CINXE.COM
Stall (fluid dynamics) - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Stall (fluid dynamics) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"060c483b-e0c6-44ee-9cfa-1135f3bbcd03","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Stall_(fluid_dynamics)","wgTitle":"Stall (fluid dynamics)","wgCurRevisionId":1259377858,"wgRevisionId":1259377858,"wgArticleId":81511,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: archived copy as title","CS1 maint: unfit URL","Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","Use dmy dates from March 2023","Use British English from March 2023","Aircraft aerodynamics","Aviation risks","Aircraft wing design","Aerial maneuvers","Emergency aircraft operations","Aerospace engineering"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext", "wgRelevantPageName":"Stall_(fluid_dynamics)","wgRelevantArticleId":81511,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q752034","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness", "fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.tmh.player.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.tmh.player","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp", "ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.tmh.player.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg/1200px-1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="836"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg/800px-1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="557"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg/640px-1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="446"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Stall (fluid dynamics) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Stall_(fluid_dynamics)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Stall_(fluid_dynamics)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Stall_fluid_dynamics rootpage-Stall_fluid_dynamics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Stall+%28fluid+dynamics%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Stall+%28fluid+dynamics%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Stall+%28fluid+dynamics%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Stall+%28fluid+dynamics%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Formal_definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formal_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Formal definition</span> </div> </a> <ul id="toc-Formal_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Variation_of_lift_with_angle_of_attack" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Variation_of_lift_with_angle_of_attack"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Variation of lift with angle of attack</span> </div> </a> <ul id="toc-Variation_of_lift_with_angle_of_attack-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Aerodynamic_description" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Aerodynamic_description"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Aerodynamic description</span> </div> </a> <button aria-controls="toc-Aerodynamic_description-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Aerodynamic description subsection</span> </button> <ul id="toc-Aerodynamic_description-sublist" class="vector-toc-list"> <li id="toc-Fixed-wing_aircraft" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fixed-wing_aircraft"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Fixed-wing aircraft</span> </div> </a> <ul id="toc-Fixed-wing_aircraft-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Characteristics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Characteristics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Characteristics</span> </div> </a> <ul id="toc-Characteristics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Stall_speeds" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Stall_speeds"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Stall speeds</span> </div> </a> <ul id="toc-Stall_speeds-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_accelerated_and_turning_flight" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_accelerated_and_turning_flight"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>In accelerated and turning flight</span> </div> </a> <ul id="toc-In_accelerated_and_turning_flight-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Types" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Types"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Types</span> </div> </a> <button aria-controls="toc-Types-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Types subsection</span> </button> <ul id="toc-Types-sublist" class="vector-toc-list"> <li id="toc-Dynamic_stall" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dynamic_stall"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Dynamic stall</span> </div> </a> <ul id="toc-Dynamic_stall-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Deep_stall" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Deep_stall"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Deep stall</span> </div> </a> <ul id="toc-Deep_stall-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tip_stall" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tip_stall"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Tip stall</span> </div> </a> <ul id="toc-Tip_stall-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Warning_and_safety_devices" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Warning_and_safety_devices"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Warning and safety devices</span> </div> </a> <ul id="toc-Warning_and_safety_devices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Flight_beyond_the_stall" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Flight_beyond_the_stall"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Flight beyond the stall</span> </div> </a> <ul id="toc-Flight_beyond_the_stall-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spoilers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Spoilers"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Spoilers</span> </div> </a> <ul id="toc-Spoilers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Stall (fluid dynamics)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 28 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-28" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">28 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%86%D9%87%D9%8A%D8%A7%D8%B1_(%D8%B7%D9%8A%D8%B1%D8%A7%D9%86)" title="انهيار (طيران) – Arabic" lang="ar" hreflang="ar" data-title="انهيار (طيران)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Saxlanma_itkisi" title="Saxlanma itkisi – Azerbaijani" lang="az" hreflang="az" data-title="Saxlanma itkisi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Entrada_en_p%C3%A8rdua" title="Entrada en pèrdua – Catalan" lang="ca" hreflang="ca" data-title="Entrada en pèrdua" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Stall" title="Stall – Danish" lang="da" hreflang="da" data-title="Stall" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Str%C3%B6mungsabriss" title="Strömungsabriss – German" lang="de" hreflang="de" data-title="Strömungsabriss" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Entrada_en_p%C3%A9rdida" title="Entrada en pérdida – Spanish" lang="es" hreflang="es" data-title="Entrada en pérdida" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%88%D8%A7%D9%85%D8%A7%D9%86%D8%AF%DA%AF%DB%8C" title="واماندگی – Persian" lang="fa" hreflang="fa" data-title="واماندگی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/D%C3%A9crochage_(a%C3%A9rodynamique)" title="Décrochage (aérodynamique) – French" lang="fr" hreflang="fr" data-title="Décrochage (aérodynamique)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Entrada_en_perda" title="Entrada en perda – Galician" lang="gl" hreflang="gl" data-title="Entrada en perda" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%8A%A4%ED%86%A8" title="스톨 – Korean" lang="ko" hreflang="ko" data-title="스톨" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Anjlok_(penerbangan)" title="Anjlok (penerbangan) – Indonesian" lang="id" hreflang="id" data-title="Anjlok (penerbangan)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Stallo_aerodinamico" title="Stallo aerodinamico – Italian" lang="it" hreflang="it" data-title="Stallo aerodinamico" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%96%D7%93%D7%A7%D7%A8%D7%95%D7%AA" title="הזדקרות – Hebrew" lang="he" hreflang="he" data-title="הזדקרות" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/%C3%81tes%C3%A9s" title="Átesés – Hungarian" lang="hu" hreflang="hu" data-title="Átesés" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Overtrek" title="Overtrek – Dutch" lang="nl" hreflang="nl" data-title="Overtrek" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%A4%B1%E9%80%9F" title="失速 – Japanese" lang="ja" hreflang="ja" data-title="失速" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Steiling" title="Steiling – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Steiling" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przeci%C4%85gni%C4%99cie" title="Przeciągnięcie – Polish" lang="pl" hreflang="pl" data-title="Przeciągnięcie" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Estol" title="Estol – Portuguese" lang="pt" hreflang="pt" data-title="Estol" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%B2%D0%B0%D0%BB%D0%B8%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5" title="Сваливание – Russian" lang="ru" hreflang="ru" data-title="Сваливание" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Stall_(flight)" title="Stall (flight) – Simple English" lang="en-simple" hreflang="en-simple" data-title="Stall (flight)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Sakkaus" title="Sakkaus – Finnish" lang="fi" hreflang="fi" data-title="Sakkaus" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/%C3%96verstegring" title="Överstegring – Swedish" lang="sv" hreflang="sv" data-title="Överstegring" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%90%D0%B2%D1%83_(%D0%B0%D0%B2%D0%B8%D0%B0%D1%86%D0%B8%D1%8F)" title="Аву (авиация) – Tatar" lang="tt" hreflang="tt" data-title="Аву (авиация)" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Perd%C3%B6vites" title="Perdövites – Turkish" lang="tr" hreflang="tr" data-title="Perdövites" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%97%D0%B2%D0%B0%D0%BB%D1%8E%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F" title="Звалювання – Ukrainian" lang="uk" hreflang="uk" data-title="Звалювання" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Tr%C3%B2ng_tr%C3%A0nh" title="Tròng trành – Vietnamese" lang="vi" hreflang="vi" data-title="Tròng trành" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%A4%B1%E9%80%9F" title="失速 – Chinese" lang="zh" hreflang="zh" data-title="失速" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q752034#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Stall_(fluid_dynamics)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Stall_(fluid_dynamics)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Stall_(fluid_dynamics)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Stall_(fluid_dynamics)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Stall_(fluid_dynamics)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Stall_(fluid_dynamics)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Stall_(fluid_dynamics)&oldid=1259377858" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Stall_%28fluid_dynamics%29&id=1259377858&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStall_%28fluid_dynamics%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStall_%28fluid_dynamics%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Stall_%28fluid_dynamics%29&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Stall_(fluid_dynamics)&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-wikinews mw-list-item"><a href="https://en.wikinews.org/wiki/Category:Aerodynamic_stalls" hreflang="en"><span>Wikinews</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q752034" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Abrupt reduction in lift due to flow separation</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:1915ca_abger_fluegel_(cropped_and_mirrored).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg/230px-1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg" decoding="async" width="230" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg/345px-1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f2/1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg/460px-1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg 2x" data-file-width="2663" data-file-height="1855" /></a><figcaption><a href="/wiki/Flow_separation" title="Flow separation">Airflow separating</a> from an <a href="/wiki/Airfoil" title="Airfoil">airfoil</a> at a high <a href="/wiki/Angle_of_attack" title="Angle of attack">angle of attack</a>, as occurs at a stall.</figcaption></figure> <p>In <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">fluid dynamics</a>, a <b>stall</b> is a reduction in the <a href="/wiki/Lift_coefficient" title="Lift coefficient">lift coefficient</a> generated by a <a href="/wiki/Foil_(fluid_mechanics)" title="Foil (fluid mechanics)">foil</a> as <a href="/wiki/Angle_of_attack" title="Angle of attack">angle of attack</a> exceeds its <a href="/wiki/Critical_angle_of_attack" class="mw-redirect" title="Critical angle of attack">critical value</a>.<sup id="cite_ref-Crane_1-0" class="reference"><a href="#cite_note-Crane-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The critical angle of attack is typically about 15°, but it may vary significantly depending on the <a href="/wiki/Fluid" title="Fluid">fluid</a>, foil – including its shape, size, and finish – and <a href="/wiki/Reynolds_number" title="Reynolds number">Reynolds number</a>. </p><p>Stalls in <a href="/wiki/Fixed-wing_aircraft" title="Fixed-wing aircraft">fixed-wing aircraft</a> are often experienced as a sudden reduction in lift. It may be caused either by the pilot increasing the wing's angle of attack or by a decrease in the critical angle of attack. The latter may be due to slowing down (below <a class="mw-selflink-fragment" href="#Stall_speeds">stall speed</a>) or the <a href="/wiki/Icing_(aviation)" class="mw-redirect" title="Icing (aviation)">accretion of ice</a> on the wings (especially if the ice is rough). A stall does not mean that the engine(s) have stopped working, or that the aircraft has stopped moving—the effect is the same even in an <a href="/wiki/Unpowered_flight" title="Unpowered flight">unpowered</a> <a href="/wiki/Glider_aircraft" class="mw-redirect" title="Glider aircraft">glider aircraft</a>. <a href="/wiki/Thrust_vectoring" title="Thrust vectoring">Vectored thrust</a> in aircraft is used to maintain <a href="/wiki/Altitude" title="Altitude">altitude</a> or controlled flight with wings stalled by replacing lost wing lift with engine or <a href="/wiki/Propeller_(aeronautics)" title="Propeller (aeronautics)">propeller</a> <a href="/wiki/Thrust" title="Thrust">thrust</a>, thereby giving rise to post-stall technology.