CINXE.COM

Search results for: quantified metabolomics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: quantified metabolomics</title> <meta name="description" content="Search results for: quantified metabolomics"> <meta name="keywords" content="quantified metabolomics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="quantified metabolomics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="quantified metabolomics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 481</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: quantified metabolomics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">481</span> Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslava%20Cuperlovic-Culf">Miroslava Cuperlovic-Culf</a>, <a href="https://publications.waset.org/abstracts/search?q=Lipu%20Wang"> Lipu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ketty%20Boyle"> Ketty Boyle</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Makley"> Nadine Makley</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Burton"> Ian Burton</a>, <a href="https://publications.waset.org/abstracts/search?q=Anissa%20Belkaid"> Anissa Belkaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Touaibia"> Mohamed Touaibia</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20E.%20Surrette"> Marc E. Surrette </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metabolic%20biomarkers" title="metabolic biomarkers">metabolic biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20network" title=" metabolic network"> metabolic network</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20linear%20regression" title=" multivariate linear regression"> multivariate linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20quantification" title=" NMR quantification"> NMR quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics" title=" quantified metabolomics"> quantified metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20alignment" title=" spectral alignment"> spectral alignment</a> </p> <a href="https://publications.waset.org/abstracts/46114/quantified-metabolomics-for-the-determination-of-phenotypes-and-biomarkers-across-species-in-health-and-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">480</span> Metabolomics Profile Recognition for Cancer Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20L.%20Kouznetsova">Valentina L. Kouznetsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20W.%20Wang"> Jonathan W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20F.%20Tsigelny"> Igor F. Tsigelny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metabolomics has become a rising field of research for various diseases, particularly cancer. Increases or decreases in metabolite concentrations in the human body are indicative of various cancers. Further elucidation of metabolic pathways and their significance in cancer research may greatly spur medicinal discovery. We analyzed the metabolomics profiles of lung cancer. Thirty-three metabolites were selected as significant. These metabolites are involved in 37 metabolic pathways delivered by MetaboAnalyst software. The top pathways are glyoxylate and dicarboxylate pathway (its hubs are formic acid and glyoxylic acid) along with Citrate cycle pathway followed by Taurine and hypotaurine pathway (the hubs in the latter are taurine and sulfoacetaldehyde) and Glycine, serine, and threonine pathway (the hubs are glycine and L-serine). We studied interactions of the metabolites with the proteins involved in cancer-related signaling networks, and developed an approach to metabolomics biomarker use in cancer diagnostics. Our analysis showed that a significant part of lung-cancer-related metabolites interacts with main cancer-related signaling pathways present in this network: PI3K&ndash;mTOR&ndash;AKT pathway, RAS&ndash;RAF&ndash;ERK1/2 pathway, and NFKB pathway. These results can be employed for use of metabolomics profiles in elucidation of the related cancer proteins signaling networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20pathway" title=" metabolic pathway"> metabolic pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=signaling%20pathway" title=" signaling pathway"> signaling pathway</a> </p> <a href="https://publications.waset.org/abstracts/54096/metabolomics-profile-recognition-for-cancer-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">479</span> NMR-Based Metabolomics Reveals Dietary Effects in Liver Extracts of Arctic Charr (Salvelinus alpinus) and Tilapia (Oreochromis mossambicus) Fed Different Levels of Starch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rani%20Abro">Rani Abro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ata%20Moazzami"> Ali Ata Moazzami</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Erik%20Lindberg"> Jan Erik Lindberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Torbj%C3%B6rn%20Lundh"> Torbjörn Lundh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of dietary starch level on liver metabolism in Arctic charr (Salvelinus alpinus) and tilapia (Oreochromis mossambicus) was studied using 1H-NMR based metabolomics. Fingerlings were fed iso-nitrogenous diets containing 0, 10 and 20 % starch for two months before liver samples were collected for metabolite analysis. Metabolite profiling was performed using 600 MHz NMR Chenomx software. In total, 48 metabolites were profiled in liver extracts from both fish species. Following the profiling, principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLC-DA) were performed. These revealed that differences in the concentration of significant metabolites were correlated to the dietary starch level in both species. The most prominent difference in metabolic response to starch feeding between the omnivorous tilapia and the carnivorous Arctic charr was an indication of higher anaerobic metabolism in Arctic charr. The data also indicated that amino acid and pyrimidine metabolism was higher in Artic charr than in tilapia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arctic%20charr" title="arctic charr">arctic charr</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=tilapia" title=" tilapia "> tilapia </a> </p> <a href="https://publications.waset.org/abstracts/24696/nmr-based-metabolomics-reveals-dietary-effects-in-liver-extracts-of-arctic-charr-salvelinus-alpinus-and-tilapia-oreochromis-mossambicus-fed-different-levels-of-starch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">478</span> Employing a Knime-based and Open-source Tools to Identify AMI and VER Metabolites from UPLC-MS Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20Alourfi">Nouf Alourfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the metabolism of amitriptyline (AMI) and verapamil (VER) using a KNIME-based method. KNIME improved workflow is an open-source data-analytics platform that integrates a number of open-source metabolomics tools such as CFMID and MetFrag to provide standard data visualisations, predict candidate metabolites, assess them against experimental data, and produce reports on identified metabolites. The use of this workflow is demonstrated by employing three types of liver microsomes (human, rat, and Guinea pig) to study the in vitro metabolism of the two drugs (AMI and VER). This workflow is used to create and treat UPLC-MS (Orbitrap) data. The formulas and structures of these drugs' metabolites can be assigned automatically. The key metabolic routes for amitriptyline are hydroxylation, N-dealkylation, N-oxidation, and conjugation, while N-demethylation, O-demethylation and N-dealkylation, and conjugation are the primary metabolic routes for verapamil. The identified metabolites are compatible to the published, clarifying the solidity of the workflow technique and the usage of computational tools like KNIME in supporting the integration and interoperability of emerging novel software packages in the metabolomics area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KNIME" title="KNIME">KNIME</a>, <a href="https://publications.waset.org/abstracts/search?q=CFMID" title=" CFMID"> CFMID</a>, <a href="https://publications.waset.org/abstracts/search?q=MetFrag" title=" MetFrag"> MetFrag</a>, <a href="https://publications.waset.org/abstracts/search?q=Data%20Analysis" title=" Data Analysis"> Data Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Metabolomics" title=" Metabolomics"> Metabolomics</a> </p> <a href="https://publications.waset.org/abstracts/147907/employing-a-knime-based-and-open-source-tools-to-identify-ami-and-ver-metabolites-from-uplc-ms-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">477</span> Load Comparison between Different Positions during Elite Male Basketball Games: A Sport Metabolomics Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayvan%20Khoramipour">Kayvan Khoramipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Ali%20Gaeini"> Abbas Ali Gaeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Shirzad"> Elham Shirzad</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%98yvind%20Sandbakk"> Øyvind Sandbakk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Basketball has different