was clear to experts that a large amount of known mathematics could <i>in principle</i> be developed in the adopted formalism. It was also clear how lengthy such a development would be. </p><p>A fourth volume on the foundations of <a href="/wiki/Geometry" title="Geometry">geometry</a> had been planned, but the authors admitted to intellectual exhaustion upon completion of the third. </p> <div class="mw-heading mw-heading2"><h2 id="Theoretical_basis">Theoretical basis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=2" title="Edit section: Theoretical basis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As noted in the criticism of the theory by <a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Kurt Gödel</a> (below), unlike a <a href="/wiki/Formalism_(mathematics)" class="mw-redirect" title="Formalism (mathematics)">formalist theory</a>, the "logicistic" theory of <i>PM</i> has no "precise statement of the syntax of the formalism". Furthermore in the theory, it is almost immediately observable that <i>interpretations</i> (in the sense of <a href="/wiki/Model_theory" title="Model theory">model theory</a>) are presented in terms of <i>truth-values</i> for the behaviour of the symbols "⊢" (assertion of truth), "~" (logical not), and "V" (logical inclusive OR). </p><p><b>Truth-values</b>: <i>PM</i> embeds the notions of "truth" and "falsity" in the notion "primitive proposition". A raw (pure) formalist theory would not provide the meaning of the symbols that form a "primitive proposition"—the symbols themselves could be absolutely arbitrary and unfamiliar. The theory would specify only <i>how the symbols behave based on the grammar of the theory</i>. Then later, by <i>assignment</i> of "values", a model would specify an <i>interpretation</i> of what the formulas are saying. Thus in the formal <a href="/wiki/Stephen_Cole_Kleene" title="Stephen Cole Kleene">Kleene</a> symbol set below, the "interpretation" of what the symbols commonly mean, and by implication how they end up being used, is given in parentheses, e.g., "¬ (not)". But this is not a pure Formalist theory. </p> <div class="mw-heading mw-heading3"><h3 id="Contemporary_construction_of_a_formal_theory">Contemporary construction of a formal theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=3" title="Edit section: Contemporary construction of a formal theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Principia_Mathematica_List_of_Propositions.pdf" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Principia_Mathematica_List_of_Propositions.pdf/page1-300px-Principia_Mathematica_List_of_Propositions.pdf.jpg" decoding="async" width="300" height="425" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Principia_Mathematica_List_of_Propositions.pdf/page1-450px-Principia_Mathematica_List_of_Propositions.pdf.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Principia_Mathematica_List_of_Propositions.pdf/page1-600px-Principia_Mathematica_List_of_Propositions.pdf.jpg 2x" data-file-width="1237" data-file-height="1752" /></a><figcaption>List of propositions referred to by names</figcaption></figure> <p>The following formalist theory is offered as contrast to the logicistic theory of <i>PM</i>. A contemporary formal system would be constructed as follows: </p> <ol><li><i>Symbols used</i>: This set is the starting set, and other symbols can appear but only by <i>definition</i> from these beginning symbols. A starting set might be the following set derived from Kleene 1952: <ul><li><i>logical symbols</i>: <ul><li>"→" (implies, IF-THEN, and "⊃"),</li> <li>"&amp;" (and),</li> <li>"V" (or),</li> <li>"¬" (not),</li> <li>"∀" (for all),</li> <li>"∃" (there exists);</li></ul></li> <li><i>predicate symbol</i>: "=" (equals);</li> <li><i>function symbols</i>: <ul><li>"+" (arithmetic addition),</li> <li>"∙" (arithmetic multiplication),</li> <li>"'" (successor);</li></ul></li> <li><i>individual symbol</i> "0" (zero);</li> <li><i>variables</i> "<i>a</i>", "<i>b</i>", "<i>c</i>", etc.; and</li> <li><i>parentheses</i> "(" and ")".<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><i>Symbol strings</i>: The theory will build "strings" of these symbols by <a href="/wiki/Concatenation" title="Concatenation">concatenation</a> (juxtaposition).<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li> <li><i>Formation rules</i>: The theory specifies the rules of syntax (rules of grammar) usually as a recursive definition that starts with "0" and specifies how to build acceptable strings or "well-formed formulas" (wffs).<sup id="cite_ref-FOOTNOTEEnderton200116_8-0" class="reference"><a href="#cite_note-FOOTNOTEEnderton200116-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> This includes a rule for "substitution"<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> of strings for the symbols called "variables".</li> <li><i>Transformation rule(s)</i>: The <a href="/wiki/Axioms" class="mw-redirect" title="Axioms">axioms</a> that specify the behaviours of the symbols and symbol sequences.</li> <li><i>Rule of inference, detachment, </i>modus ponens<i> </i>: The rule that allows the theory to "detach" a "conclusion" from the "premises" that led up to it, and thereafter to discard the "premises" (symbols to the left of the line │, or symbols above the line if horizontal). If this were not the case, then substitution would result in longer and longer strings that have to be carried forward. Indeed, after the application of modus ponens, nothing is left but the conclusion, the rest disappears forever.<div class="paragraphbreak" style="margin-top:0.5em"></div> Contemporary theories often specify as their first axiom the classical or <a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a> or "the rule of detachment":<style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent" style="padding-left: 1.5em;"><i>A</i>, <i>A</i> ⊃ <i>B</i> | <i>B </i></div> The symbol "│" is usually written as a vertical line, here "⊃" means "implies". The symbols <i>A</i> and <i>B</i> are "stand-ins" for strings; this form of notation is called an "axiom schema" (i.e., there is a countable number of specific forms the notation could take). This can be read in a manner similar to IF-THEN but with a difference: given symbol string IF <i>A</i> and <i>A</i> implies <i>B</i> THEN <i>B</i> (and retain only <i>B</i> for further use). But the symbols have no "interpretation" (e.g., no "truth table" or "truth values" or "truth functions") and modus ponens proceeds mechanistically, by grammar alone.</li></ol> <div class="mw-heading mw-heading3"><h3 id="Construction">Construction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=4" title="Edit section: Construction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The theory of <i>PM</i> has both significant similarities, and similar differences, to a contemporary formal theory.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="What is the contemporary formal theory being referred to here? (October 2017)">clarification needed</span></a></i>&#93;</sup> Kleene states that "this deduction of mathematics from logic was offered as intuitive axiomatics. The axioms were intended to be believed, or at least to be accepted as plausible hypotheses concerning the world".<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Indeed, unlike a Formalist theory that manipulates symbols according to rules of grammar, <i>PM</i> introduces the notion of "truth-values", i.e., truth and falsity in the <i>real-world</i> sense, and the "assertion of truth" almost immediately as the fifth and sixth elements in the structure of the theory (<i>PM</i> 1962:4–36): </p> <ol><li><i>Variables</i></li> <li><i>Uses of various letters</i></li> <li><i>The fundamental functions of propositions</i>: "the Contradictory Function" symbolised by "~" and the "Logical Sum or Disjunctive Function" symbolised by "∨" being taken as primitive and logical implication <i>defined</i> (the following example also used to illustrate 9. <i>Definition</i> below) as<br /><i>p</i> ⊃ <i>q</i> <b>.</b>=<b>.</b> ~ <i>p</i> ∨ <i>q</i> <b>Df</b>. (<i>PM</i> 1962:11)<br /> and logical product defined as<br /> <i>p</i> <b>.</b> <i>q</i> <b>.</b>=<b>.</b> ~(~<i>p</i> ∨ ~<i>q</i>) <b>Df</b>. (<i>PM</i> 1962:12)</li> <li><i>Equivalence</i>: <i>Logical</i> equivalence, not arithmetic equivalence: "≡" given as a demonstration of how the symbols are used, i.e., "Thus ' <i>p</i> ≡ <i>q</i> ' stands for '( <i>p</i> ⊃ <i>q</i> ) <b>.</b> ( <i>q</i> ⊃ <i>p</i> )'." (<i>PM</i> 1962:7). Notice that to <i>discuss</i> a notation <i>PM</i> identifies a "meta"-notation with "[space] ... [space]":<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><br />Logical equivalence appears again as a <i>definition</i>:<br /><i>p</i> ≡ <i>q</i> <b>.</b>=<b>.</b> ( <i>p</i> ⊃ <i>q</i> ) <b>.</b> ( <i>q</i> ⊃ <i>p</i> ) (<i>PM</i> 1962:12),<br />Notice the appearance of parentheses. This <i>grammatical</i> usage is not specified and appears sporadically; parentheses do play an important role in symbol strings, however, e.g., the notation "(<i>x</i>)" for the contemporary "∀<i>x</i>".</li> <li><i>Truth-values</i>: "The 'Truth-value' of a proposition is <i>truth</i> if it is true, and <i>falsehood</i> if it is false" (this phrase is due to <a href="/wiki/Gottlob_Frege" title="Gottlob Frege">Gottlob Frege</a>) (<i>PM</i> 1962:7).</li> <li><i>Assertion-sign</i>: "'⊦<b>.</b> <i>p</i> may be read 'it is true that' ... thus '⊦<b>:</b> <i>p</i> <b>.</b>⊃<b>.</b> <i>q</i> ' means 'it is true that <i>p</i> implies <i>q</i> ', whereas '⊦<b>.</b> <i>p</i> <b>.</b>⊃⊦<b>.</b> <i>q</i> ' means ' <i>p</i> is true; therefore <i>q</i> is true'. The first of these does not necessarily involve the truth either of <i>p</i> or of <i>q</i>, while the second involves the truth of both" (<i>PM</i> 1962:92).</li> <li><i>Inference</i>: <i>PM</i><span class="nowrap" style="padding-left:0.1em;">&#39;</span>s version of <i>modus ponens</i>. "[If] '⊦<b>.</b> <i>p</i> ' and '⊦ (<i>p</i> ⊃ <i>q</i>)' have occurred, then '⊦ <b>.</b> <i>q</i> ' will occur if it is desired to put it on record. The process of the inference cannot be reduced to symbols. Its sole record is the occurrence of '⊦<b>.</b> <i>q</i> ' [in other words, the symbols on the left disappear or can be erased]" (<i>PM</i> 1962:9).</li> <li><i>The use of dots</i></li> <li><i>Definitions</i>: These use the "=" sign with "Df" at the right end.</li> <li><i>Summary of preceding statements</i>: brief discussion of the primitive ideas "~ <i>p</i>" and "<i>p</i> ∨ <i>q</i>" and "⊦" prefixed to a proposition.</li> <li><i>Primitive propositions</i>: the axioms or postulates. This was significantly modified in the second edition.</li> <li><i>Propositional functions</i>: The notion of "proposition" was significantly modified in the second edition, including the introduction of "atomic" propositions linked by logical signs to form "molecular" propositions, and the use of substitution of molecular propositions into atomic or molecular propositions to create new expressions.</li> <li><i>The range of values and total variation</i></li> <li><i>Ambiguous assertion and the real variable</i>: This and the next two sections were modified or abandoned in the second edition. In particular, the distinction between the concepts defined in sections 15. <i>Definition and the real variable</i> and 16 <i>Propositions connecting real and apparent variables</i> was abandoned in the second edition.</li> <li><i>Formal implication and formal equivalence</i></li> <li><i>Identity</i></li> <li><i>Classes and relations</i></li> <li><i>Various descriptive functions of relations</i></li> <li><i>Plural descriptive functions</i></li> <li><i>Unit classes</i></li></ol> <div class="mw-heading mw-heading3"><h3 id="Primitive_ideas">Primitive ideas</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=5" title="Edit section: Primitive ideas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Cf. <i>PM</i> 1962:90–94, for the first edition: </p> <ul><li>(1) <i>Elementary propositions</i>.</li> <li>(2) <i>Elementary propositions of functions</i>.</li> <li>(3) <i>Assertion</i>: introduces the notions of "truth" and "falsity".</li> <li>(4) <i>Assertion of a propositional function</i>.</li> <li>(5) <i>Negation</i>: "If <i>p</i> is any proposition, the proposition "not-<i>p</i>", or "<i>p</i> is false," will be represented by "~<i>p</i>" ".</li> <li>(6) <i>Disjunction</i>: "If <i>p</i> and <i>q</i> are any propositions, the proposition "<i>p</i> or <i>q</i>, i.e., "either <i>p</i> is true or <i>q</i> is true," where the alternatives are to be not mutually exclusive, will be represented by "<i>p</i> ∨ <i>q</i>" ".</li> <li>(cf. section B)</li></ul> <div class="mw-heading mw-heading3"><h3 id="Primitive_propositions">Primitive propositions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=6" title="Edit section: Primitive propositions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>first</i> edition (see discussion relative to the second edition, below) begins with a definition of the sign "⊃" </p><p><b>✱1.01</b>. <i>p</i> ⊃ <i>q</i> <b>.</b>=<b>.</b> ~ <i>p</i> ∨ <i>q</i>. <b>Df</b>. </p><p><b>✱1.1</b>. Anything implied by a true elementary proposition is true. <b>Pp</b> modus ponens </p><p>(<b>✱1.11</b> was abandoned in the second edition.) </p><p><b>✱1.2</b>. ⊦<b>:</b> <i>p</i> ∨ <i>p</i> <b>.</b>⊃<b>.</b> <i>p</i>. <b>Pp</b> principle of tautology </p><p><b>✱1.3</b>. ⊦<b>:</b> <i>q</i> <b>.</b>⊃<b>.</b> <i>p</i> ∨ <i>q</i>. <b>Pp</b> principle of addition </p><p><b>✱1.4</b>. ⊦<b>:</b> <i>p</i> ∨ <i>q</i> <b>.</b>⊃<b>.</b> <i>q</i> ∨ <i>p</i>. <b>Pp</b> principle of permutation </p><p><b>✱1.5</b>. ⊦<b>:</b> <i>p</i> ∨ ( <i>q</i> ∨ <i>r</i> ) <b>.</b>⊃<b>.</b> <i>q</i> ∨ ( <i>p</i> ∨ <i>r</i> ). <b>Pp</b> associative principle </p><p><b>✱1.6</b>. ⊦<b>:.</b> <i>q</i> ⊃ <i>r</i> <b>.</b>⊃<b>:</b> <i>p</i> ∨ <i>q</i> <b>.</b>⊃<b>.</b> <i>p</i> ∨ <i>r</i>. <b>Pp</b> principle of summation </p><p><b>✱1.7</b>. If <i>p</i> is an elementary proposition, ~<i>p</i> is an elementary proposition. <b>Pp</b> </p><p><b>✱1.71</b>. If <i>p</i> and <i>q</i> are elementary propositions, <i>p</i> ∨ <i>q</i> is an elementary proposition. <b>Pp</b> </p><p><b>✱1.72</b>. If φ<i>p</i> and ψ<i>p</i> are elementary propositional functions which take elementary propositions as arguments, φ<i>p</i> ∨ ψ<i>p</i> is an elementary proposition. <b>Pp</b> </p><p>Together with the "Introduction to the Second Edition", the second edition's Appendix A abandons the entire section <b>✱9</b>. This includes six primitive propositions <b>✱9</b> through <b>✱9.15</b> together with the Axioms of reducibility. </p><p>The revised theory is made difficult by the introduction of the <a href="/wiki/Sheffer_stroke" title="Sheffer stroke">Sheffer stroke</a> ("|") to symbolise "incompatibility" (i.e., if both elementary propositions <i>p</i> and <i>q</i> are true, their "stroke" <i>p</i> | <i>q</i> is false), the contemporary logical <a href="/wiki/Sheffer_stroke" title="Sheffer stroke">NAND</a> (not-AND). In the revised theory, the Introduction presents the notion of "atomic proposition", a "datum" that "belongs to the philosophical part of logic". These have no parts that are propositions and do not contain the notions "all" or "some". For example: "this is red", or "this is earlier than that". Such things can exist <i>ad finitum</i>, i.e., even an "infinite enumeration" of them to replace "generality" (i.e., the notion of "for all").<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> <i>PM</i> then "advance[s] to molecular propositions" that are all linked by "the stroke". Definitions give equivalences for "~", "∨", "⊃", and "<b>.</b>". </p><p>The new introduction defines "elementary propositions" as atomic and molecular positions together. It then replaces all the primitive propositions <b>✱1.2</b> to <b>✱1.72</b> with a single primitive proposition framed in terms of the stroke: </p> <dl><dd>"If <i>p</i>, <i>q</i>, <i>r</i> are elementary propositions, given <i>p</i> and <i>p</i>|(<i>q</i>|<i>r</i>), we can infer <i>r</i>. This is a primitive proposition."</dd></dl> <p>The new introduction keeps the notation for "there exists" (now recast as "sometimes true") and "for all" (recast as "always true"). Appendix A strengthens the notion of "matrix" or "predicative function" (a "primitive idea", <i>PM</i> 1962:164) and presents four new Primitive propositions as <b>✱8.1–✱8.13</b>. </p><p><b>✱88</b>. Multiplicative axiom </p><p><b>✱120</b>. Axiom of infinity </p> <div class="mw-heading mw-heading2"><h2 id="Ramified_types_and_the_axiom_of_reducibility">Ramified types and the axiom of reducibility</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=7" title="Edit section: Ramified types and the axiom of reducibility"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In simple type theory objects are elements of various disjoint "types". Types are implicitly built up as follows. If τ<sub>1</sub>,...,τ<sub><i>m</i></sub> are types then there is a type (τ<sub>1</sub>,...,τ<sub><i>m</i></sub>) that can be thought of as the class of propositional functions of τ<sub>1</sub>,...,τ<sub><i>m</i></sub> (which in set theory is essentially the set of subsets of τ<sub>1</sub>×...×τ<sub><i>m</i></sub>). In particular there is a type () of propositions, and there may be a type ι (iota) of "individuals" from which other types are built. Russell and Whitehead's notation for building up types from other types is rather cumbersome, and the notation here is due to <a href="/wiki/Alonzo_Church" title="Alonzo Church">Church</a>. </p><p>In the <b>ramified type theory</b> of PM all objects are elements of various disjoint ramified types. Ramified types are implicitly built up as follows. If τ<sub>1</sub>,...,τ<sub><i>m</i></sub>,σ<sub>1</sub>,...,σ<sub><i>n</i></sub> are ramified types then as in simple type theory there is a type (τ<sub>1</sub>,...,τ<sub><i>m</i></sub>,σ<sub>1</sub>,...,σ<sub><i>n</i></sub>) of "predicative" propositional functions of τ<sub>1</sub>,...,τ<sub><i>m</i></sub>,σ<sub>1</sub>,...,σ<sub><i>n</i></sub>. However, there are also ramified types (τ<sub>1</sub>,...,τ<sub><i>m</i></sub>|σ<sub>1</sub>,...,σ<sub><i>n</i></sub>) that can be thought of as the classes of propositional functions of τ<sub>1</sub>,...τ<sub><i>m</i></sub> obtained from propositional functions of type (τ<sub>1</sub>,...,τ<sub><i>m</i></sub>,σ<sub>1</sub>,...,σ<sub><i>n</i></sub>) by quantifying over σ<sub>1</sub>,...,σ<sub><i>n</i></sub>. When <i>n</i>=0 (so there are no σs) these propositional functions are called predicative functions or matrices. This can be confusing because modern mathematical practice does not distinguish between predicative and non-predicative functions, and in any case PM never defines exactly what a "predicative function" actually is: this is taken as a primitive notion. </p><p>Russell and Whitehead found it impossible to develop mathematics while maintaining the difference between predicative and non-predicative functions, so they introduced the <a href="/wiki/Axiom_of_reducibility" title="Axiom of reducibility">axiom of reducibility</a>, saying that for every non-predicative function there is a predicative function taking the same values. In practice this axiom essentially means that the elements of type (τ<sub>1</sub>,...,τ<sub><i>m</i></sub>|σ<sub>1</sub>,...,σ<sub><i>n</i></sub>) can be identified with the elements of type (τ<sub>1</sub>,...,τ<sub><i>m</i></sub>), which causes the hierarchy of ramified types to collapse down to simple type theory. (Strictly speaking, PM allows two propositional functions to be different even if they take the same values on all arguments; this differs from modern mathematical practice where one normally identifies two such functions.) </p><p>In <a href="/wiki/Ernst_Zermelo" title="Ernst Zermelo">Zermelo</a> set theory one can model the ramified type theory of PM as follows. One picks a set ι to be the type of individuals. For example, ι might be the set of natural numbers, or the set of atoms (in a set theory with atoms) or any other set one is interested in. Then if τ<sub>1</sub>,...,τ<sub><i>m</i></sub> are types, the type (τ<sub>1</sub>,...,τ<sub><i>m</i></sub>) is the power set of the product τ<sub>1</sub>×...