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Because stalls are most commonly discussed in connection with <a href="/wiki/Aviation" title="Aviation">aviation</a>, this article discusses stalls as they relate mainly to aircraft, in particular fixed-wing aircraft. The principles of stall discussed here translate to foils in other fluids as well. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Formal_definition">Formal definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=1" title="Edit section: Formal definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:StallFormation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/StallFormation.svg/220px-StallFormation.svg.png" decoding="async" width="220" height="159" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/StallFormation.svg/330px-StallFormation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/StallFormation.svg/440px-StallFormation.svg.png 2x" data-file-width="585" data-file-height="423" /></a><figcaption>Stall formation</figcaption></figure> <p>A stall is a condition in <a href="/wiki/Aerodynamics" title="Aerodynamics">aerodynamics</a> and aviation such that if the angle of attack on an aircraft increases beyond a certain point, then lift begins to decrease. The angle at which this occurs is called the <i>critical angle of attack</i>. If the angle of attack increases beyond the critical value, the lift decreases and the aircraft descends, further increasing the angle of attack and causing further loss of lift. The critical angle of attack is dependent upon the airfoil section or profile of the wing, its <a href="/wiki/Planform_(aeronautics)" class="mw-redirect" title="Planform (aeronautics)">planform</a>, its <a href="/wiki/Aspect_ratio_(aeronautics)" title="Aspect ratio (aeronautics)">aspect ratio</a>, and other factors, but is typically in the range of 8 to 20 degrees relative to the incoming wind (<a href="/wiki/Relative_wind" title="Relative wind">relative wind</a>) for most subsonic airfoils. The critical angle of attack is the angle of attack on the <a href="/wiki/Lift_coefficient" title="Lift coefficient">lift coefficient</a> versus angle-of-attack (Cl~alpha) curve at which the maximum lift coefficient occurs.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>Stalling is caused by <a href="/wiki/Flow_separation" title="Flow separation">flow separation</a> which, in turn, is caused by the air flowing against a rising pressure. Whitford<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> describes three types of stall: trailing-edge, leading-edge and thin-aerofoil, each with distinctive Cl~alpha features. For the trailing-edge stall, separation begins at small angles of attack near the trailing edge of the wing while the rest of the flow over the wing remains attached. As angle of attack increases, the separated regions on the top of the wing increase in size as the flow separation moves forward, and this hinders the ability of the wing to create lift. This is shown by the reduction in lift-slope on a Cl~alpha curve as the lift nears its maximum value. The separated flow usually causes buffeting.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Beyond the critical angle of attack, separated flow is so dominant that additional increases in angle of attack cause the lift to fall from its peak value. </p><p>Piston-engined and early jet transports had very good stall behaviour with pre-stall buffet warning and, if ignored, a straight nose-drop for a natural recovery. Wing developments that came with the introduction of turbo-prop engines introduced unacceptable stall behaviour. Leading-edge developments on high-lift wings, and the introduction of rear-mounted engines and high-set tailplanes on the next generation of jet transports, also introduced unacceptable stall behaviour. The probability of achieving the stall speed inadvertently, a potentially hazardous event, had been calculated, in 1965, at about once in every 100,000 flights,<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> often enough to justify the cost of development of warning devices, such as stick shakers, and devices to automatically provide an adequate nose-down pitch, such as stick pushers.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>When the mean angle of attack of the wings is beyond the stall a <a href="/wiki/Spin_(aerodynamics)" title="Spin (aerodynamics)">spin</a>, which is an <a href="/wiki/Autorotation_(fixed-wing_aircraft)" title="Autorotation (fixed-wing aircraft)">autorotation</a> of a stalled wing, may develop. A spin follows departures in roll, yaw and pitch from balanced flight. For example, a roll is naturally damped with an unstalled wing, but with wings stalled the damping moment is replaced with a propelling moment.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Variation_of_lift_with_angle_of_attack">Variation of lift with angle of attack</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=2" title="Edit section: Variation of lift with angle of attack"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Lift_curve.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Lift_curve.svg/240px-Lift_curve.svg.png" decoding="async" width="240" height="197" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Lift_curve.svg/360px-Lift_curve.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Lift_curve.svg/480px-Lift_curve.svg.png 2x" data-file-width="680" data-file-height="558" /></a><figcaption>An example of the relationship between angle of attack and lift on a cambered airfoil. The exact relationship is usually measured in a <a href="/wiki/Wind_tunnel" title="Wind tunnel">wind tunnel</a> and depends on the airfoil section. The relationship for an aircraft wing depends on the planform and its aspect ratio.</figcaption></figure> <p>The graph shows that the greatest amount of lift is produced as the critical angle of attack is reached (which in early-20th century aviation was called the "burble point"). This angle is 17.5 degrees in this case, but it varies from airfoil to airfoil. In particular, for aerodynamically thick airfoils (thickness to <a href="/wiki/Chord_(aircraft)" class="mw-redirect" title="Chord (aircraft)">chord</a> ratios of around 10%), the critical angle is higher than with a thin airfoil of the same <a href="/wiki/Camber_(aerodynamics)" title="Camber (aerodynamics)">camber</a>. Symmetric airfoils have lower critical angles (but also work efficiently in inverted flight). The graph shows that, as the angle of attack exceeds the critical angle, the lift produced by the airfoil decreases. </p><p>The information in a graph of this kind is gathered using a model of the airfoil in a <a href="/wiki/Wind_tunnel" title="Wind tunnel">wind tunnel</a>. Because aircraft models are normally used, rather than full-size machines, special care is needed to make sure that data is taken in the same <a href="/wiki/Reynolds_number" title="Reynolds number">Reynolds number</a> regime (or scale speed) as in free flight. The separation of flow from the upper wing surface at high angles of attack is quite different at low Reynolds number from that at the high Reynolds numbers of real aircraft. In particular at high Reynolds numbers the flow tends to stay attached to the airfoil for longer because the inertial forces are dominant with respect to the viscous forces which are responsible for the flow separation ultimately leading to the aerodynamic stall. For this reason wind tunnel results carried out at lower speeds and on smaller scale models of the real life counterparts often tend to overestimate the aerodynamic stall angle of attack.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> High-pressure wind tunnels are one solution to this problem. </p><p>In general, steady operation of an aircraft at an angle of attack above the critical angle is not possible because, after exceeding the critical angle, the loss of lift from the wing causes the nose of the aircraft to fall, reducing the angle of attack again. This nose drop, independent of control inputs, indicates the pilot has actually stalled the aircraft.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>This graph shows the stall angle, yet in practice most pilot operating handbooks (POH) or generic flight manuals describe stalling in terms of <a href="/wiki/Airspeed" title="Airspeed">airspeed</a>. This is because all aircraft are equipped with an <a href="/wiki/Airspeed_indicator" title="Airspeed indicator">airspeed indicator</a>, but fewer aircraft have an angle of attack indicator. An aircraft's stalling speed is published by the manufacturer (and is required for certification by flight testing) for a range of weights and flap positions, but the stalling angle of attack is not published. </p><p>As speed reduces, angle of attack has to increase to keep lift constant until the critical angle is reached. The airspeed at which this angle is reached is the (1g, unaccelerated) stalling speed of the aircraft in that particular configuration. Deploying <a href="/wiki/Flap_(aircraft)" class="mw-redirect" title="Flap (aircraft)">flaps</a>/slats decreases the stall speed to allow the aircraft to take off and land at a lower speed. </p> <div class="mw-heading mw-heading2"><h2 id="Aerodynamic_description">Aerodynamic description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=3" title="Edit section: Aerodynamic description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Fixed-wing_aircraft">Fixed-wing aircraft</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=4" title="Edit section: Fixed-wing aircraft"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Fixed-wing_aircraft" title="Fixed-wing aircraft">fixed-wing aircraft</a> can be made to stall in any <a href="/wiki/Flight_dynamics_(fixed-wing_aircraft)" class="mw-redirect" title="Flight dynamics (fixed-wing aircraft)">pitch</a> attitude or bank angle or at any airspeed but deliberate stalling is commonly practiced by reducing the speed to the unaccelerated stall speed, at a safe altitude. Unaccelerated (1g) stall speed varies on different fixed-wing aircraft and is represented by colour codes on the <a href="/wiki/Airspeed_indicator" title="Airspeed indicator">airspeed indicator</a>. As the plane flies at this speed, the angle of attack must be increased to prevent any loss of altitude or gain in airspeed (which corresponds to the stall angle described above). The pilot will notice the <a href="/wiki/Aircraft_flight_control_system" title="Aircraft flight control system">flight controls</a> have become less responsive and may also notice some buffeting, a result of the turbulent air separated from the wing hitting the tail of the aircraft. </p><p>In most <a href="/wiki/Light_aircraft" title="Light aircraft">light aircraft</a>, as the stall is reached, the aircraft will start to descend (because the wing is no longer producing enough lift to support the aircraft's weight) and the nose will pitch down. Recovery from the stall involves lowering the aircraft nose, to decrease the angle of attack and increase the air speed, until smooth air-flow over the wing is restored. Normal flight can be resumed once recovery is complete.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> The maneuver is normally quite safe, and, if correctly handled, leads to only a small loss in altitude (20–30 m/66–98 ft). It is taught and practised in order for pilots to recognize, avoid, and recover from stalling the aircraft.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> A pilot is required to demonstrate competency in controlling an aircraft during and after a stall for certification in the United States,<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> and it is a routine maneuver for pilots when getting to know the handling of an unfamiliar aircraft type. The only dangerous aspect of a stall is a lack of altitude for recovery. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><span><video id="mwe_player_0" poster="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Spin_%26_recovery.webm/220px--Spin_%26_recovery.webm.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="220" height="124" data-durationhint="26" data-mwtitle="Spin_&_recovery.webm" data-mwprovider="wikimediacommons" resource="/wiki/File:Spin_%26_recovery.webm"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/ab/Spin_%26_recovery.webm/Spin_%26_recovery.webm.480p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="480p.vp9.webm" data-width="854" data-height="480" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/ab/Spin_%26_recovery.webm/Spin_%26_recovery.webm.720p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="720" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/ab/Spin_%26_recovery.webm/Spin_%26_recovery.webm.1080p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="1080p.vp9.webm" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/a/ab/Spin_%26_recovery.webm" type="video/webm; codecs="vp9"" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/ab/Spin_%26_recovery.webm/Spin_%26_recovery.webm.240p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="240p.vp9.webm" data-width="426" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/ab/Spin_%26_recovery.webm/Spin_%26_recovery.webm.360p.webm" type="video/webm; codecs="vp8, vorbis"" data-transcodekey="360p.webm" data-width="640" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/ab/Spin_%26_recovery.webm/Spin_%26_recovery.webm.360p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="360p.vp9.webm" data-width="640" data-height="360" /></video></span><figcaption>Incipient spin & recovery</figcaption></figure> <p>A special form of asymmetric stall in which the aircraft also rotates about its yaw axis is called a <a href="/wiki/Spin_(aerodynamics)" title="Spin (aerodynamics)">spin</a>. A spin can occur if an aircraft is stalled and there is an asymmetric yawing moment applied to it.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> This yawing moment can be aerodynamic (sideslip angle, rudder, adverse yaw from the ailerons), thrust related (p-factor, one engine inoperative on a multi-engine non-centreline thrust aircraft), or from less likely sources such as severe turbulence. The net effect is that one wing is stalled before the other and the aircraft descends rapidly while rotating, and some aircraft cannot recover from this condition without correct pilot control inputs (which must stop yaw) and loading.