CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;16 of 16 results for author: <span class="mathjax">Boukari, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Boukari%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Boukari, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Boukari%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Boukari, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16592">arXiv:2308.16592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16592">pdf</a>, <a href="https://arxiv.org/format/2308.16592">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Encoding information onto the charge and spin state of a paramagnetic atom using MgO tunnelling spintronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lamblin%2C+M">Mathieu Lamblin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowrira%2C+B">Bhavishya Chowrira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Costa%2C+V">Victor Da Costa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vileno%2C+B">Bertrand Vileno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joly%2C+L">Loic Joly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">Samy Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">Wolfgang Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernard%2C+R">Romain Bernard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gobaut%2C+B">Benoit Gobaut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lacour%2C+D">Daniel Lacour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">Martin Bowen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16592v1-abstract-short" style="display: inline;"> An electrical current that flows across individual atoms or molecules can generate exotic quantum-based behavior, from memristive effects to Coulomb blockade and the promotion of quantum excited states. These fundamental effects typically appear one at a time in model junctions built using atomic tip or lateral techniques. So far, however, a viable industrial pathway for such discrete state device&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16592v1-abstract-full').style.display = 'inline'; document.getElementById('2308.16592v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16592v1-abstract-full" style="display: none;"> An electrical current that flows across individual atoms or molecules can generate exotic quantum-based behavior, from memristive effects to Coulomb blockade and the promotion of quantum excited states. These fundamental effects typically appear one at a time in model junctions built using atomic tip or lateral techniques. So far, however, a viable industrial pathway for such discrete state devices has been lacking. Here, we demonstrate that a commercialized device platform can serve as this industrial pathway for quantum technologies. We have studied magnetic tunnel junctions with a MgO barrier containing C atoms. The paramagnetic localized electrons due to individual C atoms generate parallel nanotransport paths across the micronic device as deduced from magnetotransport experiments. Coulomb blockade effects linked to tunnelling magnetoresistance peaks can be electrically controlled, leading to a persistent memory effect. Our results position MgO tunneling spintronics as a promising platform to industrially implement quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16592v1-abstract-full').style.display = 'none'; document.getElementById('2308.16592v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06157">arXiv:2203.06157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.06157">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0102920">10.1063/5.0102920 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Toward accurate polarization estimation in nanoscopic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mohapatra%2C+S">Sambit Mohapatra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">Wolfgang Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">Martin Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">Samy Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Costa%2C+V">Victor Da Costa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06157v1-abstract-short" style="display: inline;"> The nanoscopic characterization of ferroelectric thin films is crucial from their device application point of view. Standard characterization techniques are based on detecting the nanoscopic charge compensation current (switching current) caused by the polarization reversal in the ferroelectric. Owing to various surface and bulk limited mechanisms, leakage currents commonly appear during such meas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06157v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06157v1-abstract-full" style="display: none;"> The nanoscopic characterization of ferroelectric thin films is crucial from their device application point of view. Standard characterization techniques are based on detecting the nanoscopic charge compensation current (switching current) caused by the polarization reversal in the ferroelectric. Owing to various surface and bulk limited mechanisms, leakage currents commonly appear during such measurements, which are frequently subtracted using the device I-V characteristic by employing positive-up-negative-down (PUND) measurement scheme. By performing nanoscopic switching current measurements on a commonly used ferroelectric, BiFeO3, we show that such characterization methods may be prone to large errors in the polarization estimation on ferro-resistive samples, due to current background subtraction issues. Especially, when ferro-resistive behavior is associated with the polarization reversal of the ferroelectric thin film, background current subtraction is not accurate due to the mismatch of the I-V characteristics for the two polarization states. We show instead that removing the background current by an asymmetric least squares subtraction method, though not perfect, gives a much better estimation of the ferroelectric properties of the sample under study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06157v1-abstract-full').style.display = 'none'; document.getElementById('2203.06157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12519">arXiv:2110.12519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.12519">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Organic ferroelectric Croconic Acid: A concise survey from bulk single crystals to thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mohapatra%2C+S">Sambit Mohapatra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cherifi-Hertel%2C+S">Salia Cherifi-Hertel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuppusamy%2C+S+K">Senthil Kumar Kuppusamy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmerber%2C+G">Guy Schmerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">Jacek Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gobaut%2C+B">Benoit Gobaut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">Wolfgang Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">Martin Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Costa%2C+V">Victor