CINXE.COM

Search results for: tracer

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tracer</title> <meta name="description" content="Search results for: tracer"> <meta name="keywords" content="tracer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tracer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tracer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 61</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tracer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Estimation of Longitudinal Dispersion Coefficient Using Tracer Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ebrahimi">K. Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Shahid"> Sh. Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohammadi%20Ghaleni"> M. Mohammadi Ghaleni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Omid"> M. H. Omid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The longitudinal dispersion coefficient is a crucial parameter for 1-D water quality analysis of riverine flows. So far, different types of empirical equations for estimation of the coefficient have been developed, based on various case studies. The main objective of this paper is to develop an empirical equation for estimation of the coefficient for a riverine flow. For this purpose, a set of tracer experiments was conducted, involving salt tracer, at three sections located in downstream of a lengthy canal. Tracer data were measured in three mixing lengths along the canal including; 45, 75 and 100m. According to the results, the obtained coefficients from new developed empirical equation gave an encouraging level of agreement with the theoretical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coef%EF%AC%81cients" title="coefficients">coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer" title=" tracer"> tracer</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/31418/estimation-of-longitudinal-dispersion-coefficient-using-tracer-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alzeyadi">A. Alzeyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Loffill"> E. Loffill</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Alkhaddar"> R. Alkhaddar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title="filter media">filter media</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20loading%20rate" title=" hydraulic loading rate"> hydraulic loading rate</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution" title=" residence time distribution"> residence time distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer" title=" tracer "> tracer </a> </p> <a href="https://publications.waset.org/abstracts/34275/investigation-into-the-optimum-hydraulic-loading-rate-for-selected-filter-media-packed-in-a-continuous-upflow-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Electrical Performance Analysis of Single Junction Amorphous Silicon Solar (a-Si:H) Modules Using IV Tracer (PVPM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gilbert%20Omorodion%20Osayemwenre">Gilbert Omorodion Osayemwenre</a>, <a href="https://publications.waset.org/abstracts/search?q=Edson%20Meyer"> Edson Meyer</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20T.%20Taziwa"> R. T. Taziwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrical analysis of single junction amorphous silicon solar modules is carried out using outdoor monitoring technique. Like crystalline silicon PV modules, the electrical characterisation and performance of single junction amorphous silicon modules are best described by its current-voltage (IV) characteristic. However, IV curve has a direct dependence on the type of PV technology and material properties used. The analysis reveals discrepancies in the modules performance parameter even though they are of similar technology. The aim of this work is to compare the electrical performance output of each module, using electrical parameters with the aid of PVPM 100040C IV tracer. These results demonstrated the relevance of standardising the performance parameter for effective degradation analysis of a-Si:H. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVPM%20100040C%20IV%20tracer" title="PVPM 100040C IV tracer">PVPM 100040C IV tracer</a>, <a href="https://publications.waset.org/abstracts/search?q=SolarWatt%20part" title=" SolarWatt part"> SolarWatt part</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20junction%20amorphous%20silicon%20module%20%28a-Si%3AH%29" title=" single junction amorphous silicon module (a-Si:H)"> single junction amorphous silicon module (a-Si:H)</a>, <a href="https://publications.waset.org/abstracts/search?q=Staebler-Wronski%20%28S-W%29%20degradation%20effect" title=" Staebler-Wronski (S-W) degradation effect"> Staebler-Wronski (S-W) degradation effect</a> </p> <a href="https://publications.waset.org/abstracts/68132/electrical-performance-analysis-of-single-junction-amorphous-silicon-solar-a-sih-modules-using-iv-tracer-pvpm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Computational Fluid Dynamics and Experimental Evaluation of Two Batch Type Electrocoagulation Stirred Tank Reactors Used in the Removal of Cr (VI) from Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phanindra%20Prasad%20Thummala">Phanindra Prasad Thummala</a>, <a href="https://publications.waset.org/abstracts/search?q=Umran%20Tezcan%20Un"> Umran Tezcan Un</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, hydrodynamics analysis of two batch type electrocoagulation stirred tank reactors, used for the electrocoagulation treatment of Cr(VI) wastewater, was carried using computational fluid dynamics (CFD). The aim of the study was to evaluate the impact of mixing characteristics on overall performance of electrocoagulation reactor. The CFD simulations were performed using ANSYS FLUENT 14.4 software. The mixing performance of each reactor was evaluated by numerically modelling tracer dispersion in each reactor configuration. The uniformity in tracer dispersion was assumed when 90% of the ratio of the maximum to minimum concentration of the tracer was realized. In parallel, experimental evaluation of both the electrocoagulation reactors for removal of Cr(VI) from wastewater was also carried out. The results of CFD and experimental analysis clearly show that the reactor which can give higher uniformity in lesser time, will perform better as an electrocoagulation reactor for removal of Cr(VI) from wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=stirred%20tank%20reactors" title=" stirred tank reactors"> stirred tank reactors</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr%28VI%29%20wastewater" title=" Cr(VI) wastewater"> Cr(VI) wastewater</a> </p> <a href="https://publications.waset.org/abstracts/66779/computational-fluid-dynamics-and-experimental-evaluation-of-two-batch-type-electrocoagulation-stirred-tank-reactors-used-in-the-removal-of-cr-vi-from-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> A Study of Erosion and Sedimentation Rates Based on Two Different Seasons Using CS-137 As A Tracer in the Sembrong Catchment, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Sharib%40Sarip">Jalal Sharib@Sarip</a>, <a href="https://publications.waset.org/abstracts/search?q=Dainee%20nor%20Fardzila%20Ahmad%20Tugi">Dainee nor Fardzila Ahmad Tugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Tarmizi%20Ishak">Mohd Tarmizi Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Izwan%20Abdul%20Adziz">Mohd Izwan Abdul Adziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper aims to determine the rate of soil erosion and sedimentation by using Cesium-137,137Cs as a medium-term tracer in the Sembrong catchment, Malaysia, over two different study seasons. The results of the analysis show that rates of soil erosion and sedimentation for both seasons were variable. This can be clearly seen where the dry season only gives the value of the rate of soil erosion. Meanwhile, the wet season has given both soil erosion and sedimentation rate values. The dry season had rates of soil erosion between 5.09 t/ha/y to 51.03 t/ha/y. The wet season had soil erosion and sedimentation rates between 8.02 t/ha/y to 39.78 t/ha/y and -4.81 t/ha/y to - 50.81 t/ha/y, each, respectively. rubber and oil palm plantations referring to Station 17 and station 4/6, located near Semberong Lake and Sembrong River, had the highest rates of soil erosion and sedimentation at 51.03 t/ha/y and -50.81 t/ha/y, respectively. Various factors must also be taken into account, such as soil types, the total volume of rainfall received for both seasons, as well as differences in land use at the study stations. In conclusion, 137Cs as a medium-term tracer was successfully used to determine rates of soil erosion and sedimentation in two different seasons for the Sembrong catchment area. The data on soil erosion and sedimentation rates for this study will be very useful for present, and future land and water management in the Sembrong catchment area and may be compared with other similar catchments in Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title="soil erosion">soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cesium-137" title=" cesium-137"> cesium-137</a>, <a href="https://publications.waset.org/abstracts/search?q=catchment%20management" title=" catchment management"> catchment management</a> </p> <a href="https://publications.waset.org/abstracts/153757/a-study-of-erosion-and-sedimentation-rates-based-on-two-different-seasons-using-cs-137-as-a-tracer-in-the-sembrong-catchment-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Graduate Tracer Study as Basis for Career Pathing Program &amp; Placement Test in Las Piñas City Technical-Vocational High School</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Ann%20Cristine%20R.