CINXE.COM
Search results for: Chylla-Haase polymerization reactor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Chylla-Haase polymerization reactor</title> <meta name="description" content="Search results for: Chylla-Haase polymerization reactor"> <meta name="keywords" content="Chylla-Haase polymerization reactor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Chylla-Haase polymerization reactor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Chylla-Haase polymerization reactor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 985</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Chylla-Haase polymerization reactor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> 2D CFD-PBM Coupled Model of Particle Growth in an Industrial Gas Phase Fluidized Bed Polymerization Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Kazemi%20Esfeh">H. Kazemi Esfeh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Akbari"> V. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ehdaei"> M. Ehdaei</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20N.%20G.%20Borhani"> T. N. G. Borhani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shamiri"> A. Shamiri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Najafi"> M. Najafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an industrial fluidized bed polymerization reactor, particle size distribution (PSD) plays a significant role in the reactor efficiency evaluation. The computational fluid dynamic (CFD) models coupled with population balance equation (CFD-PBM) have been extensively employed to investigate the flow behavior in the poly-disperse multiphase fluidized bed reactors (FBRs) utilizing ANSYS Fluent code. In this study, an existing CFD-PBM/ DQMOM coupled modeling framework has been used to highlight its potential to analyze the industrial-scale gas phase polymerization reactor. The predicted results reveal an acceptable agreement with the observed industrial data in terms of pressure drop and bed height. The simulated results also indicate that the higher particle growth rate can be achieved for bigger particles. Hence, the 2D CFD-PBM/DQMOM coupled model can be used as a reliable tool for analyzing and improving the design and operation of the gas phase polymerization FBRs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20balance%20equation" title=" population balance equation"> population balance equation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20polymerization%20reactor" title=" fluidized bed polymerization reactor"> fluidized bed polymerization reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20quadrature%20method%20of%20moments" title=" direct quadrature method of moments"> direct quadrature method of moments</a> </p> <a href="https://publications.waset.org/abstracts/35644/2d-cfd-pbm-coupled-model-of-particle-growth-in-an-industrial-gas-phase-fluidized-bed-polymerization-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdi.%20M.%20Nabi">Magdi. M. Nabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding-Li%20Yu"> Ding-Li Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor" title="Chylla-Haase polymerization reactor">Chylla-Haase polymerization reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF%20neural%20networks" title=" RBF neural networks"> RBF neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=feed-forward" title=" feed-forward"> feed-forward</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20control" title=" feedback control"> feedback control</a> </p> <a href="https://publications.waset.org/abstracts/11204/nonlinear-adaptive-pid-control-for-a-semi-batch-reactor-based-on-an-rbf-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">702</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Marandi">R. Marandi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Shahrir"> H. Shahrir</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Nejad%20Ghaffar%20Borhani"> T. Nejad Ghaffar Borhani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamaruddin"> M. Kamaruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=population%20balance" title="population balance">population balance</a>, <a href="https://publications.waset.org/abstracts/search?q=olefin%20polymerization" title=" olefin polymerization"> olefin polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20reactor" title=" fluidized bed reactor"> fluidized bed reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=agglomeration" title=" agglomeration"> agglomeration</a> </p> <a href="https://publications.waset.org/abstracts/35596/modeling-of-polyethylene-particle-size-distribution-in-fluidized-bed-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> RBF Modelling and Optimization Control for Semi-Batch Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdi%20M.%20Nabi">Magdi M. Nabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding-Li%20Yu"> Ding-Li Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20reactor" title="Chylla-Haase reactor">Chylla-Haase reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF%20neural%20network%20modelling" title=" RBF neural network modelling"> RBF neural network modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-batch%20reactors" title=" semi-batch reactors"> semi-batch reactors</a> </p> <a href="https://publications.waset.org/abstracts/11884/rbf-modelling-and-optimization-control-for-semi-batch-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> Optimization of the Conditions of Oligomerization and Polymerization Processes of Selected Olefins with the Use of Complex Compounds of Transition Metal Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Drze%C5%BCd%C5%BCon">Joanna Drzeżdżon</a>, <a href="https://publications.waset.org/abstracts/search?q=Marzena%20Bia%C5%82ek"> Marzena Białek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyolefins are a group of materials used today in all areas of life. They are used in the food, domestic and other industries. In particular, polyethylene and polypropylene have found application in the production of packaging materials, pipes, containers, car parts as well as elements of medical equipment, e.g. syringes. Optimization of the polymerization and oligomerization processes of selected olefins is a very important stage before the technological implementation of polyolefin production. The purpose of the studies is to determine the conditions for ethylene polymerization as well as 3-buten-2-ol and 2-chloro-2-propen-1-ol