CINXE.COM
Search results for: Chylla-Haase polymerization reactor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Chylla-Haase polymerization reactor</title> <meta name="description" content="Search results for: Chylla-Haase polymerization reactor"> <meta name="keywords" content="Chylla-Haase polymerization reactor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Chylla-Haase polymerization reactor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Chylla-Haase polymerization reactor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 985</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Chylla-Haase polymerization reactor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Kinetic Evaluation of Sterically Hindered Amines under Partial Oxy-Combustion Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Camino">Sara Camino</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Vega"> Fernando Vega</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercedes%20Cano"> Mercedes Cano</a>, <a href="https://publications.waset.org/abstracts/search?q=Benito%20Navarrete"> Benito Navarrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20A.%20Camino"> José A. Camino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon capture and storage (CCS) technologies should play a relevant role towards low-carbon systems in the European Union by 2030. Partial oxy-combustion emerges as a promising CCS approach to mitigate anthropogenic CO₂ emissions. Its advantages respect to other CCS technologies rely on the production of a higher CO₂ concentrated flue gas than these provided by conventional air-firing processes. The presence of more CO₂ in the flue gas increases the driving force in the separation process and hence it might lead to further reductions of the energy requirements of the overall CO₂ capture process. A higher CO₂ concentrated flue gas should enhance the CO₂ capture by chemical absorption in solvent kinetic and CO₂ cyclic capacity. They have impact on the performance of the overall CO₂ absorption process by reducing the solvent flow-rate required for a specific CO₂ removal efficiency. Lower solvent flow-rates decreases the reboiler duty during the regeneration stage and also reduces the equipment size and pumping costs. Moreover, R&D activities in this field are focused on novel solvents and blends that provide lower CO₂ absorption enthalpies and therefore lower energy penalties associated to the solvent regeneration. In this respect, sterically hindered amines are considered potential solvents for CO₂ capture. They provide a low energy requirement during the regeneration process due to its molecular structure. However, its absorption kinetics are slow and they must be promoted by blending with faster solvents such as monoethanolamine (MEA) and piperazine (PZ). In this work, the kinetic behavior of two sterically hindered amines were studied under partial oxy-combustion conditions and compared with MEA. A lab-scale semi-batch reactor was used. The CO₂ composition of the synthetic flue gas varied from 15%v/v – conventional coal combustion – to 60%v/v – maximum CO₂ concentration allowable for an optimal partial oxy-combustion operation. Firstly, 2-amino-2-methyl-1-propanol (AMP) showed a hybrid behavior with fast kinetics and a low enthalpy of CO₂ absorption. The second solvent was Isophrondiamine (IF), which has a steric hindrance in one of the amino groups. Its free amino group increases its cyclic capacity. In general, the presence of higher CO₂ concentration in the flue gas accelerated the CO₂ absorption phenomena, producing higher CO₂ absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO₂ concentrated flue gas. The steric hindrance causes a hybrid behavior in this solvent, between both fast and slow kinetic solvents. The kinetics rates observed in all the experiments carried out using AMP were higher than MEA, but lower than the IF. The kinetic enhancement experienced by AMP at a high CO2 concentration is slightly over 60%, instead of 70% – 80% for IF. AMP also improved its CO₂ absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost double the improvements achieved by MEA. In IF experiments, the CO₂ loading increased around 10% from 15%v/v to 60%v/v CO₂ and it changed from 1.10 to 1.34 mole CO₂ per mole solvent, more than 20% of increase. This hybrid kinetic behavior makes AMP and IF promising solvents for partial oxy–combustion applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture" title=" carbon capture"> carbon capture</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20oxy-combustion" title=" partial oxy-combustion"> partial oxy-combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent" title=" solvent"> solvent</a> </p> <a href="https://publications.waset.org/abstracts/86708/kinetic-evaluation-of-sterically-hindered-amines-under-partial-oxy-combustion-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Iron Oxide Reduction Using Solar Concentration and Carbon-Free Reducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bastien%20Sanglard">Bastien Sanglard</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Cayez"> Simon Cayez</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Viau"> Guillaume Viau</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Blon"> Thomas Blon</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Carrey"> Julian Carrey</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Lachaize"> Sébastien Lachaize</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need to develop clean production processes is a key challenge of any industry. Steel and iron industries are particularly concerned since they emit 6.8% of global anthropogenic greenhouse gas emissions. One key step of the process is the high-temperature reduction of iron ore using coke, leading to large amounts of CO2 emissions. One route to decrease impacts is to get rid of fossil fuels by changing both the heat source and the reducer. The present work aims at investigating experimentally the possibility to use concentrated solar energy and carbon-free reducing agents. Two sets of experimentations were realized. First, in situ X-ray diffraction on pure and industrial powder of hematite was realized to study the phase evolution as a function of temperature during reduction under hydrogen and ammonia. Secondly, experiments were performed on industrial iron ore pellets, which were reduced by NH3 or H2 into a “solar furnace” composed of a controllable 1600W Xenon lamp to simulate and control the solar concentrated irradiation of a glass reactor and of a diaphragm to control light flux. Temperature and pressure were recorded during each experiment via thermocouples and pressure sensors. The percentage of iron oxide converted to iron (called thereafter “reduction ratio”) was found through Rietveld refinement. The power of the light source and the reduction time were varied. Results obtained in the diffractometer reaction chamber show that iron begins to form at 300°C with pure Fe2O3 powder and 400°C with industrial iron ore when maintained at this temperature for 60 minutes and 80 minutes, respectively. Magnetite and wuestite are detected on both powders during the reduction under hydrogen; under ammonia, iron nitride is also detected for temperatures between400°C and 600°C. All the iron oxide was converted to iron for a reaction of 60 min at 500°C, whereas a conversion ratio of 96% was reached with industrial powder for a reaction of 240 min at 600°C under hydrogen. Under ammonia, full conversion was also reached after 240 min of reduction at 600 °C. For experimentations into the solar furnace with iron ore pellets, the lamp power and the shutter opening were varied. An 83.2% conversion ratio was obtained with a light power of 67 W/cm2 without turning over the pellets. Nevertheless, under the same conditions, turning over the pellets in the middle of the experiment permits to reach a conversion ratio of 86.4%. A reduction ratio of 95% was reached with an exposure of 16 min by turning over pellets at half time with a flux of 169W/cm2. Similar or slightly better results were obtained under an ammonia reducing atmosphere. Under the same flux, the highest reduction yield of 97.3% was obtained under ammonia after 28 minutes of exposure. The chemical reaction itself, including the solar heat source, does not produce any greenhouse gases, so solar metallurgy represents a serious way to reduce greenhouse gas emission of metallurgy industry. Nevertheless, the ecological impact of the reducers must be investigated, which will be done in future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20concentration" title="solar concentration">solar concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgy" title=" metallurgy"> metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/144277/iron-oxide-reduction-using-solar-concentration-and-carbon-free-reducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Effect of Ion Irradiation on the Microstructure and Properties of Chromium Coatings on Zircaloy-4 Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexia%20Wu">Alexia Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Ribis"> Joel Ribis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Christophe%20Brachet"> Jean-Christophe Brachet</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Clouet"> Emmanuel Clouet</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Arnal"> Benoit Arnal</a>, <a href="https://publications.waset.org/abstracts/search?q=Elodie%20Rouesne"> Elodie Rouesne</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Urvoy"> Stéphane Urvoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Justine%20Roubaud"> Justine Roubaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Yves%20Serruys"> Yves Serruys</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederic%20Lepretre"> Frederic Lepretre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To enhance the safety of Light Water Reactor, accident tolerant fuel (ATF) claddings materials are under development. In the framework of CEA-AREVA-EDF collaborative program on ATF cladding materials, CEA has engaged specific studies on chromium coated zirconium alloys. Especially for Loss-of-Coolant-Accident situations, chromium coated claddings have shown some additional 'coping' time before achieving full embrittlement of the oxidized cladding, when compared to uncoated references – both tested in steam environment up to 1300°C. Nevertheless, the behavior of chromium coatings and the stability of the Zr-Cr interface under neutron irradiation remain unknown. Two main points are addressed: 1. Bulk Cr behavior under irradiation: Due to its BCC crystallographic structure, Cr is prone to Ductile-to-Brittle-Transition at quite high temperature. Irradiation could be responsible for a significant additional DBTT shift towards higher temperatures. 