positions with individual movement profiles, which may influence metabolic demands. Accordingly, the present study aimed to compare the movement and metabolic load between different positions during elite male basketball games. Five main players of 14 teams (n = 70), who participated in the 2017-18 Iranian national basketball leagues, were selected as participants. The players were defined as backcourt (Posts 1-3) and frontcourt (Posts 4-5). Video based time motion analysis (VBTMA) was performed based on players&rsquo; individual running and shuffling speed using Dartfish software. Movements were classified into high and low intensity running with and without having the ball, as well as high and low-intensity shuffling and static movements. Mean frequency, duration, and distance were calculated for each class, except for static movements where only frequency was calculated. Saliva samples were collected from each player before and after 40-minute basketball games and analyzed using metabolomics. Principal component analysis (PCA) and Partial least square discriminant analysis (PLSDA) (for metabolomics data) and independent T-tests (for VBTMA) were used as statistical tests. Movement frequency, duration, and distance were higher in backcourt players (all p &le; 0.05), while static movement frequency did not differ. Saliva samples showed that the levels of Taurine, Succinic acid, Citric acid, Pyruvate, Glycerol, Acetoacetic acid, Acetone, and Hypoxanthine were all higher in backcourt players, whereas Lactate, Alanine, 3-Metyl Histidine, and Methionine were higher in frontcourt players Based on metabolomics, we demonstrate that backcourt and frontcourt players have different metabolic profiles during games, where backcourt players move clearly more during games and therefore rely more on aerobic energy, whereas frontcourt players rely more on anaerobic energy systems in line with less dynamic but more static movement patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basketball" title="basketball">basketball</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=saliva" title=" saliva"> saliva</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20loadomics" title=" sport loadomics"> sport loadomics</a> </p> <a href="https://publications.waset.org/abstracts/120302/load-comparison-between-different-positions-during-elite-male-basketball-games-a-sport-metabolomics-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">476</span> GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Smoktunowicz">Magdalena Smoktunowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Wawrzyniak"> Renata Wawrzyniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Waleron"> Malgorzata Waleron</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Waleron"> Krzysztof Waleron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20chromatograpfy" title="GC-MS chromatograpfy">GC-MS chromatograpfy</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=pectobacterium%20strains" title=" pectobacterium strains"> pectobacterium strains</a>, <a href="https://publications.waset.org/abstracts/search?q=pectobacterium%20betavasculorum" title=" pectobacterium betavasculorum"> pectobacterium betavasculorum</a> </p> <a href="https://publications.waset.org/abstracts/155862/gc-ms-based-untargeted-metabolomics-to-study-the-metabolism-of-pectobacterium-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">475</span> Combined Proteomic and Metabolomic Analysis Approaches to Investigate the Modification in the Proteome and Metabolome of in vitro Models Treated with Gold Nanoparticles (AuNPs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Chassaigne">H. Chassaigne</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gioria"> S. Gioria</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Lobo%20Vicente"> J. Lobo Vicente</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Carpi"> D. Carpi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Barboro"> P. Barboro</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tomasi"> G. Tomasi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kinsner-Ovaskainen"> A. Kinsner-Ovaskainen</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rossi"> F. Rossi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emerging approaches in the area of exposure to nanomaterials and assessment of human health effects combine the use of in vitro systems and analytical techniques to study the perturbation of the proteome and/or the metabolome. We investigated the modification in the cytoplasmic compartment of the Balb/3T3 cell line exposed to gold nanoparticles. On one hand, the proteomic approach is quite standardized even if it requires precautions when dealing with in vitro systems. On the other hand, metabolomic analysis is challenging due to the chemical diversity of cellular metabolites that complicate data elaboration and interpretation. Differentially expressed proteins were found to cover a range of functions including stress response, cell metabolism, cell growth and cytoskeleton organization. In addition, de-regulated metabolites were annotated using the HMDB database. The "omics" fields hold huge promises in the interaction of nanoparticles with biological systems. The combination of proteomics and metabolomics data is possible however challenging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20processing" title="data processing">data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20systems" title=" in vitro systems"> in vitro systems</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a> </p> <a href="https://publications.waset.org/abstracts/5961/combined-proteomic-and-metabolomic-analysis-approaches-to-investigate-the-modification-in-the-proteome-and-metabolome-of-in-vitro-models-treated-with-gold-nanoparticles-aunps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">474</span> Implementation of Metabolomics in Conjunction with Chemometrics for the Dentification of the Differential Chemical Markers of Different Grades of Sri Lankan White, Green and Black Tea: Camellia Sinenesis L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dina%20A.%20Selim">Dina A. Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Shawky"> Eman Shawky</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20M.%20Abu%20El-Khair"> Rasha M. Abu El-Khair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, UPLC-MS/MS combined to chemometrics were applied on seven Sri Lankan tea grades; Orange Pekoe, Flowery Pekoe, Broken Orange Pekoe Fannings, Broken Orange Pekoe black tea, green tea, silver tips and golden tips white tea grades for their comprehensive metabolic profiling. Certain metabolites, namely, Theasensinin C and E, theaflavin and theacitrin appeared to be the main chemical markers of black tea type, catechin, epicatechin, epigallocatechin, methyl epigallocatechin were the main discriminatory markers of green tea type, while theanine, oolongotheanine and quercetin glycosides were the main chemical markers of white tea type. Theogalloflavin, epigallocatechin and flavonoid glycosides were the main down-accumulated metabolites while theaflavin gallate, and N-ethyl pyrrolidinone epicatechin were the chief up- accumulated metabolites between whole and broken black tea leave grades while puerin A and C and gallic acid was the main down- accumulated metabolites and N-ethyl pyrrolidinone epicatechin gallate was the main up-accumulated one between broken and fanning black tea grades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tea%20grading" title="tea grading">tea grading</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lankan%20tea" title=" Sri Lankan tea"> Sri Lankan tea</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20markers" title=" chemical markers"> chemical markers</a> </p> <a href="https://publications.waset.org/abstracts/147524/implementation-of-metabolomics-in-conjunction-with-chemometrics-for-the-dentification-of-the-differential-chemical-markers-of-different-grades-of-sri-lankan-white-green-and-black-tea-camellia-sinenesis-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">473</span> Monitoring of 53 Contaminants of Emerging Concern: Occurrence in Effluents, Sludges, and Surface Waters Upstream and Downstream of 7 Wastewater Treatment Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azziz%20Assoumani">Azziz Assoumani</a>, <a href="https://publications.waset.org/abstracts/search?q=Francois%20Lestremau"> Francois Lestremau</a>, <a href="https://publications.waset.org/abstracts/search?q=Celine%20Ferret"> Celine Ferret</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedicte%20Lepot"> Benedicte Lepot</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgane%20Salomon"> Morgane Salomon</a>, <a href="https://publications.waset.org/abstracts/search?q=Helene%20Budzinski"> Helene Budzinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie-Helene%20Devier"> Marie-Helene Devier</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Labadie"> Pierre Labadie</a>, <a href="https://publications.waset.org/abstracts/search?q=Karyn%20Le%20Menach"> Karyn Le