×τ<sub><i>m</i></sub>, which can also be thought of informally as the set of (propositional predicative) functions from this product to a 2-element set {true,false}. The ramified type (τ<sub>1</sub>,...,τ<sub><i>m</i></sub>|σ<sub>1</sub>,...,σ<sub><i>n</i></sub>) can be modeled as the product of the type (τ<sub>1</sub>,...,τ<sub><i>m</i></sub>,σ<sub>1</sub>,...,σ<sub><i>n</i></sub>) with the set of sequences of <i>n</i> quantifiers (∀ or ∃) indicating which quantifier should be applied to each variable σ<sub><i>i</i></sub>. (One can vary this slightly by allowing the σs to be quantified in any order, or allowing them to occur before some of the τs, but this makes little difference except to the bookkeeping.) </p><p>The introduction to the second edition cautions: </p> <blockquote><p>One point in regard to which improvement is obviously desirable is the axiom of reducibility ... . This axiom has a purely pragmatic justification ... but it is clearly not the sort of axiom with which we can rest content. On this subject, however, it cannot be said that a satisfactory solution is yet obtainable. Dr <a href="/wiki/Leon_Chwistek" title="Leon Chwistek">Leon Chwistek</a> [Theory of Constructive Types] took the heroic course of dispensing with the axiom without adopting any substitute; from his work it is clear that this course compels us to sacrifice a great deal of ordinary mathematics. There is another course, recommended by Wittgenstein† (†Tractatus Logico-Philosophicus, *5.54ff) for philosophical reasons. This is to assume that functions of propositions are always truth-functions, and that a function can only occur in a proposition through its values. (...) [Working through the consequences] ... the theory of inductive cardinals and ordinals survives; but it seems that the theory of infinite Dedekindian and well-ordered series largely collapses, so that irrationals, and real numbers generally, can no longer be adequately dealt with. Also Cantor's proof that 2n &gt; n breaks down unless n is finite.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <blockquote> <p>It might be possible to sacrifice infinite well-ordered series to logical rigour, but the theory of real numbers is an integral part of ordinary mathematics, and can hardly be the subject of reasonable doubt. We are therefore justified (sic) in supposing that some logical axioms which is true will justify it. The axiom required may be more restricted than the axiom of reducibility, but if so, it remains to be discovered.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> </blockquote> <div class="mw-heading mw-heading2"><h2 id="Notation">Notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=8" title="Edit section: Notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Glossary_of_Principia_Mathematica" title="Glossary of Principia Mathematica">Glossary of Principia Mathematica</a></div> <p>One author<sup id="cite_ref-SEP_4-1" class="reference"><a href="#cite_note-SEP-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> observes that "The notation in that work has been superseded by the subsequent development of logic during the 20th century, to the extent that the beginner has trouble reading PM at all"; while much of the symbolic content can be converted to modern notation, the original notation itself is "a subject of scholarly dispute", and some notation "embodies substantive logical doctrines so that it cannot simply be replaced by contemporary symbolism".<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Kurt Gödel</a> was harshly critical of the notation: "What is missing, above all, is a precise statement of the syntax of the formalism. Syntactical considerations are omitted even in cases where they are necessary for the cogency of the proofs."<sup id="cite_ref-Gödel_1944_16-0" class="reference"><a href="#cite_note-Gödel_1944-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> This is reflected in the example below of the symbols "<i>p</i>", "<i>q</i>", "<i>r</i>" and "⊃" that can be formed into the string "<i>p</i> ⊃ <i>q</i> ⊃ <i>r</i>". <i>PM</i> requires a <i>definition</i> of what this symbol-string means in terms of other symbols; in contemporary treatments the "formation rules" (syntactical rules leading to "well formed formulas") would have prevented the formation of this string. </p><p><b>Source of the notation</b>: Chapter I "Preliminary Explanations of Ideas and Notations" begins with the source of the elementary parts of the notation (the symbols =⊃≡−ΛVε and the system of dots): </p> <dl><dd>"The notation adopted in the present work is based upon that of <a href="/wiki/Giuseppe_Peano" title="Giuseppe Peano">Peano</a>, and the following explanations are to some extent modeled on those which he prefixes to his <i>Formulario Mathematico</i> [i.e., Peano 1889]. His use of dots as brackets is adopted, and so are many of his symbols" (<i>PM</i> 1927:4).<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>PM changed Peano's Ɔ to ⊃, and also adopted a few of Peano's later symbols, such as ℩ and ι, and Peano's practice of turning letters upside down. </p><p><i>PM</i> adopts the assertion sign "⊦" from Frege's 1879 <i><a href="/wiki/Begriffsschrift" title="Begriffsschrift">Begriffsschrift</a></i>:<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd>"(I)t may be read 'it is true that'"<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>Thus to assert a proposition <i>p</i> <i>PM</i> writes: </p> <dl><dd>"⊦<b>.</b> <i>p</i>." (<i>PM</i> 1927:92)</dd></dl> <p>(Observe that, as in the original, the left dot is square and of greater size than the full stop on the right.) </p><p>Most of the rest of the notation in PM was invented by Whitehead.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="An_introduction_to_the_notation_of_&quot;Section_A_Mathematical_Logic&quot;_(formulas_✱1–✱5.71)"><span id="An_introduction_to_the_notation_of_.22Section_A_Mathematical_Logic.22_.28formulas_.E2.9C.B11.E2.80.93.E2.9C.B15.71.29"></span>An introduction to the notation of "Section A Mathematical Logic" (formulas ✱1–✱5.71)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=9" title="Edit section: An introduction to the notation of &quot;Section A Mathematical Logic&quot; (formulas ✱1–✱5.71)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>PM</i><span class="nowrap" style="padding-left:0.1em;">&#39;</span>s dots<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> are used in a manner similar to parentheses. Each dot (or multiple dot) represents either a left or right parenthesis or the logical symbol ∧. More than one dot indicates the "depth" of the parentheses, for example, "<b>.</b>", "<b>:</b>" or "<b>:.</b>", "<b>::</b>". However the position of the matching right or left parenthesis is not indicated explicitly in the notation but has to be deduced from some rules that are complex and at times ambiguous. Moreover, when the dots stand for a logical symbol ∧ its left and right operands have to be deduced using similar rules. First one has to decide based on context whether the dots stand for a left or right parenthesis or a logical symbol. Then one has to decide how far the other corresponding parenthesis is: here one carries on until one meets either a larger number of dots, or the same number of dots next that have equal or greater "force", or the end of the line. Dots next to the signs ⊃, ≡,∨, =Df have greater force than dots next to (<i>x</i>), (∃<i>x</i>) and so on, which have greater force than dots indicating a logical product ∧. </p><p>Example 1. The line </p> <dl><dd>✱<b>3.4</b>. ⊢ <b>:</b> p <b>.</b> q <b>.</b> ⊃ <b>.</b> p ⊃ q</dd></dl> <p>corresponds to </p> <dl><dd>⊢ ((p ∧ q) ⊃ (p ⊃ q)).</dd></dl> <p>The two dots standing together immediately following the assertion-sign indicate that what is asserted is the entire line: since there are two of them, their scope is greater than that of any of the single dots to their right. They are replaced by a left parenthesis standing where the dots are and a right parenthesis at the end of the formula, thus: </p> <dl><dd>⊢ (p <b>.</b> q <b>.</b> ⊃ <b>.</b> p ⊃ q).</dd></dl> <p>(In practice, these outermost parentheses, which enclose an entire formula, are usually suppressed.) The first of the single dots, standing between two propositional variables, represents conjunction. It belongs to the third group and has the narrowest scope. Here it is replaced by the modern symbol for conjunction "∧", thus </p> <dl><dd>⊢ (p ∧ q <b>.</b> ⊃ <b>.</b> p ⊃ q).</dd></dl> <p>The two remaining single dots pick out the main connective of the whole formula. They illustrate the utility of the dot notation in picking out those connectives which are relatively more important than the ones which surround them. The one to the left of the "⊃" is replaced by a pair of parentheses, the right one goes where the dot is and the left one goes as far to the left as it can without crossing a group of dots of greater force, in this case the two dots which follow the assertion-sign, thus </p> <dl><dd>⊢ ((p ∧ q) ⊃ <b>.</b> p ⊃ q)</dd></dl> <p>The dot to the right of the "⊃" is replaced by a left parenthesis which goes where the dot is and a right parenthesis which goes as far to the right as it can without going beyond the scope already established by a group of dots of greater force (in this case the two dots which followed the assertion-sign). So the right parenthesis which replaces the dot to the right of the "⊃" is placed in front of the right parenthesis which replaced the two dots following the assertion-sign, thus </p> <dl><dd>⊢ ((p ∧ q) ⊃ (p ⊃ q)).</dd></dl> <p>Example 2, with double, triple, and quadruple dots: </p> <dl><dd><b>✱9.521</b>. ⊢&#160;: : (∃x). φx . ⊃ . q&#160;: ⊃&#160;: . (∃x). φx . v . r&#160;: ⊃ . q v r</dd></dl> <p>stands for </p> <dl><dd>((((∃x)(φx)) ⊃ (q)) ⊃ ((((∃x) (φx)) v (r)) ⊃ (q v r)))</dd></dl> <p>Example 3, with a double dot indicating a logical symbol (from volume 1, page 10): </p> <dl><dd><i>p</i>⊃<i>q</i>:<i>q</i>⊃<i>r</i>.⊃.<i>p</i>⊃<i>r</i></dd></dl> <p>stands for </p> <dl><dd>(<i>p</i>⊃<i>q</i>) ∧ ((<i>q</i>⊃<i>r</i>)⊃(<i>p</i>⊃<i>r</i>))</dd></dl> <p>where the double dot represents the logical symbol ∧ and can be viewed as having the higher priority as a non-logical single dot. </p><p>Later in section <b>✱14</b>, brackets "[ ]" appear, and in sections <b>✱20</b> and following, braces "{ }" appear. Whether these symbols have specific meanings or are just for visual clarification is unclear. Unfortunately the single dot (but also "<b>:</b>", "<b>:.</b>", "<b>::</b>", etc.) is also used to symbolise "logical product" (contemporary logical AND often symbolised by "&amp;" or "∧"). </p><p>Logical implication is represented by Peano's "Ɔ" simplified to "⊃", logical negation is symbolised by an elongated tilde, i.e., "~" (contemporary "~" or "¬"), the logical OR by "v". The symbol "=" together with "Df" is used to indicate "is defined as", whereas in sections <b>✱13</b> and following, "=" is defined as (mathematically) "identical with", i.e., contemporary mathematical "equality" (cf. discussion in section <b>✱13</b>). Logical equivalence is represented by "≡" (contemporary "if and only if"); "elementary" propositional functions are written in the customary way, e.g., "<i>f</i>(<i>p</i>)", but later the function sign appears directly before the variable without parenthesis e.g., "φ<i>x</i>", "χ<i>x</i>", etc. </p><p>Example, <i>PM</i> introduces the definition of "logical product" as follows: </p> <dl><dd><b>✱3.01</b>. <i>p</i> <b>.</b> <i>q</i> <b>.</b>=<b>.</b> ~(~<i>p</i> v ~<i>q</i>) <b>Df</b>. <dl><dd>where "<i>p</i> <b>.</b> <i>q</i>" is the logical product of <i>p</i> and <i>q</i>.</dd></dl></dd> <dd><b>✱3.02</b>. <i>p</i> ⊃ <i>q</i> ⊃ <i>r</i> <b>.</b>=<b>.</b> <i>p</i> ⊃ <i>q</i> <b>.</b> <i>q</i> ⊃ <i>r</i> <b>Df</b>. <dl><dd>This definition serves merely to abbreviate proofs.</dd></dl></dd></dl> <p><b>Translation of the formulas into contemporary symbols</b>: Various authors use alternate symbols, so no definitive translation can be given. However, because of criticisms such as that of <a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Kurt Gödel</a> below, the best contemporary treatments will be very precise with respect to the "formation rules" (the syntax) of the formulas. </p><p>The first formula might be converted into modern symbolism as follows:<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd>(<i>p</i> &amp; <i>q</i>) =<sub>df</sub> (~(~<i>p</i> v ~<i>q</i>))</dd></dl> <p>alternately </p> <dl><dd>(<i>p</i> &amp; <i>q</i>) =<sub>df</sub> (¬(¬<i>p</i> v ¬<i>q</i>))</dd></dl> <p>alternately </p> <dl><dd>(<i>p</i> ∧ <i>q</i>) =<sub>df</sub> (¬(¬<i>p</i> v ¬<i>q</i>))</dd></dl> <p>etc. </p><p>The second formula might be converted as follows: </p> <dl><dd>(<i>p</i> → <i>q</i> → <i>r</i>) =<sub>df</sub> (<i>p</i> → <i>q</i>) &amp; (<i>q</i> → <i>r</i>)</dd></dl> <p>But note that this is not (logically) equivalent to (<i>p</i> → (<i>q</i> → <i>r</i>)) nor to ((<i>p</i> → <i>q</i>) → <i>r</i>), and these two are not logically equivalent either. </p> <div class="mw-heading mw-heading3"><h3 id="An_introduction_to_the_notation_of_&quot;Section_B_Theory_of_Apparent_Variables&quot;_(formulas_✱8–✱14.34)"><span id="An_introduction_to_the_notation_of_.22Section_B_Theory_of_Apparent_Variables.22_.28formulas_.E2.9C.B18.E2.80.93.E2.9C.B114.34.29"></span>An introduction to the notation of "Section B Theory of Apparent Variables" (formulas ✱8–✱14.34)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=10" title="Edit section: An introduction to the notation of &quot;Section B Theory of Apparent Variables&quot; (formulas ✱8–✱14.34)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>These sections concern what is now known as <a href="/wiki/Predicate_logic" class="mw-redirect" title="Predicate logic">predicate logic</a>, and predicate logic with identity (equality). </p> <dl><dd><ul><li>NB: As a result of criticism and advances, the second edition of <i>PM</i> (1927) replaces <b>✱9</b> with a new <b>✱8</b> (Appendix A). This new section eliminates the first edition's distinction between real and apparent variables, and it eliminates "the primitive idea 'assertion of a propositional function'.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> To add to the complexity of the treatment, <b>✱8</b> introduces the notion of substituting a "matrix", and the <a href="/wiki/Sheffer_stroke" title="Sheffer stroke">Sheffer stroke</a>:</li></ul> <dl><dd><dl><dd><ul><li><b>Matrix</b>: In contemporary usage, <i>PM</i><span class="nowrap" style="padding-left:0.1em;">&#39;</span>s <i>matrix</i> is (at least for <a href="/wiki/Propositional_function" title="Propositional function">propositional functions</a>), a <a href="/wiki/Truth_table" title="Truth table">truth table</a>, i.e., <i>all</i> truth-values of a propositional or predicate function.</li> <li><b>Sheffer stroke</b>: Is the contemporary logical <a href="/wiki/Sheffer_stroke" title="Sheffer stroke">NAND</a> (NOT-AND), i.e., "incompatibility", meaning:</li></ul> <dl><dd>"Given two propositions <i>p</i> and <i>q</i>, then ' <i>p</i> | <i>q</i> ' means "proposition <i>p</i> is incompatible with proposition <i>q</i>", i.e., if both propositions <i>p</i> and <i>q</i> evaluate as true, then and only then <i>p</i> | <i>q</i> evaluates as false." After section <b>✱8</b> the Sheffer stroke sees no usage.</dd></dl></dd></dl></dd></dl></dd></dl> <p>Section <b>✱10: The existential and universal "operators"</b>: <i>PM</i> adds "(<i>x</i>)" to represent the contemporary symbolism "for all <i>x</i> " i.e., " ∀<i>x</i>", and it uses a backwards serifed E to represent "there exists an <i>x</i>", i.e., "(Ǝx)", i.e., the contemporary "∃x". The typical notation would be similar to the following: </p> <dl><dd>"(<i>x</i>) <b>.</b> φ<i>x</i>" means "for all values of variable <i>x</i>, function φ evaluates to true"</dd> <dd>"(Ǝ<i>x</i>) <b>.</b> φ<i>x</i>" means "for some value of variable <i>x</i>, function φ evaluates to true"</dd></dl> <p>Sections <b>✱10, ✱11, ✱12: Properties of a variable extended to all individuals</b>: section <b>✱10</b> introduces the notion of "a property" of a "variable". <i>PM</i> gives the example: φ is a function that indicates "is a Greek", and ψ indicates "is a man", and χ indicates "is a mortal" these functions then apply to a variable <i>x</i>. <i>PM</i> can now write, and evaluate: </p> <dl><dd>(<i>x</i>) <b>.</b> ψ<i>x</i></dd></dl> <p>The notation above means "for all <i>x</i>, <i>x</i> is a man". Given a collection of individuals, one can evaluate the above formula for truth or falsity. For example, given the restricted collection of individuals { Socrates, Plato, Russell, Zeus } the above evaluates to "true" if we allow for Zeus to be a man. But it fails for: </p> <dl><dd>(<i>x</i>) <b>.</b> φ<i>x</i></dd></dl> <p>because Russell is not Greek. And it fails for </p> <dl><dd>(<i>x</i>) <b>.</b> χ<i>x</i></dd></dl> <p>because Zeus is not a mortal. </p><p>Equipped with this notation <i>PM</i> can create formulas to express the following: "If all Greeks are men and if all men are mortals then all Greeks are mortals". (<i>PM</i> 1962:138) </p> <dl><dd>(<i>x</i>) <b>.</b> φ<i>x</i> ⊃ ψ<i>x</i> <b>:</b>(<i>x</i>)<b>.</b> ψ<i>x</i> ⊃ χ<i>x</i> <b>:</b>⊃<b>:</b> (<i>x</i>) <b>.</b> φ<i>x</i> ⊃ χ<i>x</i></dd></dl> <p>Another example: the formula: </p> <dl><dd><b>✱10.01</b>. (Ǝ<i>x</i>)<b>.</b> φ<i>x</i> <b>.</b> = <b>.</b> ~(<i>x</i>) <b>.</b> ~φ<i>x</i> <b>Df</b>.</dd></dl> <p>means "The symbols representing the assertion 'There exists at least one <i>x</i> that satisfies function φ' is defined by the symbols representing the assertion 'It's not true that, given all values of <i>x</i>, there are no values of <i>x</i> satisfying φ'". </p><p>The symbolisms ⊃<sub><i>x</i></sub> and "≡<sub><i>x</i></sub>" appear at <b>✱10.02</b> and <b>✱10.03</b>. Both are abbreviations for universality (i.e., for all) that bind the variable <i>x</i> to the logical operator. Contemporary notation would have simply used parentheses outside of the equality ("=") sign: </p> <dl><dd><b>✱10.02</b> φ<i>x</i> ⊃<sub><i>x</i></sub> ψ<i>x</i> <b>.</b>=<b>.</b> (<i>x</i>)<b>.</b> φ<i>x</i> ⊃ ψ<i>x</i> <b>Df</b> <dl><dd>Contemporary notation: ∀<i>x</i>(φ(<i>x</i>) → ψ(<i>x</i>)) (or a variant)</dd></dl></dd> <dd><b>✱10.03</b> φ<i>x</i> ≡<sub><i>x</i></sub> ψ<i>x</i> <b>.</b>=<b>.