CINXE.COM
Search results for: Narasimha Mangadoddy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Narasimha Mangadoddy</title> <meta name="description" content="Search results for: Narasimha Mangadoddy"> <meta name="keywords" content="Narasimha Mangadoddy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Narasimha Mangadoddy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Narasimha Mangadoddy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Narasimha Mangadoddy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Experimental Studies and CFD Predictions on Hydrodynamics of Gas-Solid Flow in an ICFB with a Draft Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Gujjula">Ravi Gujjula</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinna%20Eranna"> Chinna Eranna</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Mangadoddy"> Narasimha Mangadoddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrodynamic study of gas and solid flow in an internally circulating fluidized bed with draft tube is made in this paper using high speed camera and pressure probes for the laboratory ICFB test rig 3.0 m X 2.7 m column having a draft tube located in the center of ICFB. Experiments were conducted using different sized sand particles with varying particle size distribution. At each experimental run the standard pressure-flow curves for both draft tube and annular region beds measured and the same time downward particles velocity in the annular bed region were also measured. The effect of superficial gas velocity, static bed height (40, 50 & 60 cm) and the draft tube gap height (10.5 & 14.5 cm) on pressure drop profiles, solid circulation pattern, and gas bypassing dynamics for the ICFB investigated extensively. The mechanism of governing solid recirculation and the pressure losses in an ICFB has been eluded based on gas and solid dynamics obtained from the experimental data. 3D ICFB CFD simulation runs conducted and extracted data validated with ICFB experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=icfb" title="icfb">icfb</a>, <a href="https://publications.waset.org/abstracts/search?q=cfd" title=" cfd"> cfd</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20recirculation" title=" solids recirculation"> solids recirculation</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20height" title=" bed height"> bed height</a>, <a href="https://publications.waset.org/abstracts/search?q=draft%20tube" title=" draft tube"> draft tube</a> </p> <a href="https://publications.waset.org/abstracts/31116/experimental-studies-and-cfd-predictions-on-hydrodynamics-of-gas-solid-flow-in-an-icfb-with-a-draft-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balraju%20Vadlakonda">Balraju Vadlakonda</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Mangadoddy"> Narasimha Mangadoddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry%20%28PIV%29" title="particle image velocimetry (PIV)">particle image velocimetry (PIV)</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20velocity" title=" bubble velocity"> bubble velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20diameter" title=" bubble diameter"> bubble diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20kinetic%20energy" title=" turbulent kinetic energy"> turbulent kinetic energy</a> </p> <a href="https://publications.waset.org/abstracts/11962/analysis-of-two-phase-hydrodynamics-in-a-column-flotation-by-particle-image-velocimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vakamalla%20Teja%20Reddy">Vakamalla Teja Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Mangadoddy"> Narasimha Mangadoddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-core" title="air-core">air-core</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistance%20tomography" title=" electrical resistance tomography"> electrical resistance tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocyclone" title=" hydrocyclone"> hydrocyclone</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20CFD" title=" multi-phase CFD"> multi-phase CFD</a> </p> <a href="https://publications.waset.org/abstracts/12003/measurement-of-solids-concentration-in-hydrocyclone-using-ert-validation-against-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Bi-Component Particle Segregation Studies in a Spiral Concentrator Using Experimental and CFD Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prudhvinath%20Reddy%20Ankireddy">Prudhvinath Reddy Ankireddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Mangadoddy"> Narasimha Mangadoddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spiral concentrators are commonly used in various industries, including mineral and coal processing, to efficiently separate materials based on their density and size. In these concentrators, a mixture of solid particles and fluid (usually water) is introduced as feed at the top of a spiral channel. As the mixture flows down the spiral, centrifugal and gravitational forces act on the particles, causing them to stratify based on their density and size. Spiral flows exhibit complex fluid dynamics, and interactions involve multiple phases and components