2. Zircaloy/Cr interface behavior under irradiation: Preliminary TEM examinations of un-irradiated samples revealed a singular Zircaloy-4/Cr interface with nanometric intermetallic phase layers. Such particular interfaces highlight questions of how they would behave under irradiation - intermetallic zirconium phases are known to be more or less stable under irradiations. Another concern is a potential enhancement of chromium diffusion into the zirconium-alpha based substrate. The purpose of this study is then to determine the behavior of such coatings after ion irradiations, as a surrogate to neutron irradiation. Ion irradiations were performed at the Jannus-Saclay facility (France). 20 MeV Kr8+ ions at 400°C with a flux of 2.8x1011 ions.cm-2.s-1 were used to irradiate chromium coatings of 1-2 µm thick on Zircaloy-4 sheets substrate. At the interface, the calculated damage is close to 10 dpa (SRIM, Quick Calculation Damage mode). Thin foil samples were prepared with FIB for both as-received and irradiated coated samples. Transmission Electron Microscopy (TEM) and in-situ tensile tests in a Scanning Electron Microscope are being used to characterize the un-irradiated and irradiated materials. High Resolution TEM highlights a great complexity of the interface before irradiation since it is formed of an alternation of intermetallic phases – C14 and C15. The interfaces formed by these intermetallic phases with chromium and zirconium show semi-coherency. Chemical analysis performed before irradiation shows some iron enrichment at the interface. The chromium coating bulk microstructures and properties are also studied before and after irradiation. On-going in-situ tensile tests focus on the capacity of chromium coatings to sustain some plastic deformation when tested up to 350°C. The stability of the Cr/Zr interface is shown after ion irradiation up to 10 dpa. This observation constitutes the first result after irradiation on these new coated claddings materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident%20tolerant%20fuel" title="accident tolerant fuel">accident tolerant fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=HRTEM" title=" HRTEM"> HRTEM</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-irradiation" title=" ion-irradiation"> ion-irradiation</a> </p> <a href="https://publications.waset.org/abstracts/55460/effect-of-ion-irradiation-on-the-microstructure-and-properties-of-chromium-coatings-on-zircaloy-4-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patrizia%20Frontera">Patrizia Frontera</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20Macario"> Anastasia Macario</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastiano%20Candamano"> Sebastiano Candamano</a>, <a href="https://publications.waset.org/abstracts/search?q=Fortunato%20Crea"> Fortunato Crea</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierluigi%20Antonucci"> Pierluigi Antonucci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalysts" title="catalysts">catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=ceria" title=" ceria"> ceria</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinia" title=" gadolinia"> gadolinia</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickel" title=" Nickel"> Nickel</a> </p> <a href="https://publications.waset.org/abstracts/96364/hydrogen-production-from-auto-thermal-reforming-of-ethanol-catalyzed-by-tri-metallic-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Fischer Tropsch Synthesis in Compressed Carbon Dioxide with Integrated Recycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanchan%20Mondal">Kanchan Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Sims"> Adam Sims</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhav%20Soti"> Madhav Soti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Gautam"> Jitendra Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Carron"> David Carron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fischer-Tropsch (FT) synthesis is a complex series of heterogeneous reactions between CO and H2 molecules (present in the syngas) on the surface of an active catalyst (Co, Fe, Ru, Ni, etc.) to produce gaseous, liquid, and waxy hydrocarbons. This product is composed of paraffins, olefins, and oxygenated compounds. The key challenge in applying the Fischer-Tropsch process to produce transportation fuels is to make the capital and production costs economically feasible relative to the comparative cost of existing petroleum resources. To meet this challenge, it is imperative to enhance the CO conversion while maximizing carbon selectivity towards the desired liquid hydrocarbon ranges (i.e. reduction in CH4 and CO2 selectivities) at high throughputs. At the same time, it is equally essential to increase the catalyst robustness and longevity without sacrificing catalyst activity. This paper focuses on process development to achieve the above. The paper describes the influence of operating parameters on Fischer Tropsch synthesis (FTS) from coal derived syngas in supercritical carbon dioxide (ScCO2). In addition, the unreacted gas and solvent recycle was incorporated and the effect of unreacted feed recycle was evaluated. It was expected that with the recycle, the feed rate can be increased. The increase in conversion and liquid selectivity accompanied by the production of narrower carbon number distribution in the product suggest that higher flow rates can and should be used when incorporating exit gas recycle. It was observed that this process was capable of enhancing the hydrocarbon selectivity (nearly 98 % CO conversion), reducing improving the carbon efficiency from 17 % to 51 % in a once through process and further converting 16 % CO2 to liquid with integrated recycle of the product gas stream and increasing the life of the catalyst. Catalyst robustness enhancement has been attributed to the absorption of heat of reaction by the compressed CO2 which reduced the formation of hotspots and the dissolution of waxes by the CO2 solvent which reduced the blinding of active sites. In addition, the recycling the product gas stream reduced the reactor footprint to one-fourth of the once through size and product fractionation utilizing the solvent effects of supercritical CO2 were realized. In addition to the negative CO2 selectivities, methane production was also inhibited and was limited to less than 1.5%. The effect of the process conditions on the life of the catalysts will also be presented. Fe based catalysts are known to have a high proclivity for producing CO2 during FTS. The data of the product spectrum and selectivity on Co and Fe-Co based catalysts as well as those obtained from commercial sources will also be presented. The measurable decision criteria were the increase in CO conversion at H2:CO ratio of 1:1 (as commonly found in coal gasification product stream) in supercritical phase as compared to gas phase reaction, decrease in CO2 and CH4 selectivity, overall liquid product distribution, and finally an increase in the life of the catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20efficiency" title="carbon efficiency">carbon efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Fischer%20Tropsch%20synthesis" title=" Fischer Tropsch synthesis"> Fischer Tropsch synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20GHG" title=" low GHG"> low GHG</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20tunable%20fractionation" title=" pressure tunable fractionation"> pressure tunable fractionation</a> </p> <a href="https://publications.waset.org/abstracts/67254/fischer-tropsch-synthesis-in-compressed-carbon-dioxide-with-integrated-recycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Ammonia Cracking: Catalysts and Process Configurations for Enhanced Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frea%20Van%20Steenweghen">Frea Van Steenweghen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lander%20Hollevoet"> Lander Hollevoet</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20A.