Menach</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Pardon"> Patrick Pardon</a>, <a href="https://publications.waset.org/abstracts/search?q=Laure%20Wiest"> Laure Wiest</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuelle%20Vulliet"> Emmanuelle Vulliet</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre-Francois%20Staub"> Pierre-Francois Staub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seven French wastewater treatment plants (WWTP) were monitored for 53 contaminants of emerging concern within a nation-wide monitoring campaign in surface waters, which took place in 2018. The overall objective of the 2018 campaign was to provide the exercise of prioritization of emerging substances, which is being carried out in 2021, with monitoring data. This exercise should make it possible to update the list of relevant substances to be monitored (SPAS) as part of future water framework directive monitoring programmes, which will be implemented in the next water body management cycle (2022). One sampling campaign was performed in October 2018 in the seven WWTP, where affluent and sludge samples were collected. Surface water samples were collected in September 2018 at three to five sites upstream and downstream the point of effluent discharge of each WWTP. The contaminants (36 biocides and 17 surfactants, selected by the Prioritization Experts Committee) were determined in the seven WWTP effluent and sludge samples and in surface water samples by liquid or gas chromatography coupled with tandem mass spectrometry, depending on the contaminant. Nine surfactants and three biocides were quantified at least in one WWTP effluent sample. Linear alkylbenzene sulfonic acids (LAS) and fipronil were quantified in all samples; the LAS were quantified at the highest median concentrations. Twelve surfactants and 13 biocides were quantified in at least one sludge sample. The LAS and didecyldimethylammonium were quantified in all samples and at the highest median concentrations. Higher concentration levels of the substances quantified in WWTP effluent samples were observed in the surface water samples collected downstream the effluents discharge points, compared with the samples collected upstream, suggesting a contribution of the WWTP effluents in the contamination of surface waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminants%20of%20emerging%20concern" title="contaminants of emerging concern">contaminants of emerging concern</a>, <a href="https://publications.waset.org/abstracts/search?q=effluent" title=" effluent"> effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20water" title=" river water"> river water</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a> </p> <a href="https://publications.waset.org/abstracts/134492/monitoring-of-53-contaminants-of-emerging-concern-occurrence-in-effluents-sludges-and-surface-waters-upstream-and-downstream-of-7-wastewater-treatment-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">472</span> Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuri%20Ba%C5%9Fp%C4%B1nar">Nuri Başpınar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Ba%C5%9Fo%C4%9Flu"> Abdullah Başoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20%C3%96zdemir"> Özgür Özdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87a%C4%9Flayan%20%C3%96zel"> Çağlayan Özel</a>, <a href="https://publications.waset.org/abstracts/search?q=FundaTerzi"> FundaTerzi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Yaman"> Özgür Yaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like nonalcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family were performed. LDL-cholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARα, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to precede in this effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20protein%20and%20energy%20diet" title="high protein and energy diet">high protein and energy diet</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomic" title=" transcriptomic "> transcriptomic </a> </p> <a href="https://publications.waset.org/abstracts/28491/effects-of-boron-compounds-in-rabbits-fed-high-protein-and-energy-diet-a-metabolomic-and-transcriptomic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">627</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">471</span> Function Study of IrMYB55 in Regulating Synthesis of Terpenoids in Isodon Rubescens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingfang%20Guo">Qingfang Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Isodon rubescens is rich in a variety of terpenes such as oridonin. It has important medicinal value. MYB transcription factors are involved in the regulation of plant secondary metabolic pathways. The combined transcriptomics and metabolomics analysis revealed that IrMYB55 might be involved in the regulation of the synthesis of terpenes. The function of IrMYB55 was further verified by establishing of a genetic transformation system by CRISPR/Cas9. Obtaining a virus-mediated Isodon rubescens gene silencing material. The main research results are as follows: (1) Screening IrMYB which can regulate the synthesis of terpenes. Metabolomics and transcriptomics analyses of materials with high (TJ)-and low (FL)-content populations which revealed significant differences in terpene content and IrMYB55 expression. Correlation analysis showed that the expression level of IrMYB55 had a significant correlation with the content of terpenes. (2) Establishment of a genetic transformation system of Isodon rubescens. The IrPDS gene could be knocked out by injection of Isodon rubescens cotyledon, and the transformed material showed obvious albino phenotype. Subsequently, IrMYB55 conversion material was obtained by this method. (3) The IrMYB55 silencing material was obtained. Subcellular localization indicated that IrMYB55 was located in the nucleus, indicating that it might regulate the synthesis of terpenoids through transcription. In summary, IrMYB55 that may regulate the synthesis of oridonin was dug out from the transcriptome and metabolome data. In this study, a genetic transformation system of Isodon rubescens was successfully established. Further studies showed that IrMYB55 regulated the transcription level of genes related to the synthesis of terpenoids, thereby promoting the accumulation of oridonin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isodon%20rubescens" title="isodon rubescens">isodon rubescens</a>, <a href="https://publications.waset.org/abstracts/search?q=MYB" title=" MYB"> MYB</a>, <a href="https://publications.waset.org/abstracts/search?q=oridonin" title=" oridonin"> oridonin</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPR%2FCas9" title=" CRISPR/Cas9"> CRISPR/Cas9</a> </p> <a href="https://publications.waset.org/abstracts/189637/function-study-of-irmyb55-in-regulating-synthesis-of-terpenoids-in-isodon-rubescens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">470</span> A Systems Approach to Targeting Cyclooxygenase: Genomics, Bioinformatics and Metabolomics Analysis of COX-1 -/- and COX-2-/- Lung Fibroblasts Providing Indication of Sterile Inflammation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abul%20B.%20M.%20M.%20K.%20Islam">Abul B. M. M. K. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandar%20Dave"> Mandar Dave</a>, <a href="https://publications.waset.org/abstracts/search?q=Roderick%20V.%20Jensen"> Roderick V. Jensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20R.%20Amin"> Ashok R. Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A systems approach was applied to characterize differentially expressed transcripts, bioinformatics pathways, and proteins and prostaglandins (PGs) from lung fibroblasts procured from wild-type (WT), COX-1-/- and COX-2-/- mice to understand system level control mechanism. Bioinformatics analysis of COX-2 and COX-1 ablated cells induced COX-1 and COX-2 specific signature respectively, which significantly overlapped with an 'IL-1β induced inflammatory signature'. This defined novel cross-talk signals that orchestrated coordinated activation of pathways of sterile inflammation sensed by cellular stress. The overlapping signals showed significant over-representation of shared pathways for interferon y and immune responses, T cell functions, NOD, and toll-like receptor signaling. Gene Ontology Biological Process (GOBP) and pathway enrichment analysis specifically showed an increase in mRNA expression associated with: (a) organ development and homeostasis in COX-1-/- cells and (b) oxidative stress and response, spliceosomes and proteasomes activity, mTOR and p53 signaling in COX-2-/- cells. COX-1 and COX-2 showed signs of functional pathways committed to cell cycle and DNA replication at the genomics level. As compared to WT, metabolomics analysis revealed a significant increase in COX-1 mRNA and synthesis of basal levels of eicosanoids (PGE2, PGD2, TXB2, LTB4, PGF1α, and PGF2α) in COX-2 ablated cells and increase in synthesis of PGE2, and PGF1α in COX-1 null cells. There was a compensation of PGE2 and PGF1α in COX-1-/- and COX-2-/- cells. Collectively, these