Da Costa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">Samy Boukari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12519v1-abstract-short" style="display: inline;"> Owing to prospective energy-efficient and environmentally benign applications, organic ferroelectric materials are useful and necessary alternative to inorganic ferroelectrics. Although the first discovered ferroelectric, Rochelle salt, was a salt of an organic compound, organic ferroelectrics have not been as abundant as the inorganic ones. Further, the small polarization values in the organic sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12519v1-abstract-full').style.display = 'inline'; document.getElementById('2110.12519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12519v1-abstract-full" style="display: none;"> Owing to prospective energy-efficient and environmentally benign applications, organic ferroelectric materials are useful and necessary alternative to inorganic ferroelectrics. Although the first discovered ferroelectric, Rochelle salt, was a salt of an organic compound, organic ferroelectrics have not been as abundant as the inorganic ones. Further, the small polarization values in the organic systems discovered so far have been a demotivating factor for their applications. However, scientific interest and activities surrounding such materials, for the purpose of fundamental understanding and practical applications, have significantly risen lately, especially after the discovery of above-room-temperature ferroelectricity in croconic acid (4,5-dihydroxy-4-cyclopentene-1,2,3-trione, H2C5O5) crystals with polarization values rivalling those found in inorganic ferroelectrics. Its large polarization, organic nature, and vacuum sublimability make croconic acid an ideal candidate for non-toxic and lead-free device applications. In this review article, we survey the scientific activities carried out so far involving ferroelectricity in this novel material, paying equal attention to its bulk single crystal and thin film forms. While we discuss about the origin of ferroelectric order and the reversal of polarization in the bulk form, we also summarize the directions toward applications of the thin films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12519v1-abstract-full').style.display = 'none'; document.getElementById('2110.12519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.03084">arXiv:2104.03084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.03084">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale reversal of stable room temperature ferroelectric polarization in organic croconic acid thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mohapatra%2C+S">Sambit Mohapatra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">Eric Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">Wolfgang Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">Martin Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">Samy Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Costa%2C+V">Victor Da Costa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.03084v1-abstract-short" style="display: inline;"> It was discovered in 2010 that Croconic Acid, in its crystal form, has the highest polarization among organic ferroelectrics. In the context of eliminating toxic substances from electronic devices, Croconic Acid has a great potential as a sublimable lead-free ferroelectric. However, studies on ferroelectric properties of its thin films are only in their early stages and its capability to be incorp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03084v1-abstract-full').style.display = 'inline'; document.getElementById('2104.03084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.03084v1-abstract-full" style="display: none;"> It was discovered in 2010 that Croconic Acid, in its crystal form, has the highest polarization among organic ferroelectrics. In the context of eliminating toxic substances from electronic devices, Croconic Acid has a great potential as a sublimable lead-free ferroelectric. However, studies on ferroelectric properties of its thin films are only in their early stages and its capability to be incorporated in nanoscale devices is unknown. In this work, we demonstrate, upon ferroelectric switching at the nanoscale, stable and enduring room temperature polarization with no leakage current in Croconic Acid thin films. We thus show that it is a promising lead-free organic ferroelectric toward integration in nanoscale devices. The challenging switching current and polarization reversal characterization at the nanoscale was done using a unique combination of piezoresponse force microscopy, polarization switching current spectroscopy and the concurrent electromechanical strain response. Indeed, this combination can help to rationalize otherwise asymmetric polarization-voltage data and distorted hysteresis due to current jumps below the background noise, which are statistically washed away in macrojunctions but become prevalent at the nanoscale. These results are valid irrespective of the ferroelectrics&#39; nature, organic or inorganic. Beyond the potential of Croconic Acid as an ecological ferroelectric material in devices, our detection of a clear nanoscopic polarization switching current thus paves the way for a fundamental understanding and technological applications of the polarization reversal mechanism at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03084v1-abstract-full').style.display = 'none'; document.getElementById('2104.03084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10413">arXiv:2009.10413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10413">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202206688">10.1002/adma.202206688 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum advantage in a molecular spintronic engine that harvests thermal fluctuation energy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chowrira%2C+B">Bhavishya Chowrira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kandpal%2C+L">Lalit Kandpal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamblin%2C+M">Mathieu Lamblin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ngassam%2C+F">Franck Ngassam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kouakou%2C+C">Charles-Ambroise Kouakou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zafar%2C+T">Talha Zafar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mertz%2C+D">Damien Mertz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vileno%2C+B">Bertrand Vileno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kieber%2C+C">Christophe Kieber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Versini%2C+G">Gilles Versini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gobaut%2C+B">Benoit Gobaut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joly%2C+L">Loic Joly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferte%2C+T">Tom Ferte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monteblanco%2C+E">Elmer