%20Olgado">Mary Ann Cristine R. Olgado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This tracer study aimed to track down the TVL-ICT and EIM graduates of Las Piñas City Technical-Vocational High School as they pursue their career path and incorporated the evidence-based insights from this study as the basis for informed career pathing program and the implementation of placement exams for incoming senior high school students. The researcher utilized a graduate tracer study (GTS) using a descriptive research method employing a quanti-qualitative research design to gather data on the demographic and academic profiles of the respondents, chosen career paths, and the relevance and significance of their senior high school (SHS) track/strand to their chosen career paths. Findings revealed a diverse range of career paths pursued by SHS graduates, with a majority opting for higher education. However, there was a notable mismatch between SHS tracks/strands and higher education programs, highlighting the need for improved career paths and guidance. The study also assessed the relevance of SHS education to graduates' current jobs, with mixed results indicating areas for improvement. Despite challenges, graduates generally perceived their SHS education positively, particularly in providing hands-on experiences and relevant skills. The study concluded by emphasizing the importance of aligning SHS tracks/strands with future career paths by enhancing career pathing and guidance services to better support students in making informed decisions about their careers and incorporating assessments for personal interests and aptitudes could assist students in making more informed decisions about their career paths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=career%20pathing" title="career pathing">career pathing</a>, <a href="https://publications.waset.org/abstracts/search?q=EIM" title=" EIM"> EIM</a>, <a href="https://publications.waset.org/abstracts/search?q=graduate%20tracer%20study" title=" graduate tracer study"> graduate tracer study</a>, <a href="https://publications.waset.org/abstracts/search?q=ICT" title=" ICT"> ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=placement%20exam" title=" placement exam"> placement exam</a>, <a href="https://publications.waset.org/abstracts/search?q=TVL" title=" TVL"> TVL</a> </p> <a href="https://publications.waset.org/abstracts/191116/graduate-tracer-study-as-basis-for-career-pathing-program-placement-test-in-las-pinas-city-technical-vocational-high-school" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> A Benchtop Experiment to Study Changes in Tracer Distribution in the Subarachnoid Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smruti%20Mahapatra">Smruti Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipankar%20Biswas"> Dipankar Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Um"> Richard Um</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Meggyesy"> Michael Meggyesy</a>, <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Serra"> Riccardo Serra</a>, <a href="https://publications.waset.org/abstracts/search?q=Noah%20Gorelick"> Noah Gorelick</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Marra"> Steven Marra</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Manbachi"> Amir Manbachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20G.%20Luciano"> Mark G. Luciano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intracranial pressure (ICP) is profoundly regulated by the effects of cardiac pulsation and the volume of the incoming blood. Furthermore, these effects on ICP are incremented by the presence of a rigid skull that does not allow for changes in total volume during the cardiac cycle. These factors play a pivotal role in cerebrospinal fluid (CSF) dynamics and distribution, with consequences that are not well understood to this date and that may have a deep effect on the Central Nervous System (CNS) functioning. We designed this study with two specific aims: (a) To study how pulsatility influences local CSF flow, and (b) To study how modulating intracranial pressure affects drug distribution throughout the SAS globally. In order to achieve these aims, we built an elaborate in-vitro model of the SAS closely mimicking the dimensions and flow rates of physiological systems. To modulate intracranial pressure, we used an intracranially implanted, cardiac-gated, volume-oscillating balloon (CADENCE device). Commercially available dye was used to visualize changes in CSF flow. We first implemented two control cases, seeing how the tracer behaves in the presence of pulsations from the brain phantom and the balloon individually. After establishing the controls, we tested 2 cases, having the brain and the balloon pulsate together in sync and out of sync. We then analyzed the distribution area using image processing software. The in-sync case produced a significant increase, 5x times, in the tracer distribution area relative to the out-of-sync case. Assuming that the tracer fluid would mimic blood flow movement, a drug introduced in the SAS with such a system in place would enhance drug distribution and increase the bioavailability of therapeutic drugs to a wider spectrum of brain tissue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood-brain%20barrier" title="blood-brain barrier">blood-brain barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac-gated" title=" cardiac-gated"> cardiac-gated</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebrospinal%20fluid" title=" cerebrospinal fluid"> cerebrospinal fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=neurosurgery" title=" neurosurgery"> neurosurgery</a> </p> <a href="https://publications.waset.org/abstracts/139079/a-benchtop-experiment-to-study-changes-in-tracer-distribution-in-the-subarachnoid-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seema%20Paul">Seema Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesper%20Oppelstrup"> Jesper Oppelstrup</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Thunvik"> Roger Thunvik</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Cvetkovic"> Vladimir Cvetkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bathymetry" title="bathymetry">bathymetry</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20flow%20and%20steady%20state%20analysis" title=" lake flow and steady state analysis"> lake flow and steady state analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20level%20validation%20and%20concentration" title=" water level validation and concentration"> water level validation and concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20stress" title=" wind stress"> wind stress</a> </p> <a href="https://publications.waset.org/abstracts/77462/development-of-vertically-integrated-2d-lake-victoria-flow-models-in-comsol-multiphysics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Hydrodynamics of Dual Hybrid Impeller of Stirred Reactor Using Radiotracer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noraishah%20Othman">Noraishah Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20K.%20Kamarudin"> Siti K. Kamarudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norinsan%20K.%20Othman"> Norinsan K. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20S.%20Takriff"> Mohd S. Takriff</a>, <a href="https://publications.waset.org/abstracts/search?q=Masli%20I.%20Rosli"> Masli I. Rosli</a>, <a href="https://publications.waset.org/abstracts/search?q=Engku%20M.%20Fahmi"> Engku M. Fahmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mior%20A.%20Khusaini"> Mior A. Khusaini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes hydrodynamics of mixing characteristics of two dual hybrid impeller consisting of, radial and axial impeller using radiotracer technique. Type A mixer, a Rushton turbine is mounted above a Pitched Blade Turbine (PBT) at common shaft and Type B mixer, a Rushton turbine is mounted below PBT. The objectives of this paper are to investigate the residence time distribution (RTD) of two hybrid mixers and to represent the respective mixers by RTD model. Each type of mixer will experience five radiotracer experiments using Tc99m as source of tracer and scintillation detectors NaI(Tl) are used for tracer detection. The results showed that mixer in parallel model and mixers in series with exchange can represent the flow model in mixer A whereas only mixer in parallel model can represent Type B mixer well than other models. In conclusion, Type A impeller, Rushton impeller above PBT, reduced the presence of dead zone in the mixer significantly rather than Type B. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20impeller" title="hybrid impeller">hybrid impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution%20%28RTD%29" title=" residence time distribution (RTD)"> residence time distribution (RTD)</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotracer%20experiments" title=" radiotracer experiments"> radiotracer experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=RTD%20model" title=" RTD model"> RTD model</a> </p> <a href="https://publications.waset.org/abstracts/37495/hydrodynamics-of-dual-hybrid-impeller-of-stirred-reactor-using-radiotracer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> The Depth Penetration of Beryllium-7, ⁷BE as a Tracer in the Sembrong Catchment Area Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Sharib">J. Sharib</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20A.%20Tugi"> D. N. A. Tugi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Ishak"> M. T. Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20A.%20Adziz"> M. I. A. Adziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this research paper conducted was to study the penetration of ⁷Be onto the soil surface for two different seasons in different areas of agricultural activity. The study was conducted during the dry and wet seasons from January to May 2019 in the Sembrong catchment area. The Sembrong Catchment Area is located in the district of Kluang, Johor in the South of Peninsular Malaysia and was selected based on the small size of the catchment and surrounded by various agricultural activities. A total of twenty (20) core soil samples to a depth of 10 cm each were taken using a metal corer made of metal. All these samples were brought to the Radiochemistry and Environment Group (RAS), Nuclear Malaysia, Block 23, Bangi, Malaysia, to enable the preparation, drying and analysis work to be carried out. Furthermore, all samples were oven dried at 45 – 60 ºC so that the dry weight became constant and gently disaggregated. Lastly, dried samples were milled and sieved at 2 mm before being packed into a well-type container and ready for ⁷Be analysis. The result of the analysis shows that the penetration of ⁷Be into the soil surface decreases by an exponential decay. The distribution of profiles to the interior of the soil surface or ho values ranged from 1.56 to 3.62 kg m⁻² and from 2.59 to 4.17 kg m⁻² for both dry and wet seasons. Consequently, the dry season has given a lower ho value when compared to the wet season. In conclusion, ⁷Be is a very suitable tracer to be used in determining the penetration onto the soil surface or ho values for the two different seasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depth%20penetration" title="depth penetration">depth penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20season" title=" dry season"> dry season</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20season" title=" wet season"> wet season</a>, <a href="https://publications.waset.org/abstracts/search?q=sembrong%20catchment" title=" sembrong catchment"> sembrong catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20type%20container" title=" well type container"> well type container</a> </p> <a href="https://publications.waset.org/abstracts/153606/the-depth-penetration-of-beryllium-7-7be-as-a-tracer-in-the-sembrong-catchment-area-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> CFD Simulation of Spacer Effect on Turbulent Mixing Phenomena in Sub Channels of Boiling Nuclear Assemblies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Kant%20Verma">Shashi Kant Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20L.%20Sinha"> S. L. Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Chandraker"> D. K. Chandraker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulations of selected subchannel tracer (Potassium Nitrate) based experiments have been performed to study the capabilities of state-of-the-art of Computational Fluid Dynamics (CFD) codes. The Computational Fluid Dynamics (CFD) methodology can be useful for investigating the spacer effect on turbulent mixing to predict turbulent flow behavior such as Dimensionless mixing scalar distributions, radial velocity and vortices in the nuclear fuel assembly. A Gibson and Launder (GL) Reynolds stress model (RSM) has been selected as the primary turbulence model to be applied for the simulation case as it has been previously found reasonably accurate to predict flows inside rod bundles. As a comparison, the case is also simulated using a standard k-ε turbulence model that is widely used in industry. Despite being an isotropic turbulence model, it has also been used in the modeling of flow in rod bundles and to produce lateral velocities after thorough mixing of coolant fairly. Both these models have been solved numerically to find out fully developed isothermal turbulent flow in a 30º segment of a 54-rod bundle. Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to characterize the growth of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. The mixing with water has been numerically studied by means of steady state CFD simulations with the commercial code STAR-CCM+. Flow enters into the computational domain through the mass inflow at the three subchannel faces. Turbulence intensity and hydraulic diameter of 1% and 5.9 mm respectively were used for the inlet. A passive scalar (Potassium nitrate) is injected through the mass fraction of 5.536 PPM at subchannel 2 (Upstream of the mixing section). Flow exited the domain through the pressure outlet boundary (0 Pa), and the reference pressure was 1 atm. Simulation results have been extracted at different locations of the mixing zone and downstream zone. The local mass fraction shows uniform mixing. The effect of the applied turbulence model is nearly negligible just before the outlet plane because the distributions look like almost identical and the flow is fully developed. On the other hand, quantitatively the dimensionless mixing scalar distributions change noticeably, which is visible in the different scale of the colour bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-phase%20flow" title="single-phase flow">single-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20mixing" title=" turbulent mixing"> turbulent mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer" title=" tracer"> tracer</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%20channel%20analysis" title=" sub channel analysis"> sub channel analysis</a> </p> <a href="https://publications.waset.org/abstracts/78662/cfd-simulation-of-spacer-effect-on-turbulent-mixing-phenomena-in-sub-channels-of-boiling-nuclear-assemblies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Exploring Weld Rejection Rate Limits and Tracers Effects in Construction Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdalaziz%20M.%20Alsalhabi">Abdalaziz M. Alsalhabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Loai%20M.%20Alowa"> Loai M. Alowa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates Weld Rejection Rate (WRR) limits and tracer effects in construction projects, with a specific focus on a Gas Plant Project, a mega-project held by Saudi Aramco (SA) in Saudi Arabia. The study included a comprehensive examination of various factors impacting WRR limits. It commenced by comparing the Company practices with ASME standards, followed by an in-depth analysis of both weekly and cumulative projects' historical WRR data, evaluation of Radiographic Testing (RT) reports for rejected welds, and proposal of mitigation methods to eliminate future rejections. Additionally, the study revealed the causes of fluctuation in WRR data and benchmarked with the industry practices. Furthermore, a case study was conducted to explore the impact of tracers on WRR, providing insights into their influence on the welding process. This paper aims to achieve three primary objectives. Firstly, it seeks to validate the existing practices of WRR limits and advocate for their inclusion within relevant International Industry Standards. Secondly, it aims to validate the effectiveness of the WRR formula that incorporates tracer effects, ensuring its reliability in assessing weld quality. Lastly, this study aims to identify opportunities for process improvement in WRR control, with the ultimate goal of enhancing project processes and ensuring the integrity, safety, and efficiency of constructed assets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weld%20rejection%20rate" title="weld rejection rate">weld rejection rate</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20repair%20rate%20in%20joint%20and%20linear%20basis" title=" weld repair rate in joint and linear basis"> weld repair rate in joint and linear basis</a>, <a href="https://publications.waset.org/abstracts/search?q=tracers%20effects" title=" tracers effects"> tracers effects</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20projects" title=" construction projects"> construction projects</a> </p> <a href="https://publications.waset.org/abstracts/188423/exploring-weld-rejection-rate-limits-and-tracers-effects-in-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> The Role of Glyceryl Trinitrate (GTN) in 99mTc-HIDA with Morphine Provocation Scan for the Investigation of Type III Sphincter of Oddi Dysfunction (SOD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M%20Hassan">Ibrahim M Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorna%20Que"> Lorna