results support a broader, differential and collaborative regulation of both COX-1 and COX-2 pathways at the metabolic, signaling, and genomics levels in cellular homeostasis and sterile inflammation induced by cellular stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclooxygenases" title="cyclooxygenases">cyclooxygenases</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20fibroblasts" title=" lung fibroblasts"> lung fibroblasts</a>, <a href="https://publications.waset.org/abstracts/search?q=systemic" title=" systemic"> systemic</a> </p> <a href="https://publications.waset.org/abstracts/3597/a-systems-approach-to-targeting-cyclooxygenase-genomics-bioinformatics-and-metabolomics-analysis-of-cox-1-and-cox-2-lung-fibroblasts-providing-indication-of-sterile-inflammation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> NMR-Based Metabolomic Study of Antimalarial Plant Species Used Traditionally by Vha-Venda People in Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johanna%20Bapela">Johanna Bapela</a>, <a href="https://publications.waset.org/abstracts/search?q=Heino%20Heyman"> Heino Heyman</a>, <a href="https://publications.waset.org/abstracts/search?q=Marion%20Meyer"> Marion Meyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regardless of the significant advances accomplished in reducing the burden of malaria and other tropical diseases in recent years, malaria remains a major cause of mortality in endemic countries. This is especially the case in sub-Saharan Africa where 99% of the estimated global malaria deaths occurs on an annual basis. The emergence of resistant Plasmodium species and the lack of diversified chemotherapeutic agents provide the rationale for bioprospecting for antiplasmodial scaffolds. Crude extracts from twenty indigenous antimalarial plant species were screened for antimalarial activity and then subjected to 1H NMR-based metabolomic analysis. Ten plant extracts exhibited significant in vitro antiplasmodial activity (IC50 ≤ 5 µg/ml). The Principal Component Analysis (PCA) of the acquired 1H NMR spectra could not separate the analyzed plant extracts according to the detected antiplasmodial bioactivity. Application of supervised Orthogonal Projections to Latent Structures–Discriminant Analysis (OPLS-DA) to the 1H NMR profiles resulted in a discrimination pattern that could be correlated to bioactivity. A contribution plot generated from the OPLS-DA scoring plot illustrated the classes of compounds responsible for the observed grouping. Given the preliminary in vitro results, Tabernaemontana elegans Stapf. (Apocynaceae) and Vangueria infausta Burch. subsp. infausta (Rubiaceae) were subjected to further phytochemical investigations. Two indole alkaloids, dregamine and tabernaemontanine possessing antiplasmodial activity were isolated from T. elegans. Two compounds were isolated from V. infausta subsp. infausta and identified as friedelin (IC50 = 3.01 µg/ml) and morindolide (IC50 = 18.5 µg/ml). While these compounds have been previously identified, this is the first account of their occurrence in the genus Vangueria and their antiplasmodial activity. Based on the results of the study, metabolomics can be used to globally identify classes of plant secondary metabolites that are responsible for antiplasmodial activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethnopharmacology" title="ethnopharmacology">ethnopharmacology</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaria" title=" Malaria"> Malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a> </p> <a href="https://publications.waset.org/abstracts/55170/nmr-based-metabolomic-study-of-antimalarial-plant-species-used-traditionally-by-vha-venda-people-in-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">468</span> An Evaluation Model for Enhancing Flexibility in Production Systems through Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angela%20Luft">Angela Luft</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Bremen"> Sebastian Bremen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolae%20Balc"> Nicolae Balc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing processes have entered large parts of the industry and their range of application have progressed and grown significantly in the course of time. A major advantage of additive manufacturing is the innate flexibility of the machines. This corelates with the ongoing demand of creating highly flexible production environments. However, the potential of additive manufacturing technologies to enhance the flexibility of production systems has not yet been truly considered and quantified in a systematic way. In order to determine the potential of additive manufacturing technologies with regards to the strategic flexibility design in production systems, an integrated evaluation model has been developed, that allows for the simultaneous consideration of both conventional as well as additive production resources. With the described model, an operational scope of action can be identified and quantified in terms of mix and volume flexibility, process complexity, and machine capacity that goes beyond the current cost-oriented approaches and offers a much broader and more holistic view on the potential of additive manufacturing. A respective evaluation model is presented this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20planning" title=" capacity planning"> capacity planning</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20systems" title=" production systems"> production systems</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20production%20planning" title=" strategic production planning"> strategic production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility%20enhancement" title=" flexibility enhancement"> flexibility enhancement</a> </p> <a href="https://publications.waset.org/abstracts/149112/an-evaluation-model-for-enhancing-flexibility-in-production-systems-through-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">467</span> Sportomics Analysis of Metabolic Responses in Olympic Sprint Canoeists</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Magno-Fran%C3%A7a">A. Magno-França</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Magalh%C3%A3es-Neto"> A. M. Magalhães-Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bachini"> F. Bachini</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Cataldi"> E. Cataldi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bassini"> A. Bassini</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Cameron"> L. C. Cameron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sprint canoeing (SC) is part of the Olympic Games since 1936. Athletes compete in solo or double races of 200m and 1000m (40 sec and 240 sec, respectively). Due to its high intensity and duration, SC is extremely useful to study the blood kinetics of some metabolites in high energetic demand. Sportomics is a field of study combining “-omics” sciences with classical biochemical analyses in order to understand sports induced systemic changes. Here, we compare Sportomics findings during SC training sessions to describe metabolic responses of five top-level canoeists. Five Olympic world-class male athletes were evaluated during two days of training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemistry%20of%20exercise" title="biochemistry of exercise">biochemistry of exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=injury%20markers" title=" injury markers"> injury markers</a>, <a href="https://publications.waset.org/abstracts/search?q=sportomics" title=" sportomics"> sportomics</a> </p> <a href="https://publications.waset.org/abstracts/28851/sportomics-analysis-of-metabolic-responses-in-olympic-sprint-canoeists" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">466</span> The Anti-Angiogenic Effect of Tectorigenin in a Mouse Model of Retinopathy of Prematurity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=KuiDong%20Kang">KuiDong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Bin%20Yim"> Hye Bin Yim</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Ah%20Kim"> Su Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Tectorigenin is an isoflavone derived from the rhizome of Belamacanda chinensis. In this study, oxygen-induced retinopathy was used to characterize the anti-angiogenic properties of tectorigenin in mice. Methods: ICR neonatal mice were exposed to 75% oxygen from postnatal day P7 until P12 and returned to room air (21% oxygen) for five days (P12 to P17). Mice were subjected to daily intraperitoneal injection of tectorigenin (1 mg/kg, 10 mg/kg) and vehicle from P12 to P17. Retro-orbital injection of FITC-dextran was performed and retinal flat mounts were viewed by fluorescence microscopy. The Central avascular area was quantified from the digital images in a masked fashion using image analysis software (NIH ImageJ). Neovascular tufts were quantified by using SWIFT_NV and neovascular lumens were quantified from a histologic section in a masked fashion. Immunohistochemistry and Western blot analysis were also performed to