CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–19 of 19 results for author: <span class="mathjax">Podimata, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Podimata%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Podimata, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Podimata%2C+C&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Podimata, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07115">arXiv:2502.07115</a> <span> [<a href="https://arxiv.org/pdf/2502.07115">pdf</a>, <a href="https://arxiv.org/format/2502.07115">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Online Scheduling for LLM Inference with KV Cache Constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jaillet%2C+P">Patrick Jaillet</a>, <a href="/search/cs?searchtype=author&query=Jiang%2C+J">Jiashuo Jiang</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+Z">Zijie Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07115v2-abstract-short" style="display: inline;"> Large Language Model (LLM) inference, where a trained model generates text one word at a time in response to user prompts, is a computationally intensive process requiring efficient scheduling to optimize latency and resource utilization. A key challenge in LLM inference is the management of the Key-Value (KV) cache, which reduces redundant computations but introduces memory constraints. In this w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07115v2-abstract-full').style.display = 'inline'; document.getElementById('2502.07115v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07115v2-abstract-full" style="display: none;"> Large Language Model (LLM) inference, where a trained model generates text one word at a time in response to user prompts, is a computationally intensive process requiring efficient scheduling to optimize latency and resource utilization. A key challenge in LLM inference is the management of the Key-Value (KV) cache, which reduces redundant computations but introduces memory constraints. In this work, we model LLM inference with KV cache constraints theoretically and propose novel batching and scheduling algorithms that minimize inference latency while effectively managing the KV cache's memory. We analyze both semi-online and fully online scheduling models, and our results are threefold. First, we provide a polynomial-time algorithm that achieves exact optimality in terms of average latency in the semi-online prompt arrival model. Second, in the fully online case with a stochastic prompt arrival, we introduce an efficient online scheduling algorithm with constant regret. Third, we prove that no algorithm (deterministic or randomized) can achieve a constant competitive ratio in fully online adversarial settings. Our empirical evaluations on a public LLM inference dataset, using the Llama-70B model on A100 GPUs, show that our approach significantly outperforms benchmark algorithms used currently in practice, achieving lower latency while reducing energy consumption. Overall, our results offer a path toward more sustainable and cost-effective LLM deployment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07115v2-abstract-full').style.display = 'none'; document.getElementById('2502.07115v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06749">arXiv:2502.06749</a> <span> [<a href="https://arxiv.org/pdf/2502.06749">pdf</a>, <a href="https://arxiv.org/format/2502.06749">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Incentivizing Desirable Effort Profiles in Strategic Classification: The Role of Causality and Uncertainty </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Efthymiou%2C+V">Valia Efthymiou</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Sen%2C+D">Diptangshu Sen</a>, <a href="/search/cs?searchtype=author&query=Ziani%2C+J">Juba Ziani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06749v1-abstract-short" style="display: inline;"> We study strategic classification in binary decision-making settings where agents can modify their features in order to improve their classification outcomes. Importantly, our work considers the causal structure across different features, acknowledging that effort in a given feature may affect other features. The main goal of our work is to understand \emph{when and how much agent effort is invest… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06749v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06749v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06749v1-abstract-full" style="display: none;"> We study strategic classification in binary decision-making settings where agents can modify their features in order to improve their classification outcomes. Importantly, our work considers the causal structure across different features, acknowledging that effort in a given feature may affect other features. The main goal of our work is to understand \emph{when and how much agent effort is invested towards desirable features}, and how this is influenced by the deployed classifier, the causal structure of the agent's features, their ability to modify them, and the information available to the agent about the classifier and the feature causal graph. In the complete information case, when agents know the classifier and the causal structure of the problem, we derive conditions ensuring that rational agents focus on features favored by the principal. We show that designing classifiers to induce desirable behavior is generally non-convex, though tractable in special cases. We also extend our analysis to settings where agents have incomplete information about the classifier or the causal graph. While optimal effort selection is again a non-convex problem under general uncertainty, we highlight special cases of partial uncertainty where this selection problem becomes tractable. Our results indicate that uncertainty drives agents to favor features with higher expected importance and lower variance, potentially misaligning with principal preferences. Finally, numerical experiments based on a cardiovascular disease risk study illustrate how to incentivize desirable modifications under uncertainty. