CINXE.COM
Accepted Papers
<!DOCTYPE html><html lang="en-US" itemscope itemtype="http://schema.org/WebPage"><head><meta charset="utf-8"><script nonce="-4MOni6pRqQrZ7h-jbswTA">var DOCS_timing={}; DOCS_timing['sl']=new Date().getTime();</script><script nonce="-4MOni6pRqQrZ7h-jbswTA">function _DumpException(e) {throw e;}</script><script data-id="_gd" nonce="-4MOni6pRqQrZ7h-jbswTA">window.WIZ_global_data = {"K1cgmc":"%.@.[null,null,null,[null,1,[1733224568,437956000]]]]","nQyAE":{}};</script><script nonce="-4MOni6pRqQrZ7h-jbswTA">_docs_flag_initialData={"atari-emtpr":false,"atari-eibrm":false,"docs-text-elei":false,"docs-text-usc":true,"atari-bae":false,"docs-text-emtps":true,"docs-text-etsrdpn":false,"docs-text-etsrds":false,"docs-text-endes":false,"docs-text-escpv":true,"docs-text-ecfs":false,"docs-text-ecis":true,"docs-text-eectfs":true,"docs-text-edctzs":true,"docs-text-eetxpc":false,"docs-text-eetxp":false,"docs-text-ertkmcp":true,"docs-text-ettctvs":false,"docs-text-ettts":true,"docs-text-escoubs":false,"docs-text-escivs":false,"docs-text-escitrbs":false,"docs-text-ecgvd":false,"docs-text-esbbcts":true,"docs-text-etccdts":false,"docs-text-etcchrs":false,"docs-text-etctrs":false,"docs-text-eltbbs":true,"docs-text-ecvdis":false,"docs-text-elaiabbs":false,"docs-text-eiosmc":false,"docs-text-ecslpo":false,"docs-text-etb":false,"docs-text-esbefr":false,"docs-text-ipi":false,"docs-etshc":false,"docs-text-tbcb":2.0E7,"docs-efsmsdl":false,"docs-text-etof":false,"docs-text-ehlb":false,"docs-text-epa":true,"docs-text-dwit":false,"docs-text-elawp":false,"docs-eec":false,"docs-ecot":"","docs-text-enbcr":false,"docs-sup":"","umss":false,"docs-eldi":false,"docs-dli":false,"docs-liap":"/logImpressions","ilcm":{"eui":"AHKXmL3QvHKovIIUJkg32EME11i49C1UDGkXxd9c7YwC_sIKsMz3VdTx0IXmduT4_wNGv-Dl-_-M","je":1,"sstu":1733248686131136,"si":"CMGP-sGWjIoDFTBDNwgdRdITfg","gsc":null,"ei":[5703839,5704621,5706832,5706836,5707711,5737784,5737800,5738513,5738529,5740798,5740814,5743108,5743124,5747265,5748013,5748029,5752678,5752694,5753313,5753329,5754213,5754229,5755080,5755096,5758807,5758823,5762243,5762259,5764252,5764268,5765535,5765551,5766761,5766777,5773662,5773678,5774331,5774347,5774836,5774852,5776501,5776517,5784931,5784947,5784951,5784967,5791766,5791782,5796457,5796473,14101306,14101502,14101510,14101534,49372435,49372443,49375314,49375322,49472063,49472071,49622823,49622831,49623173,49623181,49643568,49643576,49644015,49644023,49769337,49769345,49822921,49822929,49823164,49823172,49833462,49833470,49842855,49842863,49924706,49924714,50266222,50266230,50273528,50273536,50297076,50297084,50297426,50297434,50498907,50498915,50529103,50529111,50561343,50561351,50586962,50586970,70971256,70971264,71035517,71035525,71038