%20Martens"> Johan A. Martens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compared to other hydrogen (H₂) carriers, ammonia (NH₃) is one of the most promising carriers as it contains 17.6 wt% hydrogen. It is easily liquefied at ≈ 9–10 bar pressure at ambient temperature. More importantly, NH₃ is a carbon-free hydrogen carrier with no CO₂ emission at final decomposition. Ammonia has a well-defined regulatory framework and a good track record regarding safety concerns. Furthermore, the industry already has an existing transport infrastructure consisting of pipelines, tank trucks and shipping technology, as ammonia has been manufactured and distributed around the world for over a century. While NH₃ synthesis and transportation technological solutions are at hand, a missing link in the hydrogen delivery scheme from ammonia is an energy-lean and efficient technology for cracking ammonia into H₂ and N₂. The most explored option for ammonia decomposition is thermo-catalytic cracking which is, by itself, the most energy-efficient approach compared to other technologies, such as plasma and electrolysis, as it is the most energy-lean and robust option. The decomposition reaction is favoured only at high temperatures (> 300°C) and low pressures (1 bar) as the thermocatalytic ammonia cracking process is faced with thermodynamic limitations. At 350°C, the thermodynamic equilibrium at 1 bar pressure limits the conversion to 99%. Gaining additional conversion up to e.g. 99.9% necessitates heating to ca. 530°C. However, reaching thermodynamic equilibrium is infeasible as a sufficient driving force is needed, requiring even higher temperatures. Limiting the conversion below the equilibrium composition is a more economical option. Thermocatalytic ammonia cracking is documented in scientific literature. Among the investigated metal catalysts (Ru, Co, Ni, Fe, …), ruthenium is known to be most active for ammonia decomposition with an onset of cracking activity around 350°C. For establishing > 99% conversion reaction, temperatures close to 600°C are required. Such high temperatures are likely to reduce the round-trip efficiency but also the catalyst lifetime because of the sintering of the supported metal phase. In this research, the first focus was on catalyst bed design, avoiding diffusion limitation. Experiments in our packed bed tubular reactor set-up showed that extragranular diffusion limitations occur at low concentrations of NH₃ when reaching high conversion, a phenomenon often overlooked in experimental work. A second focus was thermocatalyst development for ammonia cracking, avoiding the use of noble metals. To this aim, candidate metals and mixtures were deposited on a range of supports. Sintering resistance at high temperatures and the basicity of the support were found to be crucial catalyst properties. The catalytic activity was promoted by adding alkaline and alkaline earth metals. A third focus was studying the optimum process configuration by process simulations. A trade-off between conversion and favorable operational conditions (i.e. low pressure and high temperature) may lead to different process configurations, each with its own pros and cons. For example, high-pressure cracking would eliminate the need for post-compression but is detrimental for the thermodynamic equilibrium, leading to an optimum in cracking pressure in terms of energy cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia%20cracking" title="ammonia cracking">ammonia cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20research" title=" catalyst research"> catalyst research</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20simulation" title=" process simulation"> process simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20equilibrium" title=" thermodynamic equilibrium"> thermodynamic equilibrium</a> </p> <a href="https://publications.waset.org/abstracts/170791/ammonia-cracking-catalysts-and-process-configurations-for-enhanced-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Photo-Fenton Degradation of Organic Compounds by Iron(II)-Embedded Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marius%20Sebastian%20Secula">Marius Sebastian Secula</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreea%20Vajda"> Andreea Vajda</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Cagnon"> Benoit Cagnon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioan%20Mamaliga"> Ioan Mamaliga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important classes of pollutants is represented by dyes. The synthetic character and complex molecular structure make them more stable and difficult to be biodegraded in water. The treatment of wastewaters containing dyes in order to separate/degrade dyes is of major importance. Various techniques have been employed to remove and/or degrade dyes in water. Advanced oxidation processes (AOPs) are known as among the most efficient ones towards dye degradation. The aim of this work is to investigate the efficiency of a cheap Iron-impregnated activated carbon Fenton-like catalyst in order to degrade organic compounds in aqueous solutions. In the presented study an anionic dye, Indigo Carmine, is considered as a model pollutant. Various AOPs are evaluated for the degradation of Indigo Carmine to establish the effect of the prepared catalyst. It was found that the Iron(II)-embedded activated carbon composite enhances significantly the degradation process of Indigo Carmine. Using the wet impregnation procedure, 5 g of L27 AC material were contacted with Fe(II) solutions of FeSO4 precursor at a theoretical iron content in the resulted composite of 1 %. The L27 AC was impregnated for 3h at 45°C, then filtered, washed several times with water and ethanol and dried at 55 °C for 24 h. Thermogravimetric analysis, Fourier transform infrared, X-ray diffraction, and transmission electron microscopy were employed to investigate the structural, textural, and micromorphology of the catalyst. Total iron content in the obtained composites and iron leakage were determined by spectrophotometric method using phenantroline. Photo-catalytic tests were performed using an UV - Consulting Peschl Laboratory Reactor System. UV light irradiation tests were carried out to determine the performance of the prepared Iron-impregnated composite towards the degradation of Indigo Carmine in aqueous solution using different conditions (17 W UV lamps, with and without in-situ generation of O3; different concentrations of H2O2, different initial concentrations of Indigo Carmine, different values of pH, different doses of NH4-OH enhancer). The photocatalytic tests were performed after the adsorption equilibrium has been established. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. The investigated process obeys the pseudo-first order kinetics. The photo-Fenton degradation of IC was tested at different values of initial concentration. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. Acknowledgments: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title="photodegradation">photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20Fenton" title=" heterogeneous Fenton"> heterogeneous Fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=anionic%20dye" title=" anionic dye"> anionic dye</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonaceous%20composite" title=" carbonaceous composite"> carbonaceous composite</a>, <a href="https://publications.waset.org/abstracts/search?q=screening%20factorial%20design" title=" screening factorial design"> screening factorial design</a> </p> <a href="https://publications.waset.org/abstracts/71113/photo-fenton-degradation-of-organic-compounds-by-ironii-embedded-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Light Sensitive Plasmonic Nanostructures for Photonic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Istvan%20Csarnovics">Istvan Csarnovics</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20Bonyar"> Attila Bonyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Miklos%20Veres"> Miklos Veres</a>, <a href="https://publications.waset.org/abstracts/search?q=Laszlo%20Himics"> Laszlo Himics</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20Csik"> Attila Csik</a>, <a href="https://publications.waset.org/abstracts/search?q=Judit%20Kaman"> Judit Kaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20%20Burunkova"> Julia Burunkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Geza%20Szanto"> Geza Szanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Laszlo%20Balazs"> Laszlo Balazs</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandor%20Kokenyesi"> Sandor Kokenyesi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20sensitive%20nanocomposites" title="light sensitive nanocomposites">light sensitive nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20nanoparticles" title=" metallic nanoparticles"> metallic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20application" title=" photonic application"> photonic application</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20nanostructures" title=" plasmonic nanostructures"> plasmonic nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/89303/light-sensitive-plasmonic-nanostructures-for-photonic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Colmenares">J. C. Colmenares</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Paszkiewicz-Gawron"> M. Paszkiewicz-Gawron</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lomot"> D. Lomot</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Pradhan"> S. R. Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Qayyum"> A. Qayyum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photo-catalysis" title="heterogeneous photo-catalysis">heterogeneous photo-catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-free%20carbonaceous%20materials" title=" metal-free carbonaceous materials"> metal-free carbonaceous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20redox%20flow%20sonophotocatalysis" title=" selective redox flow sonophotocatalysis"> selective redox flow sonophotocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/147623/sonication-as-a-versatile-tool-for-photocatalysts-synthesis-and-intensification-of-flow-photocatalytic-processes-within-the-lignocellulose-valorization-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Investigation of Hydrate Formation of Associated Petroleum Gas from Promoter Solutions for the Purpose of Utilization and Reduction of Its Burning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Semenov">M. E. Semenov</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Zh.