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06749v1-abstract-full').style.display = 'none'; document.getElementById('2502.06749v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08272">arXiv:2408.08272</a> <span> [<a href="https://arxiv.org/pdf/2408.08272">pdf</a>, <a href="https://arxiv.org/ps/2408.08272">ps</a>, <a href="https://arxiv.org/format/2408.08272">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Is Knowledge Power? On the (Im)possibility of Learning from Strategic Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ananthakrishnan%2C+N">Nivasini Ananthakrishnan</a>, <a href="/search/cs?searchtype=author&query=Haghtalab%2C+N">Nika Haghtalab</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+K">Kunhe Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08272v2-abstract-short" style="display: inline;"> When learning in strategic environments, a key question is whether agents can overcome uncertainty about their preferences to achieve outcomes they could have achieved absent any uncertainty. Can they do this solely through interactions with each other? We focus this question on the ability of agents to attain the value of their Stackelberg optimal strategy and study the impact of information asym… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08272v2-abstract-full').style.display = 'inline'; document.getElementById('2408.08272v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08272v2-abstract-full" style="display: none;"> When learning in strategic environments, a key question is whether agents can overcome uncertainty about their preferences to achieve outcomes they could have achieved absent any uncertainty. Can they do this solely through interactions with each other? We focus this question on the ability of agents to attain the value of their Stackelberg optimal strategy and study the impact of information asymmetry. We study repeated interactions in fully strategic environments where players' actions are decided based on learning algorithms that take into account their observed histories and knowledge of the game. We study the pure Nash equilibria (PNE) of a meta-game where players choose these algorithms as their actions. We demonstrate that if one player has perfect knowledge about the game, then any initial informational gap persists. That is, while there is always a PNE in which the informed agent achieves her Stackelberg value, there is a game where no PNE of the meta-game allows the partially informed player to achieve her Stackelberg value. On the other hand, if both players start with some uncertainty about the game, the quality of information alone does not determine which agent can achieve her Stackelberg value. In this case, the concept of information asymmetry becomes nuanced and depends on the game's structure. Overall, our findings suggest that repeated strategic interactions alone cannot facilitate learning effectively enough to earn an uninformed player her Stackelberg value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08272v2-abstract-full').style.display = 'none'; document.getElementById('2408.08272v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08533">arXiv:2402.08533</a> <span> [<a href="https://arxiv.org/pdf/2402.08533">pdf</a>, <a href="https://arxiv.org/format/2402.08533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Grace Period is All You Need: Individual Fairness without Revenue Loss in Revenue Management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jaillet%2C+P">Patrick Jaillet</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+Z">Zijie Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08533v2-abstract-short" style="display: inline;"> Imagine you and a friend purchase identical items at a store, yet only your friend received a discount. Would your friend's discount make you feel unfairly treated by the store? And would you be less willing to purchase from that store again in the future? Based on a large-scale online survey that we ran on Prolific, it turns out that the answers to the above questions are positive. Motivated by t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08533v2-abstract-full').style.display = 'inline'; document.getElementById('2402.08533v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08533v2-abstract-full" style="display: none;"> Imagine you and a friend purchase identical items at a store, yet only your friend received a discount. Would your friend's discount make you feel unfairly treated by the store? And would you be less willing to purchase from that store again in the future? Based on a large-scale online survey that we ran on Prolific, it turns out that the answers to the above questions are positive. Motivated by these findings, in this work we propose a notion of individual fairness in online revenue management and an algorithmic module (called ``Grace Period'') that can be embedded in traditional revenue management algorithms and guarantee individual fairness. Specifically, we show how to embed the Grace Period in five common revenue management algorithms including Deterministic Linear Programming with Probabilistic Assignment, Resolving Deterministic Linear Programming with Probabilistic Assignment, Static Bid Price Control, Booking Limit, and Nesting, thus covering both stochastic and adversarial customer arrival settings. Embedding the Grace Period does not incur additional regret for any of these algorithms. This finding indicates that there is no tradeoff between a seller maximizing their revenue and guaranteeing that each customer feels fairly treated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08533v2-abstract-full').style.display = 'none'; document.getElementById('2402.08533v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05304">arXiv:2401.05304</a> <span> [<a href="https://arxiv.org/pdf/2401.05304">pdf</a>, <a href="https://arxiv.org/format/2401.05304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Can Probabilistic Feedback Drive User Impacts in Online Platforms? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Dai%2C+J">Jessica Dai</a>, <a href="/search/cs?searchtype=author&query=Flanigan%2C+B">Bailey Flanigan</a>, <a href="/search/cs?searchtype=author&query=Haghtalab%2C+N">Nika Haghtalab</a>, <a href="/search/cs?searchtype=author&query=Jagadeesan%2C+M">Meena Jagadeesan</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05304v2-abstract-short" style="display: inline;"> A common explanation for negative user impacts of content recommender systems is misalignment between the platform's objective and user welfare. In this work, we show that misalignment in the platform's objective is not the only potential cause of unintended impacts on users: even when the platform's objective is fully aligned with user welfare, the platform's learning algorithm can induce negativ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05304v2-abstract-full').style.display = 'inline'; document.getElementById('2401.05304v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05304v2-abstract-full" style="display: none;"> A common explanation for negative user impacts of content recommender systems is misalignment between the platform's objective