in the process. Understanding the behavior of these phases within the spiral concentrator is crucial for achieving efficient separation. An experimental bi-component particle interaction study is conducted in this work utilizing magnetite (heavier density) and silica (lighter density) with different proportions processed in the spiral concentrator. The observation separation reveals that denser particles accumulate towards the inner region of the spiral trough, while a significant concentration of lighter particles are found close to the outer edge. The 5th turn of the spiral trough is partitioned into five zones to achieve a comprehensive distribution analysis of bicomponent particle segregation. Samples are then gathered from these individual streams using an in-house sample collector, and subsequent analysis is conducted to assess component segregation. Along the trough, there was a decline in the concentration of coarser particles, accompanied by an increase in the concentration of lighter particles. The segregation pattern indicates that the heavier coarse component accumulates in the inner zone, whereas the lighter fine component collects in the outer zone. The middle zone primarily consists of heavier fine particles and lighter coarse particles. The zone-wise results reveal that there is a significant fraction of segregation occurs in inner and middle zones. Finer magnetite and silica particles predominantly accumulate in outer zones with the smallest fraction of segregation. Additionally, numerical simulations are also carried out using the computational fluid dynamics (CFD) model based on the volume of fluid (VOF) approach incorporating the RSM turbulence model. The discrete phase model (DPM) is employed for particle tracking, thereby understanding the particle segregation of magnetite and silica along the spiral trough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spiral%20concentrator" title="spiral concentrator">spiral concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-component%20particle%20segregation" title=" bi-component particle segregation"> bi-component particle segregation</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20phase%20model" title=" discrete phase model"> discrete phase model</a> </p> <a href="https://publications.waset.org/abstracts/172968/bi-component-particle-segregation-studies-in-a-spiral-concentrator-using-experimental-and-cfd-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Swarnalatha">V. Swarnalatha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Narasimha%20Rao"> A. V. Narasimha Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Pal"> P. Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH<sub>2</sub>OH) are used as main etchant and additive, respectively. The concentration of NH<sub>2</sub>OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KOH" title="KOH">KOH</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=micromachining" title=" micromachining"> micromachining</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=TMAH" title=" TMAH"> TMAH</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20anisotropic%20etching" title=" wet anisotropic etching"> wet anisotropic etching</a> </p> <a href="https://publications.waset.org/abstracts/65235/study-of-fast-etching-of-silicon-for-the-fabrication-of-bulk-micromachined-mems-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Subtle Influence of Hindu Doctrines on Film Industry: A Case Study of Movie Avatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemil%20Kutlut%C3%BCrk">Cemil Kutlutürk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hindu culture and religious doctrines such as caste, reincarnation, yoga, nirvana have always proved a popular theme for the film industry. The analyzing of these motifs in the movies with a scientific approach enables to individuals either to comprehend the messages and deep meanings of films or to understand others’ religious beliefs systems and daily lives in a properly way. The primary aim of this study is to handle the subtle influence of Hindu doctrines on cinema industry by focusing on James Cameron’s film, Avatar and its relationship with Hindu concept of avatara by referring to original Hindu sacred texts where this doctrine is basically clarified. The Sanskrit word avatara means to come down or to descend. Although an avatara is commonly considered as an appearance of any deity on earth, the term refers the Vishnu’s descending on earth. When the movie avatar and avatara doctrine are compared, various similarities have noteworthy revealed. Firstly in the movie, Jake is chosen by Eywa to protect Pandora from evils. Similarly in the movie, avatar is born when there is a rise of jealousy and unrighteousness. The same concept is found in avatara doctrine. According to this belief whenever righteousness (dharma) wanes and unrighteousness (adharma) increases God incarnates himself as an avatara. In Hindu tradition, the ten avataras of Vishnu are the most popular. This standard list of ten avataras includes the Fish, the Tortoise, the Boar, the Man-Lion (Narasimha), the Dwarf, Parasurama, Rama, Krishna, the