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> A new solution to the problem of difficult (or impossible) stall-spin recovery is provided by the <a href="/wiki/Ballistic_parachute" title="Ballistic parachute">ballistic parachute</a> recovery system. </p><p>The most common stall-spin scenarios occur on takeoff (<a href="/wiki/Departure_resistance" title="Departure resistance">departure</a> stall) and during landing (base to final turn) because of insufficient airspeed during these maneuvers. Stalls also occur during a go-around manoeuvre if the pilot does not properly respond to the out-of-trim situation resulting from the transition from low power setting to high power setting at low speed.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> Stall speed is increased when the wing surfaces are <a href="/wiki/Icing_(aviation)" class="mw-redirect" title="Icing (aviation)">contaminated with ice</a> or frost creating a rougher surface, and heavier airframe due to ice accumulation. </p><p>Stalls occur not only at slow airspeed, but at any speed when the wings exceed their critical angle of attack. Attempting to increase the angle of attack at 1g by moving the control column back normally causes the aircraft to climb. However, aircraft often experience higher g-forces, such as when turning steeply or pulling out of a dive. In these cases, the wings are already operating at a higher angle of attack to create the necessary force (derived from lift) to accelerate in the desired direction. Increasing the g-loading still further, by pulling back on the controls, can cause the stalling angle to be exceeded, even though the aircraft is flying at a high speed.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> These "high-speed stalls" produce the same buffeting characteristics as 1g stalls and can also initiate a spin if there is also any yawing. </p> <div class="mw-heading mw-heading3"><h3 id="Characteristics">Characteristics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=5" title="Edit section: Characteristics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Different aircraft types have different stalling characteristics but they only have to be good enough to satisfy their particular Airworthiness authority. For example, the <a href="/wiki/Short_Belfast" title="Short Belfast">Short Belfast</a> heavy freighter had a marginal nose drop which was acceptable to the <a href="/wiki/Royal_Air_Force" title="Royal Air Force">Royal Air Force</a>. When the aircraft were sold to a civil operator they had to be fitted with a stick pusher to meet the civil requirements.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> Some aircraft may naturally have very good behaviour well beyond what is required. For example, first generation jet transports have been described as having an immaculate nose drop at the stall.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Loss of lift on one wing is acceptable as long as the roll, including during stall recovery, doesn't exceed about 20 degrees, or in turning flight the roll shall not exceed 90 degrees bank.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> If pre-stall warning followed by nose drop and limited wing drop are naturally not present or are deemed to be unacceptably marginal by an Airworthiness authority the stalling behaviour has to be made good enough with airframe modifications or devices such as a stick shaker and pusher. These are described in "Warning and safety devices". </p> <div class="mw-heading mw-heading2"><h2 id="Stall_speeds">Stall speeds<span class="anchor" id="Speed"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=6" title="Edit section: Stall speeds"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:AltitudeEnvelopeText.GIF" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/AltitudeEnvelopeText.GIF/310px-AltitudeEnvelopeText.GIF" decoding="async" width="310" height="270" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/b/bd/AltitudeEnvelopeText.GIF 1.5x" data-file-width="459" data-file-height="400" /></a><figcaption><a href="/wiki/Flight_envelope" title="Flight envelope">Flight envelope</a> of a fast aeroplane. Left edge is the stall speed curve.</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Airspeed_indicator.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Airspeed_indicator.svg/150px-Airspeed_indicator.svg.png" decoding="async" width="150" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Airspeed_indicator.svg/225px-Airspeed_indicator.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Airspeed_indicator.svg/300px-Airspeed_indicator.svg.png 2x" data-file-width="512" data-file-height="514" /></a><figcaption>The airspeed indicator is often used to indirectly predict stall conditions.</figcaption></figure> <p>Stalls depend only on angle of attack, not <a href="/wiki/Airspeed" title="Airspeed">airspeed</a>.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> However, the slower an aircraft flies, the greater the angle of attack it needs to produce lift equal to the aircraft's weight.<sup id="cite_ref-phakcp4_25-0" class="reference"><a href="#cite_note-phakcp4-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> As the speed decreases further, at some point this angle will be equal to the <a href="/wiki/Critical_angle_of_attack" class="mw-redirect" title="Critical angle of attack">critical (stall) angle of attack</a>. This speed is called the "stall speed". An aircraft flying at its stall speed cannot climb, and an aircraft flying below its stall speed cannot stop descending. Any attempt to do so by increasing angle of attack, without first increasing airspeed, will result in a stall. </p><p>The actual stall speed will vary depending on the airplane's weight, altitude, configuration, and vertical and lateral acceleration. <a href="/wiki/Slipstream#Spiral_slipstream" title="Slipstream">Propeller slipstream</a> reduces the stall speed by energizing the flow over the wings.<sup id="cite_ref-Davies_26-0" class="reference"><a href="#cite_note-Davies-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 61">: 61 </span></sup> </p><p>Speed definitions vary and include: </p> <ul><li>V<sub>S</sub>: Stall speed: the speed at which the airplane exhibits those qualities accepted as defining the stall.<sup id="cite_ref-Davies_26-1" class="reference"><a href="#cite_note-Davies-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 8">: 8 </span></sup></li> <li>V<sub>S0</sub>: The stall speed or minimum steady flight speed in landing configuration.<sup id="cite_ref-rgl.faa.gov_27-0" class="reference"><a href="#cite_note-rgl.faa.gov-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> The zero-thrust stall speed at the most extended landing flap setting.<sup id="cite_ref-Davies_26-2" class="reference"><a href="#cite_note-Davies-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 8">: 8 </span></sup></li> <li>V<sub>S1</sub>: The stall speed or minimum steady flight speed obtained in a specified configuration.<sup id="cite_ref-rgl.faa.gov_27-1" class="reference"><a href="#cite_note-rgl.faa.gov-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> The zero thrust stall speed at a specified flap setting.<sup id="cite_ref-Davies_26-3" class="reference"><a href="#cite_note-Davies-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 8">: 8 </span></sup></li></ul> <p>An airspeed indicator, for the purpose of flight-testing, may have the following markings: the bottom of the white arc indicates V<sub>S0</sub> at maximum weight, while the bottom of the green arc indicates V<sub>S1</sub> at maximum weight. While an aircraft's V<sub>S</sub> speed is computed by design, its V<sub>S0</sub> and V<sub>S1</sub> speeds must be demonstrated empirically by flight testing.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_accelerated_and_turning_flight">In accelerated and turning flight</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=7" title="Edit section: In accelerated and turning flight"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Accelerated_stall.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Accelerated_stall.gif/350px-Accelerated_stall.gif" decoding="async" width="350" height="263" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Accelerated_stall.gif/525px-Accelerated_stall.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/a/a4/Accelerated_stall.gif 2x" data-file-width="700" data-file-height="525" /></a><figcaption>Illustration of a turning flight stall, occurring during a co-ordinated turn with progressively increasing angle of bank.</figcaption></figure> <p>The normal stall speed, specified by the V<sub>S</sub> values above, always refers to straight and level flight, where the <a href="/wiki/Load_factor_(aeronautics)" title="Load factor (aeronautics)">load factor</a> is equal to 1g. However, if the aircraft is turning or pulling up from a dive, additional lift is required to provide the vertical or lateral acceleration, and so the stall speed is higher. An accelerated stall is a stall that occurs under such conditions.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p><p>In a <a href="/wiki/Banked_turn#Aviation" title="Banked turn">banked turn</a>, the <a href="/wiki/Lift_(force)" title="Lift (force)">lift</a> required is equal to the <a href="/wiki/Weight" title="Weight">weight</a> of the aircraft plus extra lift to provide the <a href="/wiki/Centripetal_force" title="Centripetal force">centripetal force</a> necessary to perform the turn:<sup id="cite_ref-Clancy5.22_30-0" class="reference"><a href="#cite_note-Clancy5.22-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=nW}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>n</mi> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=nW}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba0589d413384a87c8580a3520b9e9eb58355951" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.511ex; height:2.176ex;" alt="{\displaystyle L=nW}"></span></dd></dl> <p>where: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> = lift</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> = load factor (greater than 1 in a turn)</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> = weight of the aircraft</dd></dl> <p>To achieve the extra lift, the <a href="/wiki/Lift_coefficient" title="Lift coefficient">lift coefficient</a>, and so the angle of attack, will have to be higher than it would be in straight and level flight at the same speed. Therefore, given that the stall always occurs at the same critical angle of attack,<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> by increasing the load factor (e.g. by tightening the turn) the critical angle will be reached at a higher airspeed:<sup id="cite_ref-Clancy5.22_30-1" class="reference"><a href="#cite_note-Clancy5.22-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{st}}=V_{\text{s}}{\sqrt {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>st</mtext> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{st}}=V_{\text{s}}{\sqrt {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0e2820618eec1e8cea49a29280fbf62e448cb75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.54ex; height:3.009ex;" alt="{\displaystyle V_{\text{st}}=V_{\text{s}}{\sqrt {n}}}"></span></dd></dl> <p>where: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{st}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>st</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{st}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b20ea73bba40523c096e383828f1e0c5cd45d275" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.875ex; height:2.509ex;" alt="{\displaystyle V_{\text{st}}}"></span> = stall speed</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0622261e59ddd90ea5a01382cc5e12f756a45af2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.235ex; height:2.509ex;" alt="{\displaystyle V_{\text{s}}}"></span> = stall speed of the aircraft in straight, level flight</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> = load factor</dd></dl> <p>The table that follows gives some examples of the relation between the <a href="/wiki/Angle_of_bank" class="mw-redirect" title="Angle of bank">angle of bank</a> and the square root of the load factor. It derives from the trigonometric relation (<a href="/wiki/Cosecant" class="mw-redirect" title="Cosecant">secant</a>) between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>. </p> <dl><dd><table class="wikitable" style="text-align:center;"> <tbody><tr> <th>Bank angle </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a2994734eae382ce30100fb17b9447fd8e99f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.331ex; height:3.009ex;" alt="{\displaystyle {\sqrt {n}}}"></span> </th></tr> <tr> <td>30° </td> <td>1.07 </td></tr> <tr> <td>45° </td> <td>1.19 </td></tr> <tr> <td>60° </td> <td>1.41 </td></tr></tbody></table></dd></dl> <p>For example, in a turn with bank angle of 45°, V<sub>st</sub> is 19% higher than V<sub>s</sub>. </p><p>According to <a href="/wiki/Federal_Aviation_Administration" title="Federal Aviation Administration">Federal Aviation Administration</a> (FAA) terminology, the above example illustrates a so-called <b>turning flight stall</b>, while the term <i>accelerated</i> is used to indicate an <i>accelerated turning stall</i> only, that is, a turning flight stall where the airspeed decreases at a given rate.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p><p>The tendency of powerful propeller aircraft to roll in reaction to engine <a href="/wiki/Torque" title="Torque">torque</a> creates a risk of accelerated stalls. When an aircraft such as an <a href="/wiki/Mitsubishi_MU-2" title="Mitsubishi MU-2">Mitsubishi MU-2</a> is flying close to its stall speed, the sudden application of full power may cause it to roll, creating the same aerodynamic conditions that induce an accelerated stall in turning flight even if the pilot did not deliberately initiate a turn. Pilots of such aircraft are trained to avoid sudden and drastic increases in power at low altitude and low airspeed, as an accelerated stall under these conditions is very difficult to safely recover from.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p><p>A notable example of an air accident involving a low-altitude turning flight stall is the <a href="/wiki/1994_Fairchild_Air_Force_Base_B-52_crash" title="1994 Fairchild Air Force Base B-52 crash">1994 Fairchild Air Force Base B-52 crash</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Types">Types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=8" title="Edit section: Types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Dynamic_stall">Dynamic stall</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=9" title="Edit section: Dynamic stall"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Stall_delay"></span> Dynamic stall is a non-linear unsteady aerodynamic effect that occurs when airfoils rapidly change the angle of attack. The rapid change can cause a strong <a href="/wiki/Vortex" title="Vortex">vortex</a> to be shed from the leading edge of the aerofoil, and travel backwards above the wing.