255,71038263,71079938,71079946,71085241,71085249,71185170,71185178,71197826,71197834,71238946,71238954,71289146,71289154,71387889,71387897,71429507,71429515,71478200,71478208,71478589,71478597,71502841,71502849,71528597,71528605,71530083,71530091,71544834,71544842,71545513,71545521,71546425,71546433,71560069,71560077,71561541,71561549,71573870,71573878,71642103,71642111,71652840,71652848,71658040,71658048,71659813,71659821,71689860,71689868,71699841,71699849,71720760,71721087,71721095,71733083,71733091,71798420,71798436,71798440,71798456,71882106,71882114,71897827,71897835,71960540,71960548,71961126,71961134,94327671,94327679,94333153,94333161,94353368,94353376,94390153,94390161,94413607,94413615,94434257,94434265,94435578,94435586,94444292,94444300,94489858,94489866,94502654,94502662,94526768,94526776,94545004,94545012,94597639,94597647,94630911,94661802,94661810,94707424,94707432,94784571,94784579,94875009,94875017,94904089,94904097,94929210,94929218,94942490,94942498,95065889,95065897,95086191,95086199,95087186,95087194,95111985,95111993,95112873,95112881,95118561,95118569,95135933,95135941,95234185,95234871,95234879,95251262,95251270,95254920,95254928,95270945,95270953,95314802,95314810,95317985,99237681,99237689,99247596,99247604,99310979,99310987,99338440,99338448,99368792,99368800,99401881,99401889,99402331,99402339,99437441,99437449,99460069,100130662,100130678,101406734,101406742,101442805,101442813,101456452,101456460,101488823,101488831,101489187,101489195,101507186,101507194,101519280,101519288,101606928,101606936,101617516,101617524,101631040,101631048,101705089,101708583,101708591,101771970,101771978,101776366,101776374,101783430,101783446,101801088,101801096,101875084,101875092,102047762,102047770],"crc":0,"cvi":[]},"docs-ccdil":false,"docs-eil":true,"info_params":{},"buildLabel":"editors.sites-viewer-frontend_20241119.02_p3","docs-show_debug_info":false,"atari-jefp":"/_/view/jserror","docs-jern":"view","atari-rhpp":"/_/view","docs-ecuach":false,"docs-cclt":2033,"docs-ecci":true,"docs-esi":false,"docs-eatsd":false,"docs-efypr":true,"docs-eyprp":true}; _docs_flag_cek= null ; if (window['DOCS_timing']) {DOCS_timing['ifdld']=new Date().getTime();}</script><meta name="viewport" content="width=device-width, initial-scale=1"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="referrer" content="origin"><link rel="icon" href="https://lh3.googleusercontent.com/EHcBARxL8iLYJpVkaxpMs6czwd5oxc9z3W4q6ZXg7wHqYdLTJSxrUrQm06-_4mWp8JCdqv-tpp9hT-0J3afv74obwfrqHvbgXvgEILYLZhP0xci_"><meta property="og:title" content="Accepted Papers"><meta property="og:type" content="website"><meta property="og:url" content="https://sites.google.com/view/iccsea-2021/accepted-papers"><meta property="og:description" content=" Accepted