Que</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Rutland"> Michael Rutland </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Type I SOD is usually diagnosed by anatomical imaging such as ultrasound, CT and MRCP. However, the types II and III SOD yield negative results despite the presence of significant symptoms. In particular, the type III is difficult to diagnose due to the absence of significant biochemical or anatomical abnormalities. Nuclear Medicine can aid in this diagnostic dilemma by demonstrating functional changes in the bile flow. Low dose Morphine (0.04mg/Kg) stimulates the tone of the sphincter of Oddi (SO) and its usefulness has been shown in diagnosing SOD by causing a delay in bile flow when compared to a non morphine provoked - baseline scan. This work expands on that process by using sublingual GTN at 60 minutes post tracer and morphine injection to relax the SO and induce an improvement in bile outflow, and in some cases show immediate relief of morphine induced abdominal pain. The criteria for positive SOD are as follows: if during the first hour of the morphine provocation showed (1) delayed intrahepatic biliary ducts tracer accumulation; plus (2) delayed appearance but persistent retention of activity in the common bile duct, and (3) delayed bile flow into the duodenum. In addition, patients who required GTN within the first hour to relieve abdominal pain were regarded as highly supportive of the diagnosis. Retrospective analysis of 85 patients (pts) (78F and 6M) referred for suspected SOD (type III) who had been intensively investigated because of recurrent right upper quadrant or abdominal pain post cholecystectomy. 99mTc-HIDA scan with morphine-provocation is performed followed by GTN at 60 minutes post tracer injection and a further thirty minutes of dynamic imaging are acquired. 30 pts were negative. 55 pts were regarded as positive for SOD and 38/55 (60%) of these patients with an abnormal result were further evaluated with a baseline 99mTc-HIDA. As expected, all 38 pts showed better bile flow characteristics than during the morphine provocation. 20/55 (36%) patients were treated by ERCP sphincterotomy and the rest were managed conservatively by medical therapy. In all cases regarded as positive for SOD, the sublingual GTN at 60 minutes showed immediate improvement in bile flow. 11/55(20%) who developed severe post-morphine abdominal pain were relieved by GTN almost instantaneously. We propose that GTN is a useful agent in the diagnosis of SOD when performing 99mTc-HIDA scan and that the satisfactory response to the sublingual GTN could offer additional information in patients who have severe pain at the time the procedure or when presenting to the emergency unit because of biliary pain. And also in determining whether a trial of medical therapy may be used before considering surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GTN" title="GTN">GTN</a>, <a href="https://publications.waset.org/abstracts/search?q=HIDA" title=" HIDA"> HIDA</a>, <a href="https://publications.waset.org/abstracts/search?q=MORPHINE" title=" MORPHINE"> MORPHINE</a>, <a href="https://publications.waset.org/abstracts/search?q=SOD" title=" SOD"> SOD</a> </p> <a href="https://publications.waset.org/abstracts/40286/the-role-of-glyceryl-trinitrate-gtn-in-99mtc-hida-with-morphine-provocation-scan-for-the-investigation-of-type-iii-sphincter-of-oddi-dysfunction-sod" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Hydrodynamics of Periphyton Biofilters in Recirculating Aquaculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20N.%20Bell">Adam N. Bell</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarina%20J.%20Ergas"> Sarina J. Ergas</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Nystrom"> Michael Nystrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathan%20P.%20Brennan"> Nathan P. Brennan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevan%20L.%20Main"> Kevan L. Main</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrated Multi-Trophic Aquaculture systems (IMTA) have the potential to improve the sustainability of seafood production, generate organic fertilizer and feed, remove waste discharges and reduce energy use. IMTA can include periphyton biofilters where algae and microbes grow on surfaces, along with caught detritus and amphipods. Periphyton biofilters provide many advantages: nitrification, denitrification, primary production and ecological diversity. The goal of this study was to determine how biofilter hydraulic residence time (τ) effects periphyton biomass production, dissolved oxygen (DO) and nutrient removal. A pilot scale recirculating aquaculture system (RAS) was designed, constructed and operated at different hydraulic residence times (τ= 1, 2, 4, 6, 8 hours per tank). For each τ, a conservative tracer study was conducted to investigate system hydrodynamics. Data on periphyton weights, pH, nitrogen species, phosphorus, temperature and DO were collected. The tracer study for τ =1 hour revealed that the normalized time < τ, indicating short-circuiting. Periphyton biomass production rate was relatively unaffected by τ (R_e<1 for all τ). Average ammonia nitrogen removal was > 75% for all trials. Nitrate and nitrite did not accumulate in the RAS for τ≥4 hours due to enhanced denitrification in anoxic zones. For τ≥4 hours DO concentration was at a maximum of 4 mg L-1 after 14:00, and decreased to 0 mg L-1 during nighttime. At τ=1 hour, the RAS stayed > 2 mg L-1 and DO was more evenly distributed. For the validation trial, the culture tank was stocked with Centropomus undecimalis (common snook) and the system was operated at τ= 1 hr. Preliminary results showed that a RAS with an integrated periphyton biofilter could support fish health with low nutrient concentrations DO > 6 mg L-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20aquaculture" title="sustainable aquaculture">sustainable aquaculture</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20recovery" title=" resource recovery"> resource recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20multi-trophic%20aquaculture" title=" integrated multi-trophic aquaculture"> integrated multi-trophic aquaculture</a> </p> <a href="https://publications.waset.org/abstracts/148221/hydrodynamics-of-periphyton-biofilters-in-recirculating-aquaculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Performance of Different Spray Nozzles in the Application of Defoliant on Cotton Plants (Gossypium hirsutum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamud%20Ali%20Ibrahim">Mohamud Ali Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bayat"> Ali Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bolat"> Ali Bolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Defoliant spraying is an important link in the mechanized cotton harvest because adequate and uniform spraying can improve defoliation quality and reduce cotton trash content. In defoliant application, application volume and spraying technology are extremely important. In this study, the effectiveness of defoliant application to cotton plant that has come to harvest with two different application volumes and three different types of nozzles with a standard field crop sprayer was determined. Experiments were carried in two phases as field area trials and laboratory analysis. Application rates were 250 l/ha and 400 L/ha, and spraying nozzles were (1) Standard flat fan nozzle (TP8006), (2) Air induction nozzle (AI 11002-VS), and (3) Dual Pattern nozzle (AI307003VP). A tracer (BSF) and defoliant were applied to mature cotton with approximately 60% open bolls and samplings for BSF deposition and spray coverage on the cotton plant were done at two plant height (upper layer, lower layer) of plant. Before and after spraying, bolls open and leaves rate on cotton plants were calculated, and filter papers were used to detect BSF deposition, and water sensitive papers (WSP) were used to measure the coverage rate of spraying methods used. Spectrofluorophotometer was used to detect the amount of tracer deposition on targets, and an image process computer programme was used to measure coverage rate on WSP. In analysis, conclusions showed that air induction nozzle (AI 11002-VS) achieved better results than the dual pattern and standard flat fan nozzles in terms of higher depositions, coverages, and leaf defoliations, and boll opening rates. AI nozzles operating at 250 L/ha application rate provide the highest deposition and coverage rate on applications of the defoliant; in addition, BSF as an indicator of the defoliant used reached on leaf beneath in merely this spray nozzle. After defoliation boll opening rate was 85% on the 7th and 12th days after spraying and falling rate of leaves was 76% at application rate of 250 L/ha with air induction (AI1102) nozzle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20defoliant" title="cotton defoliant">cotton defoliant</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20induction%20nozzle" title=" air induction nozzle"> air induction nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20pattern%20nozzle" title=" dual pattern nozzle"> dual pattern nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20flat%20fan%20nozzle" title=" standard flat fan nozzle"> standard flat fan nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=coverage%20rate" title=" coverage rate"> coverage rate</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20deposition" title=" spray deposition"> spray deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=boll%20opening%20rate" title=" boll opening rate"> boll opening rate</a>, <a href="https://publications.waset.org/abstracts/search?q=leaves%20falling%20rate" title=" leaves falling rate"> leaves falling rate</a> </p> <a href="https://publications.waset.org/abstracts/141813/performance-of-different-spray-nozzles-in-the-application-of-defoliant-on-cotton-plants-gossypium-hirsutum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Alejandro%20Taborda%20Ceballos">Manuel Alejandro Taborda Ceballos</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Sommerfeld"> Martin Sommerfeld</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crossflow" title="crossflow">crossflow</a>, <a href="https://publications.waset.org/abstracts/search?q=non-spherical%20particles" title=" non-spherical particles"> non-spherical particles</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20tracking%20velocimetry" title=" particle tracking velocimetry"> particle tracking velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a> </p> <a href="https://publications.waset.org/abstracts/156031/experimental-study-of-the-behavior-of-elongated-non-spherical-particles-in-wall-bounded-turbulent-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Development of Positron Emission Tomography (PET) Tracers for the in-Vivo Imaging of α-Synuclein Aggregates in α-Synucleinopathies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bright%20Chukwunwike%20Uzuegbunam">Bright Chukwunwike Uzuegbunam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20%20Paslawski"> Wojciech Paslawski</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans%20Agren"> Hans Agren</a>, <a href="https://publications.waset.org/abstracts/search?q=Christer%20Halldin"> Christer Halldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Weber"> Wolfgang Weber</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Luster"> Markus Luster</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Arzberger"> Thomas Arzberger</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Hooshyar%20Yousefi"> Behrooz Hooshyar Yousefi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a need to develop a PET tracer that will enable to diagnosis and track the progression of Alpha-synucleinopathies (Parkinson’s disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA]) in living subjects over time. Alpha-synuclein aggregates (a-syn), which are present in all the stages of disease progression, for instance, in PD, are a suitable target for in vivo PET imaging. For this reason, we have developed some promising a-syn tracers based on a disarylbisthiazole (DABTA) scaffold. The precursors are synthesized via a modified Hantzsch thiazole synthesis. The precursors were then radiolabeled via one- or two-step radiofluorination methods. The ligands were initially screened using a combination of molecular dynamics and quantum/molecular mechanics approaches in order to calculate the binding affinity to a-syn (in silico binding experiments). Experimental in vitro binding assays were also performed. The ligands were further screened in other experiments such as log D, in vitro plasma protein binding & plasma stability, biodistribution & brain metabolite analyses in healthy mice. Radiochemical yields were up to 30% - 72% in some cases. Molecular docking revealed possible binding sites in a-syn and also the free energy of binding to those sites (-28.9 - -66.9 kcal/mol), which correlated to the high binding affinity of the DABTAs to a-syn (Ki as low as 0.5 nM) and selectivity (> 100-fold) over Aβ and tau, which usually co-exist with a-synin some pathologies. The log D values range from 2.88 - 2.34, which correlated with free-protein fraction of 0.28% - 0.5%. Biodistribution experiments revealed that the tracers are taken up (5.6 %ID/g - 7.3 %ID/g) in the brain at 5 min (post-injection) p.i., and cleared out (values as low as 0.39 %ID/g were obtained at 120 min p.i. Analyses of the mice brain 20 min p.i. Revealed almost no radiometabolites in the brain in most cases. It can be concluded that in silico study presents a new venue for the rational development of radioligands with suitable features. The results obtained so far are promising and encourage us to further validate the DABTAs in autoradiography, immunohistochemistry, and in vivo imaging in non-human primates and humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-synuclein%20aggregates" title="alpha-synuclein aggregates">alpha-synuclein aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha-synucleinopathies" title=" alpha-synucleinopathies"> alpha-synucleinopathies</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%20imaging" title=" PET imaging"> PET imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer%20development" title=" tracer development"> tracer development</a> </p> <a href="https://publications.waset.org/abstracts/138870/development-of-positron-emission-tomography-pet-tracers-for-the-in-vivo-imaging-of-a-synuclein-aggregates-in-a-synucleinopathies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moumen%20Abdelhafidh">Moumen Abdelhafidh</a>, <a href="https://publications.waset.org/abstracts/search?q=Stribu%20Bogdan"> Stribu Bogdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Laboureur%20Delphine"> Laboureur Delphine</a>, <a href="https://publications.waset.org/abstracts/search?q=Gallant%20Johan"> Gallant Johan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendrick%20Patrick"> Hendrick Patrick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intermediate%20ballistic" title="intermediate ballistic">intermediate ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=muzzle%20flow%20fields" title=" muzzle flow fields"> muzzle flow fields</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant%20gas" title=" propellant gas"> propellant gas</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20expanded%20jet" title=" under expanded jet"> under expanded jet</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20particle%20tracers" title=" solid particle tracers"> solid particle tracers</a> </p> <a href="https://publications.waset.org/abstracts/135991/feasibility-study-of-particle-image-velocimetry-in-the-muzzle-flow-fields-during-the-intermediate-ballistic-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wondmyibza%20Tsegaye%20Bayou">Wondmyibza Tsegaye Bayou</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20C.%20Nonner"> Johannes C. Nonner</a>, <a href="https://publications.waset.org/abstracts/search?q=Joost%20Heijkers"> Joost Heijkers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20seepage" title="groundwater seepage">groundwater seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=phreatic%20water%20table" title=" phreatic water table"> phreatic water table</a>, <a href="https://publications.waset.org/abstracts/search?q=piezometric%20water%20level" title=" piezometric water level"> piezometric water level</a>, <a href="https://publications.waset.org/abstracts/search?q=nature%20reserve" title=" nature reserve"> nature reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=Zegveld" title=" Zegveld"> Zegveld</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20Netherlands" title=" The Netherlands"> The Netherlands</a> </p> <a href="https://publications.waset.org/abstracts/171496/estimating-groundwater-seepage-rates-case-study-at-zegveld-netherlands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Structural, Optical, And Ferroelectric Properties Of BaTiO3 Sintered At Different Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Gaur">Anurag Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Sharma"> Neha Sharma </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have synthesized BaTiO3 via sol gel method by sintering at different temperatures (600-1000 0C) and studied their structural, optical and ferroelectric properties through X-Ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-Ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal structure of BaTiO3 along with some minor impurities of BaCO3. The optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 1000 0 C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 60 nm for the samples sintered at 600 to 1000 0C, respectively. Moreover, it has been observed that the ferroelectricity reduces as we increase the sintering temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title="nanostructures">nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroelectricity" title=" ferroelectricity"> ferroelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=diffractogram" title=" diffractogram "> diffractogram </a> </p> <a href="https://publications.waset.org/abstracts/2173/structural-optical-and-ferroelectric-properties-of-batio3-sintered-at-different-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Impact of Reclamation on the Water Exchange in Bohai Bay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luyao%20Liu">Luyao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dekui%20Yuan"> Dekui Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Li"> Xu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of