%20Mirzakimov"> U. Zh. Mirzakimov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Stoporev"> A. S. Stoporev</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Pavelev"> R. S. Pavelev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Varfolomeev"> M. A. Varfolomeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas hydrates are host-guest compounds. Guest molecules can be low molecular weight components of associated petroleum gas (C1-C4 hydrocarbons), carbon dioxide, hydrogen sulfide, nitrogen. Gas hydrates have a number of unique properties that make them interesting from a technological point of view, for example, for storing hydrocarbon gases in solid form under moderate thermobaric conditions. Currently, the possibility of storing and transporting hydrocarbon gases in the form of solid hydrate is being actively explored throughout the world. The hydrate form of gas has a number of advantages, including a significant gas content in the hydrate, relative safety and environmental friendliness of the process. Recently, new developments have been proposed that seek to reduce the number of steps to obtain the finished hydrate, for example, using a pressing device/screw inside the reactor. However, the energy consumption required for the hydrate formation process remains a challenge. Thus, the goal of the current work is to study the patterns and mechanisms of the hydrate formation process using small additions of hydrate formation promoters under static conditions. The study of these aspects will help solve the problem of accelerated production of gas hydrates with minimal energy consumption. New compounds have been developed at Kazan Federal University that can accelerate the formation of methane hydrate with a small amount of promoter in water, not exceeding 0.1% by weight. These promoters were synthesized based on available natural compounds and showed high efficiency in accelerating the growth of methane hydrate. To test the influence of promoters on the process of hydrate formation, standard experiments are carried out under dynamic conditions with stirring. During such experiments, the time at which hydrate formation begins (induction period), the temperature at which formation begins (supercooling), the rate of hydrate formation, and the degree of conversion of water to hydrate are assessed. This approach helps to determine the most effective compound in comparative experiments with different promoters and select their optimal concentration. These experimental studies made it possible to study the features of the formation of associated petroleum gas hydrate from promoter solutions under static conditions. Phase transformations were studied using high-pressure micro-differential scanning calorimetry under various experimental conditions. Visual studies of the growth mode of methane hydrate depending on the type of promoter were also carried out. The work is an extension of the methodology for studying the effect of promoters on the process of associated petroleum gas hydrate formation in order to identify new ways to accelerate the formation of gas hydrates without the use of mixing. This work presents the results of a study of the process of associated petroleum gas hydrate formation using high-pressure differential scanning micro-calorimetry, visual investigation, gas chromatography, autoclave study, and stability data. It was found that the synthesized compounds multiply the conversion of water into hydrate under static conditions up to 96% due to a change in the growth mechanism of associated petroleum gas hydrate. This work was carried out in the framework of the program Priority-2030. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20hydrate" title="gas hydrate">gas hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20storage" title=" gas storage"> gas storage</a>, <a href="https://publications.waset.org/abstracts/search?q=promotor" title=" promotor"> promotor</a>, <a href="https://publications.waset.org/abstracts/search?q=associated%20petroleum%20gas" title=" associated petroleum gas"> associated petroleum gas</a> </p> <a href="https://publications.waset.org/abstracts/177833/investigation-of-hydrate-formation-of-associated-petroleum-gas-from-promoter-solutions-for-the-purpose-of-utilization-and-reduction-of-its-burning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ch%C3%A1vez">A. Chávez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rodr%C3%ADguez"> A. Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pinz%C3%B3n"> F. Pinzón</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sludge" title="sludge">sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=leachate" title=" leachate"> leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=SBR" title=" SBR"> SBR</a> </p> <a href="https://publications.waset.org/abstracts/25785/treatment-process-of-sludge-from-leachate-with-an-activated-sludge-system-and-extended-aeration-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shiva%20Prasad">M. Shiva Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Atchuta"> S. R. Atchuta</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Vijayaraghavan"> T. Vijayaraghavan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sakthivel"> S. Sakthivel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO<sub>2</sub>-SiO<sub>2</sub> has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF<sub>2</sub>) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrated%20solar%20thermal%20system" title="concentrated solar thermal system">concentrated solar thermal system</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20selective%20coating" title=" solar selective coating"> solar selective coating</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20absorber" title=" tandem absorber"> tandem absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=ultralow%20refractive%20index" title=" ultralow refractive index"> ultralow refractive index</a> </p> <a href="https://publications.waset.org/abstracts/105966/cost-efficient-receiver-tube-technology-for-eco-friendly-concentrated-solar-thermal-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masood%20Otarod">Masood Otarod</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20M.%20Supkowski"> Ronald M. Supkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factorization" title="factorization">factorization</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20dispersion%20model" title=" general dispersion model"> general dispersion model</a>, <a href="https://publications.waset.org/abstracts/search?q=isotope%20transient%20kinetic" title=" isotope transient kinetic"> isotope transient kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title=" partial differential equations"> partial differential equations</a> </p> <a href="https://publications.waset.org/abstracts/86344/reduced-general-dispersion-model-in-cylindrical-coordinates-and-isotope-transient-kinetic-analysis-in-laminar-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Synchrotron Based Techniques for the Characterization of Chemical Vapour Deposition Overgrowth Diamond Layers on High Pressure, High Temperature Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20N.%20Tran%20Thi">T. N. Tran Thi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Morse"> J. Morse</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Detlefs"> C. Detlefs</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Cook"> P. K. Cook</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Y%C4%B1ld%C4%B1r%C4%B1m"> C. Yıldırım</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Jakobsen"> A. C. Jakobsen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zhou"> T. Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hartwig"> J. Hartwig</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Zurbig"> V. Zurbig</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Caliste"> D. Caliste</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Fernandez"> B. Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Eon"> D. Eon</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Loto"> O. Loto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Hicks"> M. L. Hicks</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pakpour-Tabrizi"> A. Pakpour-Tabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Baruchel"> J. Baruchel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to grow boron-doped diamond epilayers of high crystalline quality is a prerequisite for the fabrication of diamond power electronic devices, in particular high voltage diodes and metal-oxide-semiconductor (MOS) transistors. Boron and intrinsic diamond layers are homoepitaxially overgrown by microwave assisted chemical vapour deposition (MWCVD) on single crystal high pressure, high temperature (HPHT) grown bulk diamond substrates. Various epilayer thicknesses were grown, with dopant concentrations ranging from 1021 atom/cm³ at nanometer thickness in the case of 'delta doping', up 1016 atom/cm³ and 50µm thickness or high electric field drift regions. The crystalline quality of these overgrown layers as regards defects, strain, distortion… is critical for the device performance through its relation to the final electrical properties (Hall mobility, breakdown voltage...). In addition to the optimization of the epilayer growth conditions in the MWCVD reactor, other important questions related to the crystalline quality of the overgrown layer(s) are: 1) what is the dependence on the bulk quality and surface preparation methods of the HPHT diamond substrate? 2) how do defects already present in the substrate crystal propagate into the overgrown layer; 3) what types of new defects are created during overgrowth, what are their growth mechanisms, and how can these defects be avoided? 