Monteblanco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bahouka%2C+A">Armel Bahouka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernard%2C+R">Romain Bernard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohapatra%2C+S">Sambit Mohapatra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+H+P">H. Prima Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elidrissi%2C+S">S. Elidrissi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gavara%2C+M">M. Gavara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sternitzky%2C+E">Emmanuel Sternitzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Costa%2C+V">Victor Da Costa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montaigne%2C+F">Francois Montaigne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choueikani%2C+F">Fadi Choueikani</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10413v4-abstract-short" style="display: inline;"> Recent theory and experiments have showcased how to harness quantum mechanics to assemble heat/information engines with efficiencies that surpass the classical Carnot limit. So far, this has required atomic engines that are driven by cumbersome external electromagnetic sources. Here, using molecular spintronics, we propose an implementation that is both electronic and autonomous. Our spintronic qu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10413v4-abstract-full').style.display = 'inline'; document.getElementById('2009.10413v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10413v4-abstract-full" style="display: none;"> Recent theory and experiments have showcased how to harness quantum mechanics to assemble heat/information engines with efficiencies that surpass the classical Carnot limit. So far, this has required atomic engines that are driven by cumbersome external electromagnetic sources. Here, using molecular spintronics, we propose an implementation that is both electronic and autonomous. Our spintronic quantum engine heuristically deploys several known quantum assets by having a chain of spin qubits formed by the paramagnetic Co centers of phthalocyanine (Pc) molecules electronically interact with electron-spin selecting Fe/C60 interfaces. Density functional calculations reveal that transport fluctuations across the interface can stabilize spin coherence on the Co paramagnetic centers, which host spin flip processes. Across vertical molecular nanodevices, we measure enduring dc current generation, output power above room temperature, two quantum thermodynamical signatures of the engine&#39;s processes, and a record 89% spin polarization of current across the Fe/C60 interface. It is crucially this electron spin selection that forces, through demonic feedback and control, charge current to flow against the built-in potential barrier. Further research into spintronic quantum engines, insight into the quantum information processes within spintronic technologies, and retooling the spintronic-based information technology chain, could help accelerate the transition to clean energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10413v4-abstract-full').style.display = 'none'; document.getElementById('2009.10413v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">\</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.04592">arXiv:2004.04592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.04592">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Robust ferroelectric properties of organic Croconic Acid films grown on spintronically relevant substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mohapatra%2C+S">Sambit Mohapatra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Costa%2C+V">Victor Da Costa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avedissian%2C+G">Garen Avedissian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">Jacek Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">Wolfgang Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">Martin Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">Samy Boukari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.04592v1-abstract-short" style="display: inline;"> The discovery of stable room temperature ferroelectricity in Croconic Acid, an organic ferroelectric material, with polarization values on par with those found in inorganic ferroelectric materials and highest among organic ferroelectric materials, has opened up possibilities to realize myriads of nano-electronic and spintronic devices based on organic ferroelectrics. Such possibilities require an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04592v1-abstract-full').style.display = 'inline'; document.getElementById('2004.04592v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.04592v1-abstract-full" style="display: none;"> The discovery of stable room temperature ferroelectricity in Croconic Acid, an organic ferroelectric material, with polarization values on par with those found in inorganic ferroelectric materials and highest among organic ferroelectric materials, has opened up possibilities to realize myriads of nano-electronic and spintronic devices based on organic ferroelectrics. Such possibilities require an adequate understanding of the ferroelectric properties of Croconic Acid grown on surfaces that are commonly employed in device fabrication. While several macroscopic studies on relatively larger crystals of Croconic Acid have been performed, studies on thin films are only in their early stages. We have grown thin films of Croconic Acid on gold and cobalt surfaces, which are commonly used in spintronic devices as metallic electrodes, and studied the ferroelectric response of the films using ex-situ Piezoresponse Force Microscopy at room temperature. We show that the polarization reversal in Croconic Acid domains is sensitive to the substrate surface. Using the same experimental protocol, we observe the robust polarization reversal of a single, mostly in-plane electrical domain for a cobalt substrate, whereas polarization reversal is hardly observed for a gold substrate. We attribute this difference to the influence of substrates on the Croconic Acid molecular networks. Our study suggests that to realize devices one has to take care about the substrate on which Croconic Acid will be deposited. The fact that polarization switching is robust on cobalt surface can be used to fabricate multifunctional devices that utilize the cobalt-Croconic Acid interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04592v1-abstract-full').style.display = 'none'; document.getElementById('2004.04592v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.10578">arXiv:1910.10578</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.10578">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202009467">10.1002/adfm.202009467 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetoresistance and spintronic anisotropy induced by spin excitations along molecular spin chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Katcko%2C+K">K. Katcko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Urbain%2C+E">E. Urbain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kandpal%2C+L">L. Kandpal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowrira%2C+B">B. Chowrira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schleicher%2C+F">F. Schleicher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Halisdemir%2C+U">U. Halisdemir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ngassamnyakam%2C+F">F. Ngassamnyakam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mertz%2C+D">D. Mertz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leconte%2C+B">B. Leconte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beyer%2C+N">N. Beyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spor%2C+D">D. Spor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panissod%2C+P">P. Panissod</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulard%2C+A">A. Boulard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kieber%2C+C">C. Kieber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sternitsky%2C+E">E. Sternitsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Costa%2C+V">V. Da Costa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alouani%2C+M">M. Alouani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">M. Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montaigne%2C+F">F. Montaigne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bahouka%2C+A">A. Bahouka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">W. Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">E. Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lacour%2C+D">D. Lacour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">S. Boukari</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.10578v2-abstract-short" style="display: inline;"> Electrically manipulating the quantum properties of nano-objects, such as atoms or molecules, is typically done using scanning tunnelling microscopes and lateral junctions. The resulting nanotransport path is well established in these model devices. Societal applications require transposing this knowledge to nano-objects embedded within vertical solid-state junctions, which can advantageously harn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10578v2-abstract-full').style.display = 'inline'; document.getElementById('1910.10578v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.10578v2-abstract-full" style="display: none;"> Electrically manipulating the quantum properties of nano-objects, such as atoms or molecules, is typically done using scanning tunnelling microscopes and lateral junctions. The resulting nanotransport path is well established in these model devices. Societal applications require transposing this knowledge to nano-objects embedded within vertical solid-state junctions, which can advantageously harness spintronics to address these quantum properties thanks to ferromagnetic electrodes and high-quality interfaces. The challenge here is to ascertain the device&#39;s effective, buried nanotransport path, and to electrically involve these nano-objects in this path by shrinking the device area from the macro- to the nano-scale while maintaining high structural/chemical quality across the heterostructure. We&#39;ve developed a low-tech, resist- and solvent-free technological process that can craft nanopillar devices from entire in-situ grown heterostructures, and use it to study magnetotransport between two Fe and Co ferromagnetic electrodes across a functional magnetic CoPc molecular layer. We observe how spin-flip transport across CoPc molecular spin chains promotes a specific magnetoresistance effect, and alters the nanojunction&#39;s magnetism through spintronic anisotropy. In the process, we identify three magnetic units along the effective nanotransport path thanks to a macrospin model of magnetotransport. Our work elegantly connects the until now loosely associated concepts of spin-flip spectroscopy, magnetic exchange bias and magnetotransport due to molecular spin chains, within a solid-state device. We notably measure a 5.9meV energy threshold for magnetic decoupling between the Fe layer&#39;s buried atoms and those in contact with the CoPc layer forming the so-called &#39;spinterface&#39;. This provides a first insight into the experimental energetics of this promising low-power information encoding unit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10578v2-abstract-full').style.display = 'none'; document.getElementById('1910.10578v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.09836">arXiv:1809.09836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.09836">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-019-0207-8">10.1038/s42005-019-0207-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-driven electrical power generation at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Katcko%2C+K">K. Katcko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Urbain%2C+E">E. Urbain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taudul%2C+B">B. Taudul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schleicher%2C+F">F. Schleicher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">E. Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vileno%2C+B">B. Vileno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spor%2C+D">D. Spor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">W. Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lacour%2C+D">D. Lacour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">S. Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">M. Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alouani%2C+M">M. Alouani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fransson%2C+J">J. Fransson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">M. Bowen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.09836v3-abstract-short" style="display: inline;"> To mitigate climate change, our global society is harnessing direct (solar irradiation) and indirect (wind/water flow) sources of renewable electrical power generation. Emerging direct sources include current-producing thermal gradients in thermoelectric materials, while quantum physics-driven processes to convert quantum information into energy have been demonstrated at very low temperatures. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09836v3-abstract-full').style.display = 'inline'; document.getElementById('1809.09836v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.09836v3-abstract-full" style="display: none;"> To mitigate climate change, our global society is harnessing direct (solar irradiation) and indirect (wind/water flow) sources of renewable electrical power generation. Emerging direct sources include current-producing thermal gradients in thermoelectric materials, while quantum physics-driven processes to convert quantum information into energy have been demonstrated at very low temperatures. The magnetic state of matter, assembled by ordering the electron&#39;s quantum spin property, represents a sizeable source of built-in energy. We propose to create a direct source of electrical power at room temperature (RT) by utilizing magnetic energy to harvest thermal fluctuations on paramagnetic (PM) centers. Our spin engine rectifies current fluctuations across the PM centers&#39; spin states according to the electron spin by utilizing so-called &#39;spinterfaces&#39; with high spin polarization. As a rare experimental event, we demonstrate how this path can generate 0.1nW at room temperature across a 20 micron-wide spintronic device called the magnetic tunnel junction, assembled using commonplace Co, C and MgO materials. The presence of this path in our experiment, which also generates very high spintronic performance, is confirmed by analytical and ab-initio calculations. Device downscaling, and the ability for other materials systems than the spinterface to select a transport spin channel at RT widens opportunities for routine device reproduction. The challenging control over PM centers within the tunnel barrier&#39;s nanotransport path may be addressed using oxide- and organic-based nanojunctions. At present densities in MRAM products, this spin engine could lead to &#39;always-on&#39; areal power densities well beyond that generated by solar irradiation on earth. Further developing this concept can fundamentally alter our energy-driven society&#39;s global economic, social and geopolitical constructs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09836v3-abstract-full').style.display = 'none'; document.getElementById('1809.09836v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.02397">arXiv:1801.02397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.02397">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Engineering on-surface spin crossover: spin-state switching in a self-assembled film of vacuum sublimable functional molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+K+S">Kuppusamy Senthil Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Studniarek%2C+M">Micha艂 Studniarek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinrich%2C+B">Beno卯t Heinrich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">Jacek Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmerber%2C+G">Guy Schmerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">Martin Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">Samy Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">Eric Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dreiser%2C+J">Jan Dreiser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruben%2C+M">Mario Ruben</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.02397v1-abstract-short" style="display: inline;"> Realization of spin crossover (SCO) based applications requires studying of spin state switching characteristics of SCO complex molecules at nanostructured environments especially on-surface. Except for a very few cases, the SCO of a surface bound thin molecular film is either quenched or heavily altered due to (i) strong molecule-surface interactions and (ii) differing intermolecular interactions&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02397v1-abstract-full').style.display = 'inline'; document.getElementById('1801.02397v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.02397v1-abstract-full" style="display: none;"> Realization of spin crossover (SCO) based applications requires studying of spin state switching characteristics of SCO complex molecules at nanostructured environments especially on-surface. Except for a very few cases, the SCO of a surface bound thin molecular film is either quenched or heavily altered due to (i) strong molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface such as highly oriented pyrolytic graphite (HOPG) and copper nitride (CuN), the interfacial quenching problem has been tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. This work proposes a molecular self-assembly strategy to fabricate thin spin switchable surface bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H$_{2}$B(pz)$_{2}$)$_{2}$(bpy)] (pz = pyrazole, bpy = 2,2&#39;-bipyridine) with a dodecyl (C$_{12}$) alkyl chain yielded a classical amphiphile-like functional and vacuum sublimable charge neutral Fe$^{\rm II}$ complex, [Fe(H$_{2}$B(pz)$_{2}$)$_{2}$(C$_{12}$-bpy)] (C$_{12}$-bpy = dodecyl[2,2&#39;-bipyridine]-5-carboxylate). The bulk powder and 10 nm thin film, on quartz glass/SiO$_{\rm x}$ surface, of the complex showed comparable spin state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions in both bulk and thin film states. This unprecedented observation augurs well for the development of SCO based applications, especially in molecular spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02397v1-abstract-full').style.display = 'none'; document.getElementById('1801.02397v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.07450">arXiv:1712.07450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.07450">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.8b00570">10.1021/acs.nanolett.8b00570 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disentangling magnetic hardening and molecular spin chain contributions to exchange bias in ferromagnet/molecule bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">Samy Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jabbar%2C+H">Hashim Jabbar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schleicher%2C+F">Filip Schleicher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gruber%2C+M">Manuel Gruber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">Jacek Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Costa%2C+V">Victor Da Costa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmerber%2C+G">Guy Schmerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rengasamy%2C+P">Prashanth Rengasamy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vileno%2C+B">Bertrand Vileno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">Wolfgang Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">Martin Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">Eric Beaurepaire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.07450v1-abstract-short" style="display: inline;"> We performed SQUID and FMR magnetometry experiments to clarify the relationship between two reported magnetic exchange effects arising from interfacial spin-polarized charge transfer within ferromagnetic metal (FM)/molecule bilayers: the magnetic hardening effect, and spinterface-stabilized molecular spin chains. To disentangle these effects, both of which can affect the FM magnetization reversal,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07450v1-abstract-full').style.display = 'inline'; document.getElementById('1712.07450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.07450v1-abstract-full" style="display: none;"> We performed SQUID and FMR magnetometry experiments to clarify the relationship between two reported magnetic exchange effects arising from interfacial spin-polarized charge transfer within ferromagnetic metal (FM)/molecule bilayers: the magnetic hardening effect, and spinterface-stabilized molecular spin chains. To disentangle these effects, both of which can affect