</b> (<i>x</i>)<b>.</b> φ<i>x</i> ≡ ψ<i>x</i> <b>Df</b> <dl><dd>Contemporary notation: ∀<i>x</i>(φ(<i>x</i>) ↔︎ ψ(<i>x</i>)) (or a variant)</dd></dl></dd></dl> <p><i>PM</i> attributes the first symbolism to Peano. </p><p>Section <b>✱11</b> applies this symbolism to two variables. Thus the following notations: ⊃<sub><i>x</i></sub>, ⊃<sub><i>y</i></sub>, ⊃<sub><i>x, y</i></sub> could all appear in a single formula. </p><p>Section <b>✱12</b> reintroduces the notion of "matrix" (contemporary <a href="/wiki/Truth_table" title="Truth table">truth table</a>), the notion of logical types, and in particular the notions of <i>first-order</i> and <i>second-order</i> functions and propositions. </p><p>New symbolism "φ <b>!</b> <i>x</i>" represents any value of a first-order function. If a circumflex "^" is placed over a variable, then this is an "individual" value of <i>y</i>, meaning that "<i>ŷ</i>" indicates "individuals" (e.g., a row in a truth table); this distinction is necessary because of the matrix/extensional nature of propositional functions. </p><p>Now equipped with the matrix notion, <i>PM</i> can assert its controversial <a href="/wiki/Axiom_of_reducibility" title="Axiom of reducibility">axiom of reducibility</a>: a function of one or two variables (two being sufficient for <i>PM</i><span class="nowrap" style="padding-left:0.1em;">&#39;</span>s use) <i>where all its values are given</i> (i.e., in its matrix) is (logically) equivalent ("≡") to some "predicative" function of the same variables. The one-variable definition is given below as an illustration of the notation (<i>PM</i> 1962:166–167): </p><p><b>✱12.1</b> ⊢<b>:</b> (Ǝ <i>f</i>)<b>:</b> φ<i>x</i> <b>.</b>≡<sub><i>x</i></sub><b>.</b> <i>f</i> <b>!</b> <i>x</i> <b>Pp</b>; </p> <dl><dd><dl><dd><b>Pp</b> is a "Primitive proposition" ("Propositions assumed without proof") (<i>PM</i> 1962:12, i.e., contemporary "axioms"), adding to the 7 defined in section <b>✱1</b> (starting with <b>✱1.1</b> <a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a>). These are to be distinguished from the "primitive ideas" that include the assertion sign "⊢", negation "~", logical OR "V", the notions of "elementary proposition" and "elementary propositional function"; these are as close as <i>PM</i> comes to rules of notational formation, i.e., <a href="/wiki/Syntax" title="Syntax">syntax</a>.</dd></dl></dd></dl> <p>This means: "We assert the truth of the following: There exists a function <i>f</i> with the property that: given all values of <i>x</i>, their evaluations in function φ (i.e., resulting their matrix) is logically equivalent to some <i>f</i> evaluated at those same values of <i>x</i>. (and vice versa, hence logical equivalence)". In other words: given a matrix determined by property φ applied to variable <i>x</i>, there exists a function <i>f</i> that, when applied to the <i>x</i> is logically equivalent to the matrix. Or: every matrix φ<i>x</i> can be represented by a function <i>f</i> applied to <i>x</i>, and vice versa. </p><p><b>✱13: The identity operator "=" </b>: This is a definition that uses the sign in two different ways, as noted by the quote from <i>PM</i>: </p> <dl><dd><b>✱13.01</b>. <i>x</i> = <i>y</i> <b>.</b>=<b>:</b> (φ)<b>:</b> φ <b>!</b> <i>x</i> <b>.</b> ⊃ <b>.</b> φ <b>!</b> <i>y</i> <b>Df</b></dd></dl> <p>means: </p> <dl><dd>"This definition states that <i>x</i> and <i>y</i> are to be called identical when every predicative function satisfied by <i>x</i> is also satisfied by <i>y</i> ... Note that the second sign of equality in the above definition is combined with "Df", and thus is not really the same symbol as the sign of equality which is defined".</dd></dl> <p>The not-equals sign "≠" makes its appearance as a definition at <b>✱13.02</b>. </p><p><b>✱14: Descriptions</b>: </p> <dl><dd>"A <i>description</i> is a phrase of the form "the term <i>y</i> which satisfies φ<i>ŷ</i>, where φ<i>ŷ</i> is some function satisfied by one and only one argument."<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>From this <i>PM</i> employs two new symbols, a forward "E" and an inverted iota "℩". Here is an example: </p> <dl><dd><b>✱14.02</b>. E <b>!</b> ( ℩<i>y</i>) (φ<i>y</i>) <b>.</b>=<b>:</b> ( Ǝ<i>b</i>)<b>:</b>φ<i>y</i> <b>.</b> ≡<sub><i>y</i></sub> <b>.</b> <i>y</i> = <i>b</i> <b>Df</b>.</dd></dl> <p>This has the meaning: </p> <dl><dd>"The <i>y</i> satisfying φ<i>ŷ</i> exists," which holds when, and only when φ<i>ŷ</i> is satisfied by one value of <i>y</i> and by no other value." (<i>PM</i> 1967:173–174)</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Introduction_to_the_notation_of_the_theory_of_classes_and_relations">Introduction to the notation of the theory of classes and relations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=11" title="Edit section: Introduction to the notation of the theory of classes and relations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The text leaps from section <b>✱14</b> directly to the foundational sections <b>✱20 GENERAL THEORY OF CLASSES</b> and <b>✱21 GENERAL THEORY OF RELATIONS</b>. "Relations" are what is known in contemporary <a href="/wiki/Set_theory" title="Set theory">set theory</a> as sets of <a href="/wiki/Ordered_pair" title="Ordered pair">ordered pairs</a>. Sections <b>✱20</b> and <b>✱22</b> introduce many of the symbols still in contemporary usage. These include the symbols "ε", "⊂", "∩", "∪", "–", "Λ", and "V": "ε" signifies "is an element of" (<i>PM</i> 1962:188); "⊂" (<b>✱22.01</b>) signifies "is contained in", "is a subset of"; "∩" (<b>✱22.02</b>) signifies the intersection (logical product) of classes (sets); "∪" (<b>✱22.03</b>) signifies the union (logical sum) of classes (sets); "–" (<b>✱22.03</b>) signifies negation of a class (set); "Λ" signifies the null class; and "V" signifies the universal class or universe of discourse. </p><p>Small Greek letters (other than "ε", "ι", "π", "φ", "ψ", "χ", and "θ") represent classes (e.g., "α", "β", "γ", "δ", etc.) (<i>PM</i> 1962:188): </p> <dl><dd><i>x</i> ε α <dl><dd>"The use of single letter in place of symbols such as <i>ẑ</i>(φ<i>z</i>) or <i>ẑ</i>(φ <b>!</b> <i>z</i>) is practically almost indispensable, since otherwise the notation rapidly becomes intolerably cumbrous. Thus ' <i>x</i> ε α' will mean ' <i>x</i> is a member of the class α'". (<i>PM</i> 1962:188)</dd></dl></dd> <dd>α ∪ –α = V <dl><dd>The union of a set and its inverse is the universal (completed) set.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup></dd></dl></dd> <dd>α ∩ –α = Λ <dl><dd>The intersection of a set and its inverse is the null (empty) set.</dd></dl></dd></dl> <p>When applied to relations in section <b>✱23 CALCULUS OF RELATIONS</b>, the symbols "⊂", "∩", "∪", and "–" acquire a dot: for example: "⊍", "∸".<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>The notion, and notation, of "a class" (set)</b>: In the first edition <i>PM</i> asserts that no new primitive ideas are necessary to define what is meant by "a class", and only two new "primitive propositions" called the <a href="/wiki/Axiom_of_reducibility" title="Axiom of reducibility">axioms of reducibility</a> for classes and relations respectively (<i>PM</i> 1962:25).<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> But before this notion can be defined, <i>PM</i> feels it necessary to create a peculiar notation "<i>ẑ</i>(φ<i>z</i>)" that it calls a "fictitious object". (<i>PM</i> 1962:188) </p> <dl><dd>⊢<b>:</b> <i>x</i> ε <i>ẑ</i>(φ<i>z</i>) <b>.</b>≡<b>.</b> (φ<i>x</i>) <dl><dd>"i.e., ' <i>x</i> is a member of the class determined by (φ<i>ẑ</i>)' is [logically] equivalent to ' <i>x</i> satisfies (φ<i>ẑ</i>),' or to '(φ<i>x</i>) is true.'". (<i>PM</i> 1962:25)</dd></dl></dd></dl> <p>At least <i>PM</i> can tell the reader how these fictitious objects behave, because "A class is wholly determinate when its membership is known, that is, there cannot be two different classes having the same membership" (<i>PM</i> 1962:26). This is symbolised by the following equality (similar to <b>✱13.01</b> above: </p> <dl><dd><i>ẑ</i>(φ<i>z</i>) = <i>ẑ</i>(ψ<i>z</i>) <b>.</b> ≡ <b>:</b> (<i>x</i>)<b>:</b> φ<i>x</i> <b>.</b>≡<b>.</b> ψ<i>x</i> <dl><dd>"This last is the distinguishing characteristic of classes, and justifies us in treating <i>ẑ</i>(ψ<i>z</i>) as the class determined by [the function] ψ<i>ẑ</i>." (<i>PM</i> 1962:188)</dd></dl></dd></dl> <p>Perhaps the above can be made clearer by the discussion of classes in <i>Introduction to the Second Edition</i>, which disposes of the <i>Axiom of Reducibility</i> and replaces it with the notion: "All functions of functions are extensional" (<i>PM</i> 1962:xxxix), i.e., </p> <dl><dd>φ<i>x</i> ≡<sub><i>x</i></sub> ψ<i>x</i> <b>.</b>⊃<b>.</b> (<i>x</i>)<b>:</b> ƒ(φ<i>ẑ</i>) ≡ ƒ(ψ<i>ẑ</i>) (<i>PM</i> 1962:xxxix)</dd></dl> <p>This has the reasonable meaning that "IF for all values of <i>x</i> the <i>truth-values</i> of the functions φ and ψ of <i>x</i> are [logically] equivalent, THEN the function ƒ of a given φ<i>ẑ</i> and ƒ of ψ<i>ẑ</i> are [logically] equivalent." <i>PM</i> asserts this is "obvious": </p> <dl><dd>"This is obvious, since φ can only occur in ƒ(φ<i>ẑ</i>) by the substitution of values of φ for <i>p, q, r, ...</i> in a [logical-] function, and, if φ<i>x</i> ≡ ψ<i>x</i>, the substitution of φ<i>x</i> for <i>p</i> in a [logical-] function gives the same truth-value to the truth-function as the substitution of ψ<i>x</i>. Consequently there is no longer any reason to distinguish between functions classes, for we have, in virtue of the above,</dd> <dd>φ<i>x</i> ≡<sub><i>x</i></sub> ψ<i>x</i> <b>.</b>⊃<b>.</b> (<i>x</i>)<b>.</b> φ<i>ẑ</i> = <b>.</b> ψ<i>ẑ</i>".</dd></dl> <p>Observe the change to the equality "=" sign on the right. <i>PM</i> goes on to state that will continue to hang onto the notation "<i>ẑ</i>(φ<i>z</i>)", but this is merely equivalent to φ<i>ẑ</i>, and this is a class. (all quotes: <i>PM</i> 1962:xxxix). </p> <div class="mw-heading mw-heading2"><h2 id="Consistency_and_criticisms">Consistency and criticisms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=12" title="Edit section: Consistency and criticisms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>According to <a href="/wiki/Carnap" class="mw-redirect" title="Carnap">Carnap</a>'s "Logicist Foundations of Mathematics", Russell wanted a theory that could plausibly be said to derive all of mathematics from purely logical axioms. However, Principia Mathematica required, in addition to the basic axioms of type theory, three further axioms that seemed to not be true as mere matters of logic, namely the <a href="/wiki/Axiom_of_infinity" title="Axiom of infinity">axiom of infinity</a>, the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a>, and the <a href="/wiki/Axiom_of_reducibility" title="Axiom of reducibility">axiom of reducibility</a>. Since the first two were existential axioms, Russell phrased mathematical statements depending on them as conditionals. But reducibility was required to be sure that the formal statements even properly express statements of real analysis, so that statements depending on it could not be reformulated as conditionals. <a href="/wiki/Frank_Ramsey_(mathematician)" title="Frank Ramsey (mathematician)">Frank Ramsey</a> tried to argue that Russell's ramification of the theory of types was unnecessary, so that reducibility could be removed, but these arguments seemed inconclusive. </p><p>Beyond the status of the axioms as <a href="/wiki/Logical_truth" title="Logical truth">logical truths</a>, one can ask the following questions about any system such as PM: </p> <ul><li>whether a contradiction could be derived from the axioms (the question of <a href="/wiki/Inconsistency" class="mw-redirect" title="Inconsistency">inconsistency</a>), and</li> <li>whether there exists a <a href="/wiki/Mathematical_statement" class="mw-redirect" title="Mathematical statement">mathematical statement</a> which could neither be proven nor disproven in the system (the question of <a href="/wiki/Completeness_(logic)" title="Completeness (logic)">completeness</a>).</li></ul> <p><a href="/wiki/Propositional_logic" class="mw-redirect" title="Propositional logic">Propositional logic</a> itself was known to be consistent, but the same had not been established for <i>Principia'</i>s axioms of set theory. (See <a href="/wiki/Hilbert%27s_second_problem" title="Hilbert&#39;s second problem">Hilbert's second problem</a>.) Russell and Whitehead suspected that the system in PM is incomplete: for example, they pointed out that it does not seem powerful enough to show that the cardinal ℵ<sub>ω</sub> exists. However, one can ask if some recursively axiomatizable extension of it is complete and consistent. </p> <div class="mw-heading mw-heading3"><h3 id="Gödel_1930,_1931"><span id="G.C3.B6del_1930.2C_1931"></span>Gödel 1930, 1931</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=13" title="Edit section: Gödel 1930, 1931"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1930, <a href="/wiki/G%C3%B6del%27s_completeness_theorem" title="Gödel&#39;s completeness theorem">Gödel's completeness theorem</a> showed that first-order predicate logic itself was complete in a much weaker sense—that is, any sentence that is unprovable from a given set of axioms must actually be false in some <a href="/wiki/Model_theory" title="Model theory">model</a> of the axioms. However, this is not the stronger sense of completeness desired for Principia Mathematica, since a given system of axioms (such as those of Principia Mathematica) may have many models, in some of which a given statement is true and in others of which that statement is false, so that the statement is left undecided by the axioms. </p><p><a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel&#39;s incompleteness theorems">Gödel's incompleteness theorems</a> cast unexpected light on these two related questions. </p><p>Gödel's first incompleteness theorem showed that no recursive extension of <i>Principia</i> could be both consistent and complete for arithmetic statements. (As mentioned above, Principia itself was already known to be incomplete for some non-arithmetic statements.) According to the theorem, within every sufficiently powerful recursive <a href="/wiki/Logical_system" class="mw-redirect" title="Logical system">logical system</a> (such as <i>Principia</i>), there exists a statement <i>G</i> that essentially reads, "The statement <i>G</i> cannot be proved." Such a statement is a sort of <a href="/wiki/Catch-22_(logic)" title="Catch-22 (logic)">Catch-22</a>: if <i>G</i> is provable, then it is false, and the system is therefore inconsistent; and if <i>G</i> is not provable, then it is true, and the system is therefore incomplete. </p><p><a href="/wiki/G%C3%B6del%27s_second_incompleteness_theorem" class="mw-redirect" title="Gödel&#39;s second incompleteness theorem">Gödel's second incompleteness theorem</a> (1931) shows that no <a href="/wiki/Formal_system" title="Formal system">formal system</a> extending basic arithmetic can be used to prove its own consistency. Thus, the statement "there are no contradictions in the <i>Principia</i> system" cannot be proven in the <i>Principia</i> system unless there <i>are</i> contradictions in the system (in which case it can be proven both true and false). </p> <div class="mw-heading mw-heading3"><h3 id="Wittgenstein_1919,_1939"><span id="Wittgenstein_1919.2C_1939"></span>Wittgenstein 1919, 1939</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=14" title="Edit section: Wittgenstein 1919, 1939"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By the second edition of <i>PM</i>, Russell had removed his <i>axiom of reducibility</i> to a new axiom (although he does not state it as such). Gödel 1944:126 describes it this way: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>This change is connected with the new axiom that functions can occur in propositions only "through their values", i.e., extensionally (...) [this is] quite unobjectionable even from the constructive standpoint (...) provided that quantifiers are always restricted to definite orders". This change from a quasi-<i>intensional</i> stance to a fully <i>extensional</i> stance also restricts <a href="/wiki/Predicate_logic" class="mw-redirect" title="Predicate logic">predicate logic</a> to the second order, i.e. functions of functions: "We can decide that mathematics is to confine itself to functions of functions which obey the above assumption".</p><div class="templatequotecite">—&#8202;<cite><i>PM</i> 2nd edition p.&#160;401, Appendix C</cite></div></blockquote> <p>This new proposal resulted in a dire outcome. An "extensional stance" and restriction to a second-order predicate logic means that a propositional function extended to all individuals such as "All 'x' are blue" now has to list all of the 'x' that satisfy (are true in) the proposition, listing them in a possibly infinite conjunction: e.g. <i>x<sub>1</sub></i> ∧ <i>x<sub>2</sub></i> ∧ . . . ∧ <i>x<sub>n</sub></i> ∧ . . .. Ironically, this change came about as the result of criticism from <a href="/wiki/Ludwig_Wittgenstein" title="Ludwig Wittgenstein">Ludwig Wittgenstein</a> in his 1919 <i><a href="/wiki/Tractatus_Logico-Philosophicus" title="Tractatus Logico-Philosophicus">Tractatus Logico-Philosophicus</a></i>. As described by Russell in the Introduction to the Second Edition of <i>PM</i>: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>There is another course, recommended by Wittgenstein† (†<i>Tractatus Logico-Philosophicus</i>, *5.54ff) for philosophical reasons. This is to assume that functions of propositions are always truth-functions, and that a function can only occur in a proposition through its values. (...) [Working through the consequences] it appears that everything in Vol. I remains true (though often new proofs are required); the theory of inductive cardinals and ordinals survives; but it seems that the theory of infinite Dedekindian and well-ordered series largely collapses, so that irrationals, and real numbers generally, can no longer be adequately dealt with. Also Cantor's proof that 2<sup>n</sup> &gt; <i>n</i> breaks down unless <i>n</i> is finite."</p><div class="templatequotecite">—&#8202;<cite><i>PM</i> 2nd edition reprinted 1962:xiv, also cf. new Appendix C)</cite></div></blockquote> <p>In other words, the fact that an infinite list cannot realistically be specified means that the concept of "number" in the infinite sense (i.e. the continuum) cannot be described by the new theory proposed in <i>PM Second Edition</i>. </p><p>Wittgenstein in his <i>Lectures on the Foundations of Mathematics, Cambridge 1939</i> criticised <i>Principia</i> on various grounds, such as: </p> <ul><li>It purports to reveal the fundamental basis for arithmetic. However, it is our everyday arithmetical practices such as counting which are fundamental; for if a persistent discrepancy arose between counting and <i>Principia</i>, this would be treated as evidence of an error in <i>Principia</i> (e.g., that Principia did not characterise numbers or addition correctly), not as evidence of an error in everyday counting.