and user welfare. In this work, we show that misalignment in the platform's objective is not the only potential cause of unintended impacts on users: even when the platform's objective is fully aligned with user welfare, the platform's learning algorithm can induce negative downstream impacts on users. The source of these user impacts is that different pieces of content may generate observable user reactions (feedback information) at different rates; these feedback rates may correlate with content properties, such as controversiality or demographic similarity of the creator, that affect the user experience. Since differences in feedback rates can impact how often the learning algorithm engages with different content, the learning algorithm may inadvertently promote content with certain such properties. Using the multi-armed bandit framework with probabilistic feedback, we examine the relationship between feedback rates and a learning algorithm's engagement with individual arms for different no-regret algorithms. We prove that no-regret algorithms can exhibit a wide range of dependencies: if the feedback rate of an arm increases, some no-regret algorithms engage with the arm more, some no-regret algorithms engage with the arm less, and other no-regret algorithms engage with the arm approximately the same number of times. From a platform design perspective, our results highlight the importance of looking beyond regret when measuring an algorithm's performance, and assessing the nature of a learning algorithm's engagement with different types of content as well as their resulting downstream impacts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05304v2-abstract-full').style.display = 'none'; document.getElementById('2401.05304v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Authors listed in alphabetical order. Accept as poster at AISTATS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11655">arXiv:2307.11655</a> <span> [<a href="https://arxiv.org/pdf/2307.11655">pdf</a>, <a href="https://arxiv.org/format/2307.11655">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Preferences Evolve And So Should Your Bandits: Bandits with Evolving States for Online Platforms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Khosravi%2C+K">Khashayar Khosravi</a>, <a href="/search/cs?searchtype=author&query=Leme%2C+R+P">Renato Paes Leme</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Tsorvantzis%2C+A">Apostolis Tsorvantzis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11655v5-abstract-short" style="display: inline;"> We propose a model for learning with bandit feedback while accounting for deterministically evolving and unobservable states that we call Bandits with Deterministically Evolving States ($B$-$DES$). The workhorse applications of our model are learning for recommendation systems and learning for online ads. In both cases, the reward that the algorithm obtains at each round is a function of the short… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11655v5-abstract-full').style.display = 'inline'; document.getElementById('2307.11655v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11655v5-abstract-full" style="display: none;"> We propose a model for learning with bandit feedback while accounting for deterministically evolving and unobservable states that we call Bandits with Deterministically Evolving States ($B$-$DES$). The workhorse applications of our model are learning for recommendation systems and learning for online ads. In both cases, the reward that the algorithm obtains at each round is a function of the short-term reward of the action chosen and how "healthy" the system is (i.e., as measured by its state). For example, in recommendation systems, the reward that the platform obtains from a user's engagement with a particular type of content depends not only on the inherent features of the specific content, but also on how the user's preferences have evolved as a result of interacting with other types of content on the platform. Our general model accounts for the different rate $位\in [0,1]$ at which the state evolves (e.g., how fast a user's preferences shift as a result of previous content consumption) and encompasses standard multi-armed bandits as a special case. The goal of the algorithm is to minimize a notion of regret against the best-fixed sequence of arms pulled, which is significantly harder to attain compared to standard benchmark of the best-fixed action in hindsight. We present online learning algorithms for any possible value of the evolution rate $位$ and we show the robustness of our results to various model misspecifications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11655v5-abstract-full').style.display = 'none'; document.getElementById('2307.11655v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06250">arXiv:2306.06250</a> <span> [<a href="https://arxiv.org/pdf/2306.06250">pdf</a>, <a href="https://arxiv.org/format/2306.06250">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Strategic Apple Tasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Harris%2C+K">Keegan Harris</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+Z+S">Zhiwei Steven Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06250v2-abstract-short" style="display: inline;"> Algorithmic decision-making in high-stakes domains often involves assigning decisions to agents with incentives to strategically modify their input to the algorithm. In addition to dealing with incentives, in many domains of interest (e.g. lending and hiring) the decision-maker only observes feedback regarding their policy for rounds in which they assign a positive decision to the agent; this type… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06250v2-abstract-full').style.display = 'inline'; document.getElementById('2306.06250v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06250v2-abstract-full" style="display: none;"> Algorithmic decision-making in high-stakes domains often involves assigning decisions to agents with incentives to strategically modify their input to the algorithm. In addition to dealing with incentives, in many domains of interest (e.g. lending and hiring) the decision-maker only observes feedback regarding their policy for rounds in which they assign a positive decision to the agent; this type of feedback is often referred to as apple tasting (or one-sided) feedback. We formalize this setting as an online learning problem with apple-tasting feedback where a principal makes decisions about a sequence of $T$ agents, each of which is represented by a context that may be strategically modified. Our goal is to achieve sublinear strategic regret, which compares the performance of the principal to that of the best fixed policy in hindsight, if the agents were truthful when revealing their contexts. Our main result is a learning algorithm which incurs $O (\sqrt{T})$ strategic regret when the sequence of agents is chosen stochastically. We also give an algorithm capable of handling adversarially-chosen agents, albeit at the cost of $O(T^{(d+1)/(d+2)})$ strategic regret (where $d$ is the dimension of the context). Our algorithms can be easily adapted to the setting where the principal receives bandit feedback -- this setting generalizes both the linear contextual bandit problem (by considering agents with incentives) and the strategic classification problem (by allowing for partial feedback). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06250v2-abstract-full').style.display = 'none'; document.getElementById('2306.06250v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In the thirty-seventh Conference on Neural Information Processing Systems (NeurIPS 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02704">arXiv:2306.02704</a> <span> [<a href="https://arxiv.org/pdf/2306.02704">pdf</a>, <a href="https://arxiv.org/ps/2306.02704">ps</a>, <a href="https://arxiv.org/format/2306.02704">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Calibrated Stackelberg Games: Learning Optimal Commitments Against Calibrated Agents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Haghtalab%2C+N">Nika Haghtalab</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+K">Kunhe Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02704v1-abstract-short" style="display: inline;"> In this paper, we introduce a generalization of the standard Stackelberg Games (SGs) framework: Calibrated Stackelberg Games (CSGs). In CSGs, a principal repeatedly interacts with an agent who (contrary to standard SGs) does not have direct access to the principal's action but instead best-responds to calibrated forecasts about it. CSG is a powerful modeling tool that goes beyond assuming that age… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02704v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02704v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02704v1-abstract-full" style="display: none;"> In this paper, we introduce a generalization of the standard Stackelberg Games (SGs) framework: Calibrated Stackelberg Games (CSGs). In CSGs, a principal repeatedly interacts with an agent who (contrary to standard SGs) does not have direct access to the principal's action but instead best-responds to calibrated forecasts about it. CSG is a powerful modeling tool that goes beyond assuming that agents use ad hoc and highly specified algorithms for interacting in strategic settings and thus more robustly addresses real-life applications that SGs were originally intended to capture. Along with CSGs, we also introduce a stronger notion of calibration, termed adaptive calibration, that provides fine-grained any-time calibration guarantees against adversarial sequences. We give a general approach for obtaining adaptive calibration algorithms and specialize them for finite CSGs. In our main technical result, we show that in CSGs, the principal can achieve utility that converges to the optimum Stackelberg value of the game both in finite and continuous settings, and that no higher utility is achievable. Two prominent and immediate applications of our results are the settings of learning in Stackelberg Security Games and strategic classification, both against calibrated agents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02704v1-abstract-full').style.display = 'none'; document.getElementById('2306.02704v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06559">arXiv:2302.06559</a> <span> [<a href="https://arxiv.org/pdf/2302.06559">pdf</a>, <a href="https://arxiv.org/format/2302.06559">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Theoretical Economics">econ.TH</span> </div> </div> <p class="title is-5 mathjax"> Recommending to Strategic Users </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Haupt%2C+A">Andreas Haupt</a>, <a href="/search/cs?searchtype=author&query=Hadfield-Menell%2C+D">Dylan Hadfield-Menell</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06559v1-abstract-short" style="display: inline;"> Recommendation systems are pervasive in the digital economy. An important assumption in many deployed systems is that user consumption reflects user preferences in a static sense: users consume the content they like with no other considerations in mind. However, as we document in a large-scale online survey, users do choose content strategically to influence the types of content they get recommend… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06559v1-abstract-full').style.display = 'inline'; document.getElementById('2302.06559v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06559v1-abstract-full" style="display: none;"> Recommendation systems are pervasive in the digital economy. An important assumption in many deployed systems is that user consumption reflects user preferences in a static sense: users consume the content they like with no other considerations in mind. However, as we document in a large-scale online survey, users do choose content strategically to influence the types of content they get recommended in the future. We model this user behavior as a two-stage noisy signalling game between the recommendation system and users: the recommendation system initially commits to a recommendation policy, presents content to the users during a cold start phase which the users choose to strategically consume in order to affect the types of content they will be recommended in a recommendation phase. We show that in equilibrium, users engage in behaviors that accentuate their differences to users of different preference profiles. In addition, (statistical) minorities out of fear of losing their minority content exposition may not consume content that is liked by mainstream users. We next propose three interventions that may improve recommendation quality (both on average and for minorities) when taking into account strategic consumption: (1) Adopting a recommendation system policy that uses preferences from a prior, (2) Communicating to users that universally liked ("mainstream") content will not be used as basis of recommendation, and (3) Serving content that is personalized-enough yet expected to be liked in the beginning. Finally, we describe a methodology to inform applied theory modeling with survey results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06559v1-abstract-full').style.display = 'none'; document.getElementById('2302.06559v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.14236">arXiv:2211.14236</a> <span> [<a href="https://arxiv.org/pdf/2211.14236">pdf</a>, <a href="https://arxiv.org/format/2211.14236">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Econometrics">econ.EM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Strategyproof Decision-Making in Panel Data Settings and Beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Harris%2C+K">Keegan Harris</a>, <a href="/search/cs?searchtype=author&query=Agarwal%2C+A">Anish Agarwal</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+Z+S">Zhiwei Steven Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.14236v4-abstract-short" style="display: inline;"> We consider the problem of decision-making using panel data, in which a decision-maker gets noisy, repeated measurements of multiple units (or agents). We consider a setup where there is a pre-intervention period, when the principal observes the outcomes of each unit, after which the principal uses these observations to assign a treatment to each unit. Unlike this classical setting, we permit the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14236v4-abstract-full').style.display = 'inline'; document.getElementById('2211.14236v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.14236v4-abstract-full" style="display: none;"> We consider the problem of decision-making using panel data, in which a decision-maker gets noisy, repeated measurements of multiple units (or agents). We consider a setup where there is a pre-intervention period, when the principal observes the outcomes of each unit, after which the principal uses these observations to assign a treatment to each unit. Unlike this classical setting, we permit the units generating the panel data to be strategic, i.e. units may modify their pre-intervention outcomes in order to receive a more desirable intervention. The principal's goal is to design a strategyproof intervention policy, i.e. a policy that assigns units to their utility-maximizing interventions despite their potential strategizing. We first identify a necessary and sufficient condition under which a strategyproof intervention policy exists, and provide a strategyproof mechanism with a simple closed form when one does exist. Along the way, we prove impossibility results for strategic multiclass classification, which may be of independent interest. When there are two interventions, we establish that there always exists a strategyproof mechanism, and provide an algorithm for learning such a mechanism. For three or more interventions, we provide an algorithm for learning a strategyproof mechanism if there exists a sufficiently large gap in the principal's rewards between different interventions. Finally, we empirically evaluate our model using real-world panel data collected from product sales over 18 months. We find that our methods compare favorably to baselines which do not take strategic interactions into consideration, even in the presence of model misspecification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14236v4-abstract-full').style.display = 'none'; document.getElementById('2211.14236v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In the fiftieth ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS 2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07528">arXiv:2206.07528</a> <span> [<a href="https://arxiv.org/pdf/2206.07528">pdf</a>, <a href="https://arxiv.org/ps/2206.07528">ps</a>, <a href="https://arxiv.org/format/2206.07528">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Corruption-Robust Contextual Search through Density Updates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Leme%2C+R+P">Renato Paes Leme</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Schneider%2C+J">Jon Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07528v1-abstract-short" style="display: inline;"> We study the problem of contextual search in the adversarial noise model. Let $d$ be the dimension of the problem, $T$ be the time horizon and $C$ be the total amount of noise in the system. For the $\eps$-ball loss, we give a tight regret bound of $O(C + d \log(1/\eps))$ improving over the $O(d^3 \log(1/\eps)) \log^2(T) + C \log(T) \log(1/\eps))$ bound of Krishnamurthy et al (STOC21). For the sym… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07528v1-abstract-full').style.display = 'inline'; document.getElementById('2206.07528v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07528v1-abstract-full" style="display: none;"> We study the problem of contextual search in the adversarial noise model. Let $d$ be the dimension of the problem, $T$ be the time horizon and $C$ be the total amount of noise in the system. For the $\eps$-ball loss, we give a tight regret bound of $O(C + d \log(1/\eps))$ improving over the $O(d^3 \log(1/\eps)) \log^2(T) + C \log(T) \log(1/\eps))$ bound of Krishnamurthy et al (STOC21). For the symmetric loss, we give an efficient algorithm with regret $O(C+d \log T)$. Our techniques are a significant departure from prior approaches. Specifically, we keep track of density functions over the candidate vectors instead of a knowledge set consisting of the candidate vectors consistent with the feedback obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07528v1-abstract-full').style.display = 'none'; document.getElementById('2206.07528v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Extended abstract accepted at COLT22</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.01028">arXiv:2103.01028</a> <span> [<a href="https://arxiv.org/pdf/2103.01028">pdf</a>, <a href="https://arxiv.org/ps/2103.01028">ps</a>, <a href="https://arxiv.org/format/2103.01028">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Information Discrepancy in Strategic Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bechavod%2C+Y">Yahav Bechavod</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+Z+S">Zhiwei Steven Wu</a>, <a href="/search/cs?searchtype=author&query=Ziani%2C+J">Juba Ziani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.01028v4-abstract-short" style="display: inline;"> We initiate the study of the effects of non-transparency in decision rules on individuals' ability to improve in strategic learning settings. Inspired by real-life settings, such as loan approvals and college admissions, we remove the assumption typically made in the strategic learning literature, that the decision rule is fully known to individuals, and focus instead on settings where it is inacc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01028v4-abstract-full').style.display = 'inline'; document.getElementById('2103.01028v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.01028v4-abstract-full" style="display: none;"> We initiate the study of the effects of non-transparency in decision rules on individuals' ability to improve in strategic learning settings. Inspired by real-life settings, such as loan approvals and college admissions, we remove the assumption typically made in the strategic learning literature, that the decision rule is fully known to individuals, and focus instead on settings where it is inaccessible. In their lack of knowledge, individuals try to infer this rule by learning from their peers (e.g., friends and acquaintances who previously applied for a loan), naturally forming groups in the population, each with possibly different type and level of information regarding the decision rule. We show that, in equilibrium, the principal's decision rule optimizing welfare across sub-populations may cause a strong negative externality: the true quality of some of the groups can actually deteriorate. On the positive side, we show that, in many natural cases, optimal improvement can be guaranteed simultaneously for all sub-populations. We further introduce a measure we term information overlap proxy, and demonstrate its usefulness in characterizing the disparity in improvements across sub-populations. Finally, we identify a natural condition under which improvement can be guaranteed for all sub-populations while maintaining high predictive accuracy. We complement our theoretical analysis with experiments on real-world datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01028v4-abstract-full').style.display = 'none'; document.getElementById('2103.01028v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12367">arXiv:2006.12367</a> <span> [<a href="https://arxiv.org/pdf/2006.12367">pdf</a>, <a href="https://arxiv.org/format/2006.12367">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Discretization for Adversarial Lipschitz Bandits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Slivkins%2C+A">Aleksandrs Slivkins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12367v3-abstract-short" style="display: inline;"> Lipschitz bandits is a prominent version of multi-armed bandits that studies large, structured action spaces such as the [0,1] interval, where similar actions are guaranteed to have similar rewards. A central theme here is the adaptive discretization of the action space, which gradually ``zooms in'' on the more promising regions thereof. The goal is to take advantage of ``nicer'' problem instances… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12367v3-abstract-full').style.display = 'inline'; document.getElementById('2006.12367v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12367v3-abstract-full" style="display: none;"> Lipschitz bandits is a prominent version of multi-armed bandits that studies large, structured action spaces such as the [0,1] interval, where similar actions are guaranteed to have similar rewards. A central theme here is the adaptive discretization of the action space, which gradually ``zooms in'' on the more promising regions thereof. The goal is to take advantage of ``nicer'' problem instances, while retaining near-optimal worst-case performance. While the stochastic version of the problem is well-understood, the general version with adversarial rewards is not. We provide the first algorithm for adaptive discretization in the adversarial version, and derive instance-dependent regret bounds. In particular, we recover the worst-case optimal regret bound for the adversarial version, and the instance-dependent regret bound for the stochastic version. Further, an application of our algorithm to dynamic pricing (where a seller repeatedly adjusts prices for a product) enjoys these regret bounds without any smoothness assumptions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12367v3-abstract-full').style.display = 'none'; document.getElementById('2006.12367v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A short version of this paper appears in COLT21</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.11650">arXiv:2002.11650</a> <span> [<a href="https://arxiv.org/pdf/2002.11650">pdf</a>, <a href="https://arxiv.org/format/2002.11650">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Economics">econ.GN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Contextual Search in the Presence of Adversarial Corruptions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+A">Akshay Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Lykouris%2C+T">Thodoris Lykouris</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Schapire%2C+R">Robert Schapire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.11650v6-abstract-short" style="display: inline;"> We study contextual search, a generalization of binary search in higher dimensions, which captures settings such as feature-based dynamic pricing. Standard formulations of this problem assume that agents act in accordance with a specific homogeneous response model. In practice, however, some responses may be adversarially corrupted. Existing algorithms heavily depend on the assumed response model… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.11650v6-abstract-full').style.display = 'inline'; document.getElementById('2002.11650v6-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.11650v6-abstract-full" style="display: none;"> We study contextual search, a generalization of binary search in higher dimensions, which captures settings such as feature-based dynamic pricing. Standard formulations of this problem assume that agents act in accordance with a specific homogeneous response model. In practice, however, some responses may be adversarially corrupted. Existing algorithms heavily depend on the assumed response model being (approximately) accurate for all agents and have poor performance in the presence of even a few such arbitrary misspecifications. We initiate the study of contextual search when some of the agents can behave in ways inconsistent with the underlying response model. In particular, we provide two algorithms, one based on multidimensional binary search methods and one based on gradient descent. We show that these algorithms attain near-optimal regret in the absence of adversarial corruptions and their performance degrades gracefully with the number of such agents, providing the first results for contextual search in any adversarial noise model. Our techniques draw inspiration from learning theory, game theory, high-dimensional geometry, and convex analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.11650v6-abstract-full').style.display = 'none'; document.getElementById('2002.11650v6-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The first version was titled "Corrupted multidimensional binary search: Learning in the presence of irrational agents". An 8-page extended abstract titled "Contextual search in the presence of irrational agents" appeared at the 53rd ACM Symposium on the Theory of Computing (STOC '21)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.08837">arXiv:2002.08837</a> <span> [<a href="https://arxiv.org/pdf/2002.08837">pdf</a>, <a href="https://arxiv.org/format/2002.08837">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> No-Regret and Incentive-Compatible Online Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Freeman%2C+R">Rupert Freeman</a>, <a href="/search/cs?searchtype=author&query=Pennock%2C+D+M">David M. Pennock</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Vaughan%2C+J+W">Jennifer Wortman Vaughan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.08837v2-abstract-short" style="display: inline;"> We study online learning settings in which experts act strategically to maximize their influence on the learning algorithm's predictions by potentially misreporting their beliefs about a sequence of binary events. Our goal is twofold. First, we want the learning algorithm to be no-regret with respect to the best fixed expert in hindsight. Second, we want incentive compatibility, a guarantee that e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08837v2-abstract-full').style.display = 'inline'; document.getElementById('2002.08837v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.08837v2-abstract-full" style="display: none;"> We study online learning settings in which experts act strategically to maximize their influence on the learning algorithm's predictions by potentially misreporting their beliefs about a sequence of binary events. Our goal is twofold. First, we want the learning algorithm to be no-regret with respect to the best fixed expert in hindsight. Second, we want incentive compatibility, a guarantee that each expert's best strategy is to report his true beliefs about the realization of each event. To achieve this goal, we build on the literature on wagering mechanisms, a type of multi-agent scoring rule. We provide algorithms that achieve no regret and incentive compatibility for myopic experts for both the full and partial information settings. In experiments on datasets from FiveThirtyEight, our algorithms have regret comparable to classic no-regret algorithms, which are not incentive-compatible. Finally, we identify an incentive-compatible algorithm for forward-looking strategic agents that exhibits diminishing regret in practice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08837v2-abstract-full').style.display = 'none'; document.getElementById('2002.08837v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appears in ICML2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04004">arXiv:1911.04004</a> <span> [<a href="https://arxiv.org/pdf/1911.04004">pdf</a>, <a href="https://arxiv.org/format/1911.04004">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning Strategy-Aware Linear Classifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yiling Chen</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04004v4-abstract-short" style="display: inline;"> We address the question of repeatedly learning linear classifiers against agents who are strategically trying to game the deployed classifiers, and we use the Stackelberg regret to measure the performance of our algorithms. First, we show that Stackelberg and external regret for the problem of strategic classification are strongly incompatible: i.e., there exist worst-case scenarios, where any seq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04004v4-abstract-full').style.display = 'inline'; document.getElementById('1911.04004v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04004v4-abstract-full" style="display: none;"> We address the question of repeatedly learning linear classifiers against agents who are strategically trying to game the deployed classifiers, and we use the Stackelberg regret to measure the performance of our algorithms. First, we show that Stackelberg and external regret for the problem of strategic classification are strongly incompatible: i.e., there exist worst-case scenarios, where any sequence of actions providing sublinear external regret might result in linear Stackelberg regret and vice versa. Second, we present a strategy-aware algorithm for minimizing the Stackelberg regret for which we prove nearly matching upper and lower regret bounds. Finally, we provide simulations to complement our theoretical analysis. Our results advance the growing literature of learning from revealed preferences, which has so far focused on "smoother" assumptions from the perspective of the learner and the agents respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04004v4-abstract-full').style.display = 'none'; document.getElementById('1911.04004v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appears in NeurIPS2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.01803">arXiv:1809.01803</a> <span> [<a href="https://arxiv.org/pdf/1809.01803">pdf</a>, <a href="https://arxiv.org/ps/1809.01803">ps</a>, <a href="https://arxiv.org/format/1809.01803">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> A Bridge between Liquid and Social Welfare in Combinatorial Auctions with Submodular Bidders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Fotakis%2C+D">Dimitris Fotakis</a>, <a href="/search/cs?searchtype=author&query=Lotidis%2C+K">Kyriakos Lotidis</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.01803v3-abstract-short" style="display: inline;"> We study incentive compatible mechanisms for Combinatorial Auctions where the bidders have submodular (or XOS) valuations and are budget-constrained. Our objective is to maximize the \emph{liquid welfare}, a notion of efficiency for budget-constrained bidders introduced by Dobzinski and Paes Leme (2014). We show that some of the known truthful mechanisms that best-approximate the social welfare fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01803v3-abstract-full').style.display = 'inline'; document.getElementById('1809.01803v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.01803v3-abstract-full" style="display: none;"> We study incentive compatible mechanisms for Combinatorial Auctions where the bidders have submodular (or XOS) valuations and are budget-constrained. Our objective is to maximize the \emph{liquid welfare}, a notion of efficiency