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> The vortex, containing high-velocity airflows, briefly increases the lift produced by the wing. As soon as it passes behind the trailing edge, however, the lift reduces dramatically, and the wing is in normal stall.<sup id="cite_ref-Filippone_40-0" class="reference"><a href="#cite_note-Filippone-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>Dynamic stall is an effect most associated with helicopters and flapping wings, though also occurs in wind turbines,<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> and due to gusting airflow. During forward flight, some regions of a helicopter blade may incur flow that reverses (compared to the direction of blade movement), and thus includes rapidly changing angles of attack. Oscillating (flapping) wings, such as those of insects like the <a href="/wiki/Bumblebee" title="Bumblebee">bumblebee</a>—may rely almost entirely on dynamic stall for lift production, provided the oscillations are fast compared to the speed of flight, and the angle of the wing changes rapidly compared to airflow direction.<sup id="cite_ref-Filippone_40-1" class="reference"><a href="#cite_note-Filippone-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>Stall delay can occur on <a href="/wiki/Airfoils" class="mw-redirect" title="Airfoils">airfoils</a> subject to a high angle of attack and a three-dimensional flow. When the angle of attack on an airfoil is increasing rapidly, the flow will remain substantially attached to the airfoil to a significantly higher angle of attack than can be achieved in steady-state conditions. As a result, the stall is delayed momentarily and a lift coefficient significantly higher than the steady-state maximum is achieved. The effect was first noticed on <a href="/wiki/Propeller_(aircraft)" class="mw-redirect" title="Propeller (aircraft)">propellers</a>.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Deep_stall">Deep stall</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=10" title="Edit section: Deep stall"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Deep_stall.svg" class="mw-file-description"><img alt="A diagram with the side view of two aircraft in different attitudes demonstrates the airflow around them in normal and stalled flight." src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Deep_stall.svg/220px-Deep_stall.svg.png" decoding="async" width="220" height="212" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Deep_stall.svg/330px-Deep_stall.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Deep_stall.svg/440px-Deep_stall.svg.png 2x" data-file-width="524" data-file-height="506" /></a><figcaption>Diagrammatic representation of a deep stall. Normal flight (above), Deep stall condition - T-tail in "shadow" of wing (below)</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Schweizer_1-36_NASA.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Schweizer_1-36_NASA.jpg/220px-Schweizer_1-36_NASA.jpg" decoding="async" width="220" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Schweizer_1-36_NASA.jpg/330px-Schweizer_1-36_NASA.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Schweizer_1-36_NASA.jpg/440px-Schweizer_1-36_NASA.jpg 2x" data-file-width="3000" data-file-height="2372" /></a><figcaption>A <a href="/wiki/Schweizer_SGS_1-36" class="mw-redirect" title="Schweizer SGS 1-36">Schweizer SGS 1-36</a> being used for deep-stall research by <a href="/wiki/NASA" title="NASA">NASA</a> over the <a href="/wiki/Mojave_Desert" title="Mojave Desert">Mojave Desert</a> in 1983.</figcaption></figure> <p>A <i>deep stall</i> (or <i>super-stall</i>) is a dangerous type of stall that affects certain <a href="/wiki/Aircraft" title="Aircraft">aircraft</a> designs, notably jet aircraft with a <a href="/wiki/T-tail" title="T-tail">T-tail</a> configuration and rear-mounted engines.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> In these designs, the turbulent wake of a stalled main wing, nacelle-pylon wakes and the wake from the fuselage<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> "blanket" the horizontal stabilizer, rendering the elevators ineffective and preventing the aircraft from recovering from the stall. Aircraft with rear-mounted nacelles may also exhibit a loss of <a href="/wiki/Thrust" title="Thrust">thrust</a>.<sup id="cite_ref-TaylorPg9_45-0" class="reference"><a href="#cite_note-TaylorPg9-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> T-tail <a href="/wiki/Propeller_aircraft" class="mw-redirect" title="Propeller aircraft">propeller aircraft</a> are generally resistant to deep stalls, because the prop wash increases airflow over the wing root,<sup id="cite_ref-Parachutes_46-0" class="reference"><a href="#cite_note-Parachutes-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> but may be fitted with a <a href="/wiki/Precautionary_principle" title="Precautionary principle">precautionary</a> vertical tail booster during <a href="/wiki/Flight_testing" class="mw-redirect" title="Flight testing">flight testing</a>, as happened with the <a href="/wiki/A400M" class="mw-redirect" title="A400M">A400M</a>.<sup id="cite_ref-boeing_47-0" class="reference"><a href="#cite_note-boeing-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Brian_Trubshaw" title="Brian Trubshaw">Trubshaw</a><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> gives a broad definition of deep stall as penetrating to such angles of attack <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d86dbd6183264b2f8569da1751380b173c7b185" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\textstyle \alpha }"></span> that pitch control effectiveness is reduced by the wing and nacelle wakes. He also gives a definition that relates deep stall to a locked-in condition where recovery is impossible. This is a single value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d86dbd6183264b2f8569da1751380b173c7b185" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\textstyle \alpha }"></span>, for a given aircraft configuration, where there is no pitching moment, i.e. a trim point. </p><p>Typical values both for the range of deep stall, as defined above, and the locked-in trim point are given for the <a href="/wiki/Douglas_DC-9" class="mw-redirect" title="Douglas DC-9">Douglas DC-9</a> Series 10 by Schaufele.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> These values are from wind-tunnel tests for an early design. The final design had no locked-in trim point, so recovery from the deep stall region was possible, as required to meet certification rules. Normal stall beginning at the "g break" (sudden decrease of the vertical <a href="/wiki/Load_factor_(aeronautics)" title="Load factor (aeronautics)">load factor</a><sup id="cite_ref-boeing_47-1" class="reference"><a href="#cite_note-boeing-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup>) was at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \alpha =18^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>=</mo> <msup> <mn>18</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \alpha =18^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8859fcf9def77c05fc63140613b2eaa68ca04ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.965ex; height:2.176ex;" alt="{\textstyle \alpha =18^{\circ }}"></span>, deep stall started at about 30°, and the locked-in unrecoverable trim point was at 47°. </p><p>The very high <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d86dbd6183264b2f8569da1751380b173c7b185" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\textstyle \alpha }"></span> for a deep stall locked-in condition occurs well beyond the normal stall but can be attained very rapidly, as the aircraft is unstable beyond the normal stall and requires immediate action to arrest it. The loss of lift causes high sink rates, which, together with the low forward speed at the normal stall, give a high <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d86dbd6183264b2f8569da1751380b173c7b185" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\textstyle \alpha }"></span> with little or no rotation of the aircraft.<sup id="cite_ref-trubshaw_50-0" class="reference"><a href="#cite_note-trubshaw-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> <a href="/wiki/BAC_1-11" class="mw-redirect" title="BAC 1-11">BAC 1-11</a> G-ASHG, during stall flight tests before the type was modified to prevent a locked-in deep-stall condition, descended at over 10,000 feet per minute (50 m/s) and struck the ground in a flat attitude moving only 70 feet (20 m) forward after initial impact.<sup id="cite_ref-trubshaw_50-1" class="reference"><a href="#cite_note-trubshaw-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> Sketches showing how the wing wake blankets the tail may be misleading if they imply that deep stall requires a high body angle. Taylor and Ray<sup id="cite_ref-TaylorPg20_51-0" class="reference"><a href="#cite_note-TaylorPg20-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> show how the aircraft attitude in the deep stall is relatively flat, even less than during the normal stall, with very high negative flight-path angles. </p><p>Effects similar to deep stall had been known to occur on some aircraft designs before the term was coined. A prototype <a href="/wiki/Gloster_Javelin" title="Gloster Javelin">Gloster Javelin</a> (<a href="/wiki/United_Kingdom_military_aircraft_serials" class="mw-redirect" title="United Kingdom military aircraft serials">serial</a> <i>WD808</i>) was lost in a crash on 11 June 1953 to a "locked-in" stall.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> However, Waterton<sup id="cite_ref-waterton_53-0" class="reference"><a href="#cite_note-waterton-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> states that the trimming tailplane was found to be the wrong way for recovery. Low-speed handling tests were being done to assess a new wing.<sup id="cite_ref-waterton_53-1" class="reference"><a href="#cite_note-waterton-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Handley_Page_Victor" title="Handley Page Victor">Handley Page Victor</a> <i>XL159</i> was lost to a "stable stall" on 23 March 1962.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> It had been clearing the fixed droop leading edge with the test being stall approach, landing configuration, C of G aft. The brake parachute had not been streamed, as it may have hindered rear crew escape.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p><p>The name "deep stall" first came into widespread use after <a href="/wiki/1963_BAC_One-Eleven_test_crash" title="1963 BAC One-Eleven test crash">the crash</a> of the prototype <a href="/wiki/BAC_1-11" class="mw-redirect" title="BAC 1-11">BAC 1-11</a> G-ASHG on 22 October 1963, which killed its crew.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> This led to changes to the aircraft, including the installation of a <a href="/wiki/Stick_shaker" title="Stick shaker">stick shaker</a> (see below) to clearly warn the pilot of an impending stall. Stick shakers are now a standard part of commercial airliners. Nevertheless, the problem continues to cause accidents; on 3 June 1966, a <a href="/wiki/Hawker_Siddeley_Trident" title="Hawker Siddeley Trident">Hawker Siddeley Trident</a> (G-ARPY), was <a href="/wiki/1966_Felthorpe_Trident_crash" title="1966 Felthorpe Trident crash">lost to deep stall</a>;<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> deep stall is suspected to be cause of another Trident (the <a href="/wiki/British_European_Airways_Flight_548" title="British European Airways Flight 548">British European Airways Flight 548</a> <i>G-ARPI</i>) crash – known as the "Staines Disaster" – on 18 June 1972, when the crew failed to notice the conditions and had disabled the stall-recovery system.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> On 3 April 1980, a prototype of the <a href="/wiki/Canadair_Challenger" class="mw-redirect" title="Canadair Challenger">Canadair Challenger</a> business jet crashed after initially entering a deep stall from 17,000 ft and having both engines flame-out. It recovered from the deep stall after deploying the anti-spin parachute but crashed after being unable to jettison the chute or relight the engines. One of the test pilots was unable to escape from the aircraft in time and was killed.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> On 26 July 1993, a <a href="/wiki/Canadair_CRJ-100" class="mw-redirect" title="Canadair CRJ-100">Canadair CRJ-100</a> was lost in flight testing due to a deep stall.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> It has been reported that a <a href="/wiki/Boeing_727" title="Boeing 727">Boeing 727</a> entered a deep stall in a flight test, but the pilot was able to rock the airplane to increasingly higher bank angles until the nose finally fell through and normal control response was recovered.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> The crash of <a href="/wiki/West_Caribbean_Airways_Flight_708" title="West Caribbean Airways Flight 708">West Caribbean Airways Flight 708</a> in 2005 was also attributed to a deep stall. </p><p>Deep stalls can occur at apparently normal pitch attitudes, if the aircraft is descending quickly enough.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> The airflow is coming from below, so the angle of attack is increased. Early speculation on reasons for the crash of <a href="/wiki/Air_France_Flight_447" title="Air France Flight 447">Air France Flight 447</a> blamed an unrecoverable deep stall, since it descended in an almost flat attitude (15°) at an angle of attack of 35° or more. However, it was held in a stalled glide by the pilots, who held the nose up amid all the confusion of what was actually happening to the aircraft.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Canard_(aeronautics)" title="Canard (aeronautics)">Canard-configured</a> aircraft are also at risk of getting into a deep stall. Two <a href="/wiki/Velocity_XL" title="Velocity XL">Velocity</a> aircraft crashed due to locked-in deep stalls.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> Testing revealed that the addition of <a href="/wiki/Leading-edge_cuff" title="Leading-edge cuff">leading-edge cuffs</a> to the outboard wing prevented the aircraft from getting into a deep stall. The Piper Advanced Technologies PAT-1, N15PT, another canard-configured aircraft, also crashed in an accident attributed to a deep stall.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> Wind-tunnel testing of the design at the <a href="/wiki/NASA_Langley_Research_Center" class="mw-redirect" title="NASA Langley Research Center">NASA Langley Research Center</a> showed that it was vulnerable to a deep stall.