Papers"><meta itemprop="name" content="Accepted Papers"><meta itemprop="description" content=" Accepted Papers"><meta itemprop="url" content="https://sites.google.com/view/iccsea-2021/accepted-papers"><meta itemprop="thumbnailUrl" content="https://lh3.googleusercontent.com/vEU6xGaO3pSQWsie5mg3mu8p2MRStFk2JBTBTM0RMiVYAKOqBnhEf47vm3sDnHbSYhH8ko2t4TCpQBc6r-gFVyo=w16383"><meta itemprop="image" content="https://lh3.googleusercontent.com/vEU6xGaO3pSQWsie5mg3mu8p2MRStFk2JBTBTM0RMiVYAKOqBnhEf47vm3sDnHbSYhH8ko2t4TCpQBc6r-gFVyo=w16383"><meta itemprop="imageUrl" content="https://lh3.googleusercontent.com/vEU6xGaO3pSQWsie5mg3mu8p2MRStFk2JBTBTM0RMiVYAKOqBnhEf47vm3sDnHbSYhH8ko2t4TCpQBc6r-gFVyo=w16383"><meta property="og:image" content="https://lh3.googleusercontent.com/vEU6xGaO3pSQWsie5mg3mu8p2MRStFk2JBTBTM0RMiVYAKOqBnhEf47vm3sDnHbSYhH8ko2t4TCpQBc6r-gFVyo=w16383"><link href="https://fonts.googleapis.com/css?family=Lato%3A300%2C300italic%2C400%2C400italic%2C700%2C700italic&display=swap" rel="stylesheet" nonce="Bv7jlK1T0uEX9rzPvUyDEQ"><link href="https://fonts.googleapis.com/css?family=Google+Sans:400,500|Roboto:300,400,500,700|Source+Code+Pro:400,700&display=swap" rel="stylesheet" nonce="Bv7jlK1T0uEX9rzPvUyDEQ"><style nonce="Bv7jlK1T0uEX9rzPvUyDEQ">@media only screen and (max-width: 479px){.jgG6ef{font-size: 17.0pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.jgG6ef{font-size: 17.0pt;}}@media only screen and (min-width: 768px) and (max-width: 1279px){.jgG6ef{font-size: 18.0pt;}}@media only screen and (min-width: 1280px){.jgG6ef{font-size: 18.0pt;}}</style><link rel="stylesheet" href="https://www.gstatic.com/_/atari/_/ss/k=atari.vw.mYMiIgWUiE4.L.X.O/am=HAxA/d=1/rs=AGEqA5lcSHZFfY9MeOGl-aQ1BCsctx98Dg" data-id="_cl" nonce="Bv7jlK1T0uEX9rzPvUyDEQ"><script nonce="-4MOni6pRqQrZ7h-jbswTA"></script><title>Accepted Papers</title><style jsname="ptDGoc" nonce="Bv7jlK1T0uEX9rzPvUyDEQ">.M63kCb{background-color: rgba(255,255,255,1);}.OUGEr{color: rgba(33,33,33,1);}.duRjpb .OUGEr{color: rgba(127,17,70,1);}.JYVBee .OUGEr{color: rgba(127,17,70,1);}.OmQG5e .OUGEr{color: rgba(33,33,33,1);}.iwQgFb{background-color: rgba(0,0,0,0.150000006);}.ySLm4c{font-family: Lato, sans-serif;}.CbiMKe{background-color: rgba(193,40,114,1);}.qeLZfd .zfr3Q{color: rgba(33,33,33,1);}.qeLZfd .qnVSj{color: rgba(33,33,33,1);}.qeLZfd .Glwbz{color: rgba(33,33,33,1);}.qeLZfd .duRjpb{color: rgba(127,17,70,1);}.qeLZfd .qLrapd{color: rgba(127,17,70,1);}.qeLZfd .JYVBee{color: rgba(127,17,70,1);}.qeLZfd .aHM7ed{color: rgba(127,17,70,1);}.qeLZfd .OmQG5e{color: rgba(33,33,33,1);}.qeLZfd .NHD4Gf{color: rgba(33,33,33,1);}.qeLZfd .aw5Odc{color: rgba(161,0,78,1);}.qeLZfd .dhtgD:hover{color: rgba(198,41,109,1);}.qeLZfd .dhtgD:visited{color: rgba(161,0,78,1);}.qeLZfd .iwQgFb{background-color: rgba(0,0,0,0.150000006);}.qeLZfd .OUGEr{color: rgba(33,33,33,1);}.qeLZfd .duRjpb .OUGEr{color: rgba(127,17,70,1);}.qeLZfd .JYVBee .OUGEr{color: rgba(127,17,70,1);}.qeLZfd .OmQG5e .OUGEr{color: rgba(33,33,33,1);}.qeLZfd:before{background-color: rgba(242,242,242,1); display: block;}.lQAHbd .zfr3Q{color: rgba(255,255,255,1);}.lQAHbd .qnVSj{color: rgba(255,255,255,1);}.lQAHbd .Glwbz{color: rgba(255,255,255,1);}.lQAHbd .duRjpb{color: rgba(255,255,255,1);}.lQAHbd .qLrapd{color: rgba(255,255,255,1);}.lQAHbd .JYVBee{color: rgba(255,255,255,1);}.lQAHbd .aHM7ed{color: rgba(255,255,255,1);}.lQAHbd .OmQG5e{color: rgba(255,255,255,1);}.lQAHbd .NHD4Gf{color: rgba(255,255,255,1);}.lQAHbd .aw5Odc{color: rgba(255,255,255,1);}.lQAHbd .dhtgD:hover{color: rgba(255,255,255,1);}.lQAHbd .dhtgD:visited{color: rgba(255,255,255,1);}.lQAHbd .iwQgFb{background-color: rgba(255,255,255,0.150000006);}.lQAHbd .OUGEr{color: rgba(255,255,255,1);}.lQAHbd .duRjpb .OUGEr{color: rgba(255,255,255,1);}.lQAHbd .JYVBee .OUGEr{color: rgba(255,255,255,1);}.lQAHbd .OmQG5e .OUGEr{color: rgba(255,255,255,1);}.lQAHbd .CbiMKe{background-color: rgba(255,255,255,1);}.lQAHbd:before{background-color: rgba(193,40,114,1); display: block;}.cJgDec .zfr3Q{color: rgba(255,255,255,1);}.cJgDec .zfr3Q .OUGEr{color: rgba(255,255,255,1);}.cJgDec .qnVSj{color: rgba(255,255,255,1);}.cJgDec .Glwbz{color: rgba(255,255,255,1);}.cJgDec .qLrapd{color: rgba(255,255,255,1);}.cJgDec .aHM7ed{color: rgba(255,255,255,1);}.cJgDec .NHD4Gf{color: rgba(255,255,255,1);}.cJgDec .IFuOkc:before{background-color: rgba(33,33,33,1); opacity: 0; display: block;}.O13XJf{height: 340px; padding-bottom: 60px; padding-top: 60px;}.O13XJf .IFuOkc{background-color: rgba(127,17,70,1); background-image: url(https://ssl.gstatic.com/atari/images/simple-header-blended-small.png);}.O13XJf .IFuOkc:before{background-color: rgba(33,33,33,1); opacity: 0.4; display: block;}.O13XJf .zfr3Q{color: rgba(255,255,255,1);}.O13XJf .qnVSj{color: rgba(255,255,255,1);}.O13XJf .Glwbz{color: rgba(255,255,255,1);}.O13XJf .duRjpb{color: rgba(255,255,255,1);}.O13XJf .qLrapd{color: rgba(255,255,255,1);}.O13XJf .JYVBee{color: rgba(255,255,255,1);}.O13XJf .aHM7ed{color: rgba(255,255,255,1);}.O13XJf .OmQG5e{color: rgba(255,255,255,1);}.O13XJf .NHD4Gf{color: rgba(255,255,255,1);}.tpmmCb .zfr3Q{color: rgba(33,33,33,1);}.tpmmCb .zfr3Q .OUGEr{color: rgba(33,33,33,1);}.tpmmCb .qnVSj{color: rgba(33,33,33,1);}.tpmmCb .Glwbz{color: rgba(33,33,33,1);}.tpmmCb .qLrapd{color: rgba(33,33,33,1);}.tpmmCb .aHM7ed{color: rgba(33,33,33,1);}.tpmmCb .NHD4Gf{color: rgba(33,33,33,1);}.tpmmCb .IFuOkc:before{background-color: rgba(255,255,255,1); display: block;}.tpmmCb .Wew9ke{fill: rgba(33,33,33,1);}.aw5Odc{color: rgba(161,0,78,1);}.dhtgD:hover{color: rgba(198,41,109,1);}.dhtgD:active{color: rgba(198,41,109,1);}.dhtgD:visited{color: rgba(161,0,78,1);}.Zjiec{color: rgba(255,255,255,1); font-family: Lato, sans-serif; font-size: 19pt; font-weight: 300; letter-spacing: 1px; line-height: 1.3; padding-bottom: 62.5px; padding-left: 48px; padding-right: 36px; padding-top: 11.5px;}.XMyrgf{margin-top: 0px; margin-left: 48px; margin-bottom: 24px; margin-right: 24px;}.TlfmSc{color: rgba(255,255,255,1); font-family: Lato, sans-serif; font-size: 15pt; font-weight: 300; line-height: 1.333;}.Mz8gvb{color: rgba(255,255,255,1);}.zDUgLc{background-color: rgba(33,33,33,1);}.QTKDff.chg4Jd:focus{background-color: rgba(255,255,255,0.1199999973);}.YTv4We{color: rgba(178,178,178,1);}.YTv4We:hover:before{background-color: rgba(255,255,255,0.1199999973); display: block;}.YTv4We.chg4Jd:focus:before{border-color: rgba(255,255,255,0.3600000143); display: block;}.eWDljc{background-color: rgba(33,33,33,1);}.eWDljc .hDrhEe{padding-left: 8px;}.ZXW7w{color: rgba(255,255,255,1); opacity: 0.26;}.PsKE7e{color: rgba(255,255,255,1); font-family: Lato, sans-serif; font-size: 12pt; font-weight: 300;}.lhZOrc{color: rgba(255,77,163,1);}.hDrhEe:hover{color: rgba(255,77,163,1);}.M9vuGd{color: rgba(255,77,163,1); font-weight: 400;}.jgXgSe:hover{color: rgba(255,77,163,1);}.j10yRb:hover{color: rgba(255,77,163,1);}.j10yRb.chg4Jd:focus:before{border-color: rgba(255,255,255,0.3600000143); display: block;}.tCHXDc{color: rgba(255,255,255,1);}.iWs3gf.chg4Jd:focus{background-color: rgba(255,255,255,0.1199999973);}.wgxiMe{background-color: rgba(33,33,33,1);}.fOU46b .TlfmSc{color: rgba(255,255,255,1);}.fOU46b .KJll8d{background-color: rgba(255,255,255,1);}.fOU46b .Mz8gvb{color: rgba(255,255,255,1);}.fOU46b .Mz8gvb.chg4Jd:focus:before{border-color: rgba(255,255,255,1); display: block;}.fOU46b .qV4dIc{color: rgba(255,255,255,0.8700000048);}.fOU46b .jgXgSe:hover{color: rgba(255,255,255,1);}.fOU46b .M9vuGd{color: rgba(255,255,255,1);}.fOU46b .tCHXDc{color: rgba(255,255,255,0.8700000048);}.fOU46b .iWs3gf.chg4Jd:focus{background-color: rgba(255,255,255,0.1199999973);}.fOU46b .G8QRnc .Mz8gvb{color: rgba(0,0,0,0.8000000119);}.fOU46b .G8QRnc .Mz8gvb.chg4Jd:focus:before{border-color: rgba(0,0,0,0.8000000119); display: block;}.fOU46b .G8QRnc .ZXW7w{color: rgba(0,0,0,0.8000000119);}.fOU46b .G8QRnc .TlfmSc{color: rgba(0,0,0,0.8000000119);}.fOU46b .G8QRnc .KJll8d{background-color: rgba(0,0,0,0.8000000119);}.fOU46b .G8QRnc .qV4dIc{color: rgba(0,0,0,0.6399999857);}.fOU46b .G8QRnc .jgXgSe:hover{color: rgba(0,0,0,0.8199999928);}.fOU46b .G8QRnc .M9vuGd{color: rgba(0,0,0,0.8199999928);}.fOU46b .G8QRnc .tCHXDc{color: rgba(0,0,0,0.6399999857);}.fOU46b .G8QRnc .iWs3gf.