for budget-constrained bidders introduced by Dobzinski and Paes Leme (2014). We show that some of the known truthful mechanisms that best-approximate the social welfare for Combinatorial Auctions with submodular bidders through demand query oracles can be adapted, so that they retain truthfulness and achieve asymptotically the same approximation guarantees for the liquid welfare. More specifically, for the problem of optimizing the liquid welfare in Combinatorial Auctions with submodular bidders, we obtain a universally truthful randomized $O(\log m)$-approximate mechanism, where $m$ is the number of items, by adapting the mechanism of Krysta and V枚cking (2012). Additionally, motivated by large market assumptions often used in mechanism design, we introduce a notion of competitive markets and show that in such markets, liquid welfare can be approximated within a constant factor by a randomized universally truthful mechanism. Finally, in the Bayesian setting, we obtain a truthful $O(1)$-approximate mechanism for the case where bidder valuations are generated as independent samples from a known distribution, by adapting the results of Feldman, Gravin and Lucier (2014). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01803v3-abstract-full').style.display = 'none'; document.getElementById('1809.01803v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">AAAI-19</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.10693">arXiv:1805.10693</a> <span> [<a href="https://arxiv.org/pdf/1805.10693">pdf</a>, <a href="https://arxiv.org/format/1805.10693">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Strategyproof Linear Regression in High Dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yiling Chen</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Procaccia%2C+A+D">Ariel D. Procaccia</a>, <a href="/search/cs?searchtype=author&query=Shah%2C+N">Nisarg Shah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.10693v1-abstract-short" style="display: inline;"> This paper is part of an emerging line of work at the intersection of machine learning and mechanism design, which aims to avoid noise in training data by correctly aligning the incentives of data sources. Specifically, we focus on the ubiquitous problem of linear regression, where strategyproof mechanisms have previously been identified in two dimensions. In our setting, agents have single-peaked… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10693v1-abstract-full').style.display = 'inline'; document.getElementById('1805.10693v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.10693v1-abstract-full" style="display: none;"> This paper is part of an emerging line of work at the intersection of machine learning and mechanism design, which aims to avoid noise in training data by correctly aligning the incentives of data sources. Specifically, we focus on the ubiquitous problem of linear regression, where strategyproof mechanisms have previously been identified in two dimensions. In our setting, agents have single-peaked preferences and can manipulate only their response variables. Our main contribution is the discovery of a family of group strategyproof linear regression mechanisms in any number of dimensions, which we call generalized resistant hyperplane mechanisms. The game-theoretic properties of these mechanisms -- and, in fact, their very existence -- are established through a connection to a discrete version of the Ham Sandwich Theorem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10693v1-abstract-full').style.display = 'none'; document.getElementById('1805.10693v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In the Proceedings of the 19th ACM Conference on Economics and Computation (EC), 2018 (to appear)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.01333">arXiv:1711.01333</a> <span> [<a href="https://arxiv.org/pdf/1711.01333">pdf</a>, <a href="https://arxiv.org/format/1711.01333">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning to Bid Without Knowing your Value </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Feng%2C+Z">Zhe Feng</a>, <a href="/search/cs?searchtype=author&query=Podimata%2C+C">Chara Podimata</a>, <a href="/search/cs?searchtype=author&query=Syrgkanis%2C+V">Vasilis Syrgkanis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.01333v5-abstract-short" style="display: inline;"> We address online learning in complex auction settings, such as sponsored search auctions, where the value of the bidder is unknown to her, evolving in an arbitrary manner and observed only if the bidder wins an allocation. We leverage the structure of the utility of the bidder and the partial feedback that bidders typically receive in auctions, in order to provide algorithms with regret rates aga… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.01333v5-abstract-full').style.display = 'inline'; document.getElementById('1711.01333v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.01333v5-abstract-full" style="display: none;"> We address online learning in complex auction settings, such as sponsored search auctions, where the value of the bidder is unknown to her, evolving in an arbitrary manner and observed only if the bidder wins an allocation. We leverage the structure of the utility of the bidder and the partial feedback that bidders typically receive in auctions, in order to provide algorithms with regret rates against the best fixed bid in hindsight, that are exponentially faster in convergence in terms of dependence on the action space, than what would have been derived by applying a generic bandit algorithm and almost equivalent to what would have been achieved in the full information setting. Our results are enabled by analyzing a new online learning setting with outcome-based feedback, which generalizes learning with feedback graphs. We provide an online learning algorithm for this setting, of independent interest, with regret that grows only logarithmically with the number of actions and linearly only in the number of potential outcomes (the latter being very small in most auction settings). Last but not least, we show that our algorithm outperforms the bandit approach experimentally and that this performance is robust to dropping some of our theoretical assumptions or introducing noise in the feedback that the bidder receives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.01333v5-abstract-full').style.display = 'none'; document.getElementById('1711.01333v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In the Proceedings of the 19th ACM Conference on Economics and Computation, 2018 (to appear)</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>