Buddha and Kalki. In the movie the avatar has tail, eyes, nose, ear which is similar to Narasimha (half man-half lion) avatara. On the other hand use of bow and arrow by Navis in the film, evokes us Rama avatara whose basic gun is same. Navis fly on a dragon like bird called Ikra and ride a horse-like quadruped animal. The vehicle for transformation of the avatar in the movie is also resemblance with the idea of Garuda, the great mythical bird, which is used by Vishnu in Hindu mythology. In addition, the last avatara, Kalki, will be seen on a white horse according to Puranas. The basic difference is that for Hinduism avatara means descent of a God, yet in the movie, a human being named Jake Sully, is manifested as humanoid of another planet, this is called as avatar. While in the movie the avatar manifests himself in another planet, Pandora, in Hinduism avataras descent on this world. On the other hand, in Hindu scriptures, there are many avataras and they are categorized according to their functions and attributes. These sides of avatara doctrine cannot be also seen clearly in the film. Even though there are some differences between each other, the main hypothesis of this study is that the general character of the movie is similar to avatara doctrine. In the movie instead of emphasizing on a specific avatara, qualities of different Vishnu avataras have been properly used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=film%20industry" title="film industry">film industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Hinduism" title=" Hinduism"> Hinduism</a>, <a href="https://publications.waset.org/abstracts/search?q=incarnation" title=" incarnation"> incarnation</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Cameron" title=" James Cameron"> James Cameron</a>, <a href="https://publications.waset.org/abstracts/search?q=movie%20avatar" title=" movie avatar"> movie avatar</a> </p> <a href="https://publications.waset.org/abstracts/42261/the-subtle-influence-of-hindu-doctrines-on-film-industry-a-case-study-of-movie-avatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Role of Healthcare Informatics in Combating the COVID-19 Pandemic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philip%20Eappen">Philip Eappen</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Rao%20Vajjhala"> Narasimha Rao Vajjhala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This chapter examines how healthcare organizations harnessed innovative healthcare informatics to navigate the challenges posed by the COVID-19 pan-demic, addressing critical needs and improving care delivery. The pandemic's un-precedented demands necessitated the adoption of new and advanced tools to manage healthcare operations more effectively. Informatics solutions played a crucial role in facilitating the smooth functioning of healthcare systems during this crisis and are anticipated to remain central to future healthcare management. Technologies such as telemedicine helped healthcare professionals minimize ex-posure to COVID-19 patients, thereby reducing infection risks within healthcare facilities. This chapter explores a range of informatics applications utilized worldwide, including telemedicine, AI-driven solutions, big data analytics, drones, robots, and digital platforms for drug delivery, all of which enabled re-mote patient care and enhanced healthcare accessibility and safety during the pan-demic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=healthcare%20informatics" title="healthcare informatics">healthcare informatics</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19%20Pandemic" title=" COVID-19 Pandemic"> COVID-19 Pandemic</a>, <a href="https://publications.waset.org/abstracts/search?q=telemedicine" title=" telemedicine"> telemedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=AI-driven%20healthcare" title=" AI-driven healthcare"> AI-driven healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data%20analytics" title=" big data analytics"> big data analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20patient%20care" title=" remote patient care"> remote patient care</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20health%20platforms" title=" digital health platforms"> digital health platforms</a> </p> <a href="https://publications.waset.org/abstracts/194156/the-role-of-healthcare-informatics-in-combating-the-covid-19-pandemic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Tribological Performance of Polymer Syntactic Foams in Low-Speed Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Narasimha%20Rao">R. Narasimha Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Sri%20Chaitanya"> Ch. Sri Chaitanya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Syntactic foams are closed-cell foams with high specific strength and high compression strength. At Low speeds, the wear rate is sensitive to the sliding speeds and other tribological parameters like applied load and the sliding distance. In the present study, the tribological performance of the polymer-based syntactic foams was reported based on the experiments conducted on a pin-on-disc