oligomerization with the use of oxovanadium(IV) dipicolinate complexes with N-heterocyclic ligands. Additionally, the studies aims to determine the catalytic activities of the dipicolinate oxovanadium(IV) complexes with N-heterocyclic ligands in the studied polymerization and oligomerization processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buten-2-ol" title="buten-2-ol">buten-2-ol</a>, <a href="https://publications.waset.org/abstracts/search?q=dipicolinate" title=" dipicolinate"> dipicolinate</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene" title=" ethylene"> ethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=oligomerization" title=" oligomerization"> oligomerization</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium" title=" vanadium"> vanadium</a> </p> <a href="https://publications.waset.org/abstracts/142290/optimization-of-the-conditions-of-oligomerization-and-polymerization-processes-of-selected-olefins-with-the-use-of-complex-compounds-of-transition-metal-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> Photopolymerization of Dimethacrylamide with (Meth)acrylates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuling%20Xu">Yuling Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibo%20Wang"> Haibo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Xie"> Dong Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A photopolymerizable dimethacrylamide was synthesized and copolymerized with the selected (meth)acrylates. The polymerization rate, degree of conversion, gel time, and compressive strength of the formed neat resins were investigated. The results show that in situ photo-polymerization of the synthesized dimethacrylamide with comonomers having an electron-withdrawing and/or acrylate group dramatically increased the polymerization rate, degree of conversion, and compressive strength. On the other hand, an electron-donating group on either carbon-carbon double bond or the ester linkage slowed down the polymerization. In contrast, the triethylene glycol dimethacrylate-based system did not show a clear pattern. Both strong hydrogen-bonding between (meth)acrylamide and organic acid groups may be responsible for higher compressive strengths. Within the limitation of this study, the photo-polymerization of dimethacrylamide can be greatly accelerated by copolymerization with monomers having electron-withdrawing and/or acrylate groups. The monomers with methacrylate group can significantly reduce the polymerization rate and degree of conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photopolymerization" title="photopolymerization">photopolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethacrylamide" title=" dimethacrylamide"> dimethacrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20degree%20of%20conversion" title=" the degree of conversion"> the degree of conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/93577/photopolymerization-of-dimethacrylamide-with-methacrylates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">979</span> Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkarim%20M.%20Ertiame">Abdelkarim M. Ertiame</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Yu"> D. W. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20Yu"> D. L. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20B.%20Gomm"> J. B. Gomm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robust%20fault%20detection" title="Robust fault detection">Robust fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title=" cascade control"> cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20RBF%20model" title=" independent RBF model"> independent RBF model</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF%20neural%20networks" title=" RBF neural networks"> RBF neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20reactor" title=" Chylla-Haase reactor"> Chylla-Haase reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=FDI%20under%20closed-loop%20control" title=" FDI under closed-loop control"> FDI under closed-loop control</a> </p> <a href="https://publications.waset.org/abstracts/34308/dynamic-fault-diagnosis-for-semi-batch-reactor-under-closed-loop-control-via-independent-rbfnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">978</span> Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mojiri">Amin Mojiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Akiyoshi%20Ohashi"> Akiyoshi Ohashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomonori%20Kindaichi"> Tomonori Kindaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO<sub>2</sub>-IrO<sub>2</sub>) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20oxidation" title=" electrochemical oxidation"> electrochemical oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=SBR" title=" SBR"> SBR</a> </p> <a href="https://publications.waset.org/abstracts/93816/pollutants-removal-from-synthetic-wastewater-by-the-combined-electrochemical-sequencing-batch-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">977</span> Highly Stretchable, Intelligent and Conductive PEDOT/PU Nanofibers Based on Electrospinning and in situ Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun%20Qi">Kun Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuman%20Zhou"> Yuman Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianxin%20He"> Jianxin He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a highly stretchable and conductive Poly(3,4-ethylenedioxythiophene)/Polyurethane (PEDOT/PU) nanofibrous membrane is reported. PU nanofibers were prepared by electrospinning and then PEDOT was coated on the plasma modified PU nanofiber surface via in-situ polymerization to form flexible PEDOT/PU composite nanofibers with conductivity. The results show PEDOT is successfully synthesized on the surface of PU nanofiber and PEDOT/PU composite nanofibers possess skin-core structure. Furthermore, the experiments indicate the optimal technological parameters of the polymerization process are as follow: The concentration of EDOT monomers is 50 mmol/L, the polymerization time is 24 h and the temperature is 25℃. The PEDOT/PU nanofibers exhibit excellent electrical conductivity ( 27.4 S/cm). In addition, flexible sensor made from conductive PEDOT/PU nanofibers shows highly sensitive response towards tensile strain and also can be used to detect finger motion. The results demonstrate promising application of the as-obtained nanofibrous membrane in flexible wearable electronic fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=PEDOT" title=" PEDOT"> PEDOT</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20nanofiber" title=" conductive nanofiber"> conductive nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20senor" title=" flexible senor"> flexible senor</a> </p> <a href="https://publications.waset.org/abstracts/68101/highly-stretchable-intelligent-and-conductive-pedotpu-nanofibers-based-on-electrospinning-and-in-situ-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">976</span> Hydraulic Studies on Core Components of PFBR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Pandey">G. K. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ramadasu"> D. Ramadasu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Banerjee"> I. Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vinod"> V. Vinod</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Padmakumar"> G. Padmakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Prakash"> V. Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Rajan"> K. K. Rajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detailed thermal hydraulic investigations are very essential for safe and reliable functioning of liquid metal cooled fast breeder reactors. These investigations are further more important for components with complex profile, since there is no direct correlation available in literature to evaluate the hydraulic characteristics of such components directly. In those cases available correlations for similar profile or geometries may lead to significant uncertainty in the outcome. Hence experimental approach can be adopted to evaluate these hydraulic characteristics more precisely for better prediction in reactor core components. Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool type reactor is under advanced stage of construction at Kalpakkam, India. Several components of this reactor core require hydraulic investigation before its usage in the reactor. These hydraulic investigations on full scale models, carried out by experimental approaches using water as simulant fluid are discussed in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20breeder%20reactor" title="fast breeder reactor">fast breeder reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation" title=" cavitation"> cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20components" title=" reactor components"> reactor components</a> </p> <a href="https://publications.waset.org/abstracts/2579/hydraulic-studies-on-core-components-of-pfbr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">975</span> Synthesis and Charaterization of Nanocomposite Poly (4,4' Methylenedianiline) Catalyzed by Maghnite-H+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Belmokhtar">A. Belmokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yahiaoui"> A. Yahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benyoucef"> A. Benyoucef</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belbachir"> M. Belbachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We reported the synthesis and characterization of nanocomposite poly (4,4’ methylenedianiline) via chemical polymerization of monomers 4,4’ methylenedianiline by ammonium persulfate (APS) at room temperature catalyzed by Maghnite-H+. A facile method was demonstrated to grow poly (4,4’ methylenedianiline) nanocomposite, which was carried out by mixing Ammonium Persulfate (APS) aqueous and 4,4’ methylenedianiline solution in the presence of Maghnite-H+ at room temperature The effect of amount of catalyst and time on the polymerization yield of the polymers was studied. Structure was confirmed by elemental analysis, UV vis, RMN-1H, and voltammetry cyclique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charaterization" title="charaterization">charaterization</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite-h%2B" title=" maghnite-h+"> maghnite-h+</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%284" title=" poly (4"> poly (4</a>, <a href="https://publications.waset.org/abstracts/search?q=4%E2%80%99%20methylenedianiline%29" title="4’ methylenedianiline)">4’ methylenedianiline)</a> </p> <a href="https://publications.waset.org/abstracts/30737/synthesis-and-charaterization-of-nanocomposite-poly-44-methylenedianiline-catalyzed-by-maghnite-h" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">974</span> Performance of an Anaerobic Baffled Reactor (ABR) during Start-Up Period</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Bassuney">D. M. Bassuney</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Ibrahim"> W. A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20A.%20E.%20Moustafa"> Medhat A. E. Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Appropriate start-up of an anaerobic baffled reactor (ABR) is considered to be the most delicate and important issue in the anaerobic process, and depends on several factors such as wastewater composition, reactor configuration, inoculum and operating conditions. In this work, the start-up performance of an ABR with working volume of 30 liters, fed continuously with synthetic food industrial wastewater along with semi-batch study to measure the methangenic activity by specific methanogenic activity (SMA) test were carried out at various organic loading rates (OLRs) to determine the best OLR used to start up the reactor. The comparison was based on COD removal efficiencies, start-up time, pH stability and methane production. An OLR of 1.8 Kg COD/m3d (5400 gCOD/m3 and 3 days HRT) showed best overall performance with COD removal efficiency of 94.44% after four days from the feeding and methane production of 3802 ml/L with an overall SMA of 0.36 gCH4-COD/gVS.d <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20baffled%20reactor" title="anaerobic baffled reactor">anaerobic baffled reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20reactor%20start-up" title=" anaerobic reactor start-up"> anaerobic reactor start-up</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20industrial%20wastewater" title=" food industrial wastewater"> food industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20methanogenic%20activity" title=" specific methanogenic activity"> specific methanogenic activity</a> </p> <a href="https://publications.waset.org/abstracts/9694/performance-of-an-anaerobic-baffled-reactor-abr-during-start-up-period" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">973</span> Validation of Codes Dragon4 and Donjon4 by Calculating