demonstrate the anti-angiogenic activity of this compound in vivo. Results: In the retina of tectorigenin injected mouse (10mg/kg), the central non-perfusion area was significantly decreased compared to the vehicle injected group (1.76±0.5 mm2 vs 2.85±0.6 mm2, P<0.05). In vehicle-injected group, 33.45 ± 5.51% of the total retinal area was avascular, whereas the retinas of pups treated with high-dose (10 mg/kg) tectorigenin showed avascular retinal areas of 21.25 ±4.34% (P<0.05). High dose of tectorigenin also significantly reduced the number of vascular lumens in the histologic section. Tectorigenin (10 mg/kg) significantly reduced the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), MMP-9, and angiotensin II compared to the vehicle injected group. Tectorigenin did not affect CD31 abundance at any tested dose. Conclusions: Our results show that tectorigenin possesses powerful anti-angiogenic properties and can attenuate new vessel formation in the retina after systemic administration. These results imply that this compound can be considered as a candidate substance for therapeutic inhibition of retinal angiogenesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tectorigenin" title="tectorigenin">tectorigenin</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-angiogenic" title=" anti-angiogenic"> anti-angiogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=retinopathy" title=" retinopathy"> retinopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Belamacanda%20chinensis" title=" Belamacanda chinensis"> Belamacanda chinensis</a> </p> <a href="https://publications.waset.org/abstracts/32502/the-anti-angiogenic-effect-of-tectorigenin-in-a-mouse-model-of-retinopathy-of-prematurity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Effects of the Natural Compound on SARS-CoV-2 Spike Protein-Mediated Metabolic Alteration in THP-1 Cells Explored by the ¹H-NMR-Based Metabolomics Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyaltsen%20Dakpa">Gyaltsen Dakpa</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Senthil%20Kumar"> K. J. Senthil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nai-Wen%20Tsao"> Nai-Wen Tsao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Yang%20Wang"> Sheng-Yang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Coronavirus disease 2019 (COVID-19) is a severe respiratory illness caused by the SARS-CoV-2 virus. One of the hallmarks of COVID-19 is a change in metabolism, which can lead to increased severity and mortality. The mechanism of SARS-CoV-2-mediated perturbations of metabolic pathways has yet to be fully understood. Research Aim: This study aimed to investigate the metabolic alteration caused by SARS-CoV-2 spike protein in Phorbol 12-myristate 13-acetate (PMA)-induced human monocytes (THP-1) and to examine the regulatory effect of natural compounds like Antcins A on SARS-CoV-2 spike protein-induced metabolic alteration. Methodology: The study used a combination of proton nuclear magnetic resonance (1H-NMR) and MetaboAnalyst 5.0 software. THP-1 cells were treated with SARS-CoV-2 spike protein or control, and the metabolomic profiles of the cells were compared. Antcin A was also added to the cells to assess its regulatory effect on SARS-CoV-2 spike protein-induced metabolic alteration. Findings: The study results showed that treatment with SARS-CoV-2 spike protein significantly altered the metabolomic profiles of THP-1 cells. Eight metabolites, including glycerol-phosphocholine, glycine, canadine, sarcosine, phosphoenolpyruvic acid, glutamine, glutamate, and N, N-dimethylglycine, were significantly different between control and spike-protein treatment groups. Antcin A significantly reversed the changes in these metabolites. In addition, treatment with antacid A significantly inhibited SARS-CoV-2 spike protein-mediated up-regulation of TLR-4 and ACE2 receptors. Theoretical Importance The findings of this study suggest that SARS-CoV-2 spike protein can cause significant metabolic alterations in THP-1 cells. Antcin A, a natural compound, has the potential to reverse these metabolic alterations and may be a potential candidate for developing preventive or therapeutic agents for COVID-19. Data Collection: The data for this study was collected from THP-1 cells that were treated with SARS-CoV-2 spike protein or a control. The metabolomic profiles of the cells were then compared using 1H-NMR and MetaboAnalyst 5.0 software. Analysis Procedures: The metabolomic profiles of the THP-1 cells were analyzed using 1H-NMR and MetaboAnalyst 5.0 software. The software was used to identify and quantify the cells' metabolites and compare the control and spike-protein treatment groups. Questions Addressed: The question addressed by this study was whether SARS-CoV-2 spike protein could cause metabolic alterations in THP-1 cells and whether Antcin A can reverse these alterations. Conclusion: The findings of this study suggest that SARS-CoV-2 spike protein can cause significant metabolic alterations in THP-1 cells. Antcin A, a natural compound, has the potential to reverse these metabolic alterations and may be a potential candidate for developing preventive or therapeutic agents for COVID-19. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2-spike" title="SARS-CoV-2-spike">SARS-CoV-2-spike</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B9H-NMR" title=" ¹H-NMR"> ¹H-NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=antcin-A" title=" antcin-A"> antcin-A</a>, <a href="https://publications.waset.org/abstracts/search?q=taiwanofungus%20camphoratus" title=" taiwanofungus camphoratus"> taiwanofungus camphoratus</a> </p> <a href="https://publications.waset.org/abstracts/167444/effects-of-the-natural-compound-on-sars-cov-2-spike-protein-mediated-metabolic-alteration-in-thp-1-cells-explored-by-the-1h-nmr-based-metabolomics-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">464</span> Recognizing Customer Preferences Using Review Documents: A Hybrid Text and Data Mining Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oshin%20Anand">Oshin Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Atanu%20Rakshit"> Atanu Rakshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vast increment in the e-commerce ventures makes this area a prominent research stream. Besides several quantified parameters, the textual content of reviews is a storehouse of many information that can educate companies and help them earn profit. This study is an attempt in this direction. The article attempts to categorize data based on a computed metric that quantifies the influencing capacity of reviews rendering two categories of high and low influential reviews. Further, each of these document is studied to conclude several product feature categories. Each of these categories along with the computed metric is converted to linguistic identifiers and are used in an association mining model. The article makes a novel attempt to combine feature attraction with quantified metric to categorize review text and finally provide frequent patterns that depict customer preferences. Frequent mentions in a highly influential score depict customer likes or preferred features in the product whereas prominent pattern in low influencing reviews highlights what is not important for customers. This is achieved using a hybrid approach of text mining for feature and term extraction, sentiment analysis, multicriteria decision-making technique and association mining model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20mining" title="association mining">association mining</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20preference" title=" customer preference"> customer preference</a>, <a href="https://publications.waset.org/abstracts/search?q=frequent%20pattern" title=" frequent pattern"> frequent pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20reviews" title=" online reviews"> online reviews</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/68059/recognizing-customer-preferences-using-review-documents-a-hybrid-text-and-data-mining-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">463</span> Ethnopharmacological Analysis of Fermented Herbal Concoctions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishmael%20Ntlhamu">Ishmael Ntlhamu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Limpopo Province, the use of herbal concoctions is becoming very popular. These concoctions are claimed to be capable of treating ulcers, diabetes, certain STDs, blood cleansing, and many more types of diseases. The aim of this study was to evaluate the phytochemical composition, evaluate the pharmacological effects and consumption safety in herbal concoctions to treat various kinds of ailments in Limpopo. The concoctions were extracted with 80% acetone. Microorganisms in the concoctions were identified using the Vitek 2 compact system. Qualitative phytochemical analysis was determined using standard chemical tests and thin layer chromatography (TLC). Total polyphenol content was quantified. Antioxidant activity was quantified using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay and ferric reducing power. Antimicrobial activities were determined using a broth micro-dilution assay and bioautography. Cell viability assay was used to determine the cytotoxicity. Results showed that concoctions had antioxidant activity. Presence of different phytoconstituents was observed. Isolated microorganisms were identified as Burkholderia pseudomallei, Staphylococcus vitulimus, Enterococcus columbae, Kocuria kristanae, Staphylococcus intermedius, Cryptococcus laurenti. and Burkholderia pseudomallei (highly pathogenic). Therefore, phytochemicals prove that the concoctions can heal as the antimicrobial tests also displayed activity. Moreover, the concoctions did not exhibit cytotoxic effects. However, contaminants raise concerns, not only for consumer safety but also the quality of herbal concoctions available as part of the traditional medicinal practice in Limpopo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobials" title="antimicrobials">antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=concoctions" title=" concoctions"> concoctions</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a> </p> <a href="https://publications.waset.org/abstracts/112866/ethnopharmacological-analysis-of-fermented-herbal-concoctions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">462</span> Multi-Criteria Nautical Ports Capacity and Services Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Perko">N. Perko</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kavran"> N. Kavran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bukljas"> M. Bukljas</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Berbic"> I. Berbic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a result of implemented research on proposed introduced methodology for nautical ports capacity planning by introducing a multi-criteria approach of defined criteria and impacts at the Adriatic Sea. The purpose was analysing the determinants -characteristics of infrastructure and services of nautical ports capacity allocated, especially nowadays due to COVID-19 pandemic, as crucial for the successful operation of nautical ports. Giving the importance of the defined priorities for short-term and long-term planning is essential not only in terms of the development of nautical tourism but also in terms of developing the maritime system, but unfortunately, this is not always carried out. Evaluation of the use of resources should follow from a detailed analysis of all aspects of resources bearing in mind that nautical tourism used resources in a sustainable manner and generate effects in the tourism and maritime sectors. Consequently, the identified multiplier effect of nautical tourism, which should be defined and quantified in detail, should be one of the major competitive products on the Croatian Adriatic and the Mediterranean. Research of nautical tourism is necessary to quantify the effects and required planning system development. In the future, the greatest threat to the long-term sustainable development of nautical tourism can be its further uncontrolled or unlimited and undirected development, especially under pressure markedly higher demand than supply for new moorings in the Mediterranean. Results of this implemented research are applicable to nautical ports management and decision-makers of maritime transport system development. This paper will present implemented research and obtained result-developed methodology for nautical port capacity planning -port capacity planning multi-criteria decision-making. A proposed methodological approach of multi-criteria capacity planning includes four criteria (spatial - transport, cost - infrastructure, ecological and organizational criteria, and additional services). The importance of the criteria and sub-criteria is evaluated and carried out as the basis for sensitivity analysis of the importance of the criteria and sub-criteria. Based on the analysis of the identified and quantified importance of certain criteria and sub-criteria, as well as sensitivity analysis and analysis of changes of the quantified importance, scientific and applicable results will be presented. These obtained results have practical applicability by management of nautical ports in the planning of increasing capacity and further development and for the adaptation of existing nautical ports. Obtained research is applicable and replicable in other seas, and results are especially important and useful in this COVID-19 pandemic challenging maritime development framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriatic%20Sea" title="Adriatic Sea">Adriatic Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructures" title=" infrastructures"> infrastructures</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20system" title=" maritime system"> maritime system</a>, <a href="https://publications.waset.org/abstracts/search?q=methodology" title=" methodology"> methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=nautical%20ports" title=" nautical ports"> nautical ports</a>, <a href="https://publications.waset.org/abstracts/search?q=nautical%20tourism" title=" nautical tourism"> nautical tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=service" title=" service"> service</a> </p> <a href="https://publications.waset.org/abstracts/137907/multi-criteria-nautical-ports-capacity-and-services-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">461</span> Employability Potential of Differently Abled in the Indian Apparel Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gunjita%20Shami">Gunjita Shami</a>, <a href="https://publications.waset.org/abstracts/search?q=Noopur%20Anand"> Noopur Anand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pilot run of 50 days was undertaken to test employability potential of people with visual and hearing & speech impairment. Various roles in an apparel manufacturing set up like spreading of fabric for cutting, folding, sealing and labeling cartons, pasting size barcode stickers on packed garments, removing tickets from the garments in the finishing stage were studied. Their performance was quantified basis timesheets for all the days and improvement per day was quantified. Their final day output was compared to that of the able-bodied worker. For example in the carton making activity on day one visually impaired worker was making one box every three minutes which improved to four boxes per minute on day 28 displaying 91.6% improvement compared or an improvement of 3.6% per day which was comparable to the able-bodied seasoned workers, who were making 5 boxes per minute. The performance of persons with hearing and speech impairment in the finishing department was 10% higher than that of able-bodied seasoned workers in the same process. Overall in all the activities the differently abled showed day to day improvement of 65% while able bodied displayed improvement of 52%. On the first day performance of able-bodied worker was 75% better than that of differently abled while on the 50th day it was only 20% better. Therefore the performance of persons with disabilities was found comparable to the able bodied person. The results, though on a small scale, showed a big promise of employment of persons with disability in the apparel industry. Armed with the promising result a full-scale study has been undertaken to identify the roles suitable for certain kind of disability in apparel production, work-aids required to assist the differently abled to improve performance and measures to be undertaken to make production floor 'friendlier' for them. The results have been discussed in this paper which opens doors for integrating differently abled into the world projected and assumed for only able-bodied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apparel%20sector" title="apparel sector">apparel sector</a>, <a href="https://publications.waset.org/abstracts/search?q=differently%20abled" title=" differently abled"> differently abled</a>, <a href="https://publications.waset.org/abstracts/search?q=employability" title=" employability"> employability</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=work-aid" title=" work-aid"> work-aid</a> </p> <a href="https://publications.waset.org/abstracts/82042/employability-potential-of-differently-abled-in-the-indian-apparel-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">460</span> Random Walks and Option Pricing for European and American Options</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Leduc">Guillaume Leduc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we describe a broad setting under which the error of the approximation can be quantified, controlled, and for which convergence occurs at a speed of n⁻¹ for European and American options. We describe how knowledge of the error allows for arbitrarily fast acceleration of the convergence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=random%20walk%20approximation" title="random walk approximation">random walk approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20and%20American%20options" title=" European and American