tribometer. The syntactic foams were manufactured with epoxy as the matrix and the cenospheres obtained from the thermal powerplants as the reinforcement. The experiments were conducted at a sliding speed of the 1 m/s. The applied load was varied from 1 kg to 5 kg up to a sliding distance of 3000 m. The wear rate increased with the sliding distance at lower loads. The trend was reversed at higher loads of 5kg. This may be due to the high plastic deformation at the initial stages when higher loads were applied. This was evident with the higher friction constants for the higher loads. The adhesive wear was found to be predominant for lower loads, while the abrasive wear tracks can be seen in micrographs of samples tested under higher loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sliding%20speed" title="sliding speed">sliding speed</a>, <a href="https://publications.waset.org/abstracts/search?q=syntactic%20foams" title=" syntactic foams"> syntactic foams</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20performance" title=" tribological performance"> tribological performance</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a> </p> <a href="https://publications.waset.org/abstracts/169677/tribological-performance-of-polymer-syntactic-foams-in-low-speed-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Knowledge Management in Academic: A Perspective of Academic Research Contribution to Economic Development of a Nation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilary%20J.%20Watsilla">Hilary J. Watsilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20R.%20Vajjhala"> Narasimha R. Vajjhala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information and Communication Technology (ICT) has made information access easier and affordable. Academic research has also benefited from this, with online journals and academic resource readily available by the click of a button. However, there are limited ways of assessing and controlling the quality of the academic research mostly in public institution. Nigeria is the most populous country in Africa with a significant number of universities and young population. The quality of knowledge created by academic researchers, however, needs to be evaluated due to the high number of predatory journals published by academia. The purpose of this qualitative study is to look at the knowledge creation, acquisition, and assimilation process by academic researchers in public universities in Nigeria. Qualitative research will be carried out using in-depth interviews and observations. Academic researchers will be interviewed and absorptive capacity theory will be used as the theoretical framework to guide the research. The findings from this study should help understand the impact of ICT on the knowledge creation process in academic research and to understand how ICT can affect the quality of knowledge produced by researchers. The findings from this study should help add value to the existing body of knowledge on the quality of academic research, especially in Africa where there is limited availability of quality academic research. As this study is limited to Nigerian universities, the outcome may not be generalized to other developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20creation" title="knowledge creation">knowledge creation</a>, <a href="https://publications.waset.org/abstracts/search?q=academic%20research" title=" academic research"> academic research</a>, <a href="https://publications.waset.org/abstracts/search?q=university" title=" university"> university</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20and%20communication%20technology" title=" information and communication technology "> information and communication technology </a> </p> <a href="https://publications.waset.org/abstracts/108778/knowledge-management-in-academic-a-perspective-of-academic-research-contribution-to-economic-development-of-a-nation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Detecting and Thwarting Interest Flooding Attack in Information Centric Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vimala%20Rani%20P">Vimala Rani P</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Malikarjunan"> Narasimha Malikarjunan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercy%20Shalinie%20S"> Mercy Shalinie S</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information-centric%20network" title="information-centric network">information-centric network</a>, <a href="https://publications.waset.org/abstracts/search?q=pending%20interest%20table" title=" pending interest table"> pending interest table</a>, <a href="https://publications.waset.org/abstracts/search?q=interest%20flooding%20attack" title=" interest flooding attack"> interest flooding attack</a>, <a href="https://publications.waset.org/abstracts/search?q=MF-ELM%20classifier" title=" MF-ELM classifier"> MF-ELM classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=queue-based%20mitigation%20strategy" title=" queue-based mitigation strategy"> queue-based mitigation strategy</a> </p> <a