4) how can we relate in a quantitative manner parameters related to the measured crystalline quality of the boron doped layer to the electronic properties of final processed devices? We describe synchrotron-based techniques developed to address these questions. These techniques allow the visualization of local defects and crystal distortion which complements the data obtained by other well-established analysis methods such as AFM, SIMS, Hall conductivity…. We have used Grazing Incidence X-ray Diffraction (GIXRD) at the ID01 beamline of the ESRF to study lattice parameters and damage (strain, tilt and mosaic spread) both in diamond substrate near surface layers and in thick (10–50 µm) overgrown boron doped diamond epi-layers. Micro- and nano-section topography have been carried out at both the BM05 and ID06-ESRF) beamlines using rocking curve imaging techniques to study defects which have propagated from the substrate into the overgrown layer(s) and their influence on final electronic device performance. These studies were performed using various commercially sourced HPHT grown diamond substrates, with the MWCVD overgrowth carried out at the Fraunhofer IAF-Germany. The synchrotron results are in good agreement with low-temperature (5°K) cathodoluminescence spectroscopy carried out on the grown samples using an Inspect F5O FESEM fitted with an IHR spectrometer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchrotron%20X-ray%20diffaction" title="synchrotron X-ray diffaction">synchrotron X-ray diffaction</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20quality" title=" crystalline quality"> crystalline quality</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20overgrowth" title=" diamond overgrowth"> diamond overgrowth</a>, <a href="https://publications.waset.org/abstracts/search?q=rocking%20curve%20imaging" title=" rocking curve imaging"> rocking curve imaging</a> </p> <a href="https://publications.waset.org/abstracts/84682/synchrotron-based-techniques-for-the-characterization-of-chemical-vapour-deposition-overgrowth-diamond-layers-on-high-pressure-high-temperature-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sesethu%20G.%20Njokweni">Sesethu G. Njokweni</a>, <a href="https://publications.waset.org/abstracts/search?q=Marelize%20Botes"> Marelize Botes</a>, <a href="https://publications.waset.org/abstracts/search?q=Emile%20W.%20H.%20Van%20Zyl"> Emile W. H. Van Zyl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title="agricultural wastes">agricultural wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxylate%20platform" title=" carboxylate platform"> carboxylate platform</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20microbiome" title=" rumen microbiome"> rumen microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20fatty%20acids" title=" volatile fatty acids"> volatile fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/92186/application-of-the-carboxylate-platform-in-the-consolidated-bioconversion-of-agricultural-wastes-to-biofuel-precursors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Jablonski">Piotr Jablonski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Mars"> Krzysztof Mars</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiktor%20Niemiec"> Wiktor Niemiec</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Kyziol"> Agnieszka Kyziol</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Hebda"> Marek Hebda</a>, <a href="https://publications.waset.org/abstracts/search?q=Halina%20Krawiec"> Halina Krawiec</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20Kyziol"> Karol Kyziol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20coatings" title="bioactive coatings">bioactive coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=doped%20DLC%20structure" title=" doped DLC structure"> doped DLC structure</a>, <a href="https://publications.waset.org/abstracts/search?q=NiTi%20alloy" title=" NiTi alloy"> NiTi alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20CVD" title=" RF CVD"> RF CVD</a> </p> <a href="https://publications.waset.org/abstracts/100182/diamond-like-carbon-based-structures-as-functional-layers-on-shape-memory-alloy-for-orthopedic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effect of Thermal Treatment on Mechanical Properties of Reduced Activation Ferritic/Martensitic Eurofer Steel Grade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athina%20Puype">Athina Puype</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Malerba"> Lorenzo Malerba</a>, <a href="https://publications.waset.org/abstracts/search?q=Nico%20De%20Wispelaere"> Nico De Wispelaere</a>, <a href="https://publications.waset.org/abstracts/search?q=Roumen%20Petrov"> Roumen Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Jilt%20Sietsma"> Jilt Sietsma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduced activation ferritic/martensitic (RAFM) steels like EUROFER97 are primary candidate structural materials for first wall application in the future demonstration (DEMO) fusion reactor. Existing steels of this type obtain their functional properties by a two-stage heat treatment, which consists of an annealing stage at 980°C for thirty minutes followed by quenching and an additional tempering stage at 750°C for two hours. This thermal quench and temper (Q&T) treatment creates a microstructure of tempered martensite with, as main precipitates, M23C6 carbides, with M = Fe, Cr and carbonitrides of MX type, e.g. TaC and VN. The resulting microstructure determines the mechanical properties of the steel. The ductility is largely determined by the tempered martensite matrix, while the resistance to mechanical degradation, determined by the spatial and size distribution of precipitates and the martensite crystals, plays a key role in the high temperature properties of the steel. Unfortunately, the high temperature response of EUROFER97 is currently insufficient for long term use in fusion reactors, due to instability of the matrix phase and coarsening of the precipitates at prolonged high temperature exposure. The objective of this study is to induce grain refinement by appropriate modifications of the processing route in order to increase the high temperature strength of a lab-cast EUROFER RAFM steel grade. The goal of the work is to obtain improved mechanical behavior at elevated temperatures with respect to conventionally heat treated EUROFER97. A dilatometric study was conducted to study the effect of the annealing temperature on the mechanical properties after a Q&T treatment. The microstructural features were investigated with scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the mechanical properties of the furnace-heated lab-cast EUROFER RAFM steel grade. A significant prior austenite grain (PAG) refinement was obtained by lowering the annealing temperature of the conventionally used Q&T treatment for EUROFER97. The reduction of the PAG results in finer martensitic constituents upon quenching, which offers more nucleation sites for carbide and carbonitride formation upon tempering. The ductile-to-brittle transition temperature (DBTT) was found to decrease with decreasing martensitic block size. Additionally, an increased resistance against high temperature degradation was accomplished in the fine grained martensitic materials with smallest precipitates obtained by tailoring the annealing temperature of the Q&T treatment. It is concluded that the microstructural refinement has a pronounced effect on the DBTT without significant loss of strength and ductility. Further investigation into the optimization of the processing route is recommended to improve the mechanical behavior of RAFM steels at elevated temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductile-to-brittle%20transition%20temperature%20%28DBTT%29" title="ductile-to-brittle transition temperature (DBTT)">ductile-to-brittle transition temperature (DBTT)</a>, <a href="https://publications.waset.org/abstracts/search?q=EUROFER" title=" EUROFER"> EUROFER</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20activation%20ferritic%2Fmartensitic%20%28RAFM%29%20steels" title=" reduced activation ferritic/martensitic (RAFM) steels"> reduced activation ferritic/martensitic (RAFM) steels</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatments" title=" thermal treatments"> thermal treatments</a> </p> <a href="https://publications.waset.org/abstracts/59346/effect-of-thermal-treatment-on-mechanical-properties-of-reduced-activation-ferriticmartensitic-eurofer-steel-grade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Extracellular Polymeric Substances (EPS) Attribute to Biofouling of Anaerobic Membrane Bioreactor: Adhesion and Viscoelastic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kbrom%20Mearg%20Haile">Kbrom Mearg Haile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Membrane fouling is the bottleneck for the anaerobic membrane bioreactor (AnMBR) robust continuous operation, primarily caused by the mixed liquor suspended solids (MLSS) characteristics formed by aggregated flocs and a scaffold of microbial self-produced extracellular polymeric substances (EPS), which dictates the flocs integrity. Accordingly, the adhesion of EPS to the membrane surface versus their role in forming firm, elastic, and mechanically stable flocs under the reactor’s hydraulic shear is critical for minimizing interactions between EPS and colloids originating from the MLSS flocs with the membrane. This study aims to gain insight and investigate the effect of MLSS flocs properties, EPS adhesion and viscoelasticity, viscoelastic properties of the sludge, and membrane fouling propensity. Experimental: As a working hypothesis, to alter the aforementioned flocs’ and EPS’s properties, the addition of either coagulant or surfactant was carried out during the AnMBR operation. In the AnMBR, two flat-sheet 300 kDa pore size polyether sulfone (PES) membranes with a total filtration area of 352 cm2 were immersed in the AnMBR system treating municipal wastewater of Midreshet Ben-Gurion village at the Negev highlands, Israel. The system temperature, pH, biogas recirculation, and hydraulic retention time were regulated. TMP fluctuations during a 30-day experiment were recorded under three operating conditions: Baseline (without the addition of coagulating or dispersing agent), coagulant addition (FeCl3), and surfactant addition (sodium dodecyl sulfate). At the end of each experiment, EPS were extracted from the MLSS and from the fouled membrane, characterized for their protein, polysaccharides, and DOC contents, and correlated with the fouling tendency of the submerged UF membrane. The EPS adherence and viscoelastic properties were revealed using QCM-D via the PES-coated gold sensor used as a membrane-mimicking surface providing a detailed real-time EPS adhesion. The associated shifts in the resonance frequency and dissipation at different overtones were further modeled using the Voigt-based viscoelastic model (using Dfind software, Q-Sense Biolin Scientific) in which the thickness, shear modulus, and shear viscosity values of the adsorbed