</li> <li>The calculating methods in <i>Principia</i> can only be used in practice with very small numbers. To calculate using large numbers (e.g., billions), the formulae would become too long, and some short-cut method would have to be used, which would no doubt rely on everyday techniques such as counting (or else on non-fundamental and hence questionable methods such as induction). So again <i>Principia</i> depends on everyday techniques, not vice versa.</li></ul> <p>Wittgenstein did, however, concede that <i>Principia</i> may nonetheless make some aspects of everyday arithmetic clearer. </p> <div class="mw-heading mw-heading3"><h3 id="Gödel_1944"><span id="G.C3.B6del_1944"></span>Gödel 1944</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=15" title="Edit section: Gödel 1944"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Gödel</a> offered a "critical but sympathetic discussion of the logicistic order of ideas" in his 1944 article "Russell's Mathematical Logic".<sup id="cite_ref-FOOTNOTEKleene195246_28-0" class="reference"><a href="#cite_note-FOOTNOTEKleene195246-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> He wrote: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>It is to be regretted that this first comprehensive and thorough-going presentation of a mathematical logic and the derivation of mathematics from it [is] so greatly lacking in formal precision in the foundations (contained in <b>✱1–✱21</b> of <i>Principia</i> [i.e., sections <b>✱1–✱5</b> (propositional logic), <b>✱8–14</b> (predicate logic with identity/equality), <b>✱20</b> (introduction to set theory), and <b>✱21</b> (introduction to relations theory)]) that it represents in this respect a considerable step backwards as compared with Frege. What is missing, above all, is a precise statement of the syntax of the formalism. Syntactical considerations are omitted even in cases where they are necessary for the cogency of the proofs ... The matter is especially doubtful for the rule of substitution and of replacing defined symbols by their <i>definiens</i> ... it is chiefly the rule of substitution which would have to be proved.<sup id="cite_ref-Gödel_1944_16-1" class="reference"><a href="#cite_note-Gödel_1944-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <div class="mw-heading mw-heading2"><h2 id="Contents">Contents</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=16" title="Edit section: Contents"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Part_I_Mathematical_logic._Volume_I_✱1_to_✱43"><span id="Part_I_Mathematical_logic._Volume_I_.E2.9C.B11_to_.E2.9C.B143"></span>Part I Mathematical logic. Volume I ✱1 to ✱43</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=17" title="Edit section: Part I Mathematical logic. Volume I ✱1 to ✱43"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This section describes the propositional and predicate calculus, and gives the basic properties of classes, relations, and types. </p> <div class="mw-heading mw-heading3"><h3 id="Part_II_Prolegomena_to_cardinal_arithmetic._Volume_I_✱50_to_✱97"><span id="Part_II_Prolegomena_to_cardinal_arithmetic._Volume_I_.E2.9C.B150_to_.E2.9C.B197"></span>Part II Prolegomena to cardinal arithmetic. Volume I ✱50 to ✱97</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=18" title="Edit section: Part II Prolegomena to cardinal arithmetic. Volume I ✱50 to ✱97"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This part covers various properties of relations, especially those needed for cardinal arithmetic. </p> <div class="mw-heading mw-heading3"><h3 id="Part_III_Cardinal_arithmetic._Volume_II_✱100_to_✱126"><span id="Part_III_Cardinal_arithmetic._Volume_II_.E2.9C.B1100_to_.E2.9C.B1126"></span>Part III Cardinal arithmetic. Volume II ✱100 to ✱126</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=19" title="Edit section: Part III Cardinal arithmetic. Volume II ✱100 to ✱126"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This covers the definition and basic properties of cardinals. A cardinal is defined to be an equivalence class of similar classes (as opposed to <a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">ZFC</a>, where a cardinal is a special sort of von Neumann ordinal). Each type has its own collection of cardinals associated with it, and there is a considerable amount of bookkeeping necessary for comparing cardinals of different types. PM define addition, multiplication and exponentiation of cardinals, and compare different definitions of finite and infinite cardinals. ✱120.03 is the Axiom of infinity. </p> <div class="mw-heading mw-heading3"><h3 id="Part_IV_Relation-arithmetic._Volume_II_✱150_to_✱186"><span id="Part_IV_Relation-arithmetic._Volume_II_.E2.9C.B1150_to_.E2.9C.B1186"></span>Part IV Relation-arithmetic. Volume II ✱150 to ✱186</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=20" title="Edit section: Part IV Relation-arithmetic. Volume II ✱150 to ✱186"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A "relation-number" is an equivalence class of isomorphic relations. PM defines analogues of addition, multiplication, and exponentiation for arbitrary relations. The addition and multiplication is similar to the usual definition of addition and multiplication of ordinals in ZFC, though the definition of exponentiation of relations in PM is not equivalent to the usual one used in ZFC. </p> <div class="mw-heading mw-heading3"><h3 id="Part_V_Series._Volume_II_✱200_to_✱234_and_volume_III_✱250_to_✱276"><span id="Part_V_Series._Volume_II_.E2.9C.B1200_to_.E2.9C.B1234_and_volume_III_.E2.9C.B1250_to_.E2.9C.B1276"></span>Part V Series. Volume II ✱200 to ✱234 and volume III ✱250 to ✱276</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=21" title="Edit section: Part V Series. Volume II ✱200 to ✱234 and volume III ✱250 to ✱276"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This covers series, which is PM's term for what is now called a totally ordered set. In particular it covers complete series, continuous functions between series with the order topology (though of course they do not use this terminology), well-ordered series, and series without "gaps" (those with a member strictly between any two given members). </p> <div class="mw-heading mw-heading3"><h3 id="Part_VI_Quantity._Volume_III_✱300_to_✱375"><span id="Part_VI_Quantity._Volume_III_.E2.9C.B1300_to_.E2.9C.B1375"></span>Part VI Quantity. Volume III ✱300 to ✱375</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=22" title="Edit section: Part VI Quantity. Volume III ✱300 to ✱375"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This section constructs the ring of integers, the fields of rational and real numbers, and "vector-families", which are related to what are now called torsors over abelian groups. </p> <div class="mw-heading mw-heading2"><h2 id="Comparison_with_set_theory">Comparison with set theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=23" title="Edit section: Comparison with set theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This section compares the system in PM with the usual mathematical foundations of ZFC. The system of PM is roughly comparable in strength with Zermelo set theory (or more precisely a version of it where the axiom of separation has all quantifiers bounded). </p> <ul><li>The system of propositional logic and predicate calculus in PM is essentially the same as that used now, except that the notation and terminology has changed.</li> <li>The most obvious difference between PM and set theory is that in PM all objects belong to one of a number of disjoint types. This means that everything gets duplicated for each (infinite) type: for example, each type has its own ordinals, cardinals, real numbers, and so on. This results in a lot of bookkeeping to relate the various types with each other.</li> <li>In ZFC functions are normally coded as sets of ordered pairs. In PM functions are treated rather differently. First of all, "function" means "propositional function", something taking values true or false. Second, functions are not determined by their values: it is possible to have several different functions all taking the same values (for example, one might regard 2<i>x</i>+2 and 2(<i>x</i>+1) as different functions on grounds that the computer programs for evaluating them are different). The functions in ZFC given by sets of ordered pairs correspond to what PM call "matrices", and the more general functions in PM are coded by quantifying over some variables. In particular PM distinguishes between functions defined using quantification and functions not defined using quantification, whereas ZFC does not make this distinction.</li> <li>PM has no analogue of the <a href="/wiki/Axiom_of_replacement" class="mw-redirect" title="Axiom of replacement">axiom of replacement</a>, though this is of little practical importance as this axiom is used very little in mathematics outside set theory.</li> <li>PM emphasizes relations as a fundamental concept, whereas in modern mathematical practice it is functions rather than relations that are treated as more fundamental; for example, category theory emphasizes morphisms or functions rather than relations. (However, there is an analogue of categories called <a href="/wiki/Allegory_(category_theory)" class="mw-redirect" title="Allegory (category theory)">allegories</a> that models relations rather than functions, and is quite similar to the type system of PM.)</li> <li>In PM, cardinals are defined as classes of similar classes, whereas in ZFC cardinals are special ordinals. In PM there is a different collection of cardinals for each type with some complicated machinery for moving cardinals between types, whereas in ZFC there is only 1 sort of cardinal. Since PM does not have any equivalent of the axiom of replacement, it is unable to prove the existence of cardinals greater than ℵ<sub>ω</sub>.</li> <li>In PM ordinals are treated as equivalence classes of well-ordered sets, and as with cardinals there is a different collection of ordinals for each type. In ZFC there is only one collection of ordinals, usually defined as <a href="/wiki/Von_Neumann_ordinal" class="mw-redirect" title="Von Neumann ordinal">von Neumann ordinals</a>. One strange quirk of PM is that they do not have an ordinal corresponding to 1, which causes numerous unnecessary complications in their theorems. The definition of ordinal exponentiation α<sup>β</sup> in PM is not equivalent to the usual definition in ZFC and has some rather undesirable properties: for example, it is not continuous in β and is not well ordered (so is not even an ordinal).</li> <li>The constructions of the integers, rationals and real numbers in ZFC have been streamlined considerably over time since the constructions in PM.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Differences_between_editions">Differences between editions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=24" title="Edit section: Differences between editions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Apart from corrections of misprints, the main text of PM is unchanged between the first and second editions. The main text in Volumes 1 and 2 was reset, so that it occupies fewer pages in each. In the second edition, Volume 3 was not reset, being photographically reprinted with the same page numbering; corrections were still made. The total number of pages (excluding the endpapers) in the first edition is 1,996; in the second, 2,000. Volume 1 has five new additions: </p> <ul><li>A 54-page introduction by Russell describing the changes they would have made had they had more time and energy. The main change he suggests is the removal of the controversial axiom of reducibility, though he admits that he knows no satisfactory substitute for it. He also seems more favorable to the idea that a function should be determined by its values (as is usual in modern mathematical practice).</li> <li>Appendix A, numbered as *8, 15 pages, about the Sheffer stroke.</li> <li>Appendix B, numbered as *89, discussing induction without the axiom of reducibility.</li> <li>Appendix C, 8 pages, discussing propositional functions.</li> <li>An 8-page list of definitions at the end, giving a much-needed index to the 500 or so notations used.</li></ul> <p>In 1962, Cambridge University Press published a shortened paperback edition containing parts of the second edition of Volume 1: the new introduction (and the old), the main text up to *56, and Appendices A and C.. </p> <div class="mw-heading mw-heading2"><h2 id="Editions">Editions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=25" title="Edit section: Editions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><div class="plainlist"><ul style="margin-left:0; margin-left:1.6em;"><li style="margin-left:0; padding-left:3.2em; text-indent:-3.2em;"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="no" class="citation book cs1">Whitehead, Alfred North; Russell, Bertrand (1910). <i>Principia Mathematica</i>. Vol.&#160;1 (1st&#160;ed.). Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fmiun.aat3201.0001.001">2027/miun.aat3201.0001.001</a></span>. <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:41.0083.02">41.0083.02</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/a11002789">a11002789</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principia+Mathematica&amp;rft.place=Cambridge&amp;rft.edition=1st&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1910&amp;rft_id=info%3Ahdl%2F2027%2Fmiun.aat3201.0001.001&amp;rft_id=info%3Alccn%2Fa11002789&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A41.0083.02%23id-name%3DJFM&amp;rft.aulast=Whitehead&amp;rft.aufirst=Alfred+North&amp;rft.au=Russell%2C+Bertrand&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li><li style="margin-left:0; padding-left:3.2em; text-indent:-3.2em;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="no" class="citation book cs1">&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;; &#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212; (1912). <i>Principia Mathematica</i>. Vol.&#160;2 (1st&#160;ed.). Cambridge: Cambridge University Press. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fmiun.aat3201.0002.001">2027/miun.aat3201.0002.001</a></span>. <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:43.0093.03">43.0093.03</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/a11002789">a11002789</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principia+Mathematica&amp;rft.place=Cambridge&amp;rft.edition=1st&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1912&amp;rft_id=info%3Ahdl%2F2027%2Fmiun.aat3201.0002.001&amp;rft_id=info%3Alccn%2Fa11002789&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A43.0093.03%23id-name%3DJFM&amp;rft.aulast=Whitehead&amp;rft.aufirst=Alfred+North&amp;rft.au=Russell%2C+Bertrand&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li><li style="margin-left:0; padding-left:3.2em; text-indent:-3.2em;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="no" class="citation book cs1">&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;; &#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212; (1913). <i>Principia Mathematica</i>. Vol.&#160;3 (1st&#160;ed.). Cambridge: Cambridge University Press. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fmiun.aat3201.0003.001">2027/miun.aat3201.0003.001</a></span>. <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:44.0068.01">44.0068.01</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/a11002789">a11002789</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principia+Mathematica&amp;rft.place=Cambridge&amp;rft.edition=1st&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1913&amp;rft_id=info%3Ahdl%2F2027%2Fmiun.aat3201.0003.001&amp;rft_id=info%3Alccn%2Fa11002789&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A44.0068.01%23id-name%3DJFM&amp;rft.aulast=Whitehead&amp;rft.aufirst=Alfred+North&amp;rft.au=Russell%2C+Bertrand&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li><li style="margin-left:0; padding-left:3.2em; text-indent:-3.2em;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="no" class="citation book cs1">&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;; &#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212; (1925). <i>Principia Mathematica</i>. Vol.&#160;1 (2nd&#160;ed.). Cambridge: Cambridge University Press. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/loc.rbc%2FGeneral.15133v1.1">loc.rbc/General.15133v1.1</a></span>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0521067911" title="Special:BookSources/978-0521067911"><bdi>978-0521067911</bdi></a>. <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:51.0046.06">51.0046.06</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/25015133">25015133</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principia+Mathematica&amp;rft.place=Cambridge&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1925&amp;rft_id=info%3Ahdl%2Floc.rbc%2FGeneral.15133v1.1&amp;rft_id=info%3Alccn%2F25015133&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A51.0046.06%23id-name%3DJFM&amp;rft.isbn=978-0521067911&amp;rft.aulast=Whitehead&amp;rft.aufirst=Alfred+North&amp;rft.au=Russell%2C+Bertrand&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li><li style="margin-left:0; padding-left:3.2em; text-indent:-3.2em;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="no" class="citation book cs1">&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;; &#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212; (1927). <a rel="nofollow" class="external text" href="https://archive.org/details/PrincipiaMathematicaVol2"><i>Principia Mathematica</i></a>. Vol.&#160;2 (2nd&#160;ed.). Cambridge: Cambridge University Press. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/loc.rbc%2FGeneral.15133v2.1">loc.rbc/General.15133v2.1</a></span>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0521067911" title="Special:BookSources/978-0521067911"><bdi>978-0521067911</bdi></a>. <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:53.0038.02">53.0038.02</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/25015133">25015133</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principia+Mathematica&amp;rft.place=Cambridge&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1927&amp;rft_id=info%3Ahdl%2Floc.rbc%2FGeneral.15133v2.1&amp;rft_id=info%3Alccn%2F25015133&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A53.0038.02%23id-name%3DJFM&amp;rft.isbn=978-0521067911&amp;rft.aulast=Whitehead&amp;rft.aufirst=Alfred+North&amp;rft.au=Russell%2C+Bertrand&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2FPrincipiaMathematicaVol2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li><li style="margin-left:0; padding-left:3.2em; text-indent:-3.2em;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="no" class="citation book cs1">&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;; &#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212; (1927). <a rel="nofollow" class="external text" href="https://archive.org/details/PrincipiaMathematicaVol3"><i>Principia Mathematica</i></a>. Vol.&#160;3 (2nd&#160;ed.). Cambridge: Cambridge University Press. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/loc.rbc%2FGeneral.15133v3.1">loc.rbc/General.15133v3.1</a></span>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0521067911" title="Special:BookSources/978-0521067911"><bdi>978-0521067911</bdi></a>. <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:53.0038.02">53.0038.02</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/25015133">25015133</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principia+Mathematica&amp;rft.place=Cambridge&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1927&amp;rft_id=info%3Ahdl%2Floc.rbc%2FGeneral.15133v3.1&amp;rft_id=info%3Alccn%2F25015133&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A53.0038.02%23id-name%3DJFM&amp;rft.isbn=978-0521067911&amp;rft.aulast=Whitehead&amp;rft.aufirst=Alfred+North&amp;rft.au=Russell%2C+Bertrand&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2FPrincipiaMathematicaVol3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li><li style="margin-left:0; padding-left:3.2em; text-indent:-3.2em;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="no" class="citation book cs1">&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;; &#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212; (1997) [1962]. <i>Principia Mathematica to ✱56</i>. Cambridge Mathematical Library (abridged&#160;ed.). Cambridge: Cambridge University Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511623585">10.1017/CBO9780511623585</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-62606-4" title="Special:BookSources/0-521-62606-4"><bdi>0-521-62606-4</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1700771">1700771</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0877.01042">0877.01042</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principia+Mathematica+to+%E2%9C%B156&amp;rft.place=Cambridge&amp;rft.series=Cambridge+Mathematical+Library&amp;rft.edition=abridged&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1997&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0877.01042%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1700771%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1017%2FCBO9780511623585&amp;rft.isbn=0-521-62606-4&amp;rft.aulast=Whitehead&amp;rft.aufirst=Alfred+North&amp;rft.au=Russell%2C+Bertrand&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li></ul></div> <p>The first edition was reprinted in 2009 by Merchant Books, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60386-182-3" title="Special:BookSources/978-1-60386-182-3">978-1-60386-182-3</a>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60386-183-0" title="Special:BookSources/978-1-60386-183-0">978-1-60386-183-0</a>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60386-184-7" title="Special:BookSources/978-1-60386-184-7">978-1-60386-184-7</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Legacy">Legacy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=26" title="Edit section: Legacy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Andrew_David_Irvine" title="Andrew David Irvine">Andrew D. Irvine</a> says that <i>PM</i> sparked interest in symbolic logic and advanced the subject by popularizing it; it showcased the powers and capacities of symbolic logic; and it showed how advances in philosophy of mathematics and symbolic logic could go hand-in-hand with tremendous fruitfulness.<sup id="cite_ref-SEP_4-2" class="reference"><a href="#cite_note-SEP-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <i>PM</i> was in part brought about by an interest in <a href="/wiki/Logicism" title="Logicism">logicism</a>, the view on which all mathematical truths are logical truths. Though flawed, <i>PM</i> would be influential in several later advances in meta-logic, including <a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel&#39;s incompleteness theorems">Gödel's incompleteness theorems</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2024)">citation needed</span></a></i>&#93;</sup> </p><p>The logical notation in <i>PM</i> was not widely adopted, possibly because its foundations are often considered a form of <a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel set theory</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2024)">citation needed</span></a></i>&#93;</sup> </p><p>Scholarly, historical, and philosophical interest in <i>PM</i> is great and ongoing, and mathematicians continue to work with <i>PM</i>, whether for the historical reason of understanding the text or its authors, or for furthering insight into the formalizations of math and logic.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2024)">citation needed</span></a></i>&#93;</sup> </p><p>The <a href="/wiki/Modern_Library" title="Modern Library">Modern Library</a> placed <i>PM</i> 23rd in their list of the top 100 English-language nonfiction books of the twentieth century.<sup id="cite_ref-ML_5-1" class="reference"><a href="#cite_note-ML-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=27" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Axiomatic_set_theory" class="mw-redirect" title="Axiomatic set theory">Axiomatic set theory</a></li> <li><a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a></li> <li><a href="/wiki/Information_Processing_Language" title="Information Processing Language">Information Processing Language</a> – first computational demonstration of theorems in PM</li> <li><i><a href="/wiki/Introduction_to_Mathematical_Philosophy" title="Introduction to Mathematical Philosophy">Introduction to Mathematical Philosophy</a></i></li></ul> <div class="mw-heading mw-heading2"><h2 id="Footnotes">Footnotes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=28" title="Edit section: Footnotes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-FOOTNOTEHardy200483-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHardy200483_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardy2004">Hardy 2004</a>, p.&#160;83.</span> </li> <li id="cite_note-FOOTNOTELittlewood1986130-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELittlewood1986130_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLittlewood1986">Littlewood 1986</a>, p.&#160;130.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFWhiteheadRussell1963" class="citation book cs1">Whitehead, Alfred North; Russell, Bertrand (1963). <a rel="nofollow" class="external text" href="https://archive.org/details/PrincipiaMathematicaVolumeI"><i>Principia Mathematica</i></a>. Cambridge: Cambridge University Press. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/PrincipiaMathematicaVolumeI/page/n46">1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principia+Mathematica&amp;rft.place=Cambridge&amp;rft.pages=1&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1963&amp;rft.aulast=Whitehead&amp;rft.aufirst=Alfred+North&amp;rft.au=Russell%2C+Bertrand&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2FPrincipiaMathematicaVolumeI&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></span> </li> <li id="cite_note-SEP-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-SEP_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SEP_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-SEP_4-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFIrvine2003" class="citation web cs1"><a href="/wiki/Andrew_David_Irvine" title="Andrew David Irvine">Irvine, Andrew D.</a> (1 May 2003). <a rel="nofollow" class="external text" href="http://plato.stanford.edu/entries/principia-mathematica/#SOPM">"Principia Mathematica (Stanford Encyclopedia of Philosophy)"</a>. Metaphysics Research Lab, CSLI, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">5 August</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Principia+Mathematica+%28Stanford+Encyclopedia+of+Philosophy%29&amp;rft.pub=Metaphysics+Research+Lab%2C+CSLI%2C+Stanford+University&amp;rft.date=2003-05-01&amp;rft.aulast=Irvine&amp;rft.aufirst=Andrew+D.&amp;rft_id=http%3A%2F%2Fplato.stanford.edu%2Fentries%2Fprincipia-mathematica%2F%23SOPM&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></span> </li> <li id="cite_note-ML-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-ML_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ML_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nytimes.com/library/books/042999best-nonfiction-list.html">"The Modern Library's Top 100 Nonfiction Books of the Century"</a>. The New York Times Company. 30 April 1999<span class="reference-accessdate">. Retrieved <span class="nowrap">5 August</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Modern+Library%27s+Top+100+Nonfiction+Books+of+the+Century&amp;rft.pub=The+New+York+Times+Company&amp;rft.date=1999-04-30&amp;rft_id=https%3A%2F%2Fwww.nytimes.com%2Flibrary%2Fbooks%2F042999best-nonfiction-list.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">This set is taken from <a href="#CITEREFKleene1952">Kleene 1952</a>, p.&#160;69 substituting → for ⊃.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="#CITEREFKleene1952">Kleene 1952</a>, p.&#160;71, <a href="#CITEREFEnderton2001">Enderton 2001</a>, p.&#160;15.</span> </li> <li id="cite_note-FOOTNOTEEnderton200116-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEEnderton200116_8-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFEnderton2001">Enderton 2001</a>, p.&#160;16.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">This is the word used by <a href="#CITEREFKleene1952">Kleene 1952</a>, p.&#160;78.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Quote from Kleene 1952:45. See discussion LOGICISM at pp. 43–46.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">In his section 8.5.4 <i>Groping towards metalogic</i> Grattan-Guinness 2000:454ff discusses the American logicians' critical reception of the second edition of <i>PM</i>. For instance Sheffer "puzzled that ' <i>In order to give an account of logic, we must presuppose and employ logic</i> ' " (p. 452). And Bernstein ended his 1926 review with the comment that "This distinction between the propositional logic as a mathematical system and as a language must be made, if serious errors are to be avoided; this distinction the <i>Principia</i> does not make" (p. 454).</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">This idea is due to Wittgenstein's <i>Tractatus</i>. See the discussion at <i>PM</i> 1962:xiv–xv)</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">PM 1927:xiv</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">PM 1927:xlv</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLinsky2018" class="citation book cs1">Linsky, Bernard (2018). Zalta, Edward N. (ed.). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/fall2016/entries/pm-notation/"><i>The Stanford Encyclopedia of Philosophy</i></a>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">1 May</span> 2018</span> &#8211; via Stanford Encyclopedia of Philosophy.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&amp;rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&amp;rft.date=2018&amp;rft.aulast=Linsky&amp;rft.aufirst=Bernard&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Farchives%2Ffall2016%2Fentries%2Fpm-notation%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></span> </li> <li id="cite_note-Gödel_1944-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Gödel_1944_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Gödel_1944_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFGödel1944">Gödel 1944</a>, p.&#160;126 (reprinted in <a href="#CITEREFGödel1990">Gödel 1990</a>, p.&#160;120).</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">For comparison, see the translated portion of Peano 1889 in van Heijenoort 1967:81ff.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">This work can be found at van Heijenoort 1967:1ff.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">And see footnote, both at PM 1927:92</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBertrand_Russell1959" class="citation book cs1">Bertrand Russell (1959). "Chapter VII". <i>My Philosophical Development</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+VII&amp;rft.btitle=My+Philosophical+Development&amp;rft.date=1959&amp;rft.au=Bertrand+Russell&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">The original typography is a square of a heavier weight than the conventional full stop.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">The first example comes from plato.stanford.edu (loc.cit.).</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">p. xiii of 1927 appearing in the 1962 paperback edition to <b>✱56</b>.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">The original typography employs an <i>x</i> with a circumflex rather than <i>ŷ</i>; this continues below</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">See the ten postulates of Huntington, in particular postulates IIa and IIb at <i>PM</i> 1962:205 and discussion at p. 206.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">The "⊂" sign has a dot inside it, and the intersection sign "∩" has a dot above it; these are not available in the "Arial Unicode MS" font.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">Wiener 1914 "A simplification of the logic of relations" (van Heijenoort 1967:224ff) disposed of the second of these when he showed how to reduce the theory of relations to that of classes</span> </li> <li id="cite_note-FOOTNOTEKleene195246-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKleene195246_28-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKleene1952">Kleene 1952</a>, p.&#160;46.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=29" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFEnderton2001" class="citation book cs1"><a href="/wiki/Herbert_Enderton" title="Herbert Enderton">Enderton, Herbert B.</a> (2001) [1972]. <i>A Mathematical Introduction to Logic</i> (2nd&#160;ed.). San Diego, California: <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-12-238452-0" title="Special:BookSources/0-12-238452-0"><bdi>0-12-238452-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Mathematical+Introduction+to+Logic&amp;rft.place=San+Diego%2C+California&amp;rft.edition=2nd&amp;rft.pub=Academic+Press&amp;rft.date=2001&amp;rft.isbn=0-12-238452-0&amp;rft.aulast=Enderton&amp;rft.aufirst=Herbert+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFGödel1944" class="citation book cs1"><a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Gödel, Kurt</a> (1944). "Russell's Mathematical Logic". In <a href="/wiki/Paul_Arthur_Schilpp" title="Paul Arthur Schilpp">Schilpp, Paul Arthur</a> (ed.). <i>The Philosophy of Bertrand Russell</i>. The Library of Living Philosophers. Vol.&#160;5 (1st&#160;ed.). Chicago: <a href="/wiki/Northwestern_University_Press" title="Northwestern University Press">Northwestern University Press</a>. pp.&#160;<span class="nowrap">123–</span>153. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/44006786">44006786</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/2007378">2007378</a>. <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a>&#160;<a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL6467049M">6467049M</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Russell%27s+Mathematical+Logic&amp;rft.btitle=The+Philosophy+of+Bertrand+Russell&amp;rft.place=Chicago&amp;rft.series=The+Library+of+Living+Philosophers&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E123-%3C%2Fspan%3E153&amp;rft.edition=1st&amp;rft.pub=Northwestern+University+Press&amp;rft.date=1944&amp;rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL6467049M%23id-name%3DOL&amp;rft_id=info%3Alccn%2F44006786&amp;rft_id=info%3Aoclcnum%2F2007378&amp;rft.aulast=G%C3%B6del&amp;rft.aufirst=Kurt&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFGödel1990" class="citation book cs1">Gödel, Kurt (1990). <a href="/wiki/Solomon_Feferman" title="Solomon Feferman">Feferman, Solomon</a>; et&#160;al. (eds.). <i>Collected Works, Volume II, Publications 1938–1974</i>. New York: <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-19-503972-6" title="Special:BookSources/0-19-503972-6"><bdi>0-19-503972-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Collected+Works%2C+Volume+II%2C+Publications+1938%E2%80%931974&amp;rft.place=New+York&amp;rft.pub=Oxford+University+Press&amp;rft.date=1990&amp;rft.isbn=0-19-503972-6&amp;rft.aulast=G%C3%B6del&amp;rft.aufirst=Kurt&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFGrattan-Guinness2000" class="citation book cs1"><a href="/wiki/Ivor_Grattan-Guinness" title="Ivor Grattan-Guinness">Grattan-Guinness, Ivor</a> (2000). <i>The Search for Mathematical Roots 1870–1940</i>. Princeton, New Jersey: <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-691-05857-1" title="Special:BookSources/0-691-05857-1"><bdi>0-691-05857-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Search+for+Mathematical+Roots+1870%E2%80%931940&amp;rft.place=Princeton%2C+New+Jersey&amp;rft.pub=Princeton+University+Press&amp;rft.date=2000&amp;rft.isbn=0-691-05857-1&amp;rft.aulast=Grattan-Guinness&amp;rft.aufirst=Ivor&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHardy2004" class="citation book cs1"><a href="/wiki/G._H._Hardy" title="G. H. Hardy">Hardy, G. H.</a> (2004) [1940]. <a href="/wiki/A_Mathematician%27s_Apology" title="A Mathematician&#39;s Apology"><i>A Mathematician's Apology</i></a>. Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-42706-7" title="Special:BookSources/978-0-521-42706-7"><bdi>978-0-521-42706-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Mathematician%27s+Apology&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2004&amp;rft.isbn=978-0-521-42706-7&amp;rft.aulast=Hardy&amp;rft.aufirst=G.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKleene1952" class="citation book cs1"><a href="/wiki/Stephen_Cole_Kleene" title="Stephen Cole Kleene">Kleene, Stephen Cole</a> (1952). <i>Introduction to Metamathematics</i> (6th reprint&#160;ed.). Amsterdam, New York: <a href="/wiki/North-Holland_Publishing_Company" class="mw-redirect" title="North-Holland Publishing Company">North-Holland Publishing Company</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/53001848">53001848</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/9296141">9296141</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Metamathematics&amp;rft.place=Amsterdam%2C+New+York&amp;rft.edition=6th+reprint&amp;rft.pub=North-Holland+Publishing+Company&amp;rft.date=1952&amp;rft_id=info%3Aoclcnum%2F9296141&amp;rft_id=info%3Alccn%2F53001848&amp;rft.aulast=Kleene&amp;rft.aufirst=Stephen+Cole&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLittlewood1986" class="citation book cs1"><a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">Littlewood, J. E.</a> (1986). <a href="/wiki/B%C3%A9la_Bollob%C3%A1s" title="Béla Bollobás">Bollobás, Béla</a> (ed.). <a href="/wiki/A_Mathematician%27s_Miscellany" title="A Mathematician&#39;s Miscellany"><i>Littlewood's Miscellany</i></a>. Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-33058-0" title="Special:BookSources/0-521-33058-0"><bdi>0-521-33058-0</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0872858">0872858</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Littlewood%27s+Miscellany&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1986&amp;rft.isbn=0-521-33058-0&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0872858%23id-name%3DMR&amp;rft.aulast=Littlewood&amp;rft.aufirst=J.