href="https://publications.waset.org/abstracts/144061/detecting-and-thwarting-interest-flooding-attack-in-information-centric-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Magneto-Transport of Single Molecular Transistor Using Anderson-Holstein-Caldeira-Leggett Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manasa%20Kalla">Manasa Kalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Raju%20Chebrolu"> Narasimha Raju Chebrolu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Chatterjee"> Ashok Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the quantum transport properties of a single molecular transistor in the presence of an external magnetic field using the Keldysh Green function technique. We also used the Anderson-Holstein-Caldeira-Leggett Model to describe the single molecular transistor that consists of a molecular quantum dot (QD) coupled to two metallic leads and placed on a substrate that acts as a heat bath. The phonons are eliminated by the Lang-Firsov transformation and the effective Hamiltonian is used to study the effect of an external magnetic field on the spectral density function, Tunneling Current, Differential Conductance and Spin polarization. A peak in the spectral function corresponds to a possible excitation. In the presence of a magnetic field, the spin-up and spin-down states are degenerate and this degeneracy is lifted by the magnetic field leading to the splitting of the central peak of the spectral function. The tunneling current decreases with increasing magnetic field. We have observed that even the differential conductance peak in the zero magnetic field curve is split in the presence electron-phonon interaction. As the magnetic field is increased, each peak splits into two peaks. And each peak indicates the existence of an energy level. Thus the number of energy levels for transport in the bias window increases with the magnetic field. In the presence of the electron-phonon interaction, Differential Conductance in general gets reduced and decreases faster with the magnetic field. As magnetic field strength increases, the spin polarization of the current is increasing. Our results show that a strongly interacting QD coupled to metallic leads in the presence of external magnetic field parallel to the plane of QD acts as a spin filter at zero temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anderson-Holstein%20model" title="Anderson-Holstein model">Anderson-Holstein model</a>, <a href="https://publications.waset.org/abstracts/search?q=Caldeira-Leggett%20model" title=" Caldeira-Leggett model"> Caldeira-Leggett model</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-polarization" title=" spin-polarization"> spin-polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/93952/magneto-transport-of-single-molecular-transistor-using-anderson-holstein-caldeira-leggett-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> American Sign Language Recognition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Nagpal">Rishabh Nagpal</a>, <a href="https://publications.waset.org/abstracts/search?q=Riya%20Uchagaonkar"> Riya Uchagaonkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Naga%20Narasimha%20Ashish%20Mernedi"> Venkata Naga Narasimha Ashish Mernedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hambaba"> Ahmed Hambaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sign%20language" title="sign language">sign language</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20transformer" title=" vision transformer"> vision transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=VGG16" title=" VGG16"> VGG16</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a> </p> <a href="https://publications.waset.org/abstracts/186514/american-sign-language-recognition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Addressing Food Grain Losses in India: Energy Trade-Offs and Nutrition Synergies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20F.%20Gibson">Matthew F. Gibson</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20D.%20Rao"> Narasimha D. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20B.%20Slade"> Raphael B. Slade</a>, <a href="https://publications.waset.org/abstracts/search?q=Joana%20Portugal%20Pereira"> Joana Portugal Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Joeri%20Rogelj"> Joeri Rogelj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally, India’s population is among the most severely impacted by nutrient deficiency, yet millions of tonnes of food are lost before reaching consumers. Across food groups, grains represent the largest share of daily calories and overall losses by mass in India. If current losses remain unresolved and follow projected population rates, we estimate, by 2030, losses from grains for human consumption could increase by 1.3-1.8 million tonnes (Mt) per year against current levels of ~10 Mt per year. This study quantifies energy input to minimise storage losses across India, responsible for a quarter of grain supply chain losses. In doing so, we identify and explore a Sustainable Development Goal (SDG) triplet between SDG₂, SDG₇, and SDG₁₂ and provide insight for development of joined up agriculture and