the most important bays of China, the water exchange capacity of Bohai Bay can influence the economic development and urbanization of surrounding cities. However, the rapid reclamation has influenced the weak water exchange capacity of this semi-enclosed bay in recent years. This paper sets two hydrodynamic models of Bohai Bay with two shorelines before and after reclamation. The mean value and distribution of Turn-over Time, the distribution of residual current, and the feature of the tracer path are compared. After comparison, it is found that Bohai Bay keeps these characteristics; the spending time of water exchange in the northern is longer than southern, and inshore is longer than offshore. However, the mean water exchange time becomes longer after reclamation. In addition, the material spreading is blocked because of the inwardly extending shorelines, and the direction changed from along the shoreline to towards the center after reclamation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bohai%20Bay" title="Bohai Bay">Bohai Bay</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20exchange" title=" water exchange"> water exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=reclamation" title=" reclamation"> reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=turn-over%20time" title=" turn-over time"> turn-over time</a> </p> <a href="https://publications.waset.org/abstracts/158119/impact-of-reclamation-on-the-water-exchange-in-bohai-bay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Modeling Diel Trends of Dissolved Oxygen for Estimating the Metabolism in Pristine Streams in the Brazilian Cerrado</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wesley%20A.%20Saltarelli">Wesley A. Saltarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20R.%20Finkler"> Nicolas R. Finkler</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20C.%20P.%20Miwa"> Adriana C. P. Miwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20C.%20Calijuri"> Maria C. Calijuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Davi%20G.%20F.%20Cunha"> Davi G. F. Cunha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The metabolism of the streams is an indicator of ecosystem disturbance due to the influences of the catchment on the structure of the water bodies. The study of the respiration and photosynthesis allows the estimation of energy fluxes through the food webs and the analysis of the autotrophic and heterotrophic processes. We aimed at evaluating the metabolism in streams located in the Brazilian savannah, Cerrado (Sao Carlos, SP), by determining and modeling the daily changes of dissolved oxygen (DO) in the water during one year. Three water bodies with minimal anthropogenic interference in their surroundings were selected, Espraiado (ES), Broa (BR) and Canchim (CA). Every two months, water temperature, pH and conductivity are measured with a multiparameter probe. Nitrogen and phosphorus forms are determined according to standard methods. Also, canopy cover percentages are estimated in situ with a spherical densitometer. Stream flows are quantified through the conservative tracer (NaCl) method. For the metabolism study, DO (PME-MiniDOT) and light (Odyssey Photosynthetic Active Radiation) sensors log data for at least three consecutive days every ten minutes. The reaeration coefficient (k2) is estimated through the method of the tracer gas (SF6). Finally, we model the variations in DO concentrations and calculate the rates of gross and net primary production (GPP and NPP) and respiration based on the one station method described in the literature. Three sampling were carried out in October and December 2015 and February 2016 (the next will be in April, June and August 2016). The results from the first two periods are already available. The mean water temperatures in the streams were 20.0 +/- 0.8C (Oct) and 20.7 +/- 0.5C (Dec). In general, electrical conductivity values were low (ES: 20.5 +/- 3.5uS/cm; BR 5.5 +/- 0.7uS/cm; CA 33 +/- 1.4 uS/cm). The mean pH values were 5.0 (BR), 5.7 (ES) and 6.4 (CA). The mean concentrations of total phosphorus were 8.0ug/L (BR), 66.6ug/L (ES) and 51.5ug/L (CA), whereas soluble reactive phosphorus concentrations were always below 21.0ug/L. The BR stream had the lowest concentration of total nitrogen (0.55mg/L) as compared to CA (0.77mg/L) and ES (1.57mg/L). The average discharges were 8.8 +/- 6L/s (ES), 11.4 +/- 3L/s and CA 2.4 +/- 0.5L/s. The average percentages of canopy cover were 72% (ES), 75% (BR) and 79% (CA). Significant daily changes were observed in the DO concentrations, reflecting predominantly heterotrophic conditions (respiration exceeded the gross primary production, with negative net primary production). The GPP varied from 0-0.4g/m2.d (in Oct and Dec) and the R varied from 0.9-22.7g/m2.d (Oct) and from 0.9-7g/m2.d (Dec). The predominance of heterotrophic conditions suggests increased vulnerability of the ecosystems to artificial inputs of organic matter that would demand oxygen. The investigation of the metabolism in the pristine streams can help defining natural reference conditions of trophic state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-order%20streams" title="low-order streams">low-order streams</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20primary%20production" title=" net primary production"> net primary production</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20state" title=" trophic state"> trophic state</a> </p> <a href="https://publications.waset.org/abstracts/50600/modeling-diel-trends-of-dissolved-oxygen-for-estimating-the-metabolism-in-pristine-streams-in-the-brazilian-cerrado" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Development of 111In-DOTMP as a New Bone Imaging Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=AR.%20Jalilian"> AR. Jalilian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirzaei"> A. Mirzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahrami-Samani"> A. Bahrami-Samani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Erfani"> M. Erfani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is the preparation of 111In-DOTMP as a new bone imaging agent. 111In was produced at the Agricultural, Medical and Industrial Research School (AMIRS) by means of 30 MeV cyclotron via natCd(p,x)111In reaction. Complexion of In‐111 with DOTMP was carried out by adding 0.1 ml of the stock solution (50 mg/ml in 2 N NaoH) to the vial containing 1 mCi of 111In. pH of the mixture was adjusted to 7-8 by means of phosphate buffer. The radiochemical purity of the complex at the optimized condition was higher than 98% (by using whatman No.1 paper in NH4OH:MeOH: H2O (0.2:2:4)). Both the biodistribution studies and SPECT imaging indicated high bone uptake. The ratio of bone to other soft tissue accumulation was significantly high which permit to observe high quality images. The results show that 111In-DOTMP can be used as a suitable tracer for diagnosis of bone metastases by SPECT imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodistribution" title="biodistribution">biodistribution</a>, <a href="https://publications.waset.org/abstracts/search?q=DOTMP" title=" DOTMP"> DOTMP</a>, <a href="https://publications.waset.org/abstracts/search?q=111In" title=" 111In"> 111In</a>, <a href="https://publications.waset.org/abstracts/search?q=SPECT" title=" SPECT"> SPECT</a> </p> <a href="https://publications.waset.org/abstracts/17000/development-of-111in-dotmp-as-a-new-bone-imaging-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Fallahfard">Alireza Fallahfard</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludwig%20Vinches"> Ludwig Vinches</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Halle"> Stephane Halle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol" title="aerosol">aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure%20assessment" title=" exposure assessment"> exposure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20settings" title=" occupational settings"> occupational settings</a>, <a href="https://publications.waset.org/abstracts/search?q=well-mixed%20room%20model" title=" well-mixed room model"> well-mixed room model</a>, <a href="https://publications.waset.org/abstracts/search?q=zonal%20model" title=" zonal model"> zonal model</a> </p> <a href="https://publications.waset.org/abstracts/150194/predicting-the-exposure-level-of-airborne-contaminants-in-occupational-settings-via-the-well-mixed-room-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Production and Quality Control of a Novel 153Sm-Complex for Radiotherapy of Bone-Metastases </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Enayati"> R. Enayati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hosntalab"> M. Hosntalab</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahrami-Samani"> A. Bahrami-Samani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone metastases occur in many cases at an early stage of the tumour disease, however their symptoms are recognized rather late. The aim of this study was the preparation of 153Sm-(4-{[bis-(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl) 1,4,7,10-tetraazacyclododec-1-yl) acetic acid (BPAMD) for bone pain palliation therapy. 