the FM magnetization reversal, we tuned the metal phthalocyanine molecule central site&#39;s magnetic moment to selectively enhance or suppress the formation of spin chains within the molecular film. We find that both effects are distinct, and additive. In the process, we 1) extended the list of FM/molecule candidate pairs that are known to generate magnetic exchange effects, 2) experimentally confirmed the predicted increase in anisotropy upon molecular adsorption; and 3) showed that spin chains within the molecular film can enhance magnetic exchange. This magnetic ordering within the organic layer implies a structural ordering. Thus, by distengangling the magnetic hardening and exchange bias contributions, our results confirm, as an echo to progress regarding inorganic spintronic tunnelling, that the milestone of spintronic tunnelling across structurally ordered organic barriers has been reached through previous magnetotransport experiments. This paves the way for solid-state devices studies that exploit the quantum physical properties of spin chains, notably through external stimuli. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07450v1-abstract-full').style.display = 'none'; document.getElementById('1712.07450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">None</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.02600">arXiv:1712.02600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.02600">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Cu metal / Mn phthalocyanine organic spinterfaces atop Co with high spin polarization at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Urbain%2C+E">E. Urbain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ibrahim%2C+F">F. Ibrahim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Studniarek%2C+M">M. Studniarek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ngassam%2C+F">F. Ngassam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joly%2C+L">L. Joly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertran%2C+F">F. Bertran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%A8vre%2C+P+L">P. Le F猫vre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garreau%2C+G">G. Garreau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denys%2C+E">E. Denys</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wetzel%2C+P">P. Wetzel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alouani%2C+M">M. Alouani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">E. Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">S. Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">M. Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">W. Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.02600v1-abstract-short" style="display: inline;"> The organic spinterface describes the spin-polarized properties that develop, due to charge transfer, at the interface between a ferromagnetic metal (FM) and the molecules of an organic semiconductor. Yet, if the latter is also magnetic (e.g. molecular spin chains), the interfacial magnetic coupling can generate complexity within magnetotransport experiments. Also, assembling this interface may de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02600v1-abstract-full').style.display = 'inline'; document.getElementById('1712.02600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.02600v1-abstract-full" style="display: none;"> The organic spinterface describes the spin-polarized properties that develop, due to charge transfer, at the interface between a ferromagnetic metal (FM) and the molecules of an organic semiconductor. Yet, if the latter is also magnetic (e.g. molecular spin chains), the interfacial magnetic coupling can generate complexity within magnetotransport experiments. Also, assembling this interface may degrade the properties of its constituents (e.g. spin crossover or non-sublimable molecules). To circumvent these issues, one can separate the molecular and FM films using a less reactive nonmagnetic metal (NM). Spin-resolved photoemission spectroscopy measurements on the prototypical system Co(001)//Cu/Mnphthalocyanine (MnPc) reveal that the Cu/MnPc spinterface atop ferromagnetic Co is highly spin-polarized at room temperature, up to Cu spacer thicknesses of at least 10 monolayers. Ab-initio theory describes a spin polarization of the topmost Cu layer after molecular hybridization that can be accompanied by magnetic hardening effects. This spinterface&#39;s unexpected robustness paves the way for 1) integrating electronically fragile molecules within organic spinterfaces, and 2) manipulating molecular spin chains using the well-documented spin transfer torque properties of the FM/NM bilayer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02600v1-abstract-full').style.display = 'none'; document.getElementById('1712.02600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages. Submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.05643">arXiv:1711.05643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.05643">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Hole transport across MgO-based magnetic tunnel junctions with high resistance-area product due to oxygen vacancies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schleicher%2C+F">F. Schleicher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taudul%2C+B">B. Taudul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Halisdemir%2C+U">U. Halisdemir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katcko%2C+K">K. Katcko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monteblanco%2C+E">E. Monteblanco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lacour%2C+D">D. Lacour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">S. Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montaigne%2C+F">F. Montaigne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Urbain%2C+E">E. Urbain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kandpal%2C+L+M">L. M. Kandpal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">W. Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">E. Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">M. Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alouani%2C+M">M. Alouani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">M. Bowen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.05643v2-abstract-short" style="display: inline;"> The quantum mechanical tunnelling process conserves the quantum properties of the particle considered. As applied to solid-state tunnelling (SST), this physical law was verified, within the field of spintronics, regarding the electron spin in early experiments across Ge tunnel barriers, and in the 90s across Al2O3 barriers. The conservation of the quantum parameter of orbital occupancy, as grouped&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05643v2-abstract-full').style.display = 'inline'; document.getElementById('1711.05643v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.05643v2-abstract-full" style="display: none;"> The quantum mechanical tunnelling process conserves the quantum properties of the particle considered. As applied to solid-state tunnelling (SST), this physical law was verified, within the field of spintronics, regarding the electron spin in early experiments across Ge tunnel barriers, and in the 90s across Al2O3 barriers. The conservation of the quantum parameter of orbital occupancy, as grouped into electronic symmetries, was observed in the &#39;00s across MgO barriers, followed by SrTiO3 (STO). Barrier defects, such as oxygen vacancies, partly conserve this electronic symmetry. In the solid-state, an additional subtlety is the sign of the charge carrier: are holes or electrons involved in transport? We demonstrate that SST across MgO magnetic tunnel junctions (MTJs) with a large resistance-area (RA) product involves holes by examining how shifting the MTJ&#39;s Fermi level alters the ensuing barrier heights defined by the barrier&#39;s oxygen vacancies. In the process, we consolidate the description of tunnel barrier heights induced by specific oxygen-vacancy induced localized states. Our work opens prospects to understand the concurrent observation of high TMR and spin transfer torque across MgO-based nanopillars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05643v2-abstract-full').style.display = 'none'; document.getElementById('1711.05643v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages including 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.6901">arXiv:1410.6901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.6901">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Efficient, high-density, carbon-based spinterfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Djeghloul%2C+F">F. Djeghloul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garreau%2C+G">G. Garreau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gruber%2C+M">M. Gruber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joly%2C+L">L. Joly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">S. Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bulou%2C+H">H. Bulou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertran%2C+F">F. Bertran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%A8vre%2C+P+L">P. Le F猫vre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taleb-Ibrahimi%2C+A">A. Taleb-Ibrahimi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wulfhekel%2C+W">W. Wulfhekel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">E. Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hajjar-Garreau%2C+S">S. Hajjar-Garreau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wetzel%2C+P">P. Wetzel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">M. Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+W">W. Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.6901v1-abstract-short" style="display: inline;"> The research field of spintronics has sought, over the past 25 years and through several materials science tracks, a source of highly spin-polarized current at room temperature. Organic spinterfaces, which consist in an interface between a ferromagnetic metal and a molecule, represent the most promising track as demonstrated for a handful of interface candidates. How general is this effect? We dep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.6901v1-abstract-full').style.display = 'inline'; document.getElementById('1410.6901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.6901v1-abstract-full" style="display: none;"> The research field of spintronics has sought, over the past 25 years and through several materials science tracks, a source of highly spin-polarized current at room temperature. Organic spinterfaces, which consist in an interface between a ferromagnetic metal and a molecule, represent the most promising track as demonstrated for a handful of interface candidates. How general is this effect? We deploy topographical and spectroscopic techniques to show that a strongly spin-polarized interface arises already between ferromagnetic cobalt and mere carbon atoms. Scanning tunneling microscopy and spectroscopy show how a dense semiconducting carbon film with a low band gap of about 0.4 eV is formed atop the metallic interface. Spin-resolved photoemission spectroscopy reveals a high degree of spin polarization at room temperature of carbon-induced interface states at the Fermi energy. From both our previous study of cobalt/phthalocyanine spinterfaces and present x-ray photoemission spectroscopy studies of the cobalt/carbon interface, we infer that these highly spin-polarized interface states arise mainly from sp2-bonded carbon atoms. We thus demonstrate the molecule-agnostic, generic nature of the spinterface formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.6901v1-abstract-full').style.display = 'none'; document.getElementById('1410.6901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.1267">arXiv:1209.1267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.1267">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep01272">10.1038/srep01272 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of a highly spin-polarized organic spinterface at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Djeghloul%2C+F">F. Djeghloul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ibrahim%2C+F">F. Ibrahim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cantoni%2C+M">M. Cantoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">M. Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joly%2C+L">L. Joly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">S. Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohresser%2C+P">P. Ohresser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertran%2C+F">F. Bertran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lef%C3%A8vre%2C+P">P. Lef猫vre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thakur%2C+P">P. Thakur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miyamachi%2C+T">T. Miyamachi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mattana%2C+R">R. Mattana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seneor%2C+P">P. Seneor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaafar%2C+A">A. Jaafar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rinaldi%2C+C">C. Rinaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Javaid%2C+S">S. Javaid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kappler%2C+J+-">J. -P. Kappler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wulfhekel%2C+W">W. Wulfhekel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertacco%2C+R">R. Bertacco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taleb-Ibrahimi%2C+A">A. Taleb-Ibrahimi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alouani%2C+M">M. Alouani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">E. Beaurepaire</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.1267v2-abstract-short" style="display: inline;"> The design of large-scale electronic circuits that are entirely spintronics-driven requires a current source that is highly spin-polarised at and beyond room temperature, cheap to build, efficient at the nanoscale and