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p>In the early 1980s, a <a href="/wiki/Schweizer_SGS_1-36" class="mw-redirect" title="Schweizer SGS 1-36">Schweizer SGS 1-36</a> sailplane was modified for <a href="/wiki/NASA" title="NASA">NASA</a>'s controlled deep-stall flight program.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Tip_stall">Tip stall</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=11" title="Edit section: Tip stall"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Wing sweep and taper cause stalling at the <a href="/wiki/Wing_tip" title="Wing tip">tip of a wing</a> before the root. The position of a swept wing along the fuselage has to be such that the lift from the wing root, well forward of the aircraft center of gravity (c.g.), must be balanced by the wing tip, well aft of the c.g.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> If the tip stalls first the balance of the aircraft is upset causing dangerous nose <a href="/wiki/Pitch_up" class="mw-redirect" title="Pitch up">pitch up</a>. Swept wings have to incorporate features which prevent pitch-up caused by premature tip stall. </p><p>A swept wing has a higher lift coefficient on its outer panels than on the inner wing, causing them to reach their maximum lift capability first and to stall first. This is caused by the downwash pattern associated with swept/tapered wings.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> To delay tip stall the outboard wing is given <a href="/wiki/Washout_(aviation)" class="mw-redirect" title="Washout (aviation)">washout</a> to reduce its angle of attack. The root can also be modified with a suitable leading-edge and airfoil section to make sure it stalls before the tip. However, when taken beyond stalling incidence the tips may still become fully stalled before the inner wing despite initial separation occurring inboard. This causes pitch-up after the stall and entry to a super-stall on those aircraft with super-stall characteristics.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> Span-wise flow of the boundary layer is also present on swept wings and causes tip stall. The amount of boundary layer air flowing outboard can be reduced by generating vortices with a leading-edge device such as a fence, notch, saw tooth or a set of vortex generators behind the leading edge.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Warning_and_safety_devices">Warning and safety devices</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=12" title="Edit section: Warning and safety devices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Fixed-wing aircraft can be equipped with devices to prevent or postpone a stall or to make it less (or in some cases more) severe, or to make recovery easier. </p> <ul><li>An <b>aerodynamic twist</b> can be introduced to the wing with the leading edge near the wing tip twisted downward. This is called <b>washout</b> and causes the <a href="/wiki/Wing_root" title="Wing root">wing root</a> to stall before the wing tip. This makes the stall gentle and progressive. Since the stall is delayed at the wing tips, where the <a href="/wiki/Aileron" title="Aileron">ailerons</a> are, roll control is maintained when the stall begins.</li> <li>A <b><a href="/wiki/Stall_strip" class="mw-redirect" title="Stall strip">stall strip</a></b> is a small sharp-edged device that, when attached to the leading edge of a wing, encourages the stall to start there in preference to any other location on the wing. If attached close to the wing root, it makes the stall gentle and progressive; if attached near the wing tip, it encourages the aircraft to drop a wing when stalling.</li> <li>A <b><a href="/wiki/Wing_fence" title="Wing fence">stall fence</a></b> is a flat plate in the direction of the <a href="/wiki/Chord_(aircraft)" class="mw-redirect" title="Chord (aircraft)">chord</a> to stop separated flow progressing out along the wing<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup></li> <li><b><a href="/wiki/Vortex_generator" title="Vortex generator">Vortex generators</a></b>, tiny strips of metal or plastic placed on top of the wing near the leading edge that protrude past the <a href="/wiki/Boundary_layer" title="Boundary layer">boundary layer</a> into the free stream. As the name implies, they energize the boundary layer by mixing free stream airflow with boundary layer flow, thereby creating vortices, this increases the <a href="/wiki/Momentum" title="Momentum">momentum</a> in the boundary layer. By increasing the momentum of the boundary layer, airflow separation and the resulting stall may be delayed.</li> <li>An <b>anti-stall strake</b> is a <a href="/wiki/Leading_edge_extension" class="mw-redirect" title="Leading edge extension">leading edge extension</a> that generates a <a href="/wiki/Vortex" title="Vortex">vortex</a> on the wing upper surface to postpone the stall.</li> <li>A <b><a href="/wiki/Stick_pusher" title="Stick pusher">stick pusher</a></b> is a mechanical device that prevents the pilot from stalling an aircraft. It pushes the elevator control forward as the stall is approached, causing a reduction in the angle of attack. In generic terms, a stick pusher is known as a <i>stall identification device</i> or <i>stall identification system</i>.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup></li> <li>A <b><a href="/wiki/Stick_shaker" title="Stick shaker">stick shaker</a></b> is a mechanical device that shakes the pilot's controls to warn of the onset of stall.</li> <li>A <b>stall warning</b> is an electronic or mechanical device that sounds an <a href="/wiki/Buzzer" title="Buzzer">audible warning</a> as the stall speed is approached. The majority of aircraft contain some form of this device that warns the pilot of an impending stall. The simplest such device is a <i>stall warning horn</i>, which consists of either a <a href="/wiki/Pressure" title="Pressure">pressure</a> <a href="/wiki/Sensor" title="Sensor">sensor</a> or a movable metal tab that actuates a <a href="/wiki/Switch" title="Switch">switch</a> and produces an audible warning in response.</li> <li>An <b>angle-of-attack indicator</b> for light aircraft, the "AlphaSystemsAOA" and a nearly identical "<b>lift reserve indicator</b>", are both pressure-differential instruments that display margin above stall and/or angle of attack on an instantaneous, continuous readout. The General Technics CYA-100 displays true angle of attack via a magnetically coupled vane. An AOA indicator provides a visual display of the amount of available lift throughout its slow-speed envelope regardless of the many variables that act upon an aircraft. This indicator is immediately responsive to changes in speed, angle of attack, and wind conditions, and automatically compensates for aircraft weight, altitude, and temperature.</li> <li>An <b>angle of attack limiter</b> or an "alpha limiter" is a flight computer that automatically prevents pilot input from causing the plane to rise over the stall angle. Some alpha limiters can be disabled by the pilot.</li></ul> <p>Stall warning systems often involve inputs from a broad range of sensors and systems to include a dedicated angle of attack sensor. </p><p>Blockage, damage, or inoperation of stall and angle of attack (AOA) probes can lead to unreliability of the stall warning and cause the stick pusher, overspeed warning, autopilot, and yaw damper to malfunction.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> </p><p>If a forward <a href="/wiki/Canard_(aeronautics)" title="Canard (aeronautics)">canard</a> is used for pitch control, rather than an aft tail, the canard is designed to meet the airflow at a slightly greater angle of attack than the wing. Therefore, when the aircraft pitch increases abnormally, the canard will usually stall first, causing the nose to drop and so preventing the wing from reaching its critical AOA. Thus, the risk of main-wing stalling is greatly reduced. However, if the main wing stalls, recovery becomes difficult, as the canard is more deeply stalled, and angle of attack increases rapidly.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> </p><p>If an aft tail is used, the wing is designed to stall before the tail. In this case, the wing can be flown at higher lift coefficient (closer to stall) to produce more overall lift. </p><p>Most military combat aircraft have an angle of attack indicator among the pilot's instruments, which lets the pilot know precisely how close to the stall point the aircraft is. Modern airliner instrumentation may also measure angle of attack, although this information may not be directly displayed on the pilot's display, instead driving a stall warning indicator or giving performance information to the flight computer (for fly-by-wire systems). </p> <div class="mw-heading mw-heading2"><h2 id="Flight_beyond_the_stall">Flight beyond the stall</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=13" title="Edit section: Flight beyond the stall"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As a wing stalls, <a href="/wiki/Aileron" title="Aileron">aileron</a> effectiveness is reduced, rendering the plane difficult to control and increasing the risk of a spin. Post stall, steady flight beyond the stalling angle (where the coefficient of lift is largest) requires engine thrust to replace lift, as well as alternative controls to replace the loss of effectiveness of the ailerons. Short-term stalls at 90–120° (e.g. <a href="/wiki/Pugachev%27s_cobra" class="mw-redirect" title="Pugachev's cobra">Pugachev's cobra</a>) are sometimes performed at airshows.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> The highest angle of attack in sustained flight so far demonstrated was 70° in the <a href="/wiki/X-31" class="mw-redirect" title="X-31">X-31</a> at the <a href="/wiki/Dryden_Flight_Research_Center" class="mw-redirect" title="Dryden Flight Research Center">Dryden Flight Research Center</a>.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> Sustained post-stall flight is a type of <a href="/wiki/Supermaneuverability" title="Supermaneuverability">supermaneuverability</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Spoilers">Spoilers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=14" title="Edit section: Spoilers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Spoiler_(aeronautics)" title="Spoiler (aeronautics)">Spoiler (aeronautics)</a></div> <p>Except for flight training, airplane testing, and <a href="/wiki/Aerobatics" title="Aerobatics">aerobatics</a>, a stall is usually an undesirable event. <a href="/wiki/Spoiler_(aeronautics)" title="Spoiler (aeronautics)">Spoilers</a> (sometimes called lift dumpers), however, are devices that are intentionally deployed to create a carefully controlled <a href="/wiki/Flow_separation" title="Flow separation">flow separation</a> over part of an aircraft's wing to reduce the lift it generates, increase the drag, and allow the aircraft to descend more rapidly without gaining speed.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> Spoilers are also deployed asymmetrically (one wing only) to enhance roll control. Spoilers can also be used on aborted take-offs and after main wheel contact on landing to increase the aircraft's weight on its wheels for better braking action. </p><p>Unlike powered airplanes, which can control descent by increasing or decreasing thrust, gliders have to increase drag to increase the rate of descent. In high-performance gliders, spoiler deployment is extensively used to control the approach to landing. </p><p>Spoilers can also be thought of as "lift reducers" because they reduce the lift of the wing in which the spoiler resides. For example, an uncommanded roll to the left could be reversed by raising the right wing spoiler (or only a few of the spoilers present in large airliner wings). This has the advantage of avoiding the need to increase lift in the wing that is dropping (which may bring that wing closer to stalling). </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=15" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>German aviator <a href="/wiki/Otto_Lilienthal" title="Otto Lilienthal">Otto Lilienthal</a> died while flying in 1896 as the result of a stall. <a href="/wiki/Wilbur_Wright" class="mw-redirect" title="Wilbur Wright">Wilbur Wright</a> encountered stalls for the first time in 1901, while flying his second glider. Awareness of Lilienthal's accident and Wilbur's experience motivated the <a href="/wiki/Wright_Brothers" class="mw-redirect" title="Wright Brothers">Wright Brothers</a> to design their plane in "<a href="/wiki/Canard_(aeronautics)" title="Canard (aeronautics)">canard</a>" configuration. This purportedly made recoveries from stalls easier and more gentle. The design allegedly saved the brothers' lives more than once.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> Although, canard configurations, without careful design, can actually make a stall unrecoverable.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> </p><p>The aircraft engineer <a href="/wiki/Juan_de_la_Cierva" title="Juan de la Cierva">Juan de la Cierva</a> worked on his "<a href="/wiki/Autogiro" class="mw-redirect" title="Autogiro">Autogiro</a>" project to develop a <a href="/wiki/Rotary-wing_aircraft" class="mw-redirect" title="Rotary-wing aircraft">rotary wing aircraft</a> which, he hoped, would be unable to stall and which therefore would be safer than aeroplanes. In developing the resulting "<a href="/wiki/Autogyro" title="Autogyro">autogyro</a>" aircraft, he solved many engineering problems which made the <a href="/wiki/Helicopter" title="Helicopter">helicopter</a> possible. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=16" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt>Articles</dt></dl> <ul><li><a href="/wiki/Aviation_safety" title="Aviation safety">Aviation safety</a></li> <li><a href="/wiki/Coffin_corner_(aerodynamics)" title="Coffin corner (aerodynamics)">Coffin corner (aerodynamics)</a></li> <li><a href="/wiki/Compressor_stall" title="Compressor stall">Compressor stall</a></li> <li><a href="/wiki/Lift_coefficient" title="Lift coefficient">Lift coefficient</a></li> <li><a href="/wiki/Spin_(flight)" class="mw-redirect" title="Spin (flight)">Spin (flight)</a></li> <li><a href="/wiki/Spoiler_(aeronautics)" title="Spoiler (aeronautics)">Spoiler (aeronautics)</a></li> <li><a href="/wiki/Wing_twist" title="Wing twist">Wing twist</a></li></ul> <dl><dt>Notable accidents</dt></dl> <ul><li><a href="/wiki/1963_BAC_One-Eleven_test_crash" title="1963 BAC One-Eleven test crash">1963 BAC One-Eleven test crash</a></li> <li><a href="/wiki/1966_Felthorpe_Trident_crash" title="1966 Felthorpe Trident crash">1966 Felthorpe Trident crash</a></li> <li><a href="/wiki/British_European_Airways_Flight_548" title="British European Airways Flight 548">British European Airways Flight 548</a></li> <li><a href="/wiki/China_Airlines_Flight_140" title="China Airlines Flight 140">China Airlines Flight 140</a></li> <li><a href="/wiki/China_Airlines_Flight_676" title="China Airlines Flight 676">China Airlines Flight 676</a></li> <li><a href="/wiki/Yeti_Airlines_Flight_691" title="Yeti Airlines Flight 691">Yeti Airlines Flight 691</a></li> <li><a href="/wiki/Air_France_Flight_447" title="Air France Flight 447">Air France Flight 447</a></li> <li><a href="/wiki/Colgan_Air_Flight_3407" title="Colgan Air Flight 3407">Colgan Air Flight 3407</a></li> <li><a href="/wiki/Turkish_Airlines_Flight_1951" title="Turkish Airlines Flight 1951">Turkish Airlines Flight 1951</a></li> <li><a href="/wiki/Indonesia_AirAsia_Flight_8501" title="Indonesia AirAsia Flight 8501">Indonesia AirAsia Flight 8501</a></li> <li><a href="/wiki/West_Caribbean_Airways_Flight_708" title="West Caribbean Airways Flight 708">West Caribbean Airways Flight 708</a></li> <li><a href="/wiki/2017_Teterboro_Learjet_crash" title="2017 Teterboro Learjet crash">2017 Teterboro Learjet crash</a></li> <li><a href="/wiki/Northwest_Orient_Airlines_Flight_6231" title="Northwest Orient Airlines Flight 6231">Northwest Orient Airlines Flight 6231</a></li> <li><a href="/wiki/Voepass_Linhas_A%C3%A9reas_Flight_2283" class="mw-redirect" title="Voepass Linhas Aéreas Flight 2283">Voepass Linhas Aéreas Flight 2283</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=17" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-Crane-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Crane_1-0">^</a></b></span> <span class="reference-text">Crane, Dale: <i>Dictionary of Aeronautical Terms, third edition</i>, p. 486. Aviation Supplies & Academics, 1997. <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-56027-287-2" title="Special:BookSources/1-56027-287-2">1-56027-287-2</a></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Benjamin Gal-Or, <i>Vectored Propulsion, Supermaneuverability, and Robot Aircraft</i>, Springer Verlag, 1990, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-97161-0" title="Special:BookSources/0-387-97161-0">0-387-97161-0</a>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-97161-0" title="Special:BookSources/3-540-97161-0">3-540-97161-0</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">USAF & NATO Report RTO-TR-015 AC/323/(HFM-015)/TP-1 (2001)</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Clancy, L.J., <i>Aerodynamics</i>, Section 5.7</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><i>Design For Air Combat</i>, Ray Whitford 1987, Jane's Publishing Company limited, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0%2B7106%2B04262" title="Special:BookSources/0+7106+04262">0 7106 04262</a>, p. 15</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><i>Understanding Aerodynamics – Arguing From The Real Physics</i>, Doug McLean 2013, John Wiley & Sons Ltd., <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-119-96751-4" title="Special:BookSources/978-1-119-96751-4">978-1-119-96751-4</a>, p. 322</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190306044446/https://www.flightglobal.com/pdfarchive/view/1965/1965%20-%200721.html?search=stalling">"Archived copy"</a>. Archived from <a rel="nofollow" class="external text" href="https://www.flightglobal.com/pdfarchive/view/1965/1965%20-%200721.html?search=stalling">the original</a> on 6 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">3 March</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Archived+copy&rft_id=https%3A%2F%2Fwww.flightglobal.com%2Fpdfarchive%2Fview%2F1965%2F1965%2520-%25200721.html%3Fsearch%3Dstalling&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: archived copy as title (<a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">link</a>)</span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><i>Handling The Big Jets</i> – Third Edition, D.P. Davies, Civil Aviation Authority, pp. 113–115</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><i>The Design Of The Aeroplane</i>, Darrol Stinton 1983, BSP Professional Books, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-632-01877-1" title="Special:BookSources/0-632-01877-1">0-632-01877-1</a>, p. 464</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190306043914/https://www.flightglobal.com/pdfarchive/view/1978/1978%20-%200550.html?search=april%20going%20for%20a%20spin">"Archived copy"</a>. Archived from <a rel="nofollow" class="external text" href="https://www.flightglobal.com/pdfarchive/view/1978/1978%20-%200550.html?search=april%20going%20for%20a%20spin">the original</a> on 6 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">3 March</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Archived+copy&rft_id=https%3A%2F%2Fwww.flightglobal.com%2Fpdfarchive%2Fview%2F1978%2F1978%2520-%25200550.html%3Fsearch%3Dapril%2520going%2520for%2520a%2520spin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: archived copy as title (<a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">link</a>)</span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatzPlotkin2001" class="citation book cs1">Katz, J; Plotkin, A (2001). <i>Low-Speed Aerodynamics: From Wing Theory to Panel Methods</i>. Cambridge University Press. p. 525.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Low-Speed+Aerodynamics%3A+From+Wing+Theory+to+Panel+Methods&rft.pages=525&rft.pub=Cambridge+University+Press&rft.date=2001&rft.aulast=Katz&rft.aufirst=J&rft.au=Plotkin%2C+A&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Clancy, L.J., <i>Aerodynamics</i>, Sections 5.28 and 16.48</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">Anderson, J.D., <i>A History of Aerodynamics</i>, pp. 296–311</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">FAA Airplane flying handbook <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-60239-003-4" title="Special:BookSources/978-1-60239-003-4">978-1-60239-003-4</a> Chapter 4, p. 7</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">14 CFR part 61</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">Federal Aviation Regulations Part25 section 201</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">FAA Airplane flying handbook <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-60239-003-4" title="Special:BookSources/978-1-60239-003-4">978-1-60239-003-4</a> Chapter 4, pp. 12–16</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">14 CFR part 23</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">FAA Airplane flying handbook <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-60239-003-4" title="Special:BookSources/978-1-60239-003-4">978-1-60239-003-4</a> Chapter 4, pp. 11–12</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">FAA Airplane flying handbook <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-60239-003-4" title="Special:BookSources/978-1-60239-003-4">978-1-60239-003-4</a> Chapter 4, p. 9</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Tester Zero One – The making Of A Test Pilot, Wg. Cdr. J.A. "Robby" Robinson AFC, FRAeS, RAF (Retd) 2007, Old Forge Publishing, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-906183-00-4" title="Special:BookSources/978-1-906183-00-4">978-1-906183-00-4</a>, p.93</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Handling The Big Jets – Third Edition 1971, D.P.Davies, Civil Aviation Authority, p.113</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">Test Pilot, Brian Trubshaw With Sally Edmondson 1998, Sutton Publishing, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0%2B7509%2B1838%2B1" title="Special:BookSources/0+7509+1838+1">0 7509 1838 1</a>, p.165</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLangewiesche,_Wolfgang1972" class="citation book cs1">Langewiesche, Wolfgang (1972). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/stickrudderexp00lang"><i>Stick and Rudder</i></a></span>. McGraw Hill. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/stickrudderexp00lang/page/18">18–21</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780070362406" title="Special:BookSources/9780070362406"><bdi>9780070362406</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Stick+and+Rudder&rft.pages=18-21&rft.pub=McGraw+Hill&rft.date=1972&rft.isbn=9780070362406&rft.au=Langewiesche%2C+Wolfgang&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fstickrudderexp00lang&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-phakcp4-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-phakcp4_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130904015736/http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/airplane_handbook/media/faa-h-8083-3a-3of7.pdf">"Pilot's Handbook of Aeronautical Knowledge – Chapter 4"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/Federal_Aviation_Administration" title="Federal Aviation Administration">Federal Aviation Administration</a>. Archived from <a rel="nofollow" class="external text" href="http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/airplane_handbook/media/faa-h-8083-3a-3of7.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 September 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">13 March</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Pilot%27s+Handbook+of+Aeronautical+Knowledge+%E2%80%93+Chapter+4&rft.pub=Federal+Aviation+Administration&rft_id=http%3A%2F%2Fwww.faa.gov%2Fregulations_policies%2Fhandbooks_manuals%2Faircraft%2Fairplane_handbook%2Fmedia%2Ffaa-h-8083-3a-3of7.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-Davies-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-Davies_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Davies_26-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Davies_26-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Davies_26-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavies1971" class="citation book cs1">Davies, David P. (1971). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TKZTAAAAMAAJ"><i>Handling the Big Jets: An Explanation of the Significant Differences in Flying Qualities Between Jet Transport Aeroplanes and Piston Engined Transport Aeroplanes, Together with Some Other Aspects of Jet Transport Handling</i></a> (3rd ed.). Air Registration Board. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0903083019" title="Special:BookSources/0903083019"><bdi>0903083019</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handling+the+Big+Jets%3A+An+Explanation+of+the+Significant+Differences+in+Flying+Qualities+Between+Jet+Transport+Aeroplanes+and+Piston+Engined+Transport+Aeroplanes%2C+Together+with+Some+Other+Aspects+of+Jet+Transport+Handling&rft.edition=3rd&rft.pub=Air+Registration+Board&rft.date=1971&rft.isbn=0903083019&rft.aulast=Davies&rft.aufirst=David+P.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTKZTAAAAMAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-rgl.faa.gov-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-rgl.faa.gov_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rgl.faa.gov_27-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFAA2000" class="citation web cs1"><a href="/wiki/Federal_Aviation_Administration" title="Federal Aviation Administration">FAA</a> (25 September 2000). <a rel="nofollow" class="external text" href="http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/0/a2fdf912342e575786256ca20061e343/$FILE/AC61-67C.pdf">"Advisory Circular"</a> <span class="cs1-format">(PDF)</span>. <i>rgl.faa.gov</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211103092541/http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/0/a2fdf912342e575786256ca20061e343/$FILE/AC61-67C.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 3 November 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=rgl.faa.gov&rft.atitle=Advisory+Circular&rft.date=2000-09-25&rft.au=FAA&rft_id=http%3A%2F%2Frgl.faa.gov%2FRegulatory_and_Guidance_Library%2FrgAdvisoryCircular.nsf%2F0%2Fa2fdf912342e575786256ca20061e343%2F%24FILE%2FAC61-67C.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><i>Flight testing of fixed wing aircraft</i>. Ralph D. Kimberlin <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-56347-564-1" title="Special:BookSources/978-1-56347-564-1">978-1-56347-564-1</a></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrandon" class="citation web cs1">Brandon, John. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080731103646/http://www.auf.asn.au/groundschool/umodule2.html#accel_stall">"Airspeed and the properties of air"</a>. Recreational Aviation Australia Inc. Archived from <a rel="nofollow" class="external text" href="http://www.auf.asn.au/groundschool/umodule2.html#accel_stall">the original</a> on 31 July 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Airspeed+and+the+properties+of+air&rft.pub=Recreational+Aviation+Australia+Inc&rft.aulast=Brandon&rft.aufirst=John&rft_id=http%3A%2F%2Fwww.auf.asn.au%2Fgroundschool%2Fumodule2.html%23accel_stall&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-Clancy5.22-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-Clancy5.22_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Clancy5.22_30-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Clancy, L.J., <i>Aerodynamics</i>, Section 5.22</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">McCormick, Barnes W. (1979), <i>Aerodynamics, Aeronautics and Flight Mechanics</i>, p. 464, John Wiley & Sons, New York <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-03032-5" title="Special:BookSources/0-471-03032-5">0-471-03032-5</a></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">Clancy, L.J., <i>Aerodynamics</i>, Sections 5.8 and 5.22</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Clancy, L.J., <i>Aerodynamics</i>, Equation 14.11</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">McCormick, Barnes W. (1979), <i>Aerodynamics, Aeronautics and Flight Mechanics</i>, Equation 7.57</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110818001351/http://home.anadolu.edu.tr/~mcavcar/common/Stall.pdf">"Stall speed"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://home.anadolu.edu.tr/~mcavcar/common/Stall.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 18 August 2011.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Stall+speed&rft_id=http%3A%2F%2Fhome.anadolu.edu.tr%2F~mcavcar%2Fcommon%2FStall.