Keff of a Slowpoke-2 Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Otman%20Jai">Otman Jai</a>, <a href="https://publications.waset.org/abstracts/search?q=Otman%20Elhajjaji"> Otman Elhajjaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaouad%20Tajmouati"> Jaouad Tajmouati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several neutronic calculation codes must be used to solve the equation for different levels of discretization which all necessitate a specific modelisation. This chain of such models, known as a calculation scheme, leads to the knowledge of the neutron flux in a reactor from its own geometry, its isotopic compositions and a cross-section library. Being small in size, the 'Slowpoke-2' reactor is difficult to model due to the importance of the leaking neutrons. In the paper, the simulation model is presented (geometry, cross section library, assumption, etc.), and the results obtained by DRAGON4/DONJON4 codes were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor and the experimental data. Criticality calculations have been performed to verify and validate the model. Since created model properly describes the reactor core, it can be used for calculations of reactor core parameters and for optimization of research reactor application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transport%20equation" title="transport equation">transport equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragon4" title=" Dragon4"> Dragon4</a>, <a href="https://publications.waset.org/abstracts/search?q=Donjon4" title=" Donjon4"> Donjon4</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20flux" title=" neutron flux"> neutron flux</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20multiplication%20factor" title=" effective multiplication factor"> effective multiplication factor</a> </p> <a href="https://publications.waset.org/abstracts/32361/validation-of-codes-dragon4-and-donjon4-by-calculating-keff-of-a-slowpoke-2-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">972</span> Synthesis, Characterization and Impedance Analysis of Polypyrrole/La0.7Ca0.3MnO3 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Smitha">M. G. Smitha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Murugendrappa"> M. V. Murugendrappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perovskite manganite La<sub>0.7</sub>Ca<sub>0.3</sub>MnO<sub>3</sub> was synthesized by Sol-gel method. Polymerization of pyrrole was carried by in-situ polymerization method. The composite of pyrrole (Py)/La<sub>0.7</sub>Ca<sub>0.3</sub>MnO<sub>3</sub> composite in the presence of oxidizing agent ammonium per sulphate to synthesize polypyrrole (PPy)/La<sub>0.7</sub>Ca<sub>0.3</sub>MnO<sub>3</sub> (LCM) composite was carried out by the same in-situ polymerization method. The PPy/LCM composites were synthesized with varying compositions like 10, 20, 30, 40, and 50 wt.% of LCM in Py. The surface morphologies of these composites were analyzed by using scanning electron microscope (SEM). The images show that LCM particles are embedded in PPy chain. The impedance measurement of PPy/LCM at different temperature ranges from 30 to 180 °C was studied using impedance analyzer. The study shows that impedance is frequency and temperature dependent and it is found to decrease with increase in frequency and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title="polypyrrole">polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=sol%20gel" title=" sol gel"> sol gel</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/62179/synthesis-characterization-and-impedance-analysis-of-polypyrrolela07ca03mno3-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">971</span> Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sam%20Rasoulzadeh">Sam Rasoulzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Mousavi"> Atefeh Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20reactor" title=" solar reactor"> solar reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20reactor" title=" fluidized bed reactor"> fluidized bed reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/100498/hydrodynamic-analysis-with-heat-transfer-in-solid-gas-fluidized-bed-reactor-for-solar-thermal-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">970</span> Performance of an Anaerobic Baffled Reactor (ABR) Treating High-Strength Food Industrial Wastewater with Fluctuating pH </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Bassuney">D. M. Bassuney</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Ibrahim"> W. A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20A.%20E.%20Moustafa"> Medhat A. E. Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As awareness of the variable nature of food industrial wastewater and its environmental impact grows, a more stable treatment reactor is needed to treat such wastewater. In this paper, a performance of 5-compartment lab-scale Anaerobic Baffled Reactor (ABR) treating high strength wastewater with high pH variation was studied under three organic loading rates (OLRs). The reactor showed high COD removal efficiencies: 92.67, 97.44, and 98.19% corresponding to OLRs of 2.0, 3.0, and 4.8 KgCOD/m3 d, respectively. The first compartment showed a good buffering capacity and a distinct phase separation occurred in the ABR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20baffled%20reactor" title="anaerobic baffled reactor">anaerobic baffled reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20industrial%20wastewater" title=" food industrial wastewater"> food industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20wastewater" title=" high strength wastewater"> high strength wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20loading" title=" organic loading"> organic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a> </p> <a href="https://publications.waset.org/abstracts/9695/performance-of-an-anaerobic-baffled-reactor-abr-treating-high-strength-food-industrial-wastewater-with-fluctuating-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">969</span> Heat Transfer Analysis of a Multiphase Oxygen Reactor Heated by a Helical Tube in the Cu-Cl Cycle of a Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20W.%20Abdulrahman">Mohammed W. Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the thermochemical water splitting process by Cu-Cl cycle, oxygen gas is produced by an endothermic thermolysis process at a temperature of 530<sup>o</sup>C. Oxygen production reactor is a three-phase reactor involving cuprous chloride molten salt, copper oxychloride solid reactant and oxygen gas. To perform optimal performance, the oxygen reactor requires accurate control of heat transfer to the molten salt and decomposing solid particles within the thermolysis reactor. In this paper, the scale up analysis of the oxygen reactor that is heated by an internal helical tube is performed from the perspective of heat transfer. A heat balance of the oxygen reactor is investigated to analyze the size of the reactor that provides the required heat input for different rates of hydrogen production. It is found that the helical tube wall and the service side constitute the largest thermal resistances of the oxygen reactor system. In the analysis of this paper, the Cu-Cl cycle is assumed to be heated by two types of nuclear reactor, which are HTGR and CANDU SCWR. It is concluded that using CANDU SCWR requires more heat transfer rate by 3-4 times than that when using HTGR. The effect of the reactor aspect ratio is also studied and it is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Comparisons between the results of this study and pervious results of material balances in the oxygen reactor show that the size of the oxygen reactor is dominated by the heat balance rather than the material balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu-Cl%20cycle" title=" Cu-Cl cycle"> Cu-Cl cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20energy" title=" clean energy"> clean energy</a> </p> <a href="https://publications.waset.org/abstracts/45088/heat-transfer-analysis-of-a-multiphase-oxygen-reactor-heated-by-a-helical-tube-in-the-cu-cl-cycle-of-a-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">968</span> Synthesis of Nano Iron Copper Core-Shell by Using K-M Reactor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20AbdelKawy">Mohamed Ahmed AbdelKawy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20El-Shazly"> A. H. El-Shazly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Nano iron-copper core-shell was synthesized by using Kinetic energy micro reactor ( K-M reactor). The reaction between nano-pure iron with copper sulphate pentahydrate (CuSO4.5H2O) beside NaCMC as a stabilizer at K-M reactor gives many advantages in comparison with the traditional chemical method for production of nano iron-Copper core-shell in batch reactor. Many factors were investigated for its effect on the process performance such as initial concentrations of nano iron and copper sulphate pentahydrate solution. Different techniques were used for investigation and characterization of the produced nano iron particles such as SEM, XRD, UV-Vis, XPS, TEM and PSD. The produced Nano iron-copper core-shell particle using micro mixer showed better characteristics than those produced using batch reactor in different aspects such as homogeneity of the produced particles, particle size distribution and size, as core diameter 10nm particle size were obtained. The results showed that 10 nm core diameter were obtained using Micro mixer as compared to 80 nm core diameter in one-fourth the time required by using traditional batch reactor and high thickness of copper shell and good stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20iron" title="nano iron">nano iron</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell" title=" core-shell"> core-shell</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20reaction" title=" reduction reaction"> reduction reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=K-M%20reactor" title=" K-M reactor "> K-M reactor </a> </p> <a href="https://publications.waset.org/abstracts/39924/synthesis-of-nano-iron-copper-core-shell-by-using-k-m-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">967</span> Preparation and Characterization of Conductive Poly(N-Ethyl Aniline)/Kaolinite Composite Material by Chemical Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hande%20Ta%C5%9Fdemir">Hande Taşdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Meral%20%C5%9Eahin"> Meral Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Sa%C3%A7ak"> Mehmet Saçak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conductive composite materials obtained by physical or chemical mixing of two or more components having conducting and insulating properties have been increasingly attracted. Kaolinite in kaolin clays is one of silicates with two layers of molecular sheets of (Si2O5)2− and [Al2(OH)4]2+ with the chemical composition Al2Si2O5(OH)4. The most abundant hydrophillic kaolinite is extensively used in industrial processes and therefore it is convenient for the preparation of organic/inorganic composites. In this study, conductive poly(N-ethylaniline)/kaolinite composite was prepared by chemical polymerization of N-ethyl aniline in the presence of kaolinite particles using ammonium persulfate as oxidant in aqueous acidic medium. Poly(N-ethylaniline) content and conductivity of composite prepared were systematically investigated as a function of polymerization conditions such as ammonium persulfate, N-ethyl aniline and HCl concentrations. Poly(N-ethylaniline) content and conductivity of composite increased with increasing oxidant and monomer concentrations up to 0.1 M and 0.2 M, respectively, and decreased at higher concentrations. The maximum yield of polymer in the composite (15.0%) and the highest conductivity value of the composite (5.0×10-5 S/cm) was achieved by polymerization for 2 hours at 20°C in HCl of 0.5 M. The structure, morphological analyses and thermal behaviours of poly(N-ethylaniline)/kaolinite composite were characterized by FTIR and XRD spectroscopy, SEM and TGA techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title="kaolinite">kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28N-ethylaniline%29" title=" poly(N-ethylaniline)"> poly(N-ethylaniline)</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20composite" title=" conductive composite"> conductive composite</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20polymerization" title=" chemical polymerization"> chemical polymerization</a> </p> <a href="https://publications.waset.org/abstracts/8150/preparation-and-characterization-of-conductive-polyn-ethyl-anilinekaolinite-composite-material-by-chemical-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">966</span> Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatinder%20Kumar">Jatinder Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Bansal"> Ajay Bansal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20photocatalytic%20reactor" title=" annular photocatalytic reactor"> annular photocatalytic reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/27827/simulation-of-photocatalytic-degradation-of-rhodamine-b-in-annular-photocatalytic-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">965</span> Optical Properties of N-(Hydroxymethyl) Acrylamide Polymer Gel Dosimeters for Radiation Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20A.