EPS layers on the PES coated sensor were calculated. Results and discussion: The observations obtained from the QCM-D analysis indicate a greater decrease in the frequency shift for the elevated membrane fouling scenarios, likely due to an observed decrease in the calculated shear viscosity and shear modulus of the EPS adsorbed layer, coupled with an increase in EPS layer hydrated thickness and fluidity (ΔD/Δf slopes). Further analysis is being conducted for the three major operating conditions-analyzing their effects on sludge rheology, dewaterability (capillary suction time-CST) and settle ability (SVI). The biofouling layer is further characterized microscopically using a confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM), for analyzing the consistency of the development of the biofouling layer with sludge characteristics, i.e., thicker biofouling layer on the membrane surface when operated with surfactant addition, due to flocs with reduced integrity and availability of EPS/colloids to the membrane. Conversely, a thinner layer when operated with coagulant compared to the baseline experiment, due to elevation in flocs integrity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title="viscoelasticity">viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=biofouling" title=" biofouling"> biofouling</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic" title=" viscoelastic"> viscoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=AnMBR" title=" AnMBR"> AnMBR</a>, <a href="https://publications.waset.org/abstracts/search?q=EPS" title=" EPS"> EPS</a>, <a href="https://publications.waset.org/abstracts/search?q=elocintegrity" title=" elocintegrity"> elocintegrity</a> </p> <a href="https://publications.waset.org/abstracts/192201/extracellular-polymeric-substances-eps-attribute-to-biofouling-of-anaerobic-membrane-bioreactor-adhesion-and-viscoelastic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ghosh">K. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Tripathi"> S. N. Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Joshi"> Manish Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Mayya"> Y. S. Mayya</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20Khan"> Arshad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Sapra"> B. K. Sapra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=k-epsilon%20model" title=" k-epsilon model"> k-epsilon model</a>, <a href="https://publications.waset.org/abstracts/search?q=buoyancy" title=" buoyancy"> buoyancy</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20wire%20generator" title=" hot wire generator"> hot wire generator</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20dynamics" title=" aerosol dynamics"> aerosol dynamics</a> </p> <a href="https://publications.waset.org/abstracts/109017/development-and-experimental-validation-of-coupled-flow-aerosol-microphysics-model-for-hot-wire-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Comparative Proteomic Profiling of Planktonic and Biofilms from Staphylococcus aureus Using Tandem Mass Tag-Based Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arifur%20Rahman">Arifur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ardeshir%20Amirkhani"> Ardeshir Amirkhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Honghua%20Hu"> Honghua Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Molloy"> Mark Molloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Vickery"> Karen Vickery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and Objectives: Staphylococcus aureus and coagulase-negative staphylococci comprises approximately 65% of infections associated with medical devices and are well known for their biofilm formatting ability. Biofilm-related infections are extremely difficult to eradicate owing to their high tolerance to antibiotics and host immune defences. Currently, there is no efficient method for early biofilm detection. A better understanding to enable detection of biofilm specific proteins in vitro and in vivo can be achieved by studying planktonic and different growth phases of biofilms using a proteome analysis approach. Our goal was to construct a reference map of planktonic and biofilm associated proteins of S. aureus. Methods: S. aureus reference strain (ATCC 25923) was used to grow 24 hours planktonic, 3-day wet biofilm (3DWB), and 12-day wet biofilm (12DWB). Bacteria were grown in tryptic soy broth (TSB) liquid medium. Planktonic growth was used late logarithmic bacteria, and the Centres for Disease Control (CDC) biofilm reactor was used to grow 3 days, and 12-day hydrated biofilms, respectively. Samples were subjected to reduction, alkylation and digestion steps prior to Multiplex labelling using Tandem Mass Tag (TMT) 10-plex reagent (Thermo Fisher Scientific). The labelled samples were pooled and fractionated by high pH RP-HPLC which followed by loading of the fractions on a nanoflow UPLC system (Eksigent UPLC system, AB SCIEX). Mass spectrometry (MS) data were collected on an Orbitrap Elite (Thermo Fisher Scientific) Mass Spectrometer. Protein identification and relative quantitation of protein levels were performed using Proteome Discoverer (version 1.3, Thermo Fisher Scientific). After the extraction of protein ratios with Proteome Discoverer, additional processing, and statistical analysis was done using the TMTPrePro R package. Results and Discussion: The present study showed that a considerable proteomic difference exists among planktonic and biofilms from S. aureus. We identified 1636 total extracellular secreted proteins, of which 350 and 137 proteins of 3DWB and 12DWB showed significant abundance variation from planktonic preparation, respectively. Of these, simultaneous up-regulation in between 3DWB and 12DWB proteins such as extracellular matrix-binding protein ebh, enolase, transketolase, triosephosphate isomerase, chaperonin, peptidase, pyruvate kinase, hydrolase, aminotransferase, ribosomal protein, acetyl-CoA acetyltransferase, DNA gyrase subunit A, glycine glycyltransferase and others we found in this biofilm producer. On the contrary, simultaneous down-regulation in between 3DWB and 12DWB proteins such as alpha and delta-hemolysin, lipoteichoic acid synthase, enterotoxin I, serine protease, lipase, clumping factor B, regulatory protein Spx, phosphoglucomutase, and others also we found in this biofilm producer. In addition, we also identified a big percentage of hypothetical proteins including unique proteins. Therefore, a comprehensive knowledge of planktonic and biofilm associated proteins identified by S. aureus will provide a basis for future studies on the development of vaccines and diagnostic biomarkers. Conclusions: In this study, we constructed an initial reference map of planktonic and various growth phase of biofilm associated proteins which might be helpful to diagnose biofilm associated infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20biofilms" title="bacterial biofilms">bacterial biofilms</a>, <a href="https://publications.waset.org/abstracts/search?q=CDC%20bioreactor" title=" CDC bioreactor"> CDC bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20aureus" title=" S. aureus"> S. aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=TMT" title=" TMT"> TMT</a> </p> <a href="https://publications.waset.org/abstracts/77519/comparative-proteomic-profiling-of-planktonic-and-biofilms-from-staphylococcus-aureus-using-tandem-mass-tag-based-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongyan%20Chen">Hongyan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Megan%20Jobson"> Megan Jobson</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20J.%20Masters"> Andrew J. Masters</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Gonzalez-Miquel"> Maria Gonzalez-Miquel</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Halstead"> Simon Halstead</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayri%20Diaz%20de%20Rienzo"> Mayri Diaz de Rienzo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20coefficient" title="distribution coefficient">distribution coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=COSMO-RS" title=" COSMO-RS"> COSMO-RS</a>, <a href="https://publications.waset.org/abstracts/search?q=flowsheet%20simulation" title=" flowsheet simulation"> flowsheet simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphonium" title=" phosphonium"> phosphonium</a> </p> <a href="https://publications.waset.org/abstracts/82962/simulation-of-multistage-extraction-process-of-co-ni-separation-using-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Path to Ruthium: Insights into the Creation of a New Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goodluck%20Akaoma%20Ordu">Goodluck Akaoma Ordu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ruthium (Rth) represents a theoretical superheavy element with an atomic number of 119, proposed within the context of advanced materials science and nuclear physics. The conceptualization of Rth involves theoretical frameworks that anticipate its atomic structure, including a hypothesized stable isotope, Rth-320, characterized by 119 protons and 201 neutrons. The synthesis of Ruthium (Rth) hinges on intricate nuclear fusion processes conducted in state-of-the-art particle accelerators, notably utilizing Calcium-48 (Ca-48) as a projectile nucleus and Einsteinium-253 (Es-253) as a target nucleus. These experiments aim to induce fusion reactions that yield Ruthium isotopes, such as Rth-301, accompanied by neutron emission. Theoretical predictions outline various physical and chemical properties attributed to Ruthium (Rth). It is envisaged to possess a high density, estimated at around 25 g/cm³, with melting and boiling points anticipated to be exceptionally high, approximately 4000 K and 6000 K, respectively. Chemical studies suggest potential oxidation states of +2, +3, and +4, indicating a versatile reactivity, particularly with halogens and chalcogens. The atomic structure of Ruthium (Rth) is postulated to feature an electron configuration of [Rn] 5f^14 6d^10 7s^2 7p^2, reflecting its