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090505182730/http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=3a0a07257d2f5a7f42a2c1920e63f263&rgn=div8&view=text&node=14:1.0.1.3.10.2.65.40&idno=14">"Part 23 – Airworthiness Standards: §23.203 Turning flight and accelerated turning stalls"</a>. <a href="/wiki/Federal_Aviation_Administration" title="Federal Aviation Administration">Federal Aviation Administration</a>. February 1996. Archived from <a rel="nofollow" class="external text" href="http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=3a0a07257d2f5a7f42a2c1920e63f263&rgn=div8&view=text&node=14:1.0.1.3.10.2.65.40&idno=14">the original</a> on 5 May 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">18 February</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Part+23+%E2%80%93+Airworthiness+Standards%3A+%C2%A723.203+Turning+flight+and+accelerated+turning+stalls&rft.pub=Federal+Aviation+Administration&rft.date=1996-02&rft_id=http%3A%2F%2Fecfr.gpoaccess.gov%2Fcgi%2Ft%2Ftext%2Ftext-idx%3Fc%3Decfr%26sid%3D3a0a07257d2f5a7f42a2c1920e63f263%26rgn%3Ddiv8%26view%3Dtext%26node%3D14%3A1.0.1.3.10.2.65.40%26idno%3D14&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCollins2018" class="citation journal cs1">Collins, Mike (1 September 2018). <a rel="nofollow" class="external text" href="https://www.aopa.org/news-and-media/all-news/2018/september/pilot/turbine-keeping-the-props-turning">"Keeping the props turning: Biennial event maintains mu-2 pilot skills, camaraderie"</a>. <i><a href="/wiki/AOPA_Pilot" class="mw-redirect" title="AOPA Pilot">AOPA Pilot</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">12 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=AOPA+Pilot&rft.atitle=Keeping+the+props+turning%3A+Biennial+event+maintains+mu-2+pilot+skills%2C+camaraderie&rft.date=2018-09-01&rft.aulast=Collins&rft.aufirst=Mike&rft_id=https%3A%2F%2Fwww.aopa.org%2Fnews-and-media%2Fall-news%2F2018%2Fseptember%2Fpilot%2Fturbine-keeping-the-props-turning&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuchnerSoria2015" class="citation journal cs1">Buchner, A. J.; Soria, J. (2015). "Measurements of the flow due to a rapidly pitching plate using time resolved high resolution PIV". <i>Aerospace Science and Technology</i>. <b>44</b>: 4–17. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015AeST...44....4B">2015AeST...44....4B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ast.2014.04.007">10.1016/j.ast.2014.04.007</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Aerospace+Science+and+Technology&rft.atitle=Measurements+of+the+flow+due+to+a+rapidly+pitching+plate+using+time+resolved+high+resolution+PIV&rft.volume=44&rft.pages=4-17&rft.date=2015&rft_id=info%3Adoi%2F10.1016%2Fj.ast.2014.04.007&rft_id=info%3Abibcode%2F2015AeST...44....4B&rft.aulast=Buchner&rft.aufirst=A.+J.&rft.au=Soria%2C+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhalifaRezaeiTaha2021" class="citation journal cs1">Khalifa, Nabil M.; Rezaei, Amir S.; Taha, Haithem E. (2021). "Comparing the performance of different turbulence models in predicting dynamic stall". <i>AIAA Scitech 2021 Forum</i>: 1651. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2514%2F6.2021-1651">10.2514/6.2021-1651</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-62410-609-5" title="Special:BookSources/978-1-62410-609-5"><bdi>978-1-62410-609-5</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:234321807">234321807</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=AIAA+Scitech+2021+Forum&rft.atitle=Comparing+the+performance+of+different+turbulence+models+in+predicting+dynamic+stall&rft.pages=1651&rft.date=2021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A234321807%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.2514%2F6.2021-1651&rft.isbn=978-1-62410-609-5&rft.aulast=Khalifa&rft.aufirst=Nabil+M.&rft.au=Rezaei%2C+Amir+S.&rft.au=Taha%2C+Haithem+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-Filippone-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-Filippone_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Filippone_40-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20071229110350/http://aerodyn.org/Dstall/dstall.html">"Dynamic Stall, Unsteady Aerodynamics"</a>. Archived from the original on 29 December 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">25 March</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Dynamic+Stall%2C+Unsteady+Aerodynamics&rft_id=http%3A%2F%2Faerodyn.org%2FDstall%2Fdstall.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: unfit URL (<a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">link</a>)</span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuchnerSoriaHonnerySmits2018" class="citation journal cs1">Buchner, A-J.; Soria, J.; Honnery, D.; Smits, A.J. (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fjfm.2018.112">"Dynamic stall in vertical axis wind turbines: Scaling and topological considerations"</a>. <i>Journal of Fluid Mechanics</i>. <b>841</b>: 746–66. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018JFM...841..746B">2018JFM...841..746B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fjfm.2018.112">10.1017/jfm.2018.112</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:126033643">126033643</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Fluid+Mechanics&rft.atitle=Dynamic+stall+in+vertical+axis+wind+turbines%3A+Scaling+and+topological+considerations&rft.volume=841&rft.pages=746-66&rft.date=2018&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A126033643%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1017%2Fjfm.2018.112&rft_id=info%3Abibcode%2F2018JFM...841..746B&rft.aulast=Buchner&rft.aufirst=A-J.&rft.au=Soria%2C+J.&rft.au=Honnery%2C+D.&rft.au=Smits%2C+A.J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252Fjfm.2018.112&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurtonDavid_SharpeNick_JenkinsErvin_Bossanyi2001" class="citation book cs1">Burton, Tony; David Sharpe; Nick Jenkins; Ervin Bossanyi (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4UYm893y-34C&pg=PA139"><i>Wind Energy Handbook</i></a>. John Wiley and Sons. p. 139. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-48997-9" title="Special:BookSources/978-0-471-48997-9"><bdi>978-0-471-48997-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Wind+Energy+Handbook&rft.pages=139&rft.pub=John+Wiley+and+Sons&rft.date=2001&rft.isbn=978-0-471-48997-9&rft.aulast=Burton&rft.aufirst=Tony&rft.au=David+Sharpe&rft.au=Nick+Jenkins&rft.au=Ervin+Bossanyi&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4UYm893y-34C%26pg%3DPA139&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20091013203208/http://www.aviationshop.com.au/avfacts/editorial/tipstall/">"What is the super-stall?"</a>. <i>Aviationshop</i>. Archived from <a rel="nofollow" class="external text" href="http://www.aviationshop.com.au/avfacts/editorial/tipstall/">the original</a> on 13 October 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">2 September</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Aviationshop&rft.atitle=What+is+the+super-stall%3F&rft_id=http%3A%2F%2Fwww.aviationshop.com.au%2Favfacts%2Feditorial%2Ftipstall%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">"Aerodynamic Design Features of the DC-9" Shevell and Schaufele, J. Aircraft Vol. 3, No. 6, Nov–Dec 1966, p. 518.</span> </li> <li id="cite_note-TaylorPg9-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-TaylorPg9_45-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor,_Robert_T._&_Edward_J._Ray1965" class="citation journal cs1">Taylor, Robert T. & Edward J. Ray (15 November 1965). <a rel="nofollow" class="external text" href="https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660017791.pdf">"A Systematic Study of the Factors Contributing to Post-Stall Longitudinal Stability of T-Tail Transport Configurations"</a> <span class="cs1-format">(PDF)</span>. <i>NASA Langley Research Center</i>: 9<span class="reference-accessdate">. Retrieved <span class="nowrap">24 September</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=NASA+Langley+Research+Center&rft.atitle=A+Systematic+Study+of+the+Factors+Contributing+to+Post-Stall+Longitudinal+Stability+of+T-Tail+Transport+Configurations&rft.pages=9&rft.date=1965-11-15&rft.au=Taylor%2C+Robert+T.+%26+Edward+J.+Ray&rft_id=https%3A%2F%2Fntrs.nasa.gov%2Farchive%2Fnasa%2Fcasi.ntrs.nasa.gov%2F19660017791.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-Parachutes-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-Parachutes_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor" class="citation techreport cs1">Taylor, Anthony "Tony" P. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304212837/http://www.airborne-sys.com/files/pdf/spin_stall_parachute_recovery_systems_ss_17543100.pdf"><i>The system approach to spin/stall parachute recovery systems–a five year update</i></a> <span class="cs1-format">(PDF)</span> (Technical report). Irvin Aerospace. Archived from <a rel="nofollow" class="external text" href="http://www.airborne-sys.com/files/pdf/spin_stall_parachute_recovery_systems_ss_17543100.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 March 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">15 December</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=report&rft.btitle=The+system+approach+to+spin%2Fstall+parachute+recovery+systems%26ndash%3Ba+five+year+update&rft.pub=Irvin+Aerospace&rft.aulast=Taylor&rft.aufirst=Anthony+%22Tony%22+P.&rft_id=http%3A%2F%2Fwww.airborne-sys.com%2Ffiles%2Fpdf%2Fspin_stall_parachute_recovery_systems_ss_17543100.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-boeing-47"><span class="mw-cite-backlink">^ <a href="#cite_ref-boeing_47-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-boeing_47-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20150120151624/http://www.sfte2013.com/files/75234188.pdf">"Archived copy"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.sfte2013.com/files/75234188.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 20 January 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">18 December</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Archived+copy&rft_id=http%3A%2F%2Fwww.sfte2013.com%2Ffiles%2F75234188.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: archived copy as title (<a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">link</a>)</span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text">"Low Speed Handling with Special Reference to the Super Stall". Trubshaw, Appendix III in "Trubshaw Test Pilot" Trubshaw and Edmondson, Sutton Publishing 1998, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0%2B7509%2B1838%2B1" title="Special:BookSources/0+7509+1838+1">0 7509 1838 1</a>, p. 166.</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">"Applied Aerodynamics at the Douglas Aircraft Company-A Historical Perspective". Roger D. Schaufele, 37th AIAA Aerospace Sciences Meeting and Exhibit, January 11–14, 1999/Reno, NV. Fig. 26. Deep Stall Pitching Moments.</span> </li> <li id="cite_note-trubshaw-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-trubshaw_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-trubshaw_50-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">"Accident Report No. EW/C/039, Appendix IV in "Trubshaw Test Pilot". Trubshaw and Edmondson, Sutton Publishing 1998, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0%2B7509%2B1838%2B1" title="Special:BookSources/0+7509+1838+1">0 7509 1838 1</a>, p. 182.</span> </li> <li id="cite_note-TaylorPg20-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-TaylorPg20_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor,_Robert_T._&_Edward_J._Ray1965" class="citation journal cs1">Taylor, Robert T. & Edward J. Ray (15 November 1965). <a rel="nofollow" class="external text" href="https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660017791.pdf">"A Systematic Study of the Factors Contributing to Post-Stall Longitudinal Stability of T-Tail Transport Configurations"</a> <span class="cs1-format">(PDF)</span>. <i>NASA Langley Research Center</i>: 20<span class="reference-accessdate">. Retrieved <span class="nowrap">24 September</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=NASA+Langley+Research+Center&rft.atitle=A+Systematic+Study+of+the+Factors+Contributing+to+Post-Stall+Longitudinal+Stability+of+T-Tail+Transport+Configurations&rft.pages=20&rft.date=1965-11-15&rft.au=Taylor%2C+Robert+T.+%26+Edward+J.+Ray&rft_id=https%3A%2F%2Fntrs.nasa.gov%2Farchive%2Fnasa%2Fcasi.ntrs.nasa.gov%2F19660017791.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://aviation-safety.net/wikibase/wiki.php?id=20519">ASN Wikibase Occurrence # 20519</a>. Retrieved 4 September 2011.</span> </li> <li id="cite_note-waterton-53"><span class="mw-cite-backlink">^ <a href="#cite_ref-waterton_53-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-waterton_53-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">"The Quick and the Dead". W. A. Waterton, Frederick Mueller, London 1956, p. 216.</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.thevictorassociation.org.uk/?p=491">A Tale of Two Victors</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120322161536/http://www.thevictorassociation.org.uk/?p=491">Archived</a> 2012-03-22 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Retrieved 4 September 2011.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">"The Handley Page Victor Volume 2". Roger R. Brooks, Pen & Sword Aviation 2007, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978%2B1%2B84415%2B570%2B5" title="Special:BookSources/978+1+84415+570+5">978 1 84415 570 5</a>, p. 250.</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">"Report on the Accident to B.A.C. One-Eleven G-ASHG at Cratt Hill, near Chicklade, Wiltshire on 22nd October 1963", Ministry of Aviation C.A.P. 219, 1965.</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://aviation-safety.net/database/record.php?id=19660603-1">"ASN Aircraft accident Hawker Siddeley HS-121 Trident 1C G-ARPY Felthorpe"</a>. Aviation-safety.net. 3 June 1966<span class="reference-accessdate">. Retrieved <span class="nowrap">2 April</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=ASN+Aircraft+accident+Hawker+Siddeley+HS-121+Trident+1C+G-ARPY+Felthorpe&rft.pub=Aviation-safety.net&rft.date=1966-06-03&rft_id=http%3A%2F%2Faviation-safety.net%2Fdatabase%2Frecord.php%3Fid%3D19660603-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text">AIB Report 4/73, p. 54.</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text">"Winging It The Making Of The Canadair Challenger". Stuart Logie, Macmillan Canada 1992, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7715-9145-4" title="Special:BookSources/0-7715-9145-4">0-7715-9145-4</a>, p. 169.</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://aviation-safety.net/database/record.php?id=19930726-2">"ASN Aircraft accident Canadair CL-600-2B19 Regional Jet CRJ-100 C-FCRJ Byers, KS"</a>. Aviation-safety.net. 26 July 1993<span class="reference-accessdate">. Retrieved <span class="nowrap">2 April</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=ASN+Aircraft+accident+Canadair+CL-600-2B19+Regional+Jet+CRJ-100+C-FCRJ+Byers%2C+KS&rft.pub=Aviation-safety.net&rft.date=1993-07-26&rft_id=http%3A%2F%2Faviation-safety.net%2Fdatabase%2Frecord.php%3Fid%3D19930726-2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_Bogash" class="citation web cs1">Robert Bogash. <a rel="nofollow" class="external text" href="http://www.rbogash.com/Safety/deep_stall.html">"Deep Stalls"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">4 September</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Deep+Stalls&rft.au=Robert+Bogash&rft_id=http%3A%2F%2Fwww.rbogash.com%2FSafety%2Fdeep_stall.