%20Rabaeh">Khalid A. Rabaeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Belal%20Moftah"> Belal Moftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Basfar"> Ahmed A. Basfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20A.%20Almousa"> Akram A. Almousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer gel dosimeters are tissue equivalent martial that fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of absorbed radiation dose. Polymer gel dosimeters can uniquely record the radiation dose distribution in three-dimensions (3D). A novel composition of normoxic polymer gel dosimeters based on radiation-induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) is introduced in this study for radiotherapy treatment planning. The dosimeters were irradiated by 10 MV photon beam of a medical linear accelerator at a constant dose rate of 600 cGy/min with doses up to 30 Gy. The polymerization degree is directly proportional to absorbed dose received by the polymer gel. UV/Vis spectrophotometer was used to investigate the degree of white color of irradiated NHMA gel which is associated to the degree of polymerization of polymer gel dosimeters. The absorbance increases with absorbed dose for all gel dosimeters in the dose range between 0 and 30 Gy. Dose rate , energy of radiation and the stability of the polymerization after irradiation were investigated. No appreciable effects of these parameters on the performance of the novel gel dosimeters were observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dosimeter" title="dosimeter">dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gel" title=" gel"> gel</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometer" title=" spectrophotometer"> spectrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=N-%28Hydroxymethyl%29acrylamide" title=" N-(Hydroxymethyl)acrylamide "> N-(Hydroxymethyl)acrylamide </a> </p> <a href="https://publications.waset.org/abstracts/34646/optical-properties-of-n-hydroxymethyl-acrylamide-polymer-gel-dosimeters-for-radiation-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> Direct In-Situ Ring Opening Polymerization of E-caprolactone to Produce Biodegradable PCL/Montmorillonite Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Harrane">Amine Harrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Belalia"> Mahmoud Belalia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade, polymer layered silicate nanocomposites have received increasing attention from scientists and industrial researchers because they generally exhibit greatly improved mechanical, thermal, barrier and flame-retardant properties at low clay content in comparison with unfilled polymers or more conventional micro composites. Poly(ε-caprolactone) (PCL)-layered silicate nanocomposites have the advantage of adding biocompatibility and biodegradability to the traditional properties of nanocomposites. They can be prepared by in situ ring-opening polymerization of ε-caprolactone using a conventional initiator to induce polymerization in the presence of an organophilic clay, such as organomodified montmorillonite. Messersmith and Giannelis used montmorillonite exchanged with protonated 12-amino dodecanoic acid and Cr3+ exchanged fluorohectorite, a synthetic mica type of silicate. Sn-based catalysts such as tin (II) octoate and dibutyltin (IV) dimethoxide have been reported to efficiently promote the polymerization of ε-caprolactone in the presence of organomodified clays. In this work, we have used an alternative method to prepare PCL/montmorillonite nanocomposites. The cationic polymerization of ε-caprolactone was initiated directly by Maghnite-TOA, organomodified montmorillonite clay, to produce nanocomposites (Scheme 1). Resulted from nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), force atomic microscopy (AFM) and thermogravimetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title="polycaprolactone">polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone%2Fclay%20nanocomposites" title=" polycaprolactone/clay nanocomposites"> polycaprolactone/clay nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradables%20nanocomposites" title=" biodegradables nanocomposites"> biodegradables nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=Maghnite" title=" Maghnite"> Maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=Insitu%20polymeriation" title=" Insitu polymeriation"> Insitu polymeriation</a> </p> <a href="https://publications.waset.org/abstracts/163797/direct-in-situ-ring-opening-polymerization-of-e-caprolactone-to-produce-biodegradable-pclmontmorillonite-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">963</span> Copolymers of Pyrrole and α,ω-Dithienyl Terminated Poly(ethylene glycol)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20K%C3%B6ken">Nesrin Köken</a>, <a href="https://publications.waset.org/abstracts/search?q=Esin%20A.%20G%C3%BCvel"> Esin A. Güvel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilg%C3%BCn%20K%C4%B1z%C4%B1lcan"> Nilgün Kızılcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents synthesis of α,ω-dithienyl terminated poly(ethylene glycol) (PEGTh) capable for further chain extension by either chemical or electrochemical polymerization. PEGTh was characterized by FTIR and 1H-NMR. Further, copolymerization of PEGTh and pyrrole (Py) was performed by chemical oxidative polymerization using ceric (IV) salt as an oxidant (PPy-PEGTh). PEG without end group modification was used directly to prepare copolymers with Py by Ce (IV) salt (PPy-PEG). Block copolymers with mole ratio of pyrrole to PEGTh (PEG) 50:1 and 10:1 were synthesized. The electrical conductivities of copolymers PPy-PEGTh and PPy-PEG were determined by four-point probe technique. Influence of the synthetic route and content of the insulating segment on conductivity and yield of the copolymers were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxidative%20polymerization" title="chemical oxidative polymerization">chemical oxidative polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20glycol%29" title=" poly(ethylene glycol)"> poly(ethylene glycol)</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a> </p> <a href="https://publications.waset.org/abstracts/20954/copolymers-of-pyrrole-and-ao-dithienyl-terminated-polyethylene-glycol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">962</span> Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20P.