position in the periodic table as a superheavy element. However, the creation and study of superheavy elements like Ruthium (Rth) pose significant challenges. These elements typically exhibit very short half-lives, posing difficulties in their stabilization and detection. Research efforts are focused on identifying the most stable isotopes of Ruthium (Rth) and developing advanced detection methodologies to confirm their existence and properties. Specialized detectors are essential in observing decay patterns unique to Ruthium (Rth), such as alpha decay or fission signatures, which serve as key indicators of its presence and characteristics. The potential applications of Ruthium (Rth) span across diverse technological domains, promising innovations in energy production, material strength enhancement, and sensor technology. Incorporating Ruthium (Rth) into advanced energy systems, such as the Arc Reactor concept, could potentially amplify energy output efficiencies. Similarly, integrating Ruthium (Rth) into structural materials, exemplified by projects like the NanoArc gauntlet, could bolster mechanical properties and resilience. Furthermore, Ruthium (Rth)--based sensors hold promise for achieving heightened sensitivity and performance in various sensing applications. Looking ahead, the study of Ruthium (Rth) represents a frontier in both fundamental science and applied research. It underscores the quest to expand the periodic table and explore the limits of atomic stability and reactivity. Future research directions aim to delve deeper into Ruthium (Rth)'s atomic properties under varying conditions, paving the way for innovations in nanotechnology, quantum materials, and beyond. The synthesis and characterization of Ruthium (Rth) stand as a testament to human ingenuity and technological advancement, pushing the boundaries of scientific understanding and engineering capabilities. In conclusion, Ruthium (Rth) embodies the intersection of theoretical speculation and experimental pursuit in the realm of superheavy elements. It symbolizes the relentless pursuit of scientific excellence and the potential for transformative technological breakthroughs. As research continues to unravel the mysteries of Ruthium (Rth), it holds the promise of reshaping materials science and opening new frontiers in technological innovation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superheavy%20element" title="superheavy element">superheavy element</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fusion" title=" nuclear fusion"> nuclear fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=bombardment" title=" bombardment"> bombardment</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20accelerator" title=" particle accelerator"> particle accelerator</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20physics" title=" nuclear physics"> nuclear physics</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20physics" title=" particle physics"> particle physics</a> </p> <a href="https://publications.waset.org/abstracts/187950/the-path-to-ruthium-insights-into-the-creation-of-a-new-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Extracellular Polymeric Substances Study in an MBR System for Fouling Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitra%20C.%20Banti">Dimitra C. Banti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gesthimani%20Liona"> Gesthimani Liona</a>, <a href="https://publications.waset.org/abstracts/search?q=Petros%20Samaras"> Petros Samaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Manasis%20Mitrakas"> Manasis Mitrakas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Municipal and industrial wastewaters are often treated biologically, by the activated sludge process (ASP). The ASP not only requires large aeration and sedimentation tanks, but also generates large quantities of excess sludge. An alternative technology is the membrane bioreactor (MBR), which replaces two stages of the conventional ASP—clarification and settlement—with a single, integrated biotreatment and clarification step. The advantages offered by the MBR over conventional treatment include reduced footprint and sludge production through maintaining a high biomass concentration in the bioreactor. Notwithstanding these advantages, the widespread application of the MBR process is constrained by membrane fouling. Fouling leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary and resulting to increased operating costs. In general, membrane fouling results from the interaction between the membrane material and the components in the activated sludge liquor. The latter includes substrate components, cells, cell debris and microbial metabolites, such as Extracellular Polymeric Substances (EPS) and Sludge Microbial Products (SMPs). The challenge for effective MBR operation is to minimize the rate of Transmembrane Pressure (TMP) increase. This can be achieved by several ways, one of which is the addition of specific additives, that enhance the coagulation and flocculation of compounds, which are responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate. In this project the effectiveness of a non-commercial composite coagulant was studied as an agent for fouling control in a lab scale MBR system consisting in two aerated tanks. A flat sheet membrane module with 0.40 um pore size was submerged into the second tank. The system was fed by50 L/d of municipal wastewater collected from the effluent of the primary sedimentation basin. The TMP increase rate, which is directly related to fouling growth, was monitored by a PLC system. EPS, MLSS and MLVSS measurements were performed in samples of mixed liquor; in addition, influent and effluent samples were collected for the determination of physicochemical characteristics (COD, BOD5, NO3-N, NH4-N, Total N and PO4-P). The coagulant was added in concentrations 2, 5 and 10mg/L during a period of 2 weeks and the results were compared with the control system (without coagulant addition). EPS fractions were extracted by a three stages physical-thermal treatment allowing the identification of Soluble EPS (SEPS) or SMP, Loosely Bound EPS (LBEPS) and Tightly Bound EPS (TBEPS). Proteins and carbohydrates concentrations were measured in EPS fractions by the modified Lowry method and Dubois method, respectively. Addition of 2 mg/L coagulant concentration did not affect SEPS proteins in comparison with control process and their values varied between 32 to 38mg/g VSS. However a coagulant dosage of 5mg/L resulted in a slight increase of SEPS proteins at 35-40 mg/g VSS while 10mg/L coagulant further increased SEPS to 44-48mg/g VSS. Similar results were obtained for SEPS carbohydrates. Carbohydrates values without coagulant addition were similar to the corresponding values measured for 2mg/L coagulant; the addition of mg/L coagulant resulted to a slight increase of carbohydrates SEPS to 6-7mg/g VSS while a dose of 10 mg/L further increased carbohydrates content to 9-10mg/g VSS. Total LBEPS and TBEPS, consisted of proteins and carbohydrates of LBEPS and TBEPS respectively, presented similar variations by the addition of the coagulant. Total LBEPS at 2mg/L dose were almost equal to 17mg/g VSS, and their values increased to 22 and 29 mg/g VSS during the addition of 5 mg/L and 10 mg/L of coagulant respectively. Total TBEPS were almost 37 mg/g VSS at a coagulant dose of 2 mg/L and increased to 42 and 51 mg/g VSS at 5 mg/L and 10 mg/L doses, respectively. Therefore, it can be concluded that coagulant addition could potentially affect microorganisms activities, excreting EPS in greater amounts. Nevertheless, EPS increase, mainly SEPS increase, resulted to a higher membrane fouling rate, as justified by the corresponding TMP increase rate. However, the addition of the coagulant, although affected the EPS content in the reactor mixed liquor, did not change the filtration process: an effluent of high quality was produced, with COD values as low as 20-30 mg/L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extracellular%20polymeric%20substances" title="extracellular polymeric substances">extracellular polymeric substances</a>, <a href="https://publications.waset.org/abstracts/search?q=MBR" title=" MBR"> MBR</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling" title=" membrane fouling"> membrane fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=EPS" title=" EPS"> EPS</a> </p> <a href="https://publications.waset.org/abstracts/21851/extracellular-polymeric-substances-study-in-an-mbr-system-for-fouling-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Improvement in the Photocatalytic Activity of Nanostructured Manganese Ferrite – Type of Materials by Mechanochemical Activation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Zaharieva">Katerina Zaharieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Katya%20Milenova"> Katya Milenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zara%20Cherkezova-Zheleva"> Zara Cherkezova-Zheleva</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Eliyas"> Alexander Eliyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Kunev"> Boris Kunev</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Mitov"> Ivan Mitov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesized nanosized manganese ferrite-type of samples have been tested as photocatalysts in the reaction of oxidative degradation of model contaminant Reactive Black 5 (RB5) dye in aqueous solutions under UV irradiation. As it is known this azo dye is applied in the textile-coloring industry and it is discharged into the waterways causing pollution. The co-precipitation procedure has been used for the synthesis of manganese ferrite-type of materials: Sample 1 - Mn0.25Fe2.75O4, Sample 2 - Mn0.5Fe2.5O4 and Sample 3 - MnFe2O4 from 0.03M aqueous solutions of MnCl2•4H2O, FeCl2•4H2O and/or FeCl3•6H2O and 0.3M NaOH in appropriate amounts. The mechanochemical activation of co-precipitated ferrite-type of samples has been performed in argon (Samples 1 and 2) or in air atmosphere (Sample 3) for 2 hours at a milling