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFvan_Heijenoort1967" class="citation book cs1"><a href="/wiki/Jean_van_Heijenoort" title="Jean van Heijenoort">van Heijenoort, Jean</a> (1967). <i>From Frege to Gödel: A Source book in Mathematical Logic, 1879–1931</i> (3rd printing&#160;ed.). Cambridge, Massachusetts: <a href="/wiki/Harvard_University_Press" title="Harvard University Press">Harvard University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-674-32449-8" title="Special:BookSources/0-674-32449-8"><bdi>0-674-32449-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=From+Frege+to+G%C3%B6del%3A+A+Source+book+in+Mathematical+Logic%2C+1879%E2%80%931931&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.edition=3rd+printing&amp;rft.pub=Harvard+University+Press&amp;rft.date=1967&amp;rft.isbn=0-674-32449-8&amp;rft.aulast=van+Heijenoort&amp;rft.aufirst=Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFWeberDesmond2008" class="citation book cs1"><a href="/wiki/Michel_Weber" title="Michel Weber">Weber, Michel</a>; Desmond, William Jr., eds. (2008). <a rel="nofollow" class="external text" href="https://www.academia.edu/279955"><i>Handbook of Whiteheadian Process Thought, Volume 1</i></a>. Heusenstamm: <a href="/w/index.php?title=Ontos_Verlag&amp;action=edit&amp;redlink=1" class="new" title="Ontos Verlag (page does not exist)">Ontos Verlag</a><span class="noprint" style="font-size:85%; font-style: normal;">&#160;&#91;<a href="https://de.wikipedia.org/wiki/Ontos_Verlag" class="extiw" title="de:Ontos Verlag">de</a>&#93;</span>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-938793-92-3" title="Special:BookSources/978-3-938793-92-3"><bdi>978-3-938793-92-3</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">13 September</span> 2023</span> &#8211; via Academia.edu.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Whiteheadian+Process+Thought%2C+Volume+1&amp;rft.place=Heusenstamm&amp;rft.pub=Ontos+Verlag%3Cspan+class%3D%22noprint%22+style%3D%22font-size%3A85%25%3B+font-style%3A+normal%3B+%22%3E+%26%2391%3Bde%26%2393%3B%3C%2Fspan%3E&amp;rft.date=2008&amp;rft.isbn=978-3-938793-92-3&amp;rft_id=https%3A%2F%2Fwww.academia.edu%2F279955&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFWittgenstein2009" class="citation book cs1"><a href="/wiki/Ludwig_Wittgenstein" title="Ludwig Wittgenstein">Wittgenstein, Ludwig</a> (2009). <i>Major Works: Selected Philosophical Writings</i>. New York: <a href="/wiki/HarperCollins" title="HarperCollins">HarperCollins</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-06-155024-9" title="Special:BookSources/978-0-06-155024-9"><bdi>978-0-06-155024-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Major+Works%3A+Selected+Philosophical+Writings&amp;rft.place=New+York&amp;rft.pub=HarperCollins&amp;rft.date=2009&amp;rft.isbn=978-0-06-155024-9&amp;rft.aulast=Wittgenstein&amp;rft.aufirst=Ludwig&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APrincipia+Mathematica" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Principia_Mathematica&amp;action=edit&amp;section=30" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409" /> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiquote-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></a></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/Principia_Mathematica" class="extiw" title="q:Special:Search/Principia Mathematica">Principia Mathematica</a></b></i>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735" /><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409" /> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/60px-Commons-logo.svg.png 1.5x" data-file-width="1024" data-file-height="1376" /></a></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Principia_Mathematica" class="extiw" title="commons:Category:Principia Mathematica">Principia Mathematica</a></span>.</div></div> </div> <ul><li><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a>: <ul><li><i><a rel="nofollow" class="external text" href="http://plato.stanford.edu/entries/principia-mathematica/">Principia Mathematica</a></i> – by <a href="/wiki/Andrew_David_Irvine" title="Andrew David Irvine">A. D. Irvine</a></li> <li><a rel="nofollow" class="external text" href="http://plato.stanford.edu/entries/pm-notation/">The Notation in <i>Principia Mathematica</i></a> – by Bernard Linsky.</li></ul></li> <li><a rel="nofollow" class="external text" href="http://us.metamath.org/mpegif/pm54.43.html">Proposition ✱54.43</a> in a more modern notation (<a href="/wiki/Metamath" title="Metamath">Metamath</a>)</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Bertrand_Russell260" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Bertrand_Russell_(Navigational_box)" title="Template:Bertrand Russell (Navigational box)"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Bertrand_Russell_(Navigational_box)" title="Template talk:Bertrand Russell (Navigational box)"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Bertrand_Russell_(Navigational_box)" title="Special:EditPage/Template:Bertrand Russell (Navigational box)"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Bertrand_Russell260" style="font-size:114%;margin:0 4em"><a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Bertrand Russell</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div>British philosopher, logician, and social critic</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Philosophy</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Views_on_philosophy62" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Bertrand_Russell%27s_philosophical_views" class="mw-redirect" title="Bertrand Russell&#39;s philosophical views">Views on philosophy</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Copleston%E2%80%93Russell_debate" title="Copleston–Russell debate">Copleston–Russell debate</a></li> <li><a href="/wiki/Logical_atomism" title="Logical atomism">Logical atomism</a></li> <li><a href="/wiki/Russell%27s_teapot" title="Russell&#39;s teapot">Russell's teapot</a></li> <li><a href="/wiki/Theory_of_descriptions" title="Theory of descriptions">Theory of descriptions</a></li></ul> </div></td></tr></tbody></table><div> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Views_on_society55" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Bertrand_Russell%27s_political_views" class="mw-redirect" title="Bertrand Russell&#39;s political views">Views on society</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Russell%E2%80%93Einstein_Manifesto" title="Russell–Einstein Manifesto">Russell–Einstein Manifesto</a></li> <li><a href="/wiki/Russell_Tribunal" title="Russell Tribunal">Russell Tribunal</a></li></ul> </div></td></tr></tbody></table><div> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Mathematics11" scope="row" class="navbox-group" style="width:1%">Mathematics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Peano%E2%80%93Russell_notation" title="Peano–Russell notation">Peano–Russell notation</a></li> <li><a href="/wiki/Russell%27s_paradox" title="Russell&#39;s paradox">Russell's paradox</a></li></ul> </div></td></tr></tbody></table><div></div></td><td class="noviewer navbox-image" rowspan="4" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Bertrand_Russell_transparent_bg.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Bertrand_Russell_transparent_bg.png/105px-Bertrand_Russell_transparent_bg.png" decoding="async" width="105" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Bertrand_Russell_transparent_bg.png/158px-Bertrand_Russell_transparent_bg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Bertrand_Russell_transparent_bg.png/210px-Bertrand_Russell_transparent_bg.png 2x" data-file-width="1255" data-file-height="1859" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Works</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/The_Principles_of_Mathematics" title="The Principles of Mathematics">The Principles of Mathematics</a></i> (1903)</li> <li><i><a href="/wiki/On_Denoting" title="On Denoting">On Denoting</a></i> (1905)</li> <li><i><a class="mw-selflink selflink">Principia Mathematica</a></i> (1910–1913)</li> <li><i><a href="/wiki/The_Problems_of_Philosophy" title="The Problems of Philosophy">The Problems of Philosophy</a></i> (1912)</li> <li><i><a href="/wiki/Why_Men_Fight_(book)" title="Why Men Fight (book)">Why Men Fight</a></i> (1916)</li> <li><i><a href="/wiki/Introduction_to_Mathematical_Philosophy" title="Introduction to Mathematical Philosophy">Introduction to Mathematical Philosophy</a></i> (1919)</li> <li><i><a href="/wiki/Free_Thought_and_Official_Propaganda" title="Free Thought and Official Propaganda">Free Thought and Official Propaganda</a></i> (1922)</li> <li><i><a href="/wiki/Why_I_Am_Not_a_Christian" title="Why I Am Not a Christian">Why I Am Not a Christian</a></i> (1927)</li> <li><i><a href="/wiki/Marriage_and_Morals" title="Marriage and Morals">Marriage and Morals</a></i> (1929)</li> <li><i><a href="/wiki/In_Praise_of_Idleness_and_Other_Essays" title="In Praise of Idleness and Other Essays">In Praise of Idleness and Other Essays</a></i> (1935)</li> <li><i><a href="/wiki/Power:_A_New_Social_Analysis" title="Power: A New Social Analysis">Power: A New Social Analysis</a></i> (1938)</li> <li><i><a href="/wiki/A_History_of_Western_Philosophy" title="A History of Western Philosophy">A History of Western Philosophy</a></i> (1945)</li> <li><i><a href="/wiki/My_Philosophical_Development" title="My Philosophical Development">My Philosophical Development</a></i> (1959)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Family</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alys_Pearsall_Smith" title="Alys Pearsall Smith">Alys Pearsall Smith</a> (wife, 1894–1921)</li> <li><a href="/wiki/Dora_Russell" title="Dora Russell">Dora Russell</a> (wife, 1921–1935)</li> <li><a href="/wiki/Patricia_Russell" title="Patricia Russell">Patricia Russell</a> (wife, 1936–1951)</li> <li><a href="/wiki/Edith_Finch_Russell" title="Edith Finch Russell">Edith Finch Russell</a> (wife, 1952–1970)</li> <li><a href="/wiki/John_Russell,_4th_Earl_Russell" title="John Russell, 4th Earl Russell">John Russell, 4th Earl Russell</a> (son)</li> <li><a href="/wiki/Conrad_Russell,_5th_Earl_Russell" title="Conrad Russell, 5th Earl Russell">Conrad Russell, 5th Earl Russell</a> (son)</li> <li><a href="/wiki/Frank_Russell,_2nd_Earl_Russell" title="Frank Russell, 2nd Earl Russell">Frank Russell, 2nd Earl Russell</a> (brother)</li> <li><a href="/wiki/John_Russell,_Viscount_Amberley" title="John Russell, Viscount Amberley">John Russell, Viscount Amberley</a> (father)</li> <li><a href="/wiki/Katharine_Russell,_Viscountess_Amberley" title="Katharine Russell, Viscountess Amberley">Katharine Russell, Viscountess Amberley</a> (mother)</li> <li><a href="/wiki/John_Stuart_Mill" title="John Stuart Mill">John Stuart Mill</a> (godfather)</li> <li><a href="/wiki/John_Russell,_1st_Earl_Russell" title="John Russell, 1st Earl Russell">John Russell, 1st Earl Russell</a> (paternal grandfather)</li> <li><a href="/wiki/Henrietta_Stanley,_Baroness_Stanley_of_Alderley" title="Henrietta Stanley, Baroness Stanley of Alderley">Henrietta Stanley, Baroness Stanley of Alderley</a> (maternal grandmother)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/The_Bertrand_Russell_Case" title="The Bertrand Russell Case">Appointment court case</a></li> <li><a href="/wiki/Earl_Russell" title="Earl Russell">Earl Russell</a></li> <li><a href="/wiki/Bertrand_Russell_Peace_Foundation" title="Bertrand Russell Peace Foundation">Peace Foundation</a></li> <li><a href="/wiki/Bertrand_Russell_Professorship_of_Philosophy" title="Bertrand Russell Professorship of Philosophy">Professorship of Philosophy</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div><b><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span>&#160;<a href="/wiki/Category:Works_by_Bertrand_Russell" title="Category:Works by Bertrand Russell">Category: Works by Bertrand Russell</a></b></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235" /></div><div role="navigation" class="navbox" aria-labelledby="Alfred_North_Whitehead44" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231" /><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Alfred_North_Whitehead" title="Template:Alfred North Whitehead"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Alfred_North_Whitehead" title="Template talk:Alfred North Whitehead"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Alfred_North_Whitehead" title="Special:EditPage/Template:Alfred North Whitehead"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Alfred_North_Whitehead44" style="font-size:114%;margin:0 4em"><a href="/wiki/Alfred_North_Whitehead" title="Alfred North Whitehead">Alfred North Whitehead</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Books</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nowrap"><i><a class="mw-selflink selflink">Principia Mathematica</a></i> (1910–1913)</span> <ul><li><span class="nowrap"><a href="/wiki/Glossary_of_Principia_Mathematica" title="Glossary of Principia Mathematica">glossary</a></span></li></ul></li> <li><span class="nowrap"><i><a href="/wiki/Process_and_Reality" title="Process and Reality">Process and Reality</a></i> (1929)</span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Concepts</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nowrap"><a href="/wiki/Inert_knowledge" title="Inert knowledge">Inert knowledge</a></span></li> <li><span class="nowrap"><a href="/wiki/Whitehead%27s_point-free_geometry" title="Whitehead&#39;s point-free geometry">Point-free geometry</a></span></li> <li><span class="nowrap"><a href="/wiki/Process_philosophy" title="Process philosophy">Process philosophy</a></span></li> <li><span class="nowrap"><a href="/wiki/Tensor_product_of_graphs" title="Tensor product of graphs">Tensor product of graphs</a></span></li> <li><span class="nowrap"><a href="/wiki/Whitehead%27s_theory_of_gravitation" title="Whitehead&#39;s theory of gravitation">Theory of gravitation</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Study</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nowrap"><a href="/wiki/Center_for_Process_Studies" title="Center for Process Studies">Center for Process Studies</a></span></li> <li><span class="nowrap"><a href="/wiki/Contemporary_Whitehead_Studies" title="Contemporary Whitehead Studies">Contemporary Whitehead Studies</a></span></li> <li><span class="nowrap"><a href="/wiki/Whitehead_Research_Project" title="Whitehead Research Project">Whitehead Research Project</a></span></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235" /></div><div role="navigation" class="navbox" aria-labelledby="Mathematical_logic326" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231" /><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Mathematical_logic" title="Template:Mathematical logic"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Mathematical_logic" title="Template talk:Mathematical logic"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Mathematical_logic" title="Special:EditPage/Template:Mathematical logic"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Mathematical_logic326" style="font-size:114%;margin:0 4em"><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Axiom" title="Axiom">Axiom</a> <ul><li><a href="/wiki/List_of_axioms" title="List of axioms">list</a></li></ul></li> <li><a href="/wiki/Cardinality" title="Cardinality">Cardinality</a></li> <li><a href="/wiki/First-order_logic" title="First-order logic">First-order logic</a></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Formal proof</a></li> <li><a href="/wiki/Formal_semantics_(logic)" class="mw-redirect" title="Formal semantics (logic)">Formal semantics</a></li> <li><a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">Foundations of mathematics</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a></li> <li><a href="/wiki/Lemma_(mathematics)" title="Lemma (mathematics)">Lemma</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Structure_(mathematical_logic)" title="Structure (mathematical logic)">Model</a></li> <li><a href="/wiki/Theorem" title="Theorem">Theorem</a></li> <li><a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">Theory</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems&#160;(<a href="/wiki/Category:Theorems_in_the_foundations_of_mathematics" title="Category:Theorems in the foundations of mathematics">list</a>)<br />&#160;and&#160;<a href="/wiki/Paradoxes_of_set_theory" title="Paradoxes of set theory">paradoxes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/G%C3%B6del%27s_completeness_theorem" title="Gödel&#39;s completeness theorem">Gödel's completeness</a>&#160;and&#160;<a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel&#39;s incompleteness theorems">incompleteness theorems</a></li> <li><a href="/wiki/Tarski%27s_undefinability_theorem" title="Tarski&#39;s undefinability theorem">Tarski's undefinability</a></li> <li><a href="/wiki/Banach%E2%80%93Tarski_paradox" title="Banach–Tarski paradox">Banach–Tarski paradox</a></li> <li>Cantor's&#160;<a href="/wiki/Cantor%27s_theorem" title="Cantor&#39;s theorem">theorem,</a>&#160;<a href="/wiki/Cantor%27s_paradox" title="Cantor&#39;s paradox">paradox</a>&#160;and&#160;<a href="/wiki/Cantor%27s_diagonal_argument" title="Cantor&#39;s diagonal argument">diagonal argument</a></li> <li><a href="/wiki/Compactness_theorem" title="Compactness theorem">Compactness</a></li> <li><a href="/wiki/Halting_problem" title="Halting problem">Halting problem</a></li> <li><a href="/wiki/Lindstr%C3%B6m%27s_theorem" title="Lindström&#39;s theorem">Lindström's</a></li> <li><a href="/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem" title="Löwenheim–Skolem theorem">Löwenheim–Skolem</a></li> <li><a href="/wiki/Russell%27s_paradox" title="Russell&#39;s paradox">Russell's paradox</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Logic" title="Logic">Logics</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Traditional95" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Term_logic" title="Term logic">Traditional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_logic" title="Classical logic">Classical logic</a></li> <li><a href="/wiki/Logical_truth" title="Logical truth">Logical truth</a></li> <li><a href="/wiki/Tautology_(logic)" title="Tautology (logic)">Tautology</a></li> <li><a href="/wiki/Proposition" title="Proposition">Proposition</a></li> <li><a href="/wiki/Inference" title="Inference">Inference</a></li> <li><a href="/wiki/Logical_equivalence" title="Logical equivalence">Logical equivalence</a></li> <li><a href="/wiki/Consistency" title="Consistency">Consistency</a> <ul><li><a href="/wiki/Equiconsistency" title="Equiconsistency">Equiconsistency</a></li></ul></li> <li><a href="/wiki/Argument" title="Argument">Argument</a></li> <li><a href="/wiki/Soundness" title="Soundness">Soundness</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li> <li><a href="/wiki/Syllogism" title="Syllogism">Syllogism</a></li> <li><a href="/wiki/Square_of_opposition" title="Square of opposition">Square of opposition</a></li> <li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a></li> <li><a href="/wiki/Boolean_function" title="Boolean function">Boolean functions</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connectives</a></li> <li><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></li> <li><a href="/wiki/Propositional_formula" title="Propositional formula">Propositional formula</a></li> <li><a href="/wiki/Truth_table" title="Truth table">Truth tables</a></li> <li><a