straightforward to integrate with semiconductors. Yet despite research within several subfields spanning nearly two decades, this key building block is still lacking. We experimental&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.1267v2-abstract-full').style.display = 'inline'; document.getElementById('1209.1267v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.1267v2-abstract-full" style="display: none;"> The design of large-scale electronic circuits that are entirely spintronics-driven requires a current source that is highly spin-polarised at and beyond room temperature, cheap to build, efficient at the nanoscale and straightforward to integrate with semiconductors. Yet despite research within several subfields spanning nearly two decades, this key building block is still lacking. We experimentally and theoretically show how the interface between Co and phthalocyanine molecules constitutes a promising candidate. Spin-polarised direct and inverse photoemission experiments reveal a high degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the molecules&#39;s nitrogen pi orbitals, which substantiates an ab-initio theoretical description of highly spin-polarised charge conduction across the interface due to differing spinterface formation mechanims in each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic interfaces with remarkable spintronic properties that can endure well above room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.1267v2-abstract-full').style.display = 'none'; document.getElementById('1209.1267v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 3 1272 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.2473">arXiv:1010.2473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.2473">pdf</a>, <a href="https://arxiv.org/format/1010.2473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3531652">10.1063/1.3531652 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control of defect-mediated tunneling barrier heights in ultrathin MgO films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D+J">D. J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">W. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schleicher%2C+F">F. Schleicher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+R+H">R. H. Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">S. Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davesne%2C+V">V. Davesne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kieber%2C+C">C. Kieber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmerber%2C+G">G. Schmerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">E. Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+W">W. Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">M. Bowen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.2473v3-abstract-short" style="display: inline;"> The impact of oxygen vacancies on local tunneling properties across rf-sputtered MgO thin films was investigated by optical absorption spectroscopy and conducting atomic force microscopy. Adding O$_2$ to the Ar plasma during MgO growth alters the oxygen defect populations, leading to improved local tunneling characteristics such as a lower density of current hotspots and a lower tunnel current amp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2473v3-abstract-full').style.display = 'inline'; document.getElementById('1010.2473v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.2473v3-abstract-full" style="display: none;"> The impact of oxygen vacancies on local tunneling properties across rf-sputtered MgO thin films was investigated by optical absorption spectroscopy and conducting atomic force microscopy. Adding O$_2$ to the Ar plasma during MgO growth alters the oxygen defect populations, leading to improved local tunneling characteristics such as a lower density of current hotspots and a lower tunnel current amplitude. We discuss a defect-based potential landscape across ultrathin MgO barriers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2473v3-abstract-full').style.display = 'none'; document.getElementById('1010.2473v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0908.0607">arXiv:0908.0607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0908.0607">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3192355">10.1063/1.3192355 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of molecular spin-crossover complex Fe(phen)2(NCS)2 thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Shengwei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmerber%2C+G">G. Schmerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaufrand%2C+J+-">J. -B. Beaufrand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D+J">D. J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boukari%2C+S">S. Boukari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+M">M. Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemp%2C+N+T">N. T. Kemp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Viart%2C+N">N. Viart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rogez%2C+G">G. Rogez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaurepaire%2C+E">E. Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aubriet%2C+H">H. Aubriet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petersen%2C+J">J. Petersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Becker%2C+C">C. Becker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruch%2C+D">D. Ruch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0908.0607v1-abstract-short" style="display: inline;"> We report on the growth by evaporation under high vacuum of high-quality thin films of Fe(phen)2(NCS)2 (phen=1,10-phenanthroline) that maintain the expected electronic structure down to a thickness of 10 nm and that exhibit a temperature-driven spin transition. We have investigated the current-voltage characteristics of a device based on such films. From the space charge-limited current regime,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.0607v1-abstract-full').style.display = 'inline'; document.getElementById('0908.0607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0908.0607v1-abstract-full" style="display: none;"> We report on the growth by evaporation under high vacuum of high-quality thin films of Fe(phen)2(NCS)2 (phen=1,10-phenanthroline) that maintain the expected electronic structure down to a thickness of 10 nm and that exhibit a temperature-driven spin transition. We have investigated the current-voltage characteristics of a device based on such films. From the space charge-limited current regime, we deduce a mobility of 6.5x10-6 cm2/V?s that is similar to the low-range mobility measured on the widely studied tris(8-hydroxyquinoline)aluminium organic semiconductor. This work paves the way for multifunctional molecular devices based on spin-crossover complexes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.0607v1-abstract-full').style.display = 'none'; document.getElementById('0908.0607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 95, 043303 (2009) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10