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text">Airplane Flying Handbook (FAA-H-8083-3B), <a rel="nofollow" class="external text" href="https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/airplane_handbook/media/17_afh_ch15.pdf">chapter 15</a>, p. 15–13.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_Garrison2011" class="citation magazine cs1">Peter Garrison (1 June 2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110928092254/http://www.flyingmag.com/news/air-france-447-was-it-deep-stall">"Air France 447: Was it a Deep Stall?"</a>. <i><a href="/wiki/Flying_(magazine)" title="Flying (magazine)">Flying</a></i>. Archived from <a rel="nofollow" class="external text" href="http://www.flyingmag.com/news/air-france-447-was-it-deep-stall">the original</a> on 28 September 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">18 October</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Flying&rft.atitle=Air+France+447%3A+Was+it+a+Deep+Stall%3F&rft.date=2011-06-01&rft.au=Peter+Garrison&rft_id=http%3A%2F%2Fwww.flyingmag.com%2Fnews%2Fair-france-447-was-it-deep-stall&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text">Cox, Jack, <i>Velocity... Solving a Deep Stall Riddle</i>, EAA Sport Aviation, July 1991, pp. 53–59.</span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://aviation-safety.net/wikibase/wiki.php?id=10732">ASN Wikibase Occurrence # 10732</a>. Retrieved 4 September 2011.</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text">Williams, L. J.; Johnson, J. L. Jr. and Yip, L. P., <i>Some Aerodynamic Considerations For Advanced Aircraft Configurations</i>, AIAA paper 84-0562, January 1984.</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.dfrc.nasa.gov/Gallery/Photo/Schweizer-1-36/HTML/index.html">Schweizer-1-36 index: Schweizer SGS 1–36 Photo Gallery Contact Sheet</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080529161135/http://www.dfrc.nasa.gov/Gallery/Photo/Schweizer-1-36/HTML/index.html">Archived</a> 2008-05-29 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190307112308/https://www.flightglobal.com/pdfarchive/view/1964/1964%20-%200018.html">"Archived copy"</a>. Archived from <a rel="nofollow" class="external text" href="https://www.flightglobal.com/pdfarchive/view/1964/1964%20-%200018.html">the original</a> on 7 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">6 March</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Archived+copy&rft_id=https%3A%2F%2Fwww.flightglobal.com%2Fpdfarchive%2Fview%2F1964%2F1964%2520-%25200018.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: archived copy as title (<a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">link</a>)</span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text">Fundamentals Of Flight – Second Edition, Richard S.Shevell, Prentice Hall 1983, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-13-339060-8" title="Special:BookSources/0-13-339060-8">0-13-339060-8</a>, p.244</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text">Handling The Big Jets – Third Edition, D.P.Davies, Civil Aviation Authority, p.121</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text">Flightwise – Principles Of Aircraft Flight, Chris Carpenter 1996, Airlife Publishing Ltd., <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1%2B85310%2B719%2B0" title="Special:BookSources/1+85310+719+0">1 85310 719 0</a>, p.369</span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090508032211/http://www.centennialofflight.gov/essay/Theories_of_Flight/Transonic_Wings/TH20G6.htm">"Stall fences and vortex generators"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.centennialofflight.gov/essay/Theories_of_Flight/Transonic_Wings/TH20G6.htm">the original</a> on 8 May 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">25 April</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Stall+fences+and+vortex+generators&rft_id=http%3A%2F%2Fwww.centennialofflight.gov%2Fessay%2FTheories_of_Flight%2FTransonic_Wings%2FTH20G6.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">US <a href="/wiki/Federal_Aviation_Administration" title="Federal Aviation Administration">Federal Aviation Administration</a>, Advisory Circular 25-7A <i>Flight Test Guide for Certification of Transport Category Airplanes</i>, paragraph 228.</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080926190738/http://www.ainonline.com/news/single-news-page/article/harco-probes-still-causing-eclipse-airspeed-problems/">"Harco Probes Still Causing Eclipse Airspeed Problems"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.ainonline.com/news/single-news-page/article/harco-probes-still-causing-eclipse-airspeed-problems/">the original</a> on 26 September 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">4 October</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Harco+Probes+Still+Causing+Eclipse+Airspeed+Problems&rft_id=http%3A%2F%2Fwww.ainonline.com%2Fnews%2Fsingle-news-page%2Farticle%2Fharco-probes-still-causing-eclipse-airspeed-problems%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text">"Airplane stability and control" by Malcolm J. Abzug, E. Eugene Larrabee. Chapter 17. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-80992-4" title="Special:BookSources/0-521-80992-4">0-521-80992-4</a>.</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAce2006" class="citation web cs1">Ace (24 December 2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150609074321/http://www.aviationfans.com/node/12">"Pugachev's Cobra Maneuver"</a>. <i>Aviation Fans</i>. Archived from <a rel="nofollow" class="external text" href="http://www.aviationfans.com/node/12">the original</a> on 9 June 2015.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Aviation+Fans&rft.atitle=Pugachev%27s+Cobra+Maneuver&rft.date=2006-12-24&rft.au=Ace&rft_id=http%3A%2F%2Fwww.aviationfans.com%2Fnode%2F12&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/19990422071622/http://www.dfrc.nasa.gov/gallery/photo/X-31/HTML/EC94-42478-3.html">"X-31 EC94-42478-3: X-31 at high angle of attack"</a>. Archived from <a rel="nofollow" class="external text" href="https://www.dfrc.nasa.gov/gallery/photo/X-31/HTML/EC94-42478-3.html">the original</a> on 22 April 1999.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=X-31+EC94-42478-3%3A+X-31+at+high+angle+of+attack&rft_id=http%3A%2F%2Fwww.dfrc.nasa.gov%2Fgallery%2Fphoto%2FX-31%2FHTML%2FEC94-42478-3.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.grc.nasa.gov/WWW/K-12/airplane/spoil.html">"Spoilers"</a>. NASA, <a href="/wiki/Glenn_Research_Center" title="Glenn Research Center">Glenn Research Center</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Spoilers&rft.pub=NASA%2C+Glenn+Research+Center&rft_id=http%3A%2F%2Fwww.grc.nasa.gov%2FWWW%2FK-12%2Fairplane%2Fspoil.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110927002349/http://www.nasm.si.edu/wrightbrothers/fly/1900/designing.cfm">"Designing the 1900 Wright Glider"</a>. <i>The Wright Brothers</i>. Archived from <a rel="nofollow" class="external text" href="http://www.nasm.si.edu/wrightbrothers/fly/1900/designing.cfm">the original</a> on 27 September 2011.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Wright+Brothers&rft.atitle=Designing+the+1900+Wright+Glider&rft_id=http%3A%2F%2Fwww.nasm.si.edu%2Fwrightbrothers%2Ffly%2F1900%2Fdesigning.cfm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUdris2014" class="citation web cs1">Udris, Aleks (14 August 2014). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210504020824/http://www.boldmethod.com/learn-to-fly/aircraft-systems/canards/">"What Are Canards, And Why Don't More Aircraft Have Them?"</a>. <i>Boldmethod</i>. Archived from <a rel="nofollow" class="external text" href="http://www.boldmethod.com/learn-to-fly/aircraft-systems/canards/">the original</a> on 4 May 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Boldmethod&rft.atitle=What+Are+Canards%2C+And+Why+Don%27t+More+Aircraft+Have+Them%3F&rft.date=2014-08-14&rft.aulast=Udris&rft.aufirst=Aleks&rft_id=http%3A%2F%2Fwww.boldmethod.com%2Flearn-to-fly%2Faircraft-systems%2Fcanards%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stall_(fluid_dynamics)&action=edit&section=18" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>USAF & NATO Report RTO-TR-015 AC/323/(HFM-015)/TP-1 (2001</li> <li>Anderson, J.D., <i>A History of Aerodynamics</i> (1997). Cambridge University Press. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-66955-3" title="Special:BookSources/0-521-66955-3">0-521-66955-3</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFederal_Aviation_Administration2007" class="citation book cs1"><a href="/wiki/Federal_Aviation_Administration" title="Federal Aviation Administration">Federal Aviation Administration</a> (2007). "Slow Flight, Stalls, and Spins". <a rel="nofollow" class="external text" href="https://archive.org/details/airplaneflyingha0000unse_q8d1/page/n3/mode/1up"><i>Airplane Flying Handbook</i></a> (2nd ed.). New York: Skyhorse Publishing. pp. 4-1 to 4-16. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-60239-003-4" title="Special:BookSources/978-1-60239-003-4"><bdi>978-1-60239-003-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Slow+Flight%2C+Stalls%2C+and+Spins&rft.btitle=Airplane+Flying+Handbook&rft.place=New+York&rft.pages=4-1+to+4-16&rft.edition=2nd&rft.pub=Skyhorse+Publishing&rft.date=2007&rft.isbn=978-1-60239-003-4&rft.au=Federal+Aviation+Administration&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fairplaneflyingha0000unse_q8d1%2Fpage%2Fn3%2Fmode%2F1up&rfr_id=info%3Asid%2Fen.wikipedia.org%3AStall+%28fluid+dynamics%29" class="Z3988"></span></li> <li><a href="/wiki/L._J._Clancy" class="mw-redirect" title="L. J. Clancy">L. J. Clancy</a> (1975), <i>Aerodynamics</i>, Pitman Publishing Limited, London. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-273-01120-0" title="Special:BookSources/0-273-01120-0">0-273-01120-0</a></li> <li>Stengel, R. (2004), <i>Flight Dynamics</i>, Princeton University Press, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-691-11407-2" title="Special:BookSources/0-691-11407-2">0-691-11407-2</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q752034#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4178536-8">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85127283">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007531599605171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐7556f8b5dd‐tmc66 Cached time: 20241124211207 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.763 seconds Real time usage: 0.958 seconds Preprocessor visited node count: 8724/1000000 Post‐expand include size: 91273/2097152 bytes Template argument size: 4633/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 203142/5000000 bytes Lua time usage: 0.399/10.000 seconds Lua memory usage: 8996285/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 764.330 1 -total 54.34% 415.320 1 Template:Reflist 21.20% 162.072 21 Template:Cite_web 18.43% 140.898 24 Template:ISBN 11.28% 86.206 24 Template:Catalog_lookup_link 10.46% 79.946 1 Template:Authority_control 9.61% 73.434 1 Template:Short_description 6.15% 46.996 2 Template:Pagetype 5.20% 39.726 3 Template:Convert 5.11% 39.046 4 Template:Rp --> <!-- Saved in parser cache with key enwiki:pcache:idhash:81511-0!canonical and timestamp 20241124211228 and revision id 1259377858. Rendering was triggered because: edit-page --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Stall_(fluid_dynamics)&oldid=1259377858">https://en.wikipedia.org/w/index.php?title=Stall_(fluid_dynamics)&oldid=1259377858</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Aircraft_aerodynamics" title="Category:Aircraft aerodynamics">Aircraft aerodynamics</a></li><li><a href="/wiki/Category:Aviation_risks" title="Category:Aviation risks">Aviation risks</a></li><li><a href="/wiki/Category:Aircraft_wing_design" title="Category:Aircraft wing design">Aircraft wing design</a></li><li><a href="/wiki/Category:Aerial_maneuvers" title="Category:Aerial maneuvers">Aerial maneuvers</a></li><li><a href="/wiki/Category:Emergency_aircraft_operations" title="Category:Emergency aircraft operations">Emergency aircraft operations</a></li><li><a href="/wiki/Category:Aerospace_engineering" title="Category:Aerospace engineering">Aerospace engineering</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">CS1 maint: archived copy as title</a></li><li><a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">CS1 maint: unfit URL</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_March_2023" title="Category:Use dmy dates from March 2023">Use dmy dates from March 2023</a></li><li><a href="/wiki/Category:Use_British_English_from_March_2023" title="Category:Use British English from March 2023">Use British English from March 2023</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 November 2024, at 21:12<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Stall_(fluid_dynamics)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-w24zn","wgBackendResponseTime":176,"wgPageParseReport":{"limitreport":{"cputime":"0.763","walltime":"0.958","ppvisitednodes":{"value":8724,"limit":1000000},"postexpandincludesize":{"value":91273,"limit":2097152},"templateargumentsize":{"value":4633,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":203142,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 764.330 1 -total"," 54.34% 415.320 1 Template:Reflist"," 21.20% 162.072 21 Template:Cite_web"," 18.43% 140.898 24 Template:ISBN"," 11.28% 86.206 24 Template:Catalog_lookup_link"," 10.46% 79.946 1 Template:Authority_control"," 9.61% 73.434 1 Template:Short_description"," 6.15% 46.996 2 Template:Pagetype"," 5.20% 39.726 3 Template:Convert"," 5.11% 39.046 4 Template:Rp"]},"scribunto":{"limitreport-timeusage":{"value":"0.399","limit":"10.000"},"limitreport-memusage":{"value":8996285,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.codfw.main-7556f8b5dd-tmc66","timestamp":"20241124211207","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Stall (fluid dynamics)","url":"https:\/\/en.wikipedia.org\/wiki\/Stall_(fluid_dynamics)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q752034","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q752034","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-09-06T19:53:53Z","dateModified":"2024-11-24T21:12:07Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/f2\/1915ca_abger_fluegel_%28cropped_and_mirrored%29.jpg","headline":"abrupt reduction in lift of aeroplane wing due to flow separation"}</script> </body> </html>