href="/wiki/Many-valued_logic" title="Many-valued logic">Many-valued logic</a> <ul><li><a href="/wiki/Three-valued_logic" title="Three-valued logic">3</a></li> <li><a href="/wiki/Finite-valued_logic" title="Finite-valued logic">finite</a></li> <li><a href="/wiki/Infinite-valued_logic" title="Infinite-valued logic">∞</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Predicate_logic" class="mw-redirect" title="Predicate logic">Predicate</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/First-order_logic" title="First-order logic">First-order</a> <ul><li><a href="/wiki/List_of_first-order_theories" title="List of first-order theories"><span style="font-size: 85%;">list</span></a></li></ul></li> <li><a href="/wiki/Second-order_logic" title="Second-order logic">Second-order</a> <ul><li><a href="/wiki/Monadic_second-order_logic" title="Monadic second-order logic">Monadic</a></li></ul></li> <li><a href="/wiki/Higher-order_logic" title="Higher-order logic">Higher-order</a></li> <li><a href="/wiki/Fixed-point_logic" title="Fixed-point logic">Fixed-point</a></li> <li><a href="/wiki/Free_logic" title="Free logic">Free</a></li> <li><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">Quantifiers</a></li> <li><a href="/wiki/Predicate_(mathematical_logic)" class="mw-redirect" title="Predicate (mathematical logic)">Predicate</a></li> <li><a href="/wiki/Monadic_predicate_calculus" title="Monadic predicate calculus">Monadic predicate calculus</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Set_theory" title="Set theory">Set theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Set</a> <ul><li><a href="/wiki/Hereditary_set" title="Hereditary set">hereditary</a></li></ul></li> <li><a href="/wiki/Class_(set_theory)" title="Class (set theory)">Class</a></li> <li>(<a href="/wiki/Urelement" title="Urelement">Ur-</a>)<a href="/wiki/Element_(mathematics)" title="Element (mathematics)">Element</a></li> <li><a href="/wiki/Ordinal_number" title="Ordinal number">Ordinal number</a></li> <li><a href="/wiki/Extensionality" title="Extensionality">Extensionality</a></li> <li><a href="/wiki/Forcing_(mathematics)" title="Forcing (mathematics)">Forcing</a></li> <li><a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">Relation</a> <ul><li><a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence</a></li> <li><a href="/wiki/Partition_of_a_set" title="Partition of a set">partition</a></li></ul></li> <li>Set operations: <ul><li><a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a></li> <li><a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a></li> <li><a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">complement</a></li> <li><a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a></li> <li><a href="/wiki/Power_set" title="Power set">power set</a></li> <li><a href="/wiki/List_of_set_identities_and_relations" title="List of set identities and relations">identities</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">sets</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Countable_set" title="Countable set">Countable</a></li> <li><a href="/wiki/Uncountable_set" title="Uncountable set">Uncountable</a></li> <li><a href="/wiki/Empty_set" title="Empty set">Empty</a></li> <li><a href="/wiki/Inhabited_set" title="Inhabited set">Inhabited</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li> <li><a href="/wiki/Finite_set" title="Finite set">Finite</a></li> <li><a href="/wiki/Infinite_set" title="Infinite set">Infinite</a></li> <li><a href="/wiki/Transitive_set" title="Transitive set">Transitive</a></li> <li><a href="/wiki/Ultrafilter_(set_theory)" class="mw-redirect" title="Ultrafilter (set theory)">Ultrafilter</a></li> <li><a href="/wiki/Recursive_set" class="mw-redirect" title="Recursive set">Recursive</a></li> <li><a href="/wiki/Fuzzy_set" title="Fuzzy set">Fuzzy</a></li> <li><a href="/wiki/Universal_set" title="Universal set">Universal</a></li> <li><a href="/wiki/Universe_(mathematics)" title="Universe (mathematics)">Universe</a> <ul><li><a href="/wiki/Constructible_universe" title="Constructible universe">constructible</a></li> <li><a href="/wiki/Grothendieck_universe" title="Grothendieck universe">Grothendieck</a></li> <li><a href="/wiki/Von_Neumann_universe" title="Von Neumann universe">Von Neumann</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Maps</a>&#160;and&#160;<a href="/wiki/Cardinality" title="Cardinality">cardinality</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Function</a>/<a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Map</a> <ul><li><a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a></li> <li><a href="/wiki/Codomain" title="Codomain">codomain</a></li> <li><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a></li></ul></li> <li><a href="/wiki/Injective_function" title="Injective function">In</a>/<a href="/wiki/Surjective_function" title="Surjective function">Sur</a>/<a href="/wiki/Bijection" title="Bijection">Bi</a>-jection</li> <li><a href="/wiki/Schr%C3%B6der%E2%80%93Bernstein_theorem" title="Schröder–Bernstein theorem">Schröder–Bernstein theorem</a></li> <li><a href="/wiki/Isomorphism" title="Isomorphism">Isomorphism</a></li> <li><a href="/wiki/G%C3%B6del_numbering" title="Gödel numbering">Gödel numbering</a></li> <li><a href="/wiki/Enumeration" title="Enumeration">Enumeration</a></li> <li><a href="/wiki/Large_cardinal" title="Large cardinal">Large cardinal</a> <ul><li><a href="/wiki/Inaccessible_cardinal" title="Inaccessible cardinal">inaccessible</a></li></ul></li> <li><a href="/wiki/Aleph_number" title="Aleph number">Aleph number</a></li> <li><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operation</a> <ul><li><a href="/wiki/Binary_operation" title="Binary operation">binary</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Set theories</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel</a> <ul><li><a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a></li> <li><a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">continuum hypothesis</a></li></ul></li> <li><a href="/wiki/General_set_theory" title="General set theory">General</a></li> <li><a href="/wiki/Kripke%E2%80%93Platek_set_theory" title="Kripke–Platek set theory">Kripke–Platek</a></li> <li><a href="/wiki/Morse%E2%80%93Kelley_set_theory" title="Morse–Kelley set theory">Morse–Kelley</a></li> <li><a href="/wiki/Naive_set_theory" title="Naive set theory">Naive</a></li> <li><a href="/wiki/New_Foundations" title="New Foundations">New Foundations</a></li> <li><a href="/wiki/Tarski%E2%80%93Grothendieck_set_theory" title="Tarski–Grothendieck set theory">Tarski–Grothendieck</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">Von Neumann–Bernays–Gödel</a></li> <li><a href="/wiki/Ackermann_set_theory" title="Ackermann set theory">Ackermann</a></li> <li><a href="/wiki/Constructive_set_theory" title="Constructive set theory">Constructive</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Formal_system" title="Formal system">Formal systems</a>&#160;(<a href="/wiki/List_of_formal_systems" title="List of formal systems"><span style="font-size: 85%;">list</span></a>),<br /><a href="/wiki/Formal_language" title="Formal language">language</a>&#160;and&#160;<a href="/wiki/Syntax_(logic)" title="Syntax (logic)">syntax</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alphabet_(formal_languages)" title="Alphabet (formal languages)">Alphabet</a></li> <li><a href="/wiki/Arity" title="Arity">Arity</a></li> <li><a href="/wiki/Automata_theory" title="Automata theory">Automata</a></li> <li><a href="/wiki/Axiom_schema" title="Axiom schema">Axiom schema</a></li> <li><a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">Expression</a> <ul><li><a href="/wiki/Ground_expression" title="Ground expression">ground</a></li></ul></li> <li><a href="/wiki/Extension_by_new_constant_and_function_names" title="Extension by new constant and function names">Extension</a> <ul><li><a href="/wiki/Extension_by_definitions" title="Extension by definitions">by definition</a></li> <li><a href="/wiki/Conservative_extension" title="Conservative extension">conservative</a></li></ul></li> <li><a href="/wiki/Finitary_relation" title="Finitary relation">Relation</a></li> <li><a href="/wiki/Formation_rule" title="Formation rule">Formation rule</a></li> <li><a href="/wiki/Formal_grammar" title="Formal grammar">Grammar</a></li> <li><a href="/wiki/Well-formed_formula" title="Well-formed formula">Formula</a> <ul><li><a href="/wiki/Atomic_formula" title="Atomic formula">atomic</a></li> <li><a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">closed</a></li> <li><a href="/wiki/Ground_formula" class="mw-redirect" title="Ground formula">ground</a></li> <li><a href="/wiki/Open_formula" title="Open formula">open</a></li></ul></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free/bound variable</a></li> <li><a href="/wiki/Formal_language" title="Formal language">Language</a></li> <li><a href="/wiki/Metalanguage" title="Metalanguage">Metalanguage</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connective</a> <ul><li><a href="/wiki/Negation" title="Negation">¬</a></li> <li><a href="/wiki/Logical_disjunction" title="Logical disjunction">∨</a></li> <li><a href="/wiki/Logical_conjunction" title="Logical conjunction">∧</a></li> <li><a href="/wiki/Material_conditional" title="Material conditional">→</a></li> <li><a href="/wiki/Logical_biconditional" title="Logical biconditional">↔</a></li> <li><a href="/wiki/Logical_equality" title="Logical equality">=</a></li></ul></li> <li><a href="/wiki/Predicate_(mathematical_logic)" class="mw-redirect" title="Predicate (mathematical logic)">Predicate</a> <ul><li><a href="/wiki/Functional_predicate" title="Functional predicate">functional</a></li> <li><a href="/wiki/Predicate_variable" title="Predicate variable">variable</a></li> <li><a href="/wiki/Propositional_variable" title="Propositional variable">propositional variable</a></li></ul></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Proof</a></li> <li><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">Quantifier</a> <ul><li><a href="/wiki/Existential_quantification" title="Existential quantification">∃</a></li> <li><a href="/wiki/Uniqueness_quantification" title="Uniqueness quantification">!</a></li> <li><a href="/wiki/Universal_quantification" title="Universal quantification">∀</a></li> <li><a href="/wiki/Quantifier_rank" title="Quantifier rank">rank</a></li></ul></li> <li><a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">Sentence</a> <ul><li><a href="/wiki/Atomic_sentence" title="Atomic sentence">atomic</a></li> <li><a href="/wiki/Spectrum_of_a_sentence" title="Spectrum of a sentence">spectrum</a></li></ul></li> <li><a href="/wiki/Signature_(logic)" title="Signature (logic)">Signature</a></li> <li><a href="/wiki/String_(formal_languages)" class="mw-redirect" title="String (formal languages)">String</a></li> <li><a href="/wiki/Substitution_(logic)" title="Substitution (logic)">Substitution</a></li> <li><a href="/wiki/Symbol_(formal)" title="Symbol (formal)">Symbol</a> <ul><li><a href="/wiki/Uninterpreted_function" title="Uninterpreted function">function</a></li> <li><a href="/wiki/Logical_constant" title="Logical constant">logical/constant</a></li> <li><a href="/wiki/Non-logical_symbol" title="Non-logical symbol">non-logical</a></li> <li><a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a></li></ul></li> <li><a href="/wiki/Term_(logic)" title="Term (logic)">Term</a></li> <li><a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">Theory</a> <ul><li><a href="/wiki/List_of_mathematical_theories" title="List of mathematical theories"><span style="font-size: 85%;">list</span></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span class="nowrap">Example&#160;<a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic<br />systems</a>&#160;<span style="font-size: 85%;">(<a href="/wiki/List_of_first-order_theories" title="List of first-order theories">list</a>)</span></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>of <a href="/wiki/True_arithmetic" title="True arithmetic">arithmetic</a>: <ul><li><a href="/wiki/Peano_axioms" title="Peano axioms">Peano</a></li> <li><a href="/wiki/Second-order_arithmetic" title="Second-order arithmetic">second-order</a></li> <li><a href="/wiki/Elementary_function_arithmetic" title="Elementary function arithmetic">elementary function</a></li> <li><a href="/wiki/Primitive_recursive_arithmetic" title="Primitive recursive arithmetic">primitive recursive</a></li> <li><a href="/wiki/Robinson_arithmetic" title="Robinson arithmetic">Robinson</a></li> <li><a href="/wiki/Skolem_arithmetic" title="Skolem arithmetic">Skolem</a></li></ul></li> <li>of the <a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">real numbers</a> <ul><li><a href="/wiki/Tarski%27s_axiomatization_of_the_reals" title="Tarski&#39;s axiomatization of the reals">Tarski's axiomatization</a></li></ul></li> <li>of <a href="/wiki/Axiomatization_of_Boolean_algebras" class="mw-redirect" title="Axiomatization of Boolean algebras">Boolean algebras</a> <ul><li><a href="/wiki/Boolean_algebras_canonically_defined" title="Boolean algebras canonically defined">canonical</a></li> <li><a href="/wiki/Minimal_axioms_for_Boolean_algebra" title="Minimal axioms for Boolean algebra">minimal axioms</a></li></ul></li> <li>of <a href="/wiki/Foundations_of_geometry" title="Foundations of geometry">geometry</a>: <ul><li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean</a>: <ul><li><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements"><i>Elements</i></a></li> <li><a href="/wiki/Hilbert%27s_axioms" title="Hilbert&#39;s axioms">Hilbert's</a></li> <li><a href="/wiki/Tarski%27s_axioms" title="Tarski&#39;s axioms">Tarski's</a></li></ul></li> <li><a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">non-Euclidean</a></li></ul></li></ul> <ul><li><i><a class="mw-selflink selflink">Principia Mathematica</a></i></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Proof_theory" title="Proof theory">Proof theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Formal_proof" title="Formal proof">Formal proof</a></li> <li><a href="/wiki/Natural_deduction" title="Natural deduction">Natural deduction</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Rule_of_inference" title="Rule of inference">Rule of inference</a></li> <li><a href="/wiki/Sequent_calculus" title="Sequent calculus">Sequent calculus</a></li> <li><a href="/wiki/Theorem" title="Theorem">Theorem</a></li> <li><a href="/wiki/Formal_system" title="Formal system">Systems</a> <ul><li><a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic</a></li> <li><a href="/wiki/Deductive_system" class="mw-redirect" title="Deductive system">deductive</a></li> <li><a href="/wiki/Hilbert_system" title="Hilbert system">Hilbert</a> <ul><li><a href="/wiki/List_of_Hilbert_systems" class="mw-redirect" title="List of Hilbert systems">list</a></li></ul></li></ul></li> <li><a href="/wiki/Complete_theory" title="Complete theory">Complete theory</a></li> <li><a href="/wiki/Independence_(mathematical_logic)" title="Independence (mathematical logic)">Independence</a>&#160;(<a href="/wiki/List_of_statements_independent_of_ZFC" title="List of statements independent of ZFC">from&#160;ZFC</a>)</li> <li><a href="/wiki/Proof_of_impossibility" title="Proof of impossibility">Proof of impossibility</a></li> <li><a href="/wiki/Ordinal_analysis" title="Ordinal analysis">Ordinal analysis</a></li> <li><a href="/wiki/Reverse_mathematics" title="Reverse mathematics">Reverse mathematics</a></li> <li><a href="/wiki/Self-verifying_theories" title="Self-verifying theories">Self-verifying theories</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Model_theory" title="Model theory">Model theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Interpretation_(logic)" title="Interpretation (logic)">Interpretation</a> <ul><li><a href="/wiki/Interpretation_function" class="mw-redirect" title="Interpretation function">function</a></li> <li><a href="/wiki/Interpretation_(model_theory)" title="Interpretation (model theory)">of models</a></li></ul></li> <li><a href="/wiki/Structure_(mathematical_logic)" title="Structure (mathematical logic)">Model</a> <ul><li><a href="/wiki/Elementary_equivalence" title="Elementary equivalence">equivalence</a></li> <li><a href="/wiki/Finite_model_theory" title="Finite model theory">finite</a></li> <li><a href="/wiki/Saturated_model" title="Saturated model">saturated</a></li> <li><a href="/wiki/Spectrum_of_a_theory" title="Spectrum of a theory">spectrum</a></li> <li><a href="/wiki/Substructure_(mathematics)" title="Substructure (mathematics)">submodel</a></li></ul></li> <li><a href="/wiki/Non-standard_model" title="Non-standard model">Non-standard model</a> <ul><li><a href="/wiki/Non-standard_model_of_arithmetic" title="Non-standard model of arithmetic">of arithmetic</a></li></ul></li> <li><a href="/wiki/Diagram_(mathematical_logic)" title="Diagram (mathematical logic)">Diagram</a> <ul><li><a href="/wiki/Elementary_diagram" title="Elementary diagram">elementary</a></li></ul></li> <li><a href="/wiki/Categorical_theory" title="Categorical theory">Categorical theory</a></li> <li><a href="/wiki/Model_complete_theory" title="Model complete theory">Model complete theory</a></li> <li><a href="/wiki/Satisfiability" title="Satisfiability">Satisfiability</a></li> <li><a href="/wiki/Semantics_of_logic" title="Semantics of logic">Semantics of logic</a></li> <li><a href="/wiki/Strength_(mathematical_logic)" title="Strength (mathematical logic)">Strength</a></li> <li><a href="/wiki/Theories_of_truth" class="mw-redirect" title="Theories of truth">Theories of truth</a> <ul><li><a href="/wiki/Semantic_theory_of_truth" title="Semantic theory of truth">semantic</a></li> <li><a href="/wiki/Tarski%27s_theory_of_truth" class="mw-redirect" title="Tarski&#39;s theory of truth">Tarski's</a></li> <li><a href="/wiki/Kripke%27s_theory_of_truth" class="mw-redirect" title="Kripke&#39;s theory of truth">Kripke's</a></li></ul></li> <li><a href="/wiki/T-schema" title="T-schema">T-schema</a></li> <li><a href="/wiki/Transfer_principle" title="Transfer principle">Transfer principle</a></li> <li><a href="/wiki/Truth_predicate" title="Truth predicate">Truth predicate</a></li> <li><a href="/wiki/Truth_value" title="Truth value">Truth value</a></li> <li><a href="/wiki/Type_(model_theory)" title="Type (model theory)">Type</a></li> <li><a href="/wiki/Ultraproduct" title="Ultraproduct">Ultraproduct</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computability_theory" title="Computability theory">Computability theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Church_encoding" title="Church encoding">Church encoding</a></li> <li><a href="/wiki/Church%E2%80%93Turing_thesis" title="Church–Turing thesis">Church–Turing thesis</a></li> <li><a href="/wiki/Computably_enumerable_set" title="Computably enumerable set">Computably enumerable</a></li> <li><a href="/wiki/Computable_function" title="Computable function">Computable function</a></li> <li><a href="/wiki/Computable_set" title="Computable set">Computable set</a></li> <li><a href="/wiki/Decision_problem" title="Decision problem">Decision problem</a> <ul><li><a href="/wiki/Decidability_(logic)" title="Decidability (logic)">decidable</a></li> <li><a href="/wiki/Undecidable_problem" title="Undecidable problem">undecidable</a></li> <li><a