153Sm was produced at Tehran research reactor via 152Sm(n,γ)153Sm reaction. 200 µl of 1mg/ml BPAMD solution was added to the vial containing 1 mCi 153Sm and the mixture was heated up to 90 0C for 1 h. The radiochemical purity of the complex was measured by ITLC method. The final solution with radiochemical purity of more than 95% was injected to BALB mice and bio distribution was determined up to 48 h. SPECT images were acquired after 2 and 24 h post injection. While high bone uptake was confirmed by both the bio distribution studies and SPECT imaging, accumulation in other organs was approximately negligible. The results show that 153Sm-BPAMD can be used as an excellent tracer for bone pain palliation therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20metastases" title="bone metastases">bone metastases</a>, <a href="https://publications.waset.org/abstracts/search?q=BPAMD" title=" BPAMD"> BPAMD</a>, <a href="https://publications.waset.org/abstracts/search?q=153Sm" title=" 153Sm"> 153Sm</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy "> radiotherapy </a> </p> <a href="https://publications.waset.org/abstracts/18894/production-and-quality-control-of-a-novel-153sm-complex-for-radiotherapy-of-bone-metastases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Petrology and Hydrothermal Alteration Mineral Distribution of Wells La-9D and La-10D in Aluto Geothermal Field, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Moges%20Azbite">Dereje Moges Azbite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laboratory analysis of igneous rocks is performed with the help of the main oxide plots. The lithology of the two wells was identified using the main oxides obtained using the XRF method. Twenty-four (24) cutting samples with different degrees of alteration were analyzed to determine and identify the rock types by plotting these well samples on special diagrams and correlating with the regional rocks. The results for the analysis of the main oxides and trace elements of 24 samples are presented. Alteration analysis in the two well samples was conducted for 21 samples from two wells for identifying clay minerals. Bulk sample analysis indicated quartz, illite & micas, calcite, cristobalite, smectite, pyrite, epidote, alunite, chlorite, wairakite, diaspore, and kaolin minerals present in both wells. Hydrothermal clay minerals such as illite, chlorite, smectite, and kaoline minerals were identified in both wells by X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=igneous%20rocks" title="igneous rocks">igneous rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20oxides" title=" major oxides"> major oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer%20elements" title=" tracer elements"> tracer elements</a>, <a href="https://publications.waset.org/abstracts/search?q=XRF" title=" XRF"> XRF</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=alteration%20minerals" title=" alteration minerals"> alteration minerals</a> </p> <a href="https://publications.waset.org/abstracts/164354/petrology-and-hydrothermal-alteration-mineral-distribution-of-wells-la-9d-and-la-10d-in-aluto-geothermal-field-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Transport of Inertial Finite-Size Floating Plastic Pollution by Ocean Surface Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ross%20Calvert">Ross Calvert</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20Whittaker"> Colin Whittaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Alison%20Raby"> Alison Raby</a>, <a href="https://publications.waset.org/abstracts/search?q=Alistair%20G.%20L.%20Borthwick"> Alistair G. L. Borthwick</a>, <a href="https://publications.waset.org/abstracts/search?q=Ton%20S.%20van%20den%20Bremer"> Ton S. van den Bremer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large concentrations of plastic have polluted the seas in the last half century, with harmful effects on marine wildlife and potentially to human health. Plastic pollution will have lasting effects because it is expected to take hundreds or thousands of years for plastic to decay in the ocean. The question arises how waves transport plastic in the ocean. The predominant motion induced by waves creates ellipsoid orbits. However, these orbits do not close, resulting in a drift. This is defined as Stokes drift. If a particle is infinitesimally small and the same density as water, it will behave exactly as the water does, i.e., as a purely Lagrangian tracer. However, as the particle grows in size or changes density, it will behave differently. The particle will then have its own inertia, the fluid will exert drag on the particle, because there is relative velocity, and it will rise or sink depending on the density and whether it is on the free surface. Previously, plastic pollution has all been considered to be purely Lagrangian. However, the steepness of waves in the ocean is small, normally about α = k₀a = 0.1 (where k₀ is the wavenumber and a is the wave amplitude), this means that the mean drift flows are of the order of ten times smaller than the oscillatory velocities (Stokes drift is proportional to steepness squared, whilst the oscillatory velocities are proportional to the steepness). Thus, the particle motion must have the forces of the full motion, oscillatory and mean flow, as well as a dynamic buoyancy term to account for the free surface, to determine whether inertia is important. To track the motion of a floating inertial particle under wave action requires the fluid velocities, which form the forcing, and the full equations of motion of a particle to be solved. Starting with the equation of motion of a sphere in unsteady flow with viscous drag. Terms can added then be added to the equation of motion to better model floating plastic: a dynamic buoyancy to model a particle floating on the free surface, quadratic drag for larger particles and a slope sliding term. Using perturbation methods to order the equation of motion into sequentially solvable parts allows a parametric equation for the transport of inertial finite-sized floating particles to be derived. This parametric equation can then be validated using numerical simulations of the equation of motion and flume experiments. This paper presents a parametric equation for the transport of inertial floating finite-size particles by ocean waves. The equation shows an increase in Stokes drift for larger, less dense particles. The equation has been validated using numerical solutions of the equation of motion and laboratory flume experiments. The difference in the particle transport equation and a purely Lagrangian tracer is illustrated using worlds maps of the induced transport. This parametric transport equation would allow ocean-scale numerical models to include inertial effects of floating plastic when predicting or tracing the transport of pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perturbation%20methods" title="perturbation methods">perturbation methods</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20pollution%20transport" title=" plastic pollution transport"> plastic pollution transport</a>, <a href="https://publications.waset.org/abstracts/search?q=Stokes%20drift" title=" Stokes drift"> Stokes drift</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20flume%20experiments" title=" wave flume experiments"> wave flume experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-induced%20mean%20flow" title=" wave-induced mean flow"> wave-induced mean flow</a> </p> <a href="https://publications.waset.org/abstracts/111423/transport-of-inertial-finite-size-floating-plastic-pollution-by-ocean-surface-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Transport of Reactive Carbo-Iron Composite Particles for in situ Groundwater Remediation Investigated at Laboratory and Field Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sascha%20E.%20Oswald">Sascha E. Oswald</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Busch"> Jan Busch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The in-situ dechlorination of contamination by chlorinated solvents in groundwater via zero-valent iron (nZVI) is potentially an efficient and prompt remediation method. A key requirement is that nZVI has to be introduced in the subsurface in a way that substantial quantities of the contaminants are actually brought into direct contact with the nZVI in the aquifer. Thus it could be a more flexible and precise alternative to permeable reactive barrier techniques using granular iron. However, nZVI are often limited by fast agglomeration and sedimentation in colloidal suspensions, even more so in the aquifer sediments, which is a handicap for the application to treat source zones or contaminant plumes. Colloid-supported nZVI show promising characteristics to overcome these limitations and Carbo-Iron Colloids is a newly developed composite material aiming for that. The nZVI is built onto finely ground activated carbon of about a micrometer diameter acting as a carrier for it. The Carbo-Iron Colloids are often suspended with a polyanionic stabilizer, and carboxymethyl cellulose is one with good properties for that. We have investigated the transport behavior of Carbo-Iron Colloids (CIC) on different scales and for different conditions to assess