speed of 500 rpm. The mechano-chemical treatment has been carried out in a high energy planetary ball mill type PM 100, Retsch, Germany. The mass ratio between balls and powder was 30:1. As a result mechanochemically activated Sample 4 - Mn0.25Fe2.75O4, Sample 5 - Mn0.5Fe2.5O4 and Sample 6 - MnFe2O4 have been obtained. The synthesized manganese ferrite-type photocatalysts have been characterized by X-ray diffraction method and Moessbauer spectroscopy. The registered X-ray diffraction patterns and Moessbauer spectra of co-precipitated ferrite-type of materials show the presence of manganese ferrite and additional akaganeite phase. The presence of manganese ferrite and small amounts of iron phases is established in the mechanochemically treated samples. The calculated average crystallite size of manganese ferrites varies within the range 7 – 13 nm. This result is confirmed by Moessbauer study. The registered spectra show superparamagnetic behavior of the prepared materials at room temperature. The photocatalytic investigations have been made using polychromatic UV-A light lamp (Sylvania BLB, 18 W) illumination with wavelength maximum at 365 nm. The intensity of light irradiation upon the manganese ferrite-type photocatalysts was 0.66 mW.cm-2. The photocatalytic reaction of oxidative degradation of RB5 dye was carried out in a semi-batch slurry photocatalytic reactor with 0.15 g of ferrite-type powder, 150 ml of 20 ppm dye aqueous solution under magnetic stirring at rate 400 rpm and continuously feeding air flow. The samples achieved adsorption-desorption equilibrium in the dark period for 30 min and then the UV-light was turned on. After regular time intervals aliquot parts from the suspension were taken out and centrifuged to separate the powder from solution. The residual concentrations of dye were established by a UV-Vis absorbance single beam spectrophotometer CamSpec M501 (UK) measuring in the wavelength region from 190 to 800 nm. The photocatalytic measurements determined that the apparent pseudo-first-order rate constants calculated by linear slopes approximating to first order kinetic equation, increase in following order: Sample 3 (1.1х10-3 min-1) < Sample 1 (2.2х10-3 min-1) < Sample 2 (3.3 х10-3 min-1) < Sample 4 (3.8х10-3 min-1) < Sample 6 (11х10-3 min-1) < Sample 5 (15.2х10-3 min-1). The mechanochemically activated manganese ferrite-type of photocatalyst samples show significantly higher degree of oxidative degradation of RB5 dye after 120 minutes of UV light illumination in comparison with co-precipitated ferrite-type samples: Sample 5 (92%) > Sample 6 (91%) > Sample 4 (63%) > Sample 2 (53%) > Sample 1 (42%) > Sample 3 (15%). Summarizing the obtained results we conclude that the mechanochemical activation leads to a significant enhancement of the degree of oxidative degradation of the RB5 dye and photocatalytic activity of tested manganese ferrite-type of catalyst samples under our experimental conditions. The mechanochemically activated Mn0.5Fe2.5O4 ferrite-type of material displays the highest photocatalytic activity (15.2х10-3 min-1) and degree of oxidative degradation of the RB5 dye (92%) compared to the other synthesized samples. Especially a significant improvement in the degree of oxidative degradation of RB5 dye (91%) has been determined for mechanochemically treated MnFe2O4 ferrite-type of sample with the highest extent of substitution of iron ions by manganese ions than in the case of the co-precipitated MnFe2O4 sample (15%). The mechanochemically activated manganese ferrite-type of samples show good photocatalytic properties in the reaction of oxidative degradation of RB5 azo dye in aqueous solutions and it could find potential application for dye removal from wastewaters originating from textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20manganese%20ferrite-type%20materials" title="nanostructured manganese ferrite-type materials">nanostructured manganese ferrite-type materials</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20activity" title=" photocatalytic activity"> photocatalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Reactive%20Black%205" title=" Reactive Black 5"> Reactive Black 5</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/18954/improvement-in-the-photocatalytic-activity-of-nanostructured-manganese-ferrite-type-of-materials-by-mechanochemical-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Tackling the Decontamination Challenge: Nanorecycling of Plastic Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jocelyn%20Doucet">Jocelyn Doucet</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Philippe%20Laviolette"> Jean-Philippe Laviolette</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Eslami"> Ali Eslami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The end-of-life management and recycling of polymer wastes remains a key environment issue in on-going efforts to increase resource efficiency and attaining GHG emission reduction targets. Half of all the plastics ever produced were made in the last 13 years, and only about 16% of that plastic waste is collected for recycling, while 25% is incinerated, 40% is landfilled, and 19% is unmanaged and leaks in the environment and waterways. In addition to the plastic collection issue, the UN recently published a report on chemicals in plastics, which adds another layer of challenge when integrating recycled content containing toxic products into new products. To tackle these important issues, innovative solutions are required. Chemical recycling of plastics provides new complementary alternatives to the current recycled plastic market by converting waste material into a high value chemical commodity that can be reintegrated in a variety of applications, making the total market size of the output – virgin-like, high value products - larger than the market size of the input – plastic waste. Access to high-quality feedstock also remains a major obstacle, primarily due to material contamination issues. Pyrowave approaches this challenge with its innovative nano-recycling technology, which purifies polymers at the molecular level, removing undesirable contaminants and restoring the resin to its virgin state without having to depolymerise it. This breakthrough approach expands the range of plastics that can be effectively recycled, including mixed plastics with various contaminants such as lead, inorganic pigments, and flame retardants. The technology allows yields below 100ppm, and purity can be adjusted to an infinitesimal level depending on the customer's specifications. The separation of the polymer and contaminants in Pyrowave's nano-recycling process offers the unique ability to customize the solution on targeted additives and contaminants to be removed based on the difference in molecular size. This precise control enables the attainment of a final polymer purity equivalent to virgin resin. The patented process involves dissolving the contaminated material using a specially formulated solvent, purifying the mixture at the molecular level, and subsequently extracting the solvent to yield a purified polymer resin that can directly be reintegrated in new products without further treatment. Notably, this technology offers simplicity, effectiveness, and flexibility while minimizing environmental impact and preserving valuable resources in the manufacturing circuit. Pyrowave has successfully applied this nano-recycling technology to decontaminate polymers and supply purified, high-quality recycled plastics to critical industries, including food-contact compliance. The technology is low-carbon, electrified, and provides 100% traceable resins with properties identical to those of virgin resins. Additionally, the issue of low recycling rates and the limited market for traditionally hard-to-recycle plastic waste has fueled the need for new complementary alternatives. Chemical recycling, such as Pyrowave's microwave depolymerization, presents a sustainable and efficient solution by converting plastic waste into high-value commodities. By employing microwave catalytic depolymerization, Pyrowave enables a truly circular economy of plastics, particularly in treating polystyrene waste to produce virgin-like styrene monomers. This revolutionary approach boasts low energy consumption, high yields, and a reduced carbon footprint. Pyrowave offers a portfolio of sustainable, low-carbon, electric solutions to give plastic waste a second life and paves the way to the new circular economy of plastics. Here, particularly for polystyrene, we show that styrene monomer yields from Pyrowave’s polystyrene microwave depolymerization reactor is 2,2 to 1,5 times higher than that of the thermal conventional pyrolysis. In addition, we provide a detailed understanding of the microwave assisted depolymerization via analyzing the effects of microwave power, pyrolysis time, microwave receptor and temperature on the styrene product yields. Furthermore, we investigate life cycle environmental impact assessment of microwave assisted pyrolysis of polystyrene in commercial-scale production. Finally, it is worth pointing out that Pyrowave is able to treat several tons of polystyrene to produce virgin styrene monomers and manage waste/contaminated polymeric materials as well in a truly circular economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanorecycling" title="nanorecycling">nanorecycling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20recycling" title=" plastic recycling"> plastic recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=depolymerization" title=" depolymerization"> depolymerization</a> </p> <a href="https://publications.waset.org/abstracts/169710/tackling-the-decontamination-challenge-nanorecycling-of-plastic-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=32" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor&page=32">32</a></li> <li class="page-item active"><span class="page-link">33</span></li> <li class="page-item disabled"><span class="page-link">›</span></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>