%20L.%20Wijayarathne">U. P. L. Wijayarathne</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Wasalathilake"> K. C. Wasalathilake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the modelling and simulation of saponification of ethyl acetate in the presence of sodium hydroxide in a plug flow reactor using Aspen Plus simulation software. Plug flow reactors are widely used in the industry due to the non-mixing property. The use of plug flow reactors becomes significant when there is a need for continuous large scale reaction or fast reaction. Plug flow reactors have a high volumetric unit conversion as the occurrence for side reactions is minimum. In this research Aspen Plus V8.0 has been successfully used to simulate the plug flow reactor. In order to simulate the process as accurately as possible HYSYS Peng-Robinson EOS package was used as the property method. The results obtained from the simulation were verified by the experiment carried out in the EDIBON plug flow reactor module. The correlation coefficient (r2) was 0.98 and it proved that simulation results satisfactorily fit for the experimental model. The developed model can be used as a guide for understanding the reaction kinetics of a plug flow reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspen%20plus" title="aspen plus">aspen plus</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=plug%20flow%20reactor" title=" plug flow reactor"> plug flow reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/16114/aspen-plus-simulation-of-saponification-of-ethyl-acetate-in-the-presence-of-sodium-hydroxide-in-a-plug-flow-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">961</span> Comparative Study for Biodiesel Production Using a Batch and a Semi-Continuous Flow Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20L.%20Andrade">S. S. L. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Souza"> E. A. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20L.%20Santos"> L. C. L. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Moraes"> C. Moraes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20C.%20L.%20Lobato"> A. K. C. L. Lobato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel may be produced through transesterification reaction (or alcoholysis), that is the transformation of a long chain fatty acid in an alkyl ester. This reaction can occur in the presence of acid catalysts, alkali, or enzyme. Currently, for industrial processes, biodiesel is produced by alkaline route. The alkali most commonly used in these processes is hydroxides and methoxides of sodium and potassium. In this work, biodiesel production was conducted in two different systems. The first consisted of a batch reactor operating with a traditional washing system and the second consisted of a semi-continuous flow reactor operating with a membrane separation system. Potassium hydroxides was used as catalyst at a concentration of 1% by weight, the molar ratio oil/alcohol was 1/9 and temperature of 55 °C. Tests were performed using soybeans and palm oil and the ester conversion results were compared for both systems. It can be seen that the results for both oils are similar when using the batch reator or the semi-continuous flow reactor. The use of the semi-continuous flow reactor allows the removal of the formed products. Thus, in the case of a reversible reaction, with the removal of reaction products, the concentration of the reagents becomes higher and the equilibrium reaction is shifted towards the formation of more products. The higher conversion to ester with soybean and palm oil using the batch reactor was approximately 98%. In contrast, it was observed a conversion of 99% when using the same operating condition on a semi-continuous flow reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20reactor" title=" batch reactor"> batch reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-continuous%20flow%20reactor" title=" semi-continuous flow reactor"> semi-continuous flow reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/39572/comparative-study-for-biodiesel-production-using-a-batch-and-a-semi-continuous-flow-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">960</span> Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak">Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Kim"> Dong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Haragobinda%20Srichandan"> Haragobinda Srichandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung-Gon%20Kim"> Byoung-Gon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8 L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=At.ferrooxidans" title="At.ferrooxidans">At.ferrooxidans</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20reactor" title=" batch reactor"> batch reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20desulfurization" title=" coal desulfurization"> coal desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a> </p> <a href="https://publications.waset.org/abstracts/1871/depyritization-of-us-coal-using-iron-oxidizing-bacteria-batch-stirred-reactor-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">959</span> Contribution of Soluble Microbial Products on Dissolved Organic Nitrogen in Wastewater Effluent from Moving Bed Biofilm Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boonsiri%20Dandumrongsin">Boonsiri Dandumrongsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Halis%20Simsek"> Halis Simsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaiwat%20Rongsayamanont"> Chaiwat Rongsayamanont</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dissolved organic nitrogen (DON) is known as one of the persistence nitrogenous pollutant being originated from secondary treated effluent of municipal sewage treatment plant. However, effect of key system operating condition on the fate and behavior of residual DON in the treated effluent is still not known. This study aims to investigate effect of organic loading rate (OLR) on the residual level of DON in