CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;38 of 38 results for author: <span class="mathjax">Mao, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Mao%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mao, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mao%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mao, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v1-abstract-short" style="display: inline;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v1-abstract-full" style="display: none;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the fundamental parameters of the Cabibbo-Kobayashi-Maskawa matrix in weak interaction theory. This article presents the first observation of the Cabibbo-suppressed $螞_c^+$ beta decay into a neutron $螞_c^+ \rightarrow n e^+ 谓_{e}$, based on $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector in the energy region above the $螞^+_c\bar螞^-_c$ threshold. A novel machine learning technique, leveraging Graph Neural Networks, has been utilized to effectively separate signals from dominant backgrounds, particularly $螞_c^+ \rightarrow 螞e^+ 谓_{e}$. This approach has yielded a statistical significance of more than $10蟽$. The absolute branching fraction of $螞_c^+ \rightarrow n e^+ 谓_{e}$ is measured to be $(3.57\pm0.34_{\mathrm{stat}}\pm0.14_{\mathrm{syst}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay to be $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This study provides a new probe to further understand fundamental interactions in the charmed baryon sector, and demonstrates the power of modern machine learning techniques in enhancing experimental capability in high energy physics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'none'; document.getElementById('2410.13515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05141">arXiv:2410.05141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05141">pdf</a>, <a href="https://arxiv.org/format/2410.05141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Quark correlation functions at three-loop order and extraction of splitting functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Huang%2C+L">Li-Hong Huang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+Z">Zheng-Yang Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05141v1-abstract-short" style="display: inline;"> We present the first complete next-to-next-to-next-to-leading-order calculation of the matching coefficients that link unpolarized flavor non-singlet parton distribution functions with lattice QCD computable correlation functions. By using this high-order result, we notice a reduction in theoretical uncertainties compared to relying solely on previously known lower-order matching coefficients. Fur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05141v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05141v1-abstract-full" style="display: none;"> We present the first complete next-to-next-to-next-to-leading-order calculation of the matching coefficients that link unpolarized flavor non-singlet parton distribution functions with lattice QCD computable correlation functions. By using this high-order result, we notice a reduction in theoretical uncertainties compared to relying solely on previously known lower-order matching coefficients. Furthermore, based on this result we have extracted the three-loop unpolarized flavor non-singlet splitting function, which is in agreement with the state-of-the-art result. Due to the simplicity of our method, it has the potential to advance the calculation of splitting functions to the desired four-loop order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05141v1-abstract-full').style.display = 'none'; document.getElementById('2410.05141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03373">arXiv:2409.03373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03373">pdf</a>, <a href="https://arxiv.org/format/2409.03373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.094041">10.1103/PhysRevD.110.094041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doubly heavy tetraquark bound and resonant states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Wu%2C+W">Wei-Lin Wu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03373v2-abstract-short" style="display: inline;"> We calculate the energy spectrum of the S-wave doubly heavy tetraquark systems, including the $ QQ^{(\prime)}\bar q\bar q$, $QQ^{(\prime)}\bar s\bar q$, and $ QQ^{(\prime)}\bar s\bar s$ ($Q^{(\prime)}=b,c$ and $q=u,d$) systems within the constituent quark model. We use the complex scaling method to obtain bound states and resonant states simultaneously, and the Gaussian expansion method to solve t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03373v2-abstract-full').style.display = 'inline'; document.getElementById('2409.03373v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03373v2-abstract-full" style="display: none;"> We calculate the energy spectrum of the S-wave doubly heavy tetraquark systems, including the $ QQ^{(\prime)}\bar q\bar q$, $QQ^{(\prime)}\bar s\bar q$, and $ QQ^{(\prime)}\bar s\bar s$ ($Q^{(\prime)}=b,c$ and $q=u,d$) systems within the constituent quark model. We use the complex scaling method to obtain bound states and resonant states simultaneously, and the Gaussian expansion method to solve the complex-scaled four-body Schr枚dinger equation. With a novel definition of the root-mean-square radii, we are able to distinguish between meson molecules and compact tetraquark states. The compact tetraquarks are further classified into three different types with distinct spatial configurations: compact even tetraquarks, compact diquark-antidiquark tetraquarks and compact diquark-centered tetraquarks. In the $ I(J^P)=0(1^+) $ $QQ\bar q\bar q$ system, there exists the $ D^*D $ molecular bound state with a binding energy of $ -14 $ MeV, which is the candidate for $ T_{cc}(3875)^+ $. The shallow $\bar B^*\bar B$ molecular bound state is the bottom analog of $T_{cc}(3875)^+$. Moreover, we identify two resonant states near the $D^*D^*$ and $\bar B^*\bar B^*$ thresholds. In the $ J^P=1^+ $ $bb\bar q\bar q\,(I=0)$ and $bb\bar s\bar q$ systems, we obtain deeply bound states with a compact diquark-centered tetraquark configuration and a dominant $蠂_{\bar 3_c\otimes 3_c}$ component, along with resonant states with similar configurations as their radial excitations. These states are the QCD analog of the helium atom. We also obtain some other bound states and resonant states with ``QCD hydrogen molecule&#34; configurations. Moreover, we investigate the heavy quark mass dependence of the $ I(J^P)=0(1^+) $ $ QQ\bar q\bar q $ bound states. We strongly urge the experimental search for the predicted states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03373v2-abstract-full').style.display = 'none'; document.getElementById('2409.03373v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures, version accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevD.110.094041 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00503">arXiv:2408.00503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00503">pdf</a>, <a href="https://arxiv.org/format/2408.00503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.074026">10.1103/PhysRevD.110.074026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fully strange tetraquark resonant states as the cousins of $X(6900)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wu%2C+W">Wei-Lin Wu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00503v1-abstract-short" style="display: inline;"> We conduct systematic calculations of the S-wave fully strange systems with ``normal&#34; $\left(J^{P C}=0^{++}, 1^{+-}, 2^{++}\right)$ and ``exotic&#34; $\left(J^{P C}=0^{+-}, 1^{++}, 2^{+-}\right)$ C-parities, which are the strange analogue of the fully charmed tetraquark state $X(6900)$. Within a constituent quark potential model, we employ the Gaussian expansion method to solve the four-body Schr枚ding&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00503v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00503v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00503v1-abstract-full" style="display: none;"> We conduct systematic calculations of the S-wave fully strange systems with ``normal&#34; $\left(J^{P C}=0^{++}, 1^{+-}, 2^{++}\right)$ and ``exotic&#34; $\left(J^{P C}=0^{+-}, 1^{++}, 2^{+-}\right)$ C-parities, which are the strange analogue of the fully charmed tetraquark state $X(6900)$. Within a constituent quark potential model, we employ the Gaussian expansion method to solve the four-body Schr枚dinger equation and the complex scaling method to identify resonant states. We obtain a series of resonant states and zero-width states in the mass range of 2.7 to 3.3 GeV, with their widths ranging from less than 1 MeV to about 50 MeV. Their rms radii strongly indicate that they are compact tetraquark states. Among these states, the $T_{4s,2^{++}}(2714)$ may be the most likely one to be observed experimentally. We urge the experimental exploration of the $2^{++}$ $s s \bar{s} \bar{s}$ state around 2.7 GeV in the $蠁蠁$ channel. Since the lowest S-wave $s s \bar{s} \bar{s}$ state is around 2.7 GeV, the compact P-wave $s s \bar{s} \bar{s}$ states are expected to be heavier. Hence, $蠁(2170)$ and $X(2370)$ are unlikely to be compact tetraquark states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00503v1-abstract-full').style.display = 'none'; document.getElementById('2408.00503v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures. Comments are welcomed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 074026 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17824">arXiv:2406.17824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17824">pdf</a>, <a href="https://arxiv.org/format/2406.17824">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.034030">10.1103/PhysRevD.110.034030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fully heavy tetraquark resonant states with different flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Wu%2C+W">Wei-Lin Wu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17824v2-abstract-short" style="display: inline;"> We use the quark potential model to calculate the mass spectrum of the S-wave fully heavy tetraquark systems with different flavors, including the $ bc\bar b\bar c, bb\bar c\bar c, cc\bar c\bar b $ and $ bb\bar b\bar c $ systems. We employ the Gaussian expansion method to solve the four-body Schr枚dinger equation, and the complex scaling method to identify resonant states. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17824v2-abstract-full').style.display = 'inline'; document.getElementById('2406.17824v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17824v2-abstract-full" style="display: none;"> We use the quark potential model to calculate the mass spectrum of the S-wave fully heavy tetraquark systems with different flavors, including the $ bc\bar b\bar c, bb\bar c\bar c, cc\bar c\bar b $ and $ bb\bar b\bar c $ systems. We employ the Gaussian expansion method to solve the four-body Schr枚dinger equation, and the complex scaling method to identify resonant states. The $ bc\bar b\bar c, bb\bar c\bar c, cc\bar c\bar b $ and $ bb\bar b\bar c $ resonant states are obtained in the mass regions of $ (13.2,13.5) $, $ (13.3,13.6) $, $ (10.0,10.3) $, $ (16.5,16.7) $ GeV, respectively. Among these states, the $ bc\bar b\bar c $ tetraquark states are the most promising ones to be discovered in the near future. We recommend the experimental exploration of the $ 1^{++} $ and $ 2^{++} $ $ bc\bar b\bar c $ states with masses near $ 13.3 $ GeV in the $ J/蠄违$ channel. From the root-mean-square radii, we find that all the resonant states we have identified are compact tetraquark states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17824v2-abstract-full').style.display = 'none'; document.getElementById('2406.17824v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages,7 figures,8 tables. arXiv admin note: text overlap with arXiv:2401.14899</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 110,034030 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13354">arXiv:2310.13354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13354">pdf</a>, <a href="https://arxiv.org/format/2310.13354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.114016">10.1103/PhysRevD.108.114016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tetraquark bound states in constituent quark models: benchmark test calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13354v2-abstract-short" style="display: inline;"> We investigate the tetraquark bound states that are manifestly exotic using three distinct few-body methods: Gaussian Expansion Method (GEM), Resonating Group Method (RGM), and Diffusion Monte Carlo (DMC). We refer to manifestly exotic states that do not involve a mixture with the conventional mesons through the creation and annihilation of $n\bar{n}$, where $n=u, d$. Our calculations are conducte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13354v2-abstract-full').style.display = 'inline'; document.getElementById('2310.13354v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13354v2-abstract-full" style="display: none;"> We investigate the tetraquark bound states that are manifestly exotic using three distinct few-body methods: Gaussian Expansion Method (GEM), Resonating Group Method (RGM), and Diffusion Monte Carlo (DMC). We refer to manifestly exotic states that do not involve a mixture with the conventional mesons through the creation and annihilation of $n\bar{n}$, where $n=u, d$. Our calculations are conducted with two types of quark models: the pure constituent quark model featuring one-gluon-exchange interactions and confinement interactions, and the chiral constituent quark model, supplemented by extra one-boson-exchange interactions. This study represents a comprehensive benchmark test of various few-body methods and quark models. Our findings reveal the superiority of GEM over RGM and DMC methods based on present implements for the tetraquark bound states. Additionally, we observe a tendency for the chiral quark model to overestimate the binding energies. We systematically explore the fully, triply, doubly, and singly heavy tetraquark states with $J^P=0^+,1^+,2^+$, encompassing over 150 states in total. We successfully identify several bound states, including $[cc\bar{n}\bar{n}]_{J^{P}=1^{+}}^{I=0}$, $[bb\bar{n}\bar{n}]_{J^{P}=1^{+}}^{I=0}$, $[bc\bar{n}\bar{n}]_{J^{P}=0^{+},1^{+},2^{+}}^{I=0}$, $[bs\bar{n}\bar{n}]_{J^{P}=0^{+},1^{+}}^{I=0}$, $[cs\bar{n}\bar{n}]_{J^{P}=0^{+}}^{I=0}$, and $[bb\bar{n}\bar{s}]_{J^{P}=1^{+}}$, all found to be bound states below the dimeson thresholds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13354v2-abstract-full').style.display = 'none'; document.getElementById('2310.13354v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures and 5 Tables. Version accepted by PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.17068">arXiv:2309.17068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.17068">pdf</a>, <a href="https://arxiv.org/format/2309.17068">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.074001">10.1103/PhysRevD.109.074001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doubly heavy tetraquark states in the constituent quark model using diffusion Monte Carlo method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.17068v2-abstract-short" style="display: inline;"> We use the diffusion Monte Carlo method to calculate the doubly heavy tetraquark $T_{cc}$ system in two kinds of constituent quark models, the pure constituent quark model AL1/AP1 and the chiral constituent quark model. When the discrete configurations are complete and no spatial clustering is preseted, the AL1/AP1 model gives an energy of $T_{cc}$ close to the $DD^*$ threshold, and the chiral con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17068v2-abstract-full').style.display = 'inline'; document.getElementById('2309.17068v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.17068v2-abstract-full" style="display: none;"> We use the diffusion Monte Carlo method to calculate the doubly heavy tetraquark $T_{cc}$ system in two kinds of constituent quark models, the pure constituent quark model AL1/AP1 and the chiral constituent quark model. When the discrete configurations are complete and no spatial clustering is preseted, the AL1/AP1 model gives an energy of $T_{cc}$ close to the $DD^*$ threshold, and the chiral constituent quark model yields a deeply bound state. We further calculate all doubly heavy tetraquark systems with $J^P=0^+,1^+,2^+$, and provide the binding energies of systems with bound states. The $I(J^P)=0(0^+)$ $bc\bar{n}\bar{n}$, $0(1^+)$ $bb\bar{n}\bar{n}$, $0(1^+)$ $bc\bar{n}\bar{n}$, $\frac{1}{2}(1^+)$ $bb\bar{s}\bar{n}$ systems have bound states in all three models. Since the DMC method has almost no restriction on the spatial part, the resulting bound states have greater binding energies than those obtained in previous works. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17068v2-abstract-full').style.display = 'none'; document.getElementById('2309.17068v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure. Comments are welcomed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 074001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14138">arXiv:2304.14138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14138">pdf</a>, <a href="https://arxiv.org/format/2304.14138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> A bridge between trace anomaly and deconfinement phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sheng%2C+B">Bing-Kai Sheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yong-Liang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14138v3-abstract-short" style="display: inline;"> Inspired by the fact that both the dilaton potential encoding the trace anomalies of QCD and the Polyakov loop potential measuring the deconfinement phase transition can be expressed in the logarithmic forms, as well as the fact that the scale symmetry is expected to be restoring and colors are deconfined in extreme conditions such as high temperatures and/or densities, we conjecture a relation be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14138v3-abstract-full').style.display = 'inline'; document.getElementById('2304.14138v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14138v3-abstract-full" style="display: none;"> Inspired by the fact that both the dilaton potential encoding the trace anomalies of QCD and the Polyakov loop potential measuring the deconfinement phase transition can be expressed in the logarithmic forms, as well as the fact that the scale symmetry is expected to be restoring and colors are deconfined in extreme conditions such as high temperatures and/or densities, we conjecture a relation between the dilaton potential and the Polyakov loop potential. Explicitly, we start from the Coleman--Weinberg type potential of a real scalar field -- a dilaton or conformal compensator -- and make an ansatz of the relation between this scalar field and the Polyakov loop to obtain the Polyakov loop potential, which can be parameterized in Lattice QCD (LQCD) in the pure glue sector. We find that the coefficients of Polyakov potential fitted from Lattice data are automatically satisfied in this ansatz, the locations of deconfinement and scale restoration are locked to each other, and the first-order phase transition can be realized. Extensions to the low-energy effective quark models are also discussed. The conjectured relation may deepen our understanding of the evolution of the universe, the mechanism of electroweak symmetry breaking, the phase diagram of QCD matter, and the properties of neutron~stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14138v3-abstract-full').style.display = 'none'; document.getElementById('2304.14138v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J-Ref.: Symmetry 2024, 16, 718 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09021">arXiv:2211.09021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09021">pdf</a>, <a href="https://arxiv.org/format/2211.09021">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054035">10.1103/PhysRevD.107.054035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground state baryons in the flux-tube three-body confinement model using Diffusion Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09021v2-abstract-short" style="display: inline;"> We make a systematical diffusion Monte Carlo (DMC) calculation for all ground state baryons in two confinement scenarios, the pairwise confinement and the three-body flux-tube confinement. With the baryons as an example, we illustrate a feasible procedure to investigate the few-quark states with possible few-body confinement mechanisms, which can be extended to the multiquark states easily. For ea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09021v2-abstract-full').style.display = 'inline'; document.getElementById('2211.09021v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09021v2-abstract-full" style="display: none;"> We make a systematical diffusion Monte Carlo (DMC) calculation for all ground state baryons in two confinement scenarios, the pairwise confinement and the three-body flux-tube confinement. With the baryons as an example, we illustrate a feasible procedure to investigate the few-quark states with possible few-body confinement mechanisms, which can be extended to the multiquark states easily. For each baryon, we extract the mass, mean-square radius, charge radius, and the quark distributions. We use the Jackknife resampling method to estimate the statistical uncertainties of masses to be less than 1 MeV. To determine the baryon charge radii, we include the constituent quark size effect, which is fixed by the experimental and lattice QCD results. Our results show that both two-body and three-body confinement mechanisms can give a good description of the experimental data if the parameters are chosen properly. In the flux-tube confinement, introducing different tension parameters for the baryons and mesons are necessary, specifically, $蟽_Y= 0.9204 蟽_{Q\bar{Q}}$. The lesson from the calculation of the nucleon mass with the DMC method is that the improper pre-assignment of the channels may prevent us from obtaining the real ground state. With this experience, we obtain the real ground state (the $畏_c 畏_c$ threshold with the di-meson configuration) of the $cc\bar{c}\bar{c}$ system with $J^{PC}=0^{++}$ starting from the diquark-antidiquark spin-color channels alone, which is hard to achieve in the variational method and was not obtained in the previous DMC calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09021v2-abstract-full').style.display = 'none'; document.getElementById('2211.09021v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 18 figures. The Supplement material is attached in the source code of LaTeX. Comments are welcomed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 054035 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.17488">arXiv:2210.17488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.17488">pdf</a>, <a href="https://arxiv.org/format/2210.17488">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07422-z">10.1038/s41586-024-07422-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wavefunction matching for solving quantum many-body problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bovermann%2C+L">Lukas Bovermann</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yuanzhuo Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frame%2C+D">Dillon Frame</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hildenbrand%2C+F">Fabian Hildenbrand</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kim%2C+M">Myungkuk Kim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kim%2C+Y">Youngman Kim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shen%2C+S">Shihang Shen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Song%2C+Y">Young-Ho Song</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stellin%2C+G">Gianluca Stellin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.17488v4-abstract-short" style="display: inline;"> Ab initio calculations play an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions to quantum chemistry and from atomic and molecular systems to nuclear physics. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17488v4-abstract-full').style.display = 'inline'; document.getElementById('2210.17488v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.17488v4-abstract-full" style="display: none;"> Ab initio calculations play an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions to quantum chemistry and from atomic and molecular systems to nuclear physics. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing a new approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible due to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations of light nuclei, medium-mass nuclei, neutron matter, and nuclear matter. We use high-fidelity chiral effective field theory interactions and find good agreement with empirical data. These results are accompanied by new insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii, and nuclear matter saturation in ab initio calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17488v4-abstract-full').style.display = 'none'; document.getElementById('2210.17488v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figues, 13 tables. This version is the same as the version arXiv:2210.17488v2, and the final version is available at the Nature website</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 630, 59-63 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11940">arXiv:2209.11940</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.11940">pdf</a>, <a href="https://arxiv.org/format/2209.11940">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.107.024908">10.1103/PhysRevC.107.024908 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV Au+Au Collisions at the RHIC STAR Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Abdallah%2C+M+S">M. S. Abdallah</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aboona%2C+B+E">B. E. Aboona</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adam%2C+J">J. Adam</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adamczyk%2C+L">L. Adamczyk</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adams%2C+J+R">J. R. Adams</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aggarwal%2C+I">I. Aggarwal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Anderson%2C+D+M">D. M. Anderson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Atchison%2C+J">J. Atchison</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bairathi%2C+V">V. Bairathi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Baker%2C+W">W. Baker</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cap%2C+J+G+B">J. G. Ball Cap</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Barish%2C+K">K. Barish</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhagat%2C+P">P. Bhagat</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhatta%2C+S">S. Bhatta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandenburg%2C+J+D">J. D. Brandenburg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cai%2C+X+Z">X. Z. Cai</a> , et al. (349 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11940v2-abstract-short" style="display: inline;"> We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 &lt; y&lt;0$ and $0.4 &lt; p_{\rm T} &lt;2.0 $ GeV/$c$ in the center-of-mass frame. A systematic a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11940v2-abstract-full').style.display = 'inline'; document.getElementById('2209.11940v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11940v2-abstract-full" style="display: none;"> We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 &lt; y&lt;0$ and $0.4 &lt; p_{\rm T} &lt;2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5\% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11940v2-abstract-full').style.display = 'none'; document.getElementById('2209.11940v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 20 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 107, 024908(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08464">arXiv:2209.08464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.08464">pdf</a>, <a href="https://arxiv.org/ps/2209.08464">ps</a>, <a href="https://arxiv.org/format/2209.08464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)033">10.1007/JHEP12(2022)033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Becker%2C+D">D. Becker</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a> , et al. (555 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08464v3-abstract-short" style="display: inline;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the firs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'inline'; document.getElementById('2209.08464v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08464v3-abstract-full" style="display: none;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the first time. Making use of the world-average branching fraction $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$, their branching fractions are determined to be \begin{eqnarray*} \begin{aligned} \mathcal{B}(螞_c^+\to螞蟻(770)^+)=&amp;(4.06\pm0.30\pm0.35\pm0.23)\times10^{-2},\\ \mathcal{B}(螞_c^+\to危(1385)^+蟺^0)=&amp;(5.86\pm0.49\pm0.52\pm0.35)\times10^{-3},\\ \mathcal{B}(螞_c^+\to危(1385)^0蟺^+)=&amp;(6.47\pm0.59\pm0.66\pm0.38)\times10^{-3},\\ \end{aligned} \end{eqnarray*} where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$ and $\mathcal{B}(危(1385)\to螞蟺)$. In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be $伪_{螞蟻(770)^+}=-0.763\pm0.053\pm0.045$, $伪_{危(1385)^{+}蟺^0}=-0.917\pm0.069\pm0.056$, and $伪_{危(1385)^{0}蟺^+}=-0.789\pm0.098\pm0.056$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'none'; document.getElementById('2209.08464v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14191">arXiv:2111.14191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14191">pdf</a>, <a href="https://arxiv.org/format/2111.14191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.242501">10.1103/PhysRevLett.128.242501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perturbative quantum Monte Carlo method for nuclear physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yuan-Zhuo Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14191v2-abstract-short" style="display: inline;"> While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. We demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the bi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14191v2-abstract-full').style.display = 'inline'; document.getElementById('2111.14191v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14191v2-abstract-full" style="display: none;"> While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. We demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies of several light nuclei up to $^{16}$O by expanding the Hamiltonian around the Wigner SU(4) limit and find good agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large second order energy corrections. This occurs because the perturbing interactions break the symmetries of the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14191v2-abstract-full').style.display = 'none'; document.getElementById('2111.14191v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages main text, 6 pages supplemental material, more details on the perturbative expansion, version accepted for publication in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 242501 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09131">arXiv:2104.09131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.09131">pdf</a>, <a href="https://arxiv.org/ps/2104.09131">ps</a>, <a href="https://arxiv.org/format/2104.09131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012006">10.1103/PhysRevD.104.012006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the decay $D^+\to K^*(892)^+ K_S^0$ in $D^+\to K^+ K_S^0 蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (492 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09131v3-abstract-short" style="display: inline;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'inline'; document.getElementById('2104.09131v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09131v3-abstract-full" style="display: none;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1\pm2.6\pm4.2)\%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$ measured by BESIII, we obtain $\mathcal{B}(D^+\to K^*(892)^+ K_S^0)=(8.69\pm0.40\pm0.64\pm0.51)\times10^{-3}$, where the third uncertainty is due to the branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$. The precision of this result is significantly improved compared to the previous measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'none'; document.getElementById('2104.09131v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05208">arXiv:2008.05208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.05208">pdf</a>, <a href="https://arxiv.org/format/2008.05208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abcd8f">10.1088/1674-1137/abcd8f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charmed and $蠁$ meson decay constants from 2+1-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chiu%2C+W">Wei-Feng Chiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yunheng Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05208v3-abstract-short" style="display: inline;"> On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $蠁$. The lattice size is $48^3\times96$, which corresponds to a spatial extension of $\sim5.5$ fm with the lattice spacing $a\approx 0.114$ fm. For the valence light, strange and charm quarks, we use overlap fermions at several mass points close to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05208v3-abstract-full').style.display = 'inline'; document.getElementById('2008.05208v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05208v3-abstract-full" style="display: none;"> On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $蠁$. The lattice size is $48^3\times96$, which corresponds to a spatial extension of $\sim5.5$ fm with the lattice spacing $a\approx 0.114$ fm. For the valence light, strange and charm quarks, we use overlap fermions at several mass points close to their physical values. Our results at the physical point are $f_D=213(5)$ MeV, $f_{D_s}=249(7)$ MeV, $f_{D^*}=234(6)$ MeV, $f_{D_s^*}=274(7)$ MeV, and $f_蠁=241(9)$ MeV. The couplings of $D^*$ and $D_s^*$ to the tensor current ($f_V^T$) can be derived, respectively, from the ratios $f_{D^*}^T/f_{D^*}=0.91(4)$ and $f_{D_s^*}^T/f_{D_s^*}=0.92(4)$, which are the first lattice QCD results. We also obtain the ratios $f_{D^*}/f_D=1.10(3)$ and $f_{D_s^*}/f_{D_s}=1.10(4)$, which reflect the size of heavy quark symmetry breaking in charmed mesons. The ratios $f_{D_s}/f_{D}=1.16(3)$ and $f_{D_s^*}/f_{D^*}=1.17(3)$ can be taken as a measure of SU(3) flavor symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05208v3-abstract-full').style.display = 'none'; document.getElementById('2008.05208v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 10 tables; references and acknowledgements added; minor changes, version to be published in Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C45, No. 2 (2021) 023109 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14893">arXiv:2007.14893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.14893">pdf</a>, <a href="https://arxiv.org/format/2007.14893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abc241">10.1088/1674-1137/abc241 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strangeonium-like hybrids on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yunheng Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14893v1-abstract-short" style="display: inline;"> The strangeonium-like $s\bar{s}g$ hybrids are investigated from lattice QCD in the quenched approximation. In the Coulomb gauge, spatially extended operators are constructed for $1^{--}$ and $(0,1,2)^{-+}$ states with the color octet $s\bar{s}$ component being separated from the chromomagnetic field strength by spatial distances $r$, whose matrix elements between the vacuum and the corresponding s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14893v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14893v1-abstract-full" style="display: none;"> The strangeonium-like $s\bar{s}g$ hybrids are investigated from lattice QCD in the quenched approximation. In the Coulomb gauge, spatially extended operators are constructed for $1^{--}$ and $(0,1,2)^{-+}$ states with the color octet $s\bar{s}$ component being separated from the chromomagnetic field strength by spatial distances $r$, whose matrix elements between the vacuum and the corresponding states are interpreted as Bethe-Salpeter (BS) wave functions. In each of the $(1,2)^{-+}$ channels, the masses and the BS wave functions are reliably derived. The $1^{-+}$ ground state mass is around 2.1-2.2 GeV, and that of $2^{-+}$ is around 2.3-2.4 GeV, while the masses of the first excited states are roughly 1.4 GeV higher. This mass splitting is much larger than the expectation of the phenomenological flux-tube model or constituent gluon model for hybrids, which is usually a few hundred MeV. The BS wave functions with respect to $r$ show clear radial nodal structures of non-relativistic two-body system, which imply that $r$ is a meaningful dynamical variable for these hybrids and motivate a color halo picture of hybrids that the color octet $s\bar{s}$ is surrounded by gluonic degrees of freedom. In the $1^{--}$ channel, the properties of the lowest two states comply with those of $蠁(1020)$ and $蠁(1680)$. We have not obtained convincing information relevant to $蠁(2170)$ yet, however, we argue that whether $蠁(2170)$ is a conventional $s\bar{s}$ meson or a $s\bar{s}g$ hybrid within the color halo scenario, the ratio of partial decay widths $螕(蠁畏)$ and $螕(蠁畏&#39;)$ observed by BESIII can be understood by the mechanism of hadronic transition of a strangeonium-like meson along with the $畏-畏&#39;$ mixing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14893v1-abstract-full').style.display = 'none'; document.getElementById('2007.14893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, to be submitted to Chin. Phys. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12370">arXiv:2006.12370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.12370">pdf</a>, <a href="https://arxiv.org/format/2006.12370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.072001">10.1103/PhysRevLett.126.072001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extraction of Next-to-Next-to-Leading-Order PDFs from Lattice QCD Calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+Z">Zheng-Yang Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12370v3-abstract-short" style="display: inline;"> We present for the first time complete next-to-next-to-leading-order coefficient functions to match flavor non-singlet quark correlation functions in position space, which are calculable in lattice QCD, to parton distribution functions (PDFs). Using PDFs extracted from experimental data and our calculated matching coefficients, we predict valence-quark correlation functions that can be confronted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12370v3-abstract-full').style.display = 'inline'; document.getElementById('2006.12370v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12370v3-abstract-full" style="display: none;"> We present for the first time complete next-to-next-to-leading-order coefficient functions to match flavor non-singlet quark correlation functions in position space, which are calculable in lattice QCD, to parton distribution functions (PDFs). Using PDFs extracted from experimental data and our calculated matching coefficients, we predict valence-quark correlation functions that can be confronted by lattice QCD calculations. The uncertainty of our predictions is greatly reduced with higher order matching coefficients. By performing Fourier transformation, we also obtain matching coefficients for corresponding quasi-PDFs and pseudo-PDFs. Our method of calculations can be readily generalized to evaluate the matching coefficients for sea-quark and gluon correlation functions, putting the program to extract partonic structure of hadrons from lattice QCD calculations to be comparable with and complementary to that from experimental measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12370v3-abstract-full').style.display = 'none'; document.getElementById('2006.12370v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 2 figures; analytical matching coefficients for quark correlation functions, quasi-PDFs and pseudo-PDFs added; version to be published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-20-3214 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 072001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04960">arXiv:2001.04960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.04960">pdf</a>, <a href="https://arxiv.org/format/2001.04960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.054508">10.1103/PhysRevD.102.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion valence quark distribution from current-current correlation in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sufian%2C+R+S">Raza Sabbir Sufian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04960v3-abstract-short" style="display: inline;"> We extract the pion valence quark distribution $q^蟺_{\rm v}(x)$ from lattice QCD (LQCD) calculated matrix elements of spacelike correlations of one vector and one axial vector current analyzed in terms of QCD collinear factorization, using a new short-distance matching coefficient calculated to one-loop accuracy. We derive the Ioffe time distribution of the two-current correlations in the physical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04960v3-abstract-full').style.display = 'inline'; document.getElementById('2001.04960v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04960v3-abstract-full" style="display: none;"> We extract the pion valence quark distribution $q^蟺_{\rm v}(x)$ from lattice QCD (LQCD) calculated matrix elements of spacelike correlations of one vector and one axial vector current analyzed in terms of QCD collinear factorization, using a new short-distance matching coefficient calculated to one-loop accuracy. We derive the Ioffe time distribution of the two-current correlations in the physical limit by investigating the finite lattice spacing, volume, quark mass, and higher-twist dependencies in a simultaneous fit of matrix elements computed on four gauge ensembles. We find remarkable consistency between our extracted $q^蟺_{\rm v}(x)$ and that obtained from experimental data across the entire $x$-range. Further, we demonstrate that the one-loop matching coefficient relating the LQCD matrix computed in position space to the $q_{\rm v}^蟺(x)$ in momentum space has well-controlled behavior with Ioffe time. This justifies that LQCD calculated current-current correlations are good observables for extracting partonic structures by using QCD factorization, which complements to the global effort to extract partonic structure from experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04960v3-abstract-full').style.display = 'none'; document.getElementById('2001.04960v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-20-3131 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 054508 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09819">arXiv:1910.09819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.09819">pdf</a>, <a href="https://arxiv.org/format/1910.09819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac0ee2">10.1088/1674-1137/ac0ee2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Color halo scenario of charmonium-like hybrids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yunheng Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09819v2-abstract-short" style="display: inline;"> The internal structures of $J^{PC}=1^{--}, (0,1,2)^{-+}$ charmonium-like hybrids are investigated under lattice QCD in the quenched approximation. We define the Bethe-Salpeter wave function $桅_n(r)$ in the Coulomb gauge as the matrix element of a spatially extended hybrid-like operator $\bar{c}{c}g$ between the vacuum and $n$-th state for each $J^{PC}$ with $r$ being the spatial separation between&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09819v2-abstract-full').style.display = 'inline'; document.getElementById('1910.09819v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09819v2-abstract-full" style="display: none;"> The internal structures of $J^{PC}=1^{--}, (0,1,2)^{-+}$ charmonium-like hybrids are investigated under lattice QCD in the quenched approximation. We define the Bethe-Salpeter wave function $桅_n(r)$ in the Coulomb gauge as the matrix element of a spatially extended hybrid-like operator $\bar{c}{c}g$ between the vacuum and $n$-th state for each $J^{PC}$ with $r$ being the spatial separation between a localized $\bar{c}c$ component and the chromomagnetic strength tensor. These wave functions exhibit some similarities for states with the aforementioned different quantum numbers, and their $r$-behaviors (no node for the ground states and one node for the first excited states) imply that $r$ can be a meaningful dynamical variable for these states. Additionally, the mass splittings of the ground states and first excited states of charmonium-like hybrids in these channels are obtained for the first time to be approximately 1.2-1.4 GeV. These results do not support the flux-tube description of heavy-quarkonium-like hybrids in the Born-Oppenheimer approximation. In contrast, a charmonium-like hybrid can be viewed as a &#34;color halo&#34; charmonium for which a relatively localized color octet $\bar{c}c$ is surrounded by gluonic degrees of freedom, which can readily decay into a charmonium state along with one or more light hadrons. The color halo picture is compatible with the decay properties of $Y(4260)$ and suggests LHCb and BelleII to search for $(0,1,2)^{-+}$ charmonium-like hybrids in $蠂_{c0,1,2}畏$ and $J/蠄蠅(蠁)$ final states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09819v2-abstract-full').style.display = 'none'; document.getElementById('1910.09819v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures. The contents are considerably enriched, more references are added. Match the publication version in Chin. Phys. C (in press)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics C 45, No. 9 (2021) 093111 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06496">arXiv:1809.06496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.06496">pdf</a>, <a href="https://arxiv.org/ps/1809.06496">ps</a>, <a href="https://arxiv.org/format/1809.06496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.062001">10.1103/PhysRevLett.122.062001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of $D^+ \to f_0(500) e^+谓_e$ and Improved Measurements of $D \to蟻e^+谓_e$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alekseev%2C+M">M. Alekseev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+F+F">F. F. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+D+W">D. W. Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boger%2C+E">E. Boger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cai%2C+H">H. Cai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cai%2C+X">X. Cai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Calcaterra%2C+A">A. Calcaterra</a> , et al. (438 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06496v2-abstract-short" style="display: inline;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'inline'; document.getElementById('1809.06496v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06496v2-abstract-full" style="display: none;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a statistical significance greater than 10$蟽$, besides the dominant $P$-wave contribution. This is the first observation of the $S$-wave contribution. We measure the branching fractions $\mathcal{B}(D^{0} \to 蟻^- e^+ 谓_e) = (1.445\pm 0.058 \pm 0.039) \times10^{-3}$, $\mathcal{B}(D^{+} \to 蟻^0 e^+ 谓_e) = (1.860\pm 0.070 \pm 0.061) \times10^{-3}$, and $\mathcal{B}(D^{+} \to f_0(500) e^+ 谓_e, f_0(500)\to蟺^+蟺^-) = (6.30\pm 0.43 \pm 0.32) \times10^{-4}$. An upper limit of $\mathcal{B}(D^{+} \to f_0(980) e^+ 谓_e, f_0(980)\to蟺^+蟺^-) &lt; 2.8 \times10^{-5}$ is set at the 90% confidence level. We also obtain the hadronic form factor ratios of $D\to 蟻e^+谓_e$ at $q^{2}=0$ assuming the single-pole dominance parameterization: $r_{V}=\frac{V(0)}{A_{1}(0)}=1.695\pm0.083\pm0.051$, $r_{2}=\frac{A_{2}(0)}{A_{1}(0)}=0.845\pm0.056\pm0.039$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'none'; document.getElementById('1809.06496v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 062001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.01836">arXiv:1809.01836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.01836">pdf</a>, <a href="https://arxiv.org/ps/1809.01836">ps</a>, <a href="https://arxiv.org/format/1809.01836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.062002">10.1103/PhysRevLett.122.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiplicative renormalizability of quasi-parton operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+Z">Zheng-Yang Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.01836v2-abstract-short" style="display: inline;"> Extracting parton distribution functions (PDFs) from lattice QCD calculation of quasi-PDFs has been actively pursued in recent years. We extend our proof of the multiplicative renormalizability of quasi-quark operators in Ref. [1] to quasi-gluon operators, and demonstrated that quasi-gluon operators could be multiplicatively renormalized to all orders in perturbation theory, without mixing with ot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01836v2-abstract-full').style.display = 'inline'; document.getElementById('1809.01836v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.01836v2-abstract-full" style="display: none;"> Extracting parton distribution functions (PDFs) from lattice QCD calculation of quasi-PDFs has been actively pursued in recent years. We extend our proof of the multiplicative renormalizability of quasi-quark operators in Ref. [1] to quasi-gluon operators, and demonstrated that quasi-gluon operators could be multiplicatively renormalized to all orders in perturbation theory, without mixing with other operators. We find that using a gauge-invariant UV regulator is essential for achieving this proof. With the multiplicative renormalizability of both quasi-quark and quasi-gluon operators, and QCD collinear factorization of hadronic matrix elements of there operators into PDFs, extracting PDFs from lattice QCD calculated hadronic matrix elements of quasi-parton operators could have a solid theoretical foundation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01836v2-abstract-full').style.display = 'none'; document.getElementById('1809.01836v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 062002 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.03018">arXiv:1709.03018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.03018">pdf</a>, <a href="https://arxiv.org/ps/1709.03018">ps</a>, <a href="https://arxiv.org/format/1709.03018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.022003">10.1103/PhysRevLett.120.022003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring hadrons&#39; partonic structure using ab initio lattice QCD calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.03018v2-abstract-short" style="display: inline;"> Following our previous proposal [1], we construct a class of good &#34;lattice cross sections&#34; (LCSs), from which we could study partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same wa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03018v2-abstract-full').style.display = 'inline'; document.getElementById('1709.03018v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.03018v2-abstract-full" style="display: none;"> Following our previous proposal [1], we construct a class of good &#34;lattice cross sections&#34; (LCSs), from which we could study partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. We also show that proposed functions for lattice QCD calculation of PDFs in the literature are special cases of these good LCSs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03018v2-abstract-full').style.display = 'none'; document.getElementById('1709.03018v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 1 figure, version accepted by Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 022003 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.03107">arXiv:1707.03107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.03107">pdf</a>, <a href="https://arxiv.org/ps/1707.03107">ps</a>, <a href="https://arxiv.org/format/1707.03107">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.094019">10.1103/PhysRevD.96.094019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Renormalizability of Quasi Parton Distribution Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ishikawa%2C+T">Tomomi Ishikawa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yoshida%2C+S">Shinsuke Yoshida</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.03107v2-abstract-short" style="display: inline;"> Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and lattice QCD communities in recent years because they not only carry good information on the parton distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.03107v2-abstract-full').style.display = 'inline'; document.getElementById('1707.03107v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.03107v2-abstract-full" style="display: none;"> Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and lattice QCD communities in recent years because they not only carry good information on the parton distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet power divergences because they are not defined by twist-2 operators. In this paper, we identify all sources of ultraviolet divergences for the quasi-parton distribution functions in coordinate-space, and demonstrate that power divergences, as well as all logarithmic divergences can be renormalized multiplicatively to all orders in QCD perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.03107v2-abstract-full').style.display = 'none'; document.getElementById('1707.03107v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, version accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 094019 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.08699">arXiv:1703.08699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.08699">pdf</a>, <a href="https://arxiv.org/format/1703.08699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Matching issue in quasi parton distribution approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ishikawa%2C+T">Tomomi Ishikawa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yoshida%2C+S">Shinsuke Yoshida</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.08699v1-abstract-short" style="display: inline;"> In recent years, the quasi parton distribution has been introduced for extracting the parton distribution functions from lattice QCD simulations. The quasi and standard distribution share the same perturbative collinear singularity and the renormalized quasi distribution can be factorized into the standard distribution with a perturbative matching factor. The quasi parton distribution is known to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08699v1-abstract-full').style.display = 'inline'; document.getElementById('1703.08699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.08699v1-abstract-full" style="display: none;"> In recent years, the quasi parton distribution has been introduced for extracting the parton distribution functions from lattice QCD simulations. The quasi and standard distribution share the same perturbative collinear singularity and the renormalized quasi distribution can be factorized into the standard distribution with a perturbative matching factor. The quasi parton distribution is known to have power-law UV divergences, which do not exist in the standard distribution. We discuss in this talk the nonperturbative renormalization scheme for the power divergence. We also demonstrate the perturbative matching of the quasi quark distribution between continuum and lattice at the one-loop. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08699v1-abstract-full').style.display = 'none'; document.getElementById('1703.08699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, talk presented at the 34th annual International Symposium on Lattice Field Theory (Lattice 2016), 24-30 July 2016, University of Southampton, UK</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1225 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2016)177 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.02018">arXiv:1609.02018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.02018">pdf</a>, <a href="https://arxiv.org/format/1609.02018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Practical quasi parton distribution functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ishikawa%2C+T">Tomomi Ishikawa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yoshida%2C+S">Shinsuke Yoshida</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.02018v1-abstract-short" style="display: inline;"> A completely new strategy to calculate parton distribution functions on the lattice has recently been proposed. In this method, lattice calculable observables, called quasi distributions, are related to normal distributions. The quasi distributions are known to contain power-law UV divergences arise from a Wilson line in the non-local operator, while the normal distributions only have logatithmic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02018v1-abstract-full').style.display = 'inline'; document.getElementById('1609.02018v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.02018v1-abstract-full" style="display: none;"> A completely new strategy to calculate parton distribution functions on the lattice has recently been proposed. In this method, lattice calculable observables, called quasi distributions, are related to normal distributions. The quasi distributions are known to contain power-law UV divergences arise from a Wilson line in the non-local operator, while the normal distributions only have logatithmic UV divergences. We propose possible method to subtract the power divegence to make the matching of the quasi with the normal distributions well-defined. We also demonstrate the matching of the quasi quark distribution between continuum and lattice implementing the power divergence subtraction. The matching calculations are carried out by one-loop perturbation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02018v1-abstract-full').style.display = 'none'; document.getElementById('1609.02018v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1199 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.2688">arXiv:1412.2688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.2688">pdf</a>, <a href="https://arxiv.org/ps/1412.2688">ps</a>, <a href="https://arxiv.org/format/1412.2688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S2010194515600411">10.1142/S2010194515600411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD Factorization and PDFs from Lattice QCD Calculation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.2688v1-abstract-short" style="display: inline;"> In this talk, we review a QCD factorization based approach to extract parton distribution and correlation functions from lattice QCD calculation of single hadron matrix elements of quark-gluon operators. We argue that although the lattice QCD calculations are done in the Euclidean space, the nonperturbative collinear behavior of the matrix elements are the same as that in the Minkowski space, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2688v1-abstract-full').style.display = 'inline'; document.getElementById('1412.2688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.2688v1-abstract-full" style="display: none;"> In this talk, we review a QCD factorization based approach to extract parton distribution and correlation functions from lattice QCD calculation of single hadron matrix elements of quark-gluon operators. We argue that although the lattice QCD calculations are done in the Euclidean space, the nonperturbative collinear behavior of the matrix elements are the same as that in the Minkowski space, and could be systematically factorized into parton distribution functions with infrared safe matching coefficients. The matching coefficients can be calculated perturbatively by applying the factorization formalism on to asymptotic partonic states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2688v1-abstract-full').style.display = 'none'; document.getElementById('1412.2688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, accepted contribution to the proceedings of &#34;The QCD Evolution 2014 workshop&#34;, May 12-16, 2014, Santa Fe, NM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.6860">arXiv:1404.6860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.6860">pdf</a>, <a href="https://arxiv.org/ps/1404.6860">ps</a>, <a href="https://arxiv.org/format/1404.6860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.074021">10.1103/PhysRevD.98.074021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extracting Parton Distribution Functions from Lattice QCD Calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.6860v3-abstract-short" style="display: inline;"> Parton distribution functions (PDFs) are nonperturbative quantities describing the relation between a hadron and quarks and gluons within it. We propose to extract PDFs from QCD global analysis of &#34;data&#34; generated by lattice QCD calculations of good &#34;lattice cross sections&#34;, which are basically single-hadron matrix elements that are lattice QCD calculable and perturbative QCD factorizable into the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6860v3-abstract-full').style.display = 'inline'; document.getElementById('1404.6860v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.6860v3-abstract-full" style="display: none;"> Parton distribution functions (PDFs) are nonperturbative quantities describing the relation between a hadron and quarks and gluons within it. We propose to extract PDFs from QCD global analysis of &#34;data&#34; generated by lattice QCD calculations of good &#34;lattice cross sections&#34;, which are basically single-hadron matrix elements that are lattice QCD calculable and perturbative QCD factorizable into the PDFs. To demonstrate the existence of good &#34;lattice cross sections&#34;, we take quasi-quark distribution introduced by Ji [1] as a case study to show that it could be factorized into the PDFs to all orders in perturbation theory if it can be multiplicatively renormalized. We calculate the factorized coefficients at the next-to-leading order in $伪_s$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6860v3-abstract-full').style.display = 'none'; document.getElementById('1404.6860v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">references updated, version published at PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 074021 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.5681">arXiv:1309.5681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.5681">pdf</a>, <a href="https://arxiv.org/ps/1309.5681">ps</a>, <a href="https://arxiv.org/format/1309.5681">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.032302">10.1103/PhysRevLett.112.032302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adamczyk%2C+L">L. Adamczyk</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Agakishiev%2C+G">G. Agakishiev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Anson%2C+C+D">C. D. Anson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aparin%2C+A">A. Aparin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Barnovska%2C+Z">Z. Barnovska</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattarai%2C+P">P. Bhattarai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a> , et al. (333 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.5681v1-abstract-short" style="display: inline;"> We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (蟽), skewness (S), and kurtosis (魏) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| &lt; 0.5) and within the transverse momentum range 0.4 &lt; pT &lt; 0.8 GeV/c in the first phase of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.5681v1-abstract-full').style.display = 'inline'; document.getElementById('1309.5681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.5681v1-abstract-full" style="display: none;"> We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (蟽), skewness (S), and kurtosis (魏) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| &lt; 0.5) and within the transverse momentum range 0.4 &lt; pT &lt; 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S蟽and 魏蟽^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.5681v1-abstract-full').style.display = 'none'; document.getElementById('1309.5681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages and 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112 (2014) 032302 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.2760">arXiv:1308.2760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.2760">pdf</a>, <a href="https://arxiv.org/ps/1308.2760">ps</a>, <a href="https://arxiv.org/format/1308.2760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.132001">10.1103/PhysRevLett.112.132001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a charged charmoniumlike structure in $e^+e^- \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp$ at $\sqrt{s}=4.26$GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=BESIII+collaboration"> BESIII collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albayrak%2C+O">O. Albayrak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ambrose%2C+D+J">D. J. Ambrose</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+F+F">F. F. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+J+Z">J. Z. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Becker%2C+J">J. Becker</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bian%2C+J+M">J. M. Bian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boger%2C+E">E. Boger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bondarenko%2C+O">O. Bondarenko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Braun%2C+S">S. Braun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bytev%2C+V">V. Bytev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cai%2C+H">H. Cai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cai%2C+X">X. Cai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cakir%2C+O">O. Cakir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Calcaterra%2C+A">A. Calcaterra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a> , et al. (336 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.2760v2-abstract-short" style="display: inline;"> We study the process $e^+e^- \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp$ at a center-of-mass energy of 4.26GeV using a 827pb$^{-1}$ data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be $(137\pm9\pm15)$pb. We observe a structure near the $(D^{*} \bar{D}^{*})^{\pm}$ threshold in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2760v2-abstract-full').style.display = 'inline'; document.getElementById('1308.2760v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.2760v2-abstract-full" style="display: none;"> We study the process $e^+e^- \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp$ at a center-of-mass energy of 4.26GeV using a 827pb$^{-1}$ data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be $(137\pm9\pm15)$pb. We observe a structure near the $(D^{*} \bar{D}^{*})^{\pm}$ threshold in the $蟺^\mp$ recoil mass spectrum, which we denote as the $Z^{\pm}_c(4025)$. The measured mass and width of the structure are $(4026.3\pm2.6\pm3.7)$MeV/c$^2$ and $(24.8\pm5.6\pm7.7)$MeV, respectively. Its production ratio $\frac{蟽(e^+e^-\to Z^{\pm}_c(4025)蟺^\mp \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp)}{蟽(e^+e^-\to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp)}$ is determined to be $0.65\pm0.09\pm0.06$. The first uncertainties are statistical and the second are systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2760v2-abstract-full').style.display = 'none'; document.getElementById('1308.2760v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, 1 table; version accepted to be published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 132001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.3675">arXiv:1109.3675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1109.3675">pdf</a>, <a href="https://arxiv.org/ps/1109.3675">ps</a>, <a href="https://arxiv.org/format/1109.3675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2012.09.067">10.1016/j.physletb.2012.09.067 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pseudoscalar Meson in Two Flavors QCD with the Optimal Domain-Wall Fermion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chiu%2C+T">Ting-Wai Chiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsieh%2C+T">Tung-Han Hsieh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mao%2C+Y">Yao-Yuan Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.3675v2-abstract-short" style="display: inline;"> We perform hybrid Monte Carlo (HMC) simulatons of two flavors QCD with the optimal domain-wall fermion (ODWF) on the 16^3 x 32 lattice (with lattice spacing a ~ 0.1 fm), for eight sea-quark masses corresponding to pion masses in the range 228-565 MeV. We calculate the mass and the decay constant of the pseudoscalar meson, and compare our data with the chiral perturbation theory (ChPT). We find tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.3675v2-abstract-full').style.display = 'inline'; document.getElementById('1109.3675v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.3675v2-abstract-full" style="display: none;"> We perform hybrid Monte Carlo (HMC) simulatons of two flavors QCD with the optimal domain-wall fermion (ODWF) on the 16^3 x 32 lattice (with lattice spacing a ~ 0.1 fm), for eight sea-quark masses corresponding to pion masses in the range 228-565 MeV. We calculate the mass and the decay constant of the pseudoscalar meson, and compare our data with the chiral perturbation theory (ChPT). We find that our data is in good agreement with the sea-quark mass dependence predicted by the next-to-leading order (NLO) ChPT, and provides a determination of the low-energy constants \bar{l}_3 and \bar{l}_4, the pion decay constant, the chiral condensate, and the average up and down quark mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.3675v2-abstract-full').style.display = 'none'; document.getElementById('1109.3675v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, v2: updated results with full statistics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NTUTH-11-505E </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 717 (2012) 420 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.4414">arXiv:1105.4414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.4414">pdf</a>, <a href="https://arxiv.org/ps/1105.4414">ps</a>, <a href="https://arxiv.org/format/1105.4414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2011.06.070">10.1016/j.physletb.2011.06.070 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Susceptibility in Two Flavors Lattice QCD with the Optimal Domain-Wall Fermion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chiu%2C+T">Ting-Wai Chiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsieh%2C+T">Tung-Han Hsieh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mao%2C+Y">Yao-Yuan Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.4414v2-abstract-short" style="display: inline;"> We determine the topological susceptibility of the gauge configurations generated by lattice simulations using two flavors of optimal domain-wall fermion on the $ 16^3 \times 32 $ lattice with length 16 in the fifth dimension, at the lattice spacing $ a \simeq 0.1 $ fm. Using the adaptive thick-restart Lanczos algorithm, we project the low-lying eigenmodes of the overlap Dirac operator, and obtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.4414v2-abstract-full').style.display = 'inline'; document.getElementById('1105.4414v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.4414v2-abstract-full" style="display: none;"> We determine the topological susceptibility of the gauge configurations generated by lattice simulations using two flavors of optimal domain-wall fermion on the $ 16^3 \times 32 $ lattice with length 16 in the fifth dimension, at the lattice spacing $ a \simeq 0.1 $ fm. Using the adaptive thick-restart Lanczos algorithm, we project the low-lying eigenmodes of the overlap Dirac operator, and obtain the topological charge of each configuration, for eight ensembles with pion masses in the range $ 220-550 $ MeV. From the topological charge, we compute the topological susceptibility and the second normalized cumulant. Our result of the topological susceptibility agrees with the sea-quark mass dependence predicted by the chiral perturbation theory and provides a determination of the chiral condensate, $危^{\bar{MS}}(2 GeV)=[259(6)(7) MeV]^3 $, and the pion decay constant $F_蟺= 92(12)(2)$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.4414v2-abstract-full').style.display = 'none'; document.getElementById('1105.4414v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 EPS figures, v2: typos corrected, to appear in Phys. Lett. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NTUTH-11-505D </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 702 (2011) 131 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.0423">arXiv:1101.0423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.0423">pdf</a>, <a href="https://arxiv.org/ps/1101.0423">ps</a>, <a href="https://arxiv.org/format/1101.0423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> GPU-Based Conjugate Gradient Solver for Lattice QCD with Domain-Wall Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chiu%2C+T">Ting-Wai Chiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsieh%2C+T">Tung-Han Hsieh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mao%2C+Y">Yao-Yuan Mao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ogawa%2C+K">Kenji Ogawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.0423v1-abstract-short" style="display: inline;"> We present the first GPU-based conjugate gradient (CG) solver for lattice QCD with domain-wall fermions (DWF). It is well-known that CG is the most time-consuming part in the Hybrid Monte Carlo simulation of unquenched lattice QCD, which becomes even more computational demanding for lattice QCD with exact chiral symmetry. We have designed a CG solver for the general 5-dimensional DWF operator on N&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0423v1-abstract-full').style.display = 'inline'; document.getElementById('1101.0423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.0423v1-abstract-full" style="display: none;"> We present the first GPU-based conjugate gradient (CG) solver for lattice QCD with domain-wall fermions (DWF). It is well-known that CG is the most time-consuming part in the Hybrid Monte Carlo simulation of unquenched lattice QCD, which becomes even more computational demanding for lattice QCD with exact chiral symmetry. We have designed a CG solver for the general 5-dimensional DWF operator on NVIDIA CUDA architecture with mixed-precision, using the defect correction as well as the reliable updates algorithms. We optimize our computation by even-odd preconditioning in the 4D space-time lattice, plus several innovative techniques for CUDA kernels. For NVIDIA GeForce GTX 285/480, our CG solver attains 180/233 Gflops (sustained). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0423v1-abstract-full').style.display = 'none'; document.getElementById('1101.0423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, talk presented at The XXVIII International Symposium on Lattice Field Theory, Lattice 2010, June 14-19, 2010, Villasimius, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NTUTH-11-505C </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2010:030,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.0405">arXiv:1101.0405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.0405">pdf</a>, <a href="https://arxiv.org/ps/1101.0405">ps</a>, <a href="https://arxiv.org/format/1101.0405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD with Optimal Domain-Wall Fermion: Light Meson Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Yu-Chih Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chiu%2C+T">Ting-Wai Chiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guu%2C+T">Tian-Shin Guu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsieh%2C+T">Tung-Han Hsieh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Huang%2C+C">Chao-Hsi Huang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mao%2C+Y">Yao-Yuan Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.0405v1-abstract-short" style="display: inline;"> We perform lattice simulations of two flavors QCD using the optimal domain-wall fermion, in which the chiral symmetry is preserved to a good precision ($ m_{res} \sim 0.3 $ MeV) on the $ 16^3 \times 32 $ lattice ($ L \sim 2 $ fm) with inverse lattice spacing $ a^{-1} \sim 1.8 $ GeV, and $ N_s = 16 $ in the fifth dimension, for eight sea quark masses corresponding to the pion masses in the range 21&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0405v1-abstract-full').style.display = 'inline'; document.getElementById('1101.0405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.0405v1-abstract-full" style="display: none;"> We perform lattice simulations of two flavors QCD using the optimal domain-wall fermion, in which the chiral symmetry is preserved to a good precision ($ m_{res} \sim 0.3 $ MeV) on the $ 16^3 \times 32 $ lattice ($ L \sim 2 $ fm) with inverse lattice spacing $ a^{-1} \sim 1.8 $ GeV, and $ N_s = 16 $ in the fifth dimension, for eight sea quark masses corresponding to the pion masses in the range 210-500 MeV. We present our first results of the mass and the decay constant of the pseudoscalar meson, which are in good agreement with the next-to-leading order chiral perturbation theory for $ M_蟺&lt; 450 $ MeV, and from which we determine the low-energy constants $ f $, $ 危$, $ \bar{l}_3 $ and $ \bar{l}_4 $. At the physical pion mass $ M_蟺 = 135$ MeV, we obtain the pion decay constant $f_蟺=133(1)(2)$ MeV, and the average up and down quark mass $m_{ud}^{\bar{\rm MS}}(\mathrm{2 GeV})=4.09(7)(11)$ MeV, where the first error is statistical, and the second error is systematic due to the truncation of the higher order corrections and the uncertainty in the determination of the lattice spacing. Furthermore, we also obtain the chiral condensate $ 危^{\bar{\mathrm{MS}}}(2 GeV) = [250(4)(7) MeV]^3 $. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0405v1-abstract-full').style.display = 'none'; document.getElementById('1101.0405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, talk presented at the 28th International Symposium on Lattice Field Theory, Lattice 2010, June 14-19, 2010, Villasimius, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NTUTH-11-505A </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2010:099,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.0402">arXiv:1101.0402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.0402">pdf</a>, <a href="https://arxiv.org/ps/1101.0402">ps</a>, <a href="https://arxiv.org/format/1101.0402">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Topological Charge in Two Flavors QCD with Optimal Domain-Wall Fermion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hsieh%2C+T">Tung-Han Hsieh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chiu%2C+T">Ting-Wai Chiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mao%2C+Y">Yao-Yuan Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.0402v1-abstract-short" style="display: inline;"> We measure the topological charge of the gauge configurations generated by lattice simulations of 2 flavors QCD on a $ 16^3 \times 32 $ lattice, with Optimal Domain-Wall Fermion (ODWF) at $ N_s = 16 $ and plaquette gauge action at $ 尾= 5.90 $. Using the Adaptive Thick-Restart Lanczos algorithm, we project the low-lying modes of the 4D effective Dirac operator of ODWF, and obtain the topological ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0402v1-abstract-full').style.display = 'inline'; document.getElementById('1101.0402v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.0402v1-abstract-full" style="display: none;"> We measure the topological charge of the gauge configurations generated by lattice simulations of 2 flavors QCD on a $ 16^3 \times 32 $ lattice, with Optimal Domain-Wall Fermion (ODWF) at $ N_s = 16 $ and plaquette gauge action at $ 尾= 5.90 $. Using the Adaptive Thick-Restart Lanczos algorithm, we project the low-lying modes of the 4D effective Dirac operator of ODWF, and obtain the topological charge and topological susceptibility. Our result of topological susceptibility agrees with the sea-quark mass dependence predicted by the chiral perturbation theory, and provides a determination of the chiral condensate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0402v1-abstract-full').style.display = 'none'; document.getElementById('1101.0402v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, talk presented at the 28th International Symposium on Lattice Field Theory, Lattice 2010, June 14-19, 2010, Villasimius, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NTUTH-11-505B </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS Lattice2010:085,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.4959">arXiv:1004.4959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1004.4959">pdf</a>, <a href="https://arxiv.org/ps/1004.4959">ps</a>, <a href="https://arxiv.org/format/1004.4959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.022302">10.1103/PhysRevLett.105.022302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher Moments of Net-proton Multiplicity Distributions at RHIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Barnby%2C+L+S">L. S. Barnby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Baumgart%2C+S">S. Baumgart</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bonner%2C+3+B+E">3 B. E. Bonner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bouchet%2C+J">J. Bouchet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Braidot%2C+E">E. Braidot</a> , et al. (359 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.4959v2-abstract-short" style="display: inline;"> We report the first measurements of the kurtosis (魏), skewness (S) and variance (蟽^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (渭_B) between 200 - 20 MeV. Our measurements of the products 魏蟽^2 and S 蟽, which can be related to theoretical calculations sensitive t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.4959v2-abstract-full').style.display = 'inline'; document.getElementById('1004.4959v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.4959v2-abstract-full" style="display: none;"> We report the first measurements of the kurtosis (魏), skewness (S) and variance (蟽^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (渭_B) between 200 - 20 MeV. Our measurements of the products 魏蟽^2 and S 蟽, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of 魏蟽^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for 渭_B below 200 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.4959v2-abstract-full').style.display = 'none'; document.getElementById('1004.4959v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 4 figures. Version accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.105:022302,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.5029">arXiv:0911.5029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0911.5029">pdf</a>, <a href="https://arxiv.org/ps/0911.5029">ps</a>, <a href="https://arxiv.org/format/0911.5029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> TWQCD&#39;s dynamical DWF project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chiu%2C+T">Ting-Wai Chiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guu%2C+T">Tian-Shin Guu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsieh%2C+T">Tung-Han Hsieh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Huang%2C+C">Chao-Hsi Huang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+Y">Yu-Ying Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mao%2C+Y">Yao-Yuan Mao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ogawa%2C+K">Kenji Ogawa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tseng%2C+P">Po-Kai Tseng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.5029v2-abstract-short" style="display: inline;"> We present an overview of our project of simulation of unquenched lattice QCD with optimal domain-wall quarks, using a GPU cluster currently constituting of 16 units of Nvidia Tesla S1070 plus 64 graphic cards with Nvidia GTX285 (total 128 GPUs with 128 Teraflops peak), attaining sustained computing power of 15.36 Teraflops. The first production run in two-flavor QCD is on-going, using the Iwasa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.5029v2-abstract-full').style.display = 'inline'; document.getElementById('0911.5029v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.5029v2-abstract-full" style="display: none;"> We present an overview of our project of simulation of unquenched lattice QCD with optimal domain-wall quarks, using a GPU cluster currently constituting of 16 units of Nvidia Tesla S1070 plus 64 graphic cards with Nvidia GTX285 (total 128 GPUs with 128 Teraflops peak), attaining sustained computing power of 15.36 Teraflops. The first production run in two-flavor QCD is on-going, using the Iwasaki gauge action on a set of lattices with sizes $ 16^3 \times (32,10,8,6,4) \times (16,32) $ at the lattice spacing $ a \sim 0.1$ fm, with eight sea quark masses down to $ m_蟺\simeq 200 $ MeV. We outline our simulation algorithm, and describe the present status of the production run. Preliminary results of pseudoscalar mass and decay constant are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.5029v2-abstract-full').style.display = 'none'; document.getElementById('0911.5029v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, talk presented at The XXVII International Symposium on Lattice Field Theory - LAT2009, July 26-31 2009, Peking University, Beijing, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NTUTH-09-505B </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2009:034,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.2146">arXiv:0903.2146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0903.2146">pdf</a>, <a href="https://arxiv.org/ps/0903.2146">ps</a>, <a href="https://arxiv.org/format/0903.2146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.80.034502">10.1103/PhysRevD.80.034502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Susceptibility to the One-Loop Order in Chiral Perturbation Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mao%2C+Y">Yao-Yuan Mao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chiu%2C+T">Ting-Wai Chiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.2146v3-abstract-short" style="display: inline;"> We derive the topological susceptibility to the one-loop order in the chiral effective theory of QCD, for an arbitrary number of flavors. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.2146v3-abstract-full" style="display: none;"> We derive the topological susceptibility to the one-loop order in the chiral effective theory of QCD, for an arbitrary number of flavors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.2146v3-abstract-full').style.display = 'none'; document.getElementById('0903.2146v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, LaTeX, v3:published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NTUTH-09-505A </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D80:034502,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0809.1869">arXiv:0809.1869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0809.1869">pdf</a>, <a href="https://arxiv.org/ps/0809.1869">ps</a>, <a href="https://arxiv.org/format/0809.1869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Physics at BES-III </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Barnes%2C+T">T. Barnes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bian%2C+J+M">J. M. Bian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bigi%2C+I+I">I. I. Bigi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">N. Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I+R">I. R. Boyko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bytev%2C+V">V. Bytev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chao%2C+K+T">K. T. Chao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Charles%2C+J">J. Charles</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+H+X">H. X. Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+J+C">J. C. Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y+Q">Y. Q. Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+H+Y">H. Y. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dedovich%2C+D">D. Dedovich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Descotes-Genon%2C+S">S. Descotes-Genon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fu%2C+C+D">C. D. Fu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tormo%2C+X+G+i">X. Garcia i Tormo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gao%2C+Y+-">Y. -N. Gao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=He%2C+K+L">K. L. He</a>, <a href="/search/hep-lat?searchtype=author&amp;query=He%2C+Z+G">Z. G. He</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hu%2C+J+F">J. F. Hu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hu%2C+H+M">H. M. Hu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Huang%2C+B">B. Huang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jia%2C+Y">Y. Jia</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0809.1869v1-abstract-short" style="display: inline;"> This physics book provides detailed discussions on important topics in $蟿$-charm physics that will be explored during the next few years at \bes3 . Both theoretical and experimental issues are covered, including extensive reviews of recent theoretical developments and experimental techniques. Among the subjects covered are: innovations in Partial Wave Analysis (PWA), theoretical and experimental&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0809.1869v1-abstract-full').style.display = 'inline'; document.getElementById('0809.1869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0809.1869v1-abstract-full" style="display: none;"> This physics book provides detailed discussions on important topics in $蟿$-charm physics that will be explored during the next few years at \bes3 . Both theoretical and experimental issues are covered, including extensive reviews of recent theoretical developments and experimental techniques. Among the subjects covered are: innovations in Partial Wave Analysis (PWA), theoretical and experimental techniques for Dalitz-plot analyses, analysis tools to extract absolute branching fractions and measurements of decay constants, form factors, and CP-violation and \DzDzb-oscillation parameters. Programs of QCD studies and near-threshold tau-lepton physics measurements are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0809.1869v1-abstract-full').style.display = 'none'; document.getElementById('0809.1869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Edited by Kuang-Ta Chao and Yi-Fang Wang</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IHEP-Physics-Report-BES-III-2008-001 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Modern Physics A Volume: 24, Issue: 1 supp (2009) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10