options"> European and American options</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20convergence" title=" rate of convergence"> rate of convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=option%20pricing" title=" option pricing"> option pricing</a> </p> <a href="https://publications.waset.org/abstracts/23942/random-walks-and-option-pricing-for-european-and-american-options" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">459</span> From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Cesari">L. Cesari</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Canabady-Rochelle"> L. Canabady-Rochelle</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mutelet"> F. Mutelet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-oils" title="bio-oils">bio-oils</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/106225/from-binary-solutions-to-real-bio-oils-a-multi-step-extraction-story-of-phenolic-compounds-with-ionic-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">458</span> Phytochemicals and Photosynthesis of Grape Berry Exocarp and Seed (Vitis vinifera, cv. Alvarinho): Effects of Foliar Kaolin and Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreia%20Garrido">Andreia Garrido</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Conde"> Artur Conde</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Cunha"> Ana Cunha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ric%20De%20Vos"> Ric De Vos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate changes predictions point to increases in abiotic stress for crop plants in Portugal, like pronounced temperature variation and decreased precipitation, which will have negative impact on grapevine physiology and consequently, on grape berry and wine quality. Short-term mitigation strategies have, therefore, been implemented to alleviate the impacts caused by adverse climatic periods. These strategies include foliar application of kaolin, an inert mineral, which has radiation reflection proprieties that decreases stress from excessive heat/radiation absorbed by its leaves, as well as smart irrigation strategies to avoid water stress. However, little is known about the influence of these mitigation measures on grape berries, neither on the photosynthetic activity nor on the photosynthesis-related metabolic profiles of its various tissues. Moreover, the role of fruit photosynthesis on berry quality is poorly understood. The main objective of our work was to assess the effects of kaolin and irrigation treatments on the photosynthetic activity of grape berry tissues (exocarp and seeds) and on their global metabolic profile, also investigating their possible relationship. We therefore collected berries of field-grown plants of the white grape variety Alvarinho from two distinct microclimates, i.e. from clusters exposed to high light (HL, 150 µmol photons m⁻² s⁻¹) and low light (LL, 50 µmol photons m⁻² s⁻¹), from both kaolin and non-kaolin (control) treated plants at three fruit developmental stages (green, véraison and mature). Plant irrigation was applied after harvesting the green berries, which also enabled comparison of véraison and mature berries from irrigated and non-irrigated growth conditions. Photosynthesis was assessed by pulse amplitude modulated chlorophyll fluorescence imaging analysis, and the metabolite profile of both tissues was assessed by complementary metabolomics approaches. Foliar kaolin application resulted in, for instance, an increased photosynthetic activity of the exocarp of LL-grown berries at green developmental stage, as compared to the control non-kaolin treatment, with a concomitant increase in the levels of several lipid-soluble isoprenoids (chlorophylls, carotenoids, and tocopherols). The exocarp of mature berries grown at HL microclimate on kaolin-sprayed non-irrigated plants had higher total sugar levels content than all other treatments, suggesting that foliar application of this mineral results in an increased accumulation of photoassimilates in mature berries. Unbiased liquid chromatography-mass spectrometry-based profiling of semi-polar compounds followed by ASCA (ANOVA simultaneous component analysis) and ANOVA statistical analysis indicated that kaolin had no or inconsistent effect on the flavonoid and phenylpropanoid composition in both seed and exocarp at any developmental stage; in contrast, both microclimate and irrigation influenced the level of several of these compounds depending on berry ripening stage. Overall, our study provides more insight into the effects of mitigation strategies on berry tissue photosynthesis and phytochemistry, under contrasting conditions of cluster light microclimate. We hope that this may contribute to develop sustainable management in vineyards and to maintain grape berries and wines with high quality even at increasing abiotic stress challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=grape%20berry%20tissues" title=" grape berry tissues"> grape berry tissues</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation%20strategies" title=" mitigation strategies"> mitigation strategies</a> </p> <a href="https://publications.waset.org/abstracts/113080/phytochemicals-and-photosynthesis-of-grape-berry-exocarp-and-seed-vitis-vinifera-cv-alvarinho-effects-of-foliar-kaolin-and-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">457</span> Molecular Profiling of an Oleaginous Trebouxiophycean Alga Parachlorella kessleri Subjected to Nutrient Deprivation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pannaga%20Pavan%20Jutur">Pannaga Pavan Jutur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amounts of oil, i.e., lipids under nutrient-deprived (-N, -P, and -S) conditions. Understanding their metabolic imprints is important for elucidating the physiological mechanisms of lipid accumulations in this microalga subjected to nutrient deprivation. Metabolic and lipidomic profiles were obtained respectively using gas chromatography-mass spectrometry (GC-MS) of P. kessleri under nutrient starvation (-N, -P and -S) conditions. Relative quantities of more than 100 metabolites were systematically compared in all these three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, nitrogen assimilation, etc. In conclusion, the metabolomics and lipidomic profiles have identified a few common metabolites such as citric acid, valine, and trehalose to play a significant role in the overproduction of oil by this microalga subjected to nutrient deprivation. Understanding the entire system through untargeted metabolome profiling will lead to identifying relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have the potential for biofuel production, aiming towards the vision of tomorrow’s bioenergy needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuels" title=" biofuels"> biofuels</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20stress" title=" nutrient stress"> nutrient stress</a>, <a href="https://publications.waset.org/abstracts/search?q=omics" title=" omics"> omics</a> </p> <a href="https://publications.waset.org/abstracts/82900/molecular-profiling-of-an-oleaginous-trebouxiophycean-alga-parachlorella-kessleri-subjected-to-nutrient-deprivation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">456</span> Alterations of Gut Microbiota and Its Metabolomics in Child with 6PPDQ, PBDE, PCB, and Metal (Loid) Exposure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Huo">Xia Huo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu and 34 children from Haojiang. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and both the alpha diversity index and specific metabolites in single-element models. The study found that the Bayesian kernel machine regression (BKMR) model showed a negative correlation between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the Chao 1 index, particularly beyond the 55th percentile. Furthermore, the EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our research suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the gut microbiota and its metabolites. These alterations may be associated with neurodevelopmental abnormalities in children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title="gut microbiota">gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=6PPDQ" title=" 6PPDQ"> 6PPDQ</a>, <a href="https://publications.waset.org/abstracts/search?q=PBDEs" title=" PBDEs"> PBDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=PCBs" title=" PCBs"> PCBs</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%28loid%29s" title=" metal(loid)s"> metal(loid)s</a>, <a href="https://publications.waset.org/abstracts/search?q=BKMR" title=" BKMR"> BKMR</a> </p> <a href="https://publications.waset.org/abstracts/184571/alterations-of-gut-microbiota-and-its-metabolomics-in-child-with-6ppdq-pbde-pcb-and-metal-loid-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">455</span> Acquisition of Overt Pronoun Constraint in L2 Turkish by Adult Korean Speakers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oktay%20Cinar">Oktay Cinar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate the acquisition of Overt Pronoun Constraint (OPC) by adult Korean L2 Turkish speakers in order to find out how constraints regulating the syntax of null and overt subjects are acquired. OPC is claimed to be a universal feature of all null subject languages restricting the co-indexation between overt embedded pronoun and quantified or wh-question antecedents. However, there is no such restriction when the embedded subject is null or the antecedent is a referential subject. Considered as a principle of Universal Grammar (UG), OPC knowledge of L2 speakers has been widely tested with different language pairs. In the light of previous studies on OPC, it can be argued that L2 learners display early sensitivity to OPC constraints during their interlanguage grammar development. Concerning this, the co-indexation between overt embedded pronoun o (third person pronoun) and referential matrix subject is claimed to be controversial in Turkish, which poses problems with the universality of OPC. However, the current study argues against this claim by providing evidence from advanced Korean speakers that OPC is universal to all null subject languages and OPC knowledge can be accessed with direct access to UG. In other words, the performances of adult Korean speakers on the syntax of null and overt subjects are tested to support this claim. In order to test this, OPC task is used. 15 advanced speakers and a control group of adult native Turkish participants are instructed to determine the co-reference relationship between the subject of embedded clause, either overt pronominal o or null, and the subject of the matrix clause, either quantified pronoun and wh-question or referential antecedent. They are asked to select the interpretation of the embedded subject, either as the same person as in the matrix subject or another person who is not the same person in the matrix subject. These relations are represented with four conditions, and each condition has four questions (16 questions in total). The results claim that both control group and Korean L2 Turkish speakers display sensitivity to all constraints that OPC has, which suggests that OPC works in Turkish as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adult%20Korean%20speakers" title="adult Korean speakers">adult Korean speakers</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20theory" title=" binding theory"> binding theory</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20second%20language%20acquisition" title=" generative second language acquisition"> generative second language acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=overt%20pronoun%20constraint" title=" overt pronoun constraint"> overt pronoun constraint</a> </p> <a href="https://publications.waset.org/abstracts/75047/acquisition-of-overt-pronoun-constraint-in-l2-turkish-by-adult-korean-speakers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">454</span> Manufacturing Facility Location Selection: A Numercal Taxonomy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seifoddini%20Hamid">Seifoddini Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardikoraeem%20Mahsa"> Mardikoraeem Mahsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghorayshi%20Roya"> Ghorayshi Roya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing facility location selection is an important strategic decision for many industrial corporations. In this paper, a new approach to the manufacturing location selection problem is proposed. In this approach, cluster analysis is employed to identify suitable manufacturing locations based on economic, social, environmental, and political factors. These factors are quantified using the existing real world data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20facility" title="manufacturing facility">manufacturing facility</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20sites" title=" manufacturing sites"> manufacturing sites</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20world%20data" title=" real world data"> real world data</a> </p> <a href="https://publications.waset.org/abstracts/25361/manufacturing-facility-location-selection-a-numercal-taxonomy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">453</span> Hydroponic Cultivation Enhances the Morpho-Physiological Traits and Quality Flower Production in Tagetes patula L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujala">Ujala</a>, <a href="https://publications.waset.org/abstracts/search?q=Diksha%20Sharma"> Diksha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahinder%20Partap"> Mahinder Partap</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20R.%20Warghat"> Ashish R. Warghat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavya%20Bhargava"> Bhavya Bhargava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In soil-less agriculture, hydroponic is considered a potential farming system for the production of uniform quality plant material in significantly less time. Therefore, for the first time, the current investigation corroborates the effect of different cultivation conditions (open-field, poly-house, and hydroponic) on morpho-physiological traits, phenolic content, and essential oil components analysis in three flower color variants (yellow, scarlet red, and orange) of Tagetes patula. The results revealed that the maximum plant height, number of secondary branches, number of flowers, photosynthesis, stomatal conductance, and transpiration rate were observed under the hydroponic system as compared to other conditions. However, the maximum content of gallic acid (0.82 mg/g DW), syringic acid (3.98 mg/g DW), epicatechin (0.48 mg/g DW), p-coumaric acid (7.28 mg/g DW), protocatechuic acid (0.59 mg/g DW), ferulic acid (2.58 mg/g DW), and luteolin (8.24 mg/g DW) were quantified maximally under open-field conditions. However, under hydroponic conditions, the higher content of vanillic acid (0.43 mg/g DW), caffeic acid (0.49 mg/g DW), and quercetin (0.92 mg/g DW) were quantified. Moreover, a total of nineteen volatile components were identified in the essential oil of different flower color variants of T. patula cultivated under different conditions. The major reported volatile components in essential oil were (-)-caryophyllene oxide, trans-β-caryophyllene, trans-geraniol, 3 methyl-benzyl alcohol, and 2,2’:5’,2”-terthiophene. It has also been observed that the volatile component percentage range in all variants was observed in open-field (70.85 % to 90.54 %), poly-house (59.03 % to 77.93 %), and hydroponic (68.78 % to 89.41 %). In conclusion, the research highlighted that morpho-physiological performance with flower production was enhanced in the hydroponic system. However, phenolic content and volatile components were maximally observed in open-field conditions. However, significant results have been reported under hydroponic conditions in all studied parameters, so it could be a potential strategy for quality biomass production in T. patula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tagetes%20patula" title="Tagetes patula">Tagetes patula</a>, <a href="https://publications.waset.org/abstracts/search?q=cultivation%20conditions" title=" cultivation conditions"> cultivation conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title=" hydroponic"> hydroponic</a>, <a href="https://publications.waset.org/abstracts/search?q=morpho-physiology" title=" morpho-physiology"> morpho-physiology</a> </p> <a href="https://publications.waset.org/abstracts/171884/hydroponic-cultivation-enhances-the-morpho-physiological-traits-and-quality-flower-production-in-tagetes-patula-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">452</span> Effect of Fabrication Errors on High Frequency Filter Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wesam%20Ali">Wesam Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides useful guidelines to the circuit designers on the magnitude of fabrication errors in multilayer millimeter-wave components that are acceptable and presents data not previously reported in the literature. A particularly significant error that was quantified was that of skew between conductors on different layers, where it was found that a skew angle of only 0.1° resulted in very significant changes in bandwidth and insertion loss. The work was supported by a detailed investigation on a 35GHz, multilayer edge-coupled band-pass filter, which was fabricated on alumina substrates using photoimageable thick film process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabrication%20errors" title="fabrication errors">fabrication errors</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20band" title=" high frequency band"> high frequency band</a>, <a href="https://publications.waset.org/abstracts/search?q=photoimagable%20technology" title=" photoimagable technology"> photoimagable technology</a> </p> <a href="https://publications.waset.org/abstracts/20575/effect-of-fabrication-errors-on-high-frequency-filter-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantified%20metabolomics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10