the biofilm reactor effluent. Synthetic municipal wastewater was fed into moving bed biofilm reactors at OLR of 1.6x10-3 and 3.2x10-3 kg SCOD/m3-d. The results showed higher organic removal efficiency was found in the reactor operating at higher OLR. However, DON was observed at higher value in the effluent of the higher OLR reactor than that of the lower OLR reactor evidencing a clear influence of OLR on the residual DON level in the treated effluent of the biofilm reactors. It is possible that the lower DON being observed in the reactor at lower OLR is likely to be a result of providing the microbe with the additional period for utilizing the refractory DON molecules during operation at lower organic loading. All the experiments were repeated using raw wastewaters and similar trend was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolved%20organic%20nitrogen" title="dissolved organic nitrogen">dissolved organic nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20retention%20time" title=" hydraulic retention time"> hydraulic retention time</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor" title=" moving bed biofilm reactor"> moving bed biofilm reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=soluble%20microbial%20products" title=" soluble microbial products"> soluble microbial products</a> </p> <a href="https://publications.waset.org/abstracts/71660/contribution-of-soluble-microbial-products-on-dissolved-organic-nitrogen-in-wastewater-effluent-from-moving-bed-biofilm-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">958</span> Up-Flow Sponge Submerged Biofilm Reactor for Municipal Sewage Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saber%20A.%20El-Shafai">Saber A. El-Shafai</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20M.%20Zahid"> Waleed M. Zahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An up-flow submerged biofilm reactor packed with sponge was investigated for sewage treatment. The reactor was operated two cycles as single aerobic (1-1 at 3.5 L/L.d HLR and 1-2 at 3.8 L/L.day HLR) and four cycles as single anaerobic/aerobic reactor; 2-1 and 2-2 at low HLR (3.7 and 3.5 L/L.day) and 2-3 and 2-4 at high HLR (5.1 and 5.4 L/L.day). During the aerobic cycles, 50% effluent recycling significantly reduces the system performance except for phosphorous. In case of the anaerobic/aerobic reactor, the effluent recycling, significantly improves system performance at low HLR while at high HLR only phosphorous removal was improved. Excess sludge production was limited to 0.133 g TSS/g COD with better sludge volume index (SVI) in case of anaerobic/aerobic cycles; (54.7 versus 58.5 ml/g). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic" title="aerobic">aerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%2Faerobic" title=" anaerobic/aerobic"> anaerobic/aerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=up-flow" title=" up-flow"> up-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20biofilm" title=" submerged biofilm"> submerged biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge" title=" sponge"> sponge</a> </p> <a href="https://publications.waset.org/abstracts/62018/up-flow-sponge-submerged-biofilm-reactor-for-municipal-sewage-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">957</span> The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Shafiq">L. Shafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rigby"> A. Rigby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-static%20additives" title="anti-static additives">anti-static additives</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20performance" title=" catalyst performance"> catalyst performance</a>, <a href="https://publications.waset.org/abstracts/search?q=FDA%20approved%20anti-fouling%20additive" title=" FDA approved anti-fouling additive"> FDA approved anti-fouling additive</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerisation" title=" polymerisation"> polymerisation</a> </p> <a href="https://publications.waset.org/abstracts/116547/the-use-of-additives-to-prevent-fouling-in-polyethylene-and-polypropylene-gas-and-slurry-phase-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">956</span> Heterophase Polymerization of Pyrrole and Thienyl End Capped Ethoxylated Nonyl Phenol by Iron (III) Chloride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6rkem%20%C3%9Clk%C3%BC">Görkem Ülkü</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20K%C3%B6ken"> Nesrin Köken</a>, <a href="https://publications.waset.org/abstracts/search?q=Esin%20A.%20G%C3%BCvel"> Esin A. Güvel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilg%C3%BCn%20K%C4%B1z%C4%B1lcan"> Nilgün Kızılcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethoxylated nonyl phenols (ENP) and ceric ammonium nitrate redox systems have been used for the polymerization of vinyl and acrylic monomers. In that case, ENP acted as an organic reducing agent in the presence of Ce (IV) salt and a radical was formed. The polymers obtained with that redox system contained ENP chain ends because the radicals are formed on the reducing molecules. Similar copolymer synthesis has been reported using poly(ethylene oxide) instead of its nonyl phenol terminated derivative, ENP. However, copolymers of poly(ethylene oxide) and conducting polymers synthesized by ferric ions were produced in two steps. Firstly, heteroatoms (pyrrole, thiophene etc.) were attached to the poly(ethylene oxide) chains then copolymerization with heterocyclic monomers was carried out. In this work, ethoxylated nonylphenol (ENP) was reacted with 2-thiophenecarbonyl chloride in order to synthesize a macromonomer containing thienyl end-group (ENP-ThC). Then, copolymers of ENP-ThC and pyrrole were synthesized by chemical oxidative polymerization using iron (III) chloride as an oxidant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20capped%20polymer" title="end capped polymer">end capped polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=ethoxylated%20nonylphenol" title=" ethoxylated nonylphenol"> ethoxylated nonylphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=heterophase%20polymerization" title=" heterophase polymerization"> heterophase polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a> </p> <a href="https://publications.waset.org/abstracts/20937/heterophase-polymerization-of-pyrrole-and-thienyl-end-capped-ethoxylated-nonyl-phenol-by-iron-iii-chloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>