href="/wiki/P_(complexity)" title="P (complexity)">P</a></li> <li><a href="/wiki/NP_(complexity)" title="NP (complexity)">NP</a></li> <li><a href="/wiki/P_versus_NP_problem" title="P versus NP problem">P versus NP problem</a></li></ul></li> <li><a href="/wiki/Kolmogorov_complexity" title="Kolmogorov complexity">Kolmogorov complexity</a></li> <li><a href="/wiki/Lambda_calculus" title="Lambda calculus">Lambda calculus</a></li> <li><a href="/wiki/Primitive_recursive_function" title="Primitive recursive function">Primitive recursive function</a></li> <li><a href="/wiki/Recursion" title="Recursion">Recursion</a></li> <li><a href="/wiki/Recursive_set" class="mw-redirect" title="Recursive set">Recursive set</a></li> <li><a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_logic" title="Abstract logic">Abstract logic</a></li> <li><a href="/wiki/Algebraic_logic" title="Algebraic logic">Algebraic logic</a></li> <li><a href="/wiki/Automated_theorem_proving" title="Automated theorem proving">Automated theorem proving</a></li> <li><a href="/wiki/Category_theory" title="Category theory">Category theory</a></li> <li><a href="/wiki/Concrete_category" title="Concrete category">Concrete</a>/<a href="/wiki/Category_(mathematics)" title="Category (mathematics)">Abstract category</a></li> <li><a href="/wiki/Category_of_sets" title="Category of sets">Category of sets</a></li> <li><a href="/wiki/History_of_logic" title="History of logic">History of logic</a></li> <li><a href="/wiki/History_of_mathematical_logic" class="mw-redirect" title="History of mathematical logic">History of mathematical logic</a> <ul><li><a href="/wiki/Timeline_of_mathematical_logic" title="Timeline of mathematical logic">timeline</a></li></ul></li> <li><a href="/wiki/Logicism" title="Logicism">Logicism</a></li> <li><a href="/wiki/Mathematical_object" title="Mathematical object">Mathematical object</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Supertask" title="Supertask">Supertask</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/15px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="15" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/23px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/30px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></b></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /></div><div role="navigation" class="navbox" aria-labelledby="Set_theory409" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231" /><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Set_theory" title="Template:Set theory"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Set_theory" title="Template talk:Set theory"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Set_theory" title="Special:EditPage/Template:Set theory"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Set_theory409" style="font-size:114%;margin:0 4em"><a href="/wiki/Set_theory" title="Set theory">Set theory</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Overview</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Set_(mathematics)" title="Set (mathematics)">Set (mathematics)</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="8" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Venn_diagram" title="Venn diagram"><img alt="Venn diagram of set intersection" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/100px-Venn_A_intersect_B.svg.png" decoding="async" width="100" height="71" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/150px-Venn_A_intersect_B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/200px-Venn_A_intersect_B.svg.png 2x" data-file-width="350" data-file-height="250" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Axiom" title="Axiom">Axioms</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Axiom_of_adjunction" title="Axiom of adjunction">Adjunction</a></li> <li><a href="/wiki/Axiom_of_choice" title="Axiom of choice">Choice</a> <ul><li><a href="/wiki/Axiom_of_countable_choice" title="Axiom of countable choice">countable</a></li> <li><a href="/wiki/Axiom_of_dependent_choice" title="Axiom of dependent choice">dependent</a></li> <li><a href="/wiki/Axiom_of_global_choice" title="Axiom of global choice">global</a></li></ul></li> <li><a href="/wiki/Axiom_of_constructibility" title="Axiom of constructibility">Constructibility (V=L)</a></li> <li><a href="/wiki/Axiom_of_determinacy" title="Axiom of determinacy">Determinacy</a> <ul><li><a href="/wiki/Axiom_of_projective_determinacy" title="Axiom of projective determinacy">projective</a></li></ul></li> <li><a href="/wiki/Axiom_of_extensionality" title="Axiom of extensionality">Extensionality</a></li> <li><a href="/wiki/Axiom_of_infinity" title="Axiom of infinity">Infinity</a></li> <li><a href="/wiki/Axiom_of_limitation_of_size" title="Axiom of limitation of size">Limitation of size</a></li> <li><a href="/wiki/Axiom_of_pairing" title="Axiom of pairing">Pairing</a></li> <li><a href="/wiki/Axiom_of_power_set" title="Axiom of power set">Power set</a></li> <li><a href="/wiki/Axiom_of_regularity" title="Axiom of regularity">Regularity</a></li> <li><a href="/wiki/Axiom_of_union" title="Axiom of union">Union</a></li> <li><a href="/wiki/Martin%27s_axiom" title="Martin&#39;s axiom">Martin's axiom</a></li></ul> <ul><li><a href="/wiki/Axiom_schema" title="Axiom schema">Axiom schema</a> <ul><li><a href="/wiki/Axiom_schema_of_replacement" title="Axiom schema of replacement">replacement</a></li> <li><a href="/wiki/Axiom_schema_of_specification" title="Axiom schema of specification">specification</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Set_(mathematics)#Basic_operations" title="Set (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a></li> <li><a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">Complement</a> (i.e. set difference)</li> <li><a href="/wiki/De_Morgan%27s_laws" title="De Morgan&#39;s laws">De Morgan's laws</a></li> <li><a href="/wiki/Disjoint_union" title="Disjoint union">Disjoint union</a></li> <li><a href="/wiki/List_of_set_identities_and_relations" title="List of set identities and relations">Identities</a></li> <li><a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">Intersection</a></li> <li><a href="/wiki/Power_set" title="Power set">Power set</a></li> <li><a href="/wiki/Symmetric_difference" title="Symmetric difference">Symmetric difference</a></li> <li><a href="/wiki/Union_(set_theory)" title="Union (set theory)">Union</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div class="hlist"><ul><li>Concepts</li><li>Methods</li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost" title="Almost">Almost</a></li> <li><a href="/wiki/Cardinality" title="Cardinality">Cardinality</a></li> <li><a href="/wiki/Cardinal_number" title="Cardinal number">Cardinal number</a>&#160;(<a href="/wiki/Large_cardinal" title="Large cardinal">large</a>)</li> <li><a href="/wiki/Class_(set_theory)" title="Class (set theory)">Class</a></li> <li><a href="/wiki/Constructible_universe" title="Constructible universe">Constructible universe</a></li> <li><a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">Continuum hypothesis</a></li> <li><a href="/wiki/Cantor%27s_diagonal_argument" title="Cantor&#39;s diagonal argument">Diagonal argument</a></li> <li><a href="/wiki/Element_(mathematics)" title="Element (mathematics)">Element</a> <ul><li><a href="/wiki/Ordered_pair" title="Ordered pair">ordered pair</a></li> <li><a href="/wiki/Tuple" title="Tuple">tuple</a></li></ul></li> <li><a href="/wiki/Family_of_sets" title="Family of sets">Family</a></li> <li><a href="/wiki/Forcing_(mathematics)" title="Forcing (mathematics)">Forcing</a></li> <li><a href="/wiki/Bijection" title="Bijection">One-to-one correspondence</a></li> <li><a href="/wiki/Ordinal_number" title="Ordinal number">Ordinal number</a></li> <li><a href="/wiki/Set-builder_notation" title="Set-builder notation">Set-builder notation</a></li> <li><a href="/wiki/Transfinite_induction" title="Transfinite induction">Transfinite induction</a></li> <li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Set_(mathematics)" title="Set (mathematics)">Set</a> types</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amorphous_set" title="Amorphous set">Amorphous</a></li> <li><a href="/wiki/Countable_set" title="Countable set">Countable</a></li> <li><a href="/wiki/Empty_set" title="Empty set">Empty</a></li> <li><a href="/wiki/Finite_set" title="Finite set">Finite</a>&#160;(<a href="/wiki/Hereditarily_finite_set" title="Hereditarily finite set">hereditarily</a>)</li> <li><a href="/wiki/Filter_(set_theory)" title="Filter (set theory)">Filter</a> <ul><li><a href="/wiki/Filter_(set_theory)" title="Filter (set theory)">base</a></li> <li><a href="/wiki/Filter_(set_theory)#Filters_and_prefilters" title="Filter (set theory)">subbase</a></li> <li><a href="/wiki/Ultrafilter_on_a_set" title="Ultrafilter on a set">Ultrafilter</a></li></ul></li> <li><a href="/wiki/Fuzzy_set" title="Fuzzy set">Fuzzy</a></li> <li><a href="/wiki/Infinite_set" title="Infinite set">Infinite</a> (<a href="/wiki/Dedekind-infinite_set" title="Dedekind-infinite set">Dedekind-infinite</a>)</li> <li><a href="/wiki/Computable_set" title="Computable set">Recursive</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li> <li><a href="/wiki/Subset" title="Subset">Subset&#160;<b>·</b> Superset</a></li> <li><a href="/wiki/Transitive_set" title="Transitive set">Transitive</a></li> <li><a href="/wiki/Uncountable_set" title="Uncountable set">Uncountable</a></li> <li><a href="/wiki/Universal_set" title="Universal set">Universal</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theories</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternative_set_theory" class="mw-redirect" title="Alternative set theory">Alternative</a></li> <li><a href="/wiki/Set_theory#Formalized_set_theory" title="Set theory">Axiomatic</a></li> <li><a href="/wiki/Naive_set_theory" title="Naive set theory">Naive</a></li> <li><a href="/wiki/Cantor%27s_theorem" title="Cantor&#39;s theorem">Cantor's theorem</a></li></ul> <ul><li><a href="/wiki/Zermelo_set_theory" title="Zermelo set theory">Zermelo</a> <ul><li><a href="/wiki/General_set_theory" title="General set theory">General</a></li></ul></li> <li><i><a class="mw-selflink selflink">Principia Mathematica</a></i> <ul><li><a href="/wiki/New_Foundations" title="New Foundations">New Foundations</a></li></ul></li> <li><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel </a> <ul><li><a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">von Neumann–Bernays–Gödel </a> <ul><li><a href="/wiki/Morse%E2%80%93Kelley_set_theory" title="Morse–Kelley set theory">Morse–Kelley</a></li></ul></li> <li><a href="/wiki/Kripke%E2%80%93Platek_set_theory" title="Kripke–Platek set theory">Kripke–Platek</a></li> <li><a href="/wiki/Tarski%E2%80%93Grothendieck_set_theory" title="Tarski–Grothendieck set theory">Tarski–Grothendieck</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div class="hlist"><ul><li><a href="/wiki/Paradoxes_of_set_theory" title="Paradoxes of set theory">Paradoxes</a></li><li>Problems</li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Russell%27s_paradox" title="Russell&#39;s paradox">Russell's paradox</a></li> <li><a href="/wiki/Suslin%27s_problem" title="Suslin&#39;s problem">Suslin's problem</a></li> <li><a href="/wiki/Burali-Forti_paradox" title="Burali-Forti paradox">Burali-Forti paradox</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Set_theorists" title="Category:Set theorists">Set theorists</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Paul_Bernays" title="Paul Bernays">Paul Bernays</a></li> <li><a href="/wiki/Georg_Cantor" title="Georg Cantor">Georg Cantor</a></li> <li><a href="/wiki/Paul_Cohen" title="Paul Cohen">Paul Cohen</a></li> <li><a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a></li> <li><a href="/wiki/Abraham_Fraenkel" title="Abraham Fraenkel">Abraham Fraenkel</a></li> <li><a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Kurt Gödel</a></li> <li><a href="/wiki/Thomas_Jech" title="Thomas Jech">Thomas Jech</a></li> <li><a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a></li> <li><a href="/wiki/Willard_Van_Orman_Quine" title="Willard Van Orman Quine">Willard Quine</a></li> <li><a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Bertrand Russell</a></li> <li><a href="/wiki/Thoralf_Skolem" title="Thoralf Skolem">Thoralf Skolem</a></li> <li><a href="/wiki/Ernst_Zermelo" title="Ernst Zermelo">Ernst Zermelo</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235" /></div><div role="navigation" class="navbox authority-control" aria-label="Navbox492" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q163335#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb16561888s">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb16561888s">BnF data</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6bb5cf9976‐jlxhw Cached time: 20250327094344 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.666 seconds Real time usage: 0.945 seconds Preprocessor visited node count: 5228/1000000 Post‐expand include size: 205723/2097152 bytes Template argument size: 12327/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 9/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 124281/5000000 bytes Lua time usage: 0.345/10.000 seconds Lua memory usage: 9017703/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 749.217 1 -total 33.26% 249.199 10 Template:Navbox 19.95% 149.456 20 Template:Cite_book 13.67% 102.413 1 Template:Unbulleted_list 12.37% 92.668 1 Template:Mathematical_logic 10.45% 78.274 1 Template:Bertrand_Russell_(Navigational_box) 8.58% 64.257 3 Template:Small 7.28% 54.532 1 Template:Short_description 6.71% 50.286 2 Template:Quote_box 5.57% 41.751 1 Template:Reflist --> <!-- Saved in parser cache with key enwiki:pcache:24133:|#|:idhash:canonical and timestamp 20250327094344 and revision id 1277444943. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Principia_Mathematica&amp;oldid=1277444943">https://en.wikipedia.org/w/index.php?title=Principia_Mathematica&amp;oldid=1277444943</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Large-scale_mathematical_formalization_projects" title="Category:Large-scale mathematical formalization projects">Large-scale mathematical formalization projects</a></li><li><a href="/wiki/Category:1910_non-fiction_books" title="Category:1910 non-fiction books">1910 non-fiction books</a></li><li><a href="/wiki/Category:1912_non-fiction_books" title="Category:1912 non-fiction books">1912 non-fiction books</a></li><li><a href="/wiki/Category:1913_non-fiction_books" title="Category:1913 non-fiction books">1913 non-fiction books</a></li><li><a href="/wiki/Category:1910_in_science" title="Category:1910 in science">1910 in science</a></li><li><a href="/wiki/Category:1912_in_science" title="Category:1912 in science">1912 in science</a></li><li><a href="/wiki/Category:1913_in_science" title="Category:1913 in science">1913 in science</a></li><li><a href="/wiki/Category:Books_by_Bertrand_Russell" title="Category:Books by Bertrand Russell">Books by Bertrand Russell</a></li><li><a href="/wiki/Category:Works_by_Alfred_North_Whitehead" title="Category:Works by Alfred North Whitehead">Works by Alfred North Whitehead</a></li><li><a href="/wiki/Category:Books_about_philosophy_of_mathematics" title="Category:Books about philosophy of mathematics">Books about philosophy of mathematics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_British_English_from_September_2013" title="Category:Use British English from September 2013">Use British English from September 2013</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_December_2024" title="Category:Use dmy dates from December 2024">Use dmy dates from December 2024</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_October_2017" title="Category:Wikipedia articles needing clarification from October 2017">Wikipedia articles needing clarification from October 2017</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_January_2024" title="Category:Articles with unsourced statements from January 2024">Articles with unsourced statements from January 2024</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 February 2025, at 17:56<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Principia_Mathematica&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><i>Principia Mathematica</i></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>29 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6bb5cf9976-lcxsd","wgBackendResponseTime":205,"wgPageParseReport":{"limitreport":{"cputime":"0.666","walltime":"0.945","ppvisitednodes":{"value":5228,"limit":1000000},"postexpandincludesize":{"value":205723,"limit":2097152},"templateargumentsize":{"value":12327,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":124281,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 749.217 1 -total"," 33.26% 249.199 10 Template:Navbox"," 19.95% 149.456 20 Template:Cite_book"," 13.67% 102.413 1 Template:Unbulleted_list"," 12.37% 92.668 1 Template:Mathematical_logic"," 10.45% 78.274 1 Template:Bertrand_Russell_(Navigational_box)"," 8.58% 64.257 3 Template:Small"," 7.28% 54.532 1 Template:Short_description"," 6.71% 50.286 2 Template:Quote_box"," 5.57% 41.751 1 Template:Reflist"]},"scribunto":{"limitreport-timeusage":{"value":"0.345","limit":"10.000"},"limitreport-memusage":{"value":9017703,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBertrand_Russell1959\"] = 1,\n [\"CITEREFEnderton2001\"] = 1,\n [\"CITEREFGrattan-Guinness2000\"] = 1,\n [\"CITEREFGödel1944\"] = 1,\n [\"CITEREFGödel1990\"] = 1,\n [\"CITEREFHardy2004\"] = 1,\n [\"CITEREFIrvine2003\"] = 1,\n [\"CITEREFKleene1952\"] = 1,\n [\"CITEREFLinsky2018\"] = 1,\n [\"CITEREFLittlewood1986\"] = 1,\n [\"CITEREFWeberDesmond2008\"] = 1,\n [\"CITEREFWhiteheadRussell1963\"] = 1,\n [\"CITEREFWittgenstein2009\"] = 1,\n [\"CITEREFvan_Heijenoort1967\"] = 1,\n [\"no\"] = 7,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"'\"] = 4,\n [\"Alfred North Whitehead\"] = 1,\n [\"Authority control\"] = 1,\n [\"Bertrand Russell (Navigational box)\"] = 1,\n [\"Block indent\"] = 1,\n [\"Blockquote\"] = 1,\n [\"Citation needed\"] = 3,\n [\"Cite book\"] = 20,\n [\"Cite web\"] = 2,\n [\"Clarify\"] = 1,\n [\"Commons category\"] = 1,\n [\"Cquote\"] = 2,\n [\"Distinguish\"] = 1,\n [\"For\"] = 1,\n [\"Harvnb\"] = 6,\n [\"Ill\"] = 1,\n [\"Isbn\"] = 3,\n [\"Italic title\"] = 1,\n [\"Main\"] = 1,\n [\"Mathematical logic\"] = 1,\n [\"Pb\"] = 1,\n [\"Quote box\"] = 2,\n [\"Reflist\"] = 1,\n [\"Set theory\"] = 1,\n [\"Sfn\"] = 4,\n [\"Short description\"] = 1,\n [\"Unbulleted list\"] = 1,\n [\"Use British English\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"Wikiquote\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-6bb5cf9976-jlxhw","timestamp":"20250327094344","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Principia Mathematica","url":"https:\/\/en.wikipedia.org\/wiki\/Principia_Mathematica","sameAs":"http:\/\/www.wikidata.org\/entity\/Q163335","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q163335","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-25T19:47:01Z","dateModified":"2025-02-24T17:56:21Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/2\/27\/Russell%2C_Whitehead_-_Principia_Mathematica_to_56.jpg","headline":"book on the foundations of mathematics"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10