health policy in the country. Analyzing rice, wheat, maize, bajra, and sorghum, we quantify one route to reduce losses in supply chains, by modelling the energy input to maintain favorable climatic conditions in modern silo storage. We quantify key nutrients (calories, protein, zinc, iron, vitamin A) contained within these losses and calculate roughly how much deficiency in these dietary components could be reduced if grain losses were eliminated. Our modelling indicates, with appropriate uncertainty, maize has the highest energy input intensity for storage, at 110 kWh per tonne of grain (kWh/t), and wheat the lowest (72 kWh/t). This energy trade-off represents 8%-16% of the energy input required in grain production. We estimate if grain losses across the supply chain were saved and targeted to India’s nutritionally deficient population, average protein deficiency could reduce by 46%, calorie by 27%, zinc by 26%, and iron by 11%. This study offers insight for development of Indian agriculture, food, and health policy by first quantifying and then presenting benefits and trade-offs of tackling food grain losses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20loss" title=" food loss"> food loss</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20storage" title=" grain storage"> grain storage</a>, <a href="https://publications.waset.org/abstracts/search?q=hunger" title=" hunger"> hunger</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development%20goal" title=" sustainable development goal"> sustainable development goal</a>, <a href="https://publications.waset.org/abstracts/search?q=SDG" title=" SDG"> SDG</a> </p> <a href="https://publications.waset.org/abstracts/123852/addressing-food-grain-losses-in-india-energy-trade-offs-and-nutrition-synergies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Appraisal of Conservation Strategies of Veligonda Forest Range of Eastern Ghats, Andhra Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khasim%20Munir%20Bhasha%20Shaik">Khasim Munir Bhasha Shaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Veligonda and adjoining hill range spread along about 170 Km North to South in Kadapa and Nellore Districts stretching a little further into Prakasam District. The latitude in general ranges up to 1000m. The forests are generally dry deciduous type. Veligonda and adjoining hill ranges comprise of Palakonda, Seshachalam, Lankamala and the terminal part of Nallamalais from mid-region of Southern Eastern Ghats. The Veligonda range which separates the Nellore district from Kadapa and Kurnool is the backbone of the Eastern Ghats, starting from Nagari promontory in Chittoor district. It runs in a northerly direction along the western border of the Nellore district, with a raising elevation of 3,626 ft at Penchalakona in Raipur thaluk. Veligonda hill ranges are high in altitude and have deep valleys. Among the Veligondas range of hills the Durgam in Venkatagiri range and Penchalakona are the most prominent and are situated 914 meters above mean sea level. It has more than 3000 species of plants along with 500 animal species. The unique specialty of this region is the presence of Pterocarpus santalinus(endangered) and Santalum album (vulnerable). In the present study, an attempt is made to assess the efforts that are going on to conserve the biodiversity of flora and fauna of this region. Various conservation strategies were suggested to protect the biodiversity and richness of Veligonda forest, hill region of Eastern Ghats of Andhra Pradesh. The major threats and the reasons for the dwindling species richness are poor rainfall, adverse climatic conditions, robbery of Red sanders and poaching of animals by the local tribals. Efforts are to be made to conserve some of the animals by both in situ and ex-situ methods. More awareness is to be developed among the local communities who are dwelling in the vicinity and importance of conservation is to be emphasized to them. Anthropogenic attachments are to be made by introducing more numbers of sacred groves. Gross enforcement of law is to be made to protect the various forest resources in this area. The important species with the medicinal values are to be identified. It was found that two important wildlife sanctuaries named Sri Lankamalleswarawildlife sanctuary and Sripenusila Narasimha wildlife sanctuary are working for the comprehensive conservation of the environment in this area. Apart from this more than 38 important sacred grooves are there where the plants and animals are protected by local Yanadi and other communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20life%20sanctuary" title=" wild life sanctuary"> wild life sanctuary</a>, <a href="https://publications.waset.org/abstracts/search?q=habitat%20destruction" title=" habitat destruction"> habitat destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=eastern%20Ghats" title=" eastern Ghats"> eastern Ghats</a> </p> <a href="https://publications.waset.org/abstracts/97817/appraisal-of-conservation-strategies-of-veligonda-forest-range-of-eastern-ghats-andhra-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>