its mobility in aquifer sediments as a key property for making its application feasible. The transport properties were tested in one-dimensional laboratory columns, a two-dimensional model aquifer and also an injection experiment in the field. Those experiments were accompanied by non-invasive tomographic investigations of the transport and filtration processes of CIC suspensions. The laboratory experiments showed that a larger part of the CIC can travel at least scales of meters for favorable but realistic conditions. Partly this is even similar to a dissolved tracer. For less favorable conditions this can be much smaller and in all cases a particular fraction of the CIC injected is retained mainly shortly after entering the porous medium. As field experiment a horizontal flow field was established, between two wells with a distance of 5 meters, in a confined, shallow aquifer at a contaminated site in North German lowlands. First a tracer test was performed and a basic model was set up to define the design of the CIC injection experiment. Then CIC suspension was introduced into the aquifer at the injection well while the second well was pumped and samples taken there to observe the breakthrough of CIC. This was based on direct visual inspection and total particle and iron concentrations of water samples analyzed in the laboratory later. It could be concluded that at least 12% of the CIC amount injected reached the extraction well in due course, some of it traveling distances larger than 10 meters in the non-uniform dipole flow field. This demonstrated that these CIC particles have a substantial mobility for reaching larger volumes of a contaminated aquifer and for interacting there by their reactivity with dissolved contaminants in the pore space. Therefore they seem suited well for groundwater remediation by in-situ formation of reactive barriers for chlorinated solvent plumes or even source removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbo-iron%20colloids" title="carbo-iron colloids">carbo-iron colloids</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorinated%20solvents" title=" chlorinated solvents"> chlorinated solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20remediation" title=" in-situ remediation"> in-situ remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20transport" title=" particle transport"> particle transport</a>, <a href="https://publications.waset.org/abstracts/search?q=plume%20treatment" title=" plume treatment"> plume treatment</a> </p> <a href="https://publications.waset.org/abstracts/67776/transport-of-reactive-carbo-iron-composite-particles-for-in-situ-groundwater-remediation-investigated-at-laboratory-and-field-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Tracing Graduates of Vocational Schools with Transnational Mobility Experience: Conclusions and Recommendations from Poland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Pachocki">Michal Pachocki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effects of mobility in the context of a different environment and work culture through analysing the learners perception of their international work experience. Since this kind of professional training abroad is becoming more popular in Europe, mainly due to the EU funding opportunities, it is of paramount importance to assess its long-term impact on educational and career paths of former students. Moreover, the tracer study aimed at defining what professional, social and intercultural competencies were gained or developed by the interns and to which extent those competences proved to be useful meeting the labor market requirements. Being a populous EU member state which actively modernizes its vocational education system (also with European funds), Poland can serve as an illustrative case study to investigate the above described research problems. However, the examined processes are most certainly universal, wherever mobility is included in the learning process. The target group of this research was the former mobility participants and the study was conducted using quantitative and qualitative methods, such as the online survey with over 2 600 questionnaires completed by the former mobility participants; -individual in-depth interviews (IDIs) with 20 Polish graduates already present in the labour market; - 5 focus group interviews (FGIs) with 60 current students of the Polish vocational schools, who have recently returned from the training abroad. As the adopted methodology included a data triangulation, the collected findings have also been supplemented with data obtained by the desk research (mainly contextual information and statistical summary of mobility implementation). The results of this research – to be presented in full scope within the conference presentation – include the participants’ perception of their work mobility. The vast majority of graduates agrees that such an experience has had a significant impact on their professional careers and claims that they would recommend training abroad to persons who are about to enter the labor market. Moreover, in their view, such form of practical training going beyond formal education provided them with an opportunity to try their hand in the world of work. This allowed them – as they accounted for them – to get acquainted with a work system and context different from the ones experienced in Poland. Although the work mobility becomes an important element of the learning process in the growing number of Polish schools, this study reveals that many sending institutions suffer from a lack of the coherent strategy for planning domestic and foreign training programmes. Nevertheless, the significant number of graduates claims that such a synergy improves the quality of provided training. Despite that, the research proved that the transnational mobilities exert an impact on their future careers and personal development. However, such impact is, in their opinion, dependant on other factors, such as length of the training period, the nature and extent of work, recruitment criteria and the quality of organizational arrangement and mentoring provided to learners. This may indicate the salience of the sending and receiving institutions organizational capacity to deal with mobility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20mobility" title="learning mobility">learning mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=transnational%20training" title=" transnational training"> transnational training</a>, <a href="https://publications.waset.org/abstracts/search?q=vocational%20education%20and%20training%20graduates" title=" vocational education and training graduates"> vocational education and training graduates</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer%20study" title=" tracer study"> tracer study</a> </p> <a href="https://publications.waset.org/abstracts/94335/tracing-graduates-of-vocational-schools-with-transnational-mobility-experience-conclusions-and-recommendations-from-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Petrology and Hydrothermal Alteration Mineral Distribution of Wells LA-9D and LA-10D in Aluto Geothermal Field, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Moges%20Azbite">Dereje Moges Azbite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laboratory analysis of igneous rocks is performed with the help of the main oxide plots. The lithology of the two wells was identified using the main oxides obtained using the XRF method. Twenty-four (24) cutting samples with different degrees of alteration were analyzed to determine and identify the rock types by plotting these well samples on special diagrams and correlating with the regional rocks. The results for the analysis of the main oxides and trace elements of 24 samples are presented. Alteration analysis in the two well samples was conducted for 21 samples from two wells for identifying clay minerals. Bulk sample analysis indicated quartz, illite & micas, calcite, cristobalite, smectite, pyrite, epidote, alunite, chlorite, wairakite, diaspore and kaolin minerals present in both wells. Hydrothermal clay minerals such as illite, chlorite, smectite and kaoline minerals were identified in both wells by X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto%20geothermal%20field" title="auto geothermal field">auto geothermal field</a>, <a href="https://publications.waset.org/abstracts/search?q=igneous%20rocks" title=" igneous rocks"> igneous rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20oxides" title=" major oxides"> major oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer%20elements" title="tracer elements">tracer elements</a>, <a href="https://publications.waset.org/abstracts/search?q=XRF" title=" XRF"> XRF</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=alteration%20minerals" title=" alteration minerals"> alteration minerals</a> </p> <a href="https://publications.waset.org/abstracts/142062/petrology-and-hydrothermal-alteration-mineral-distribution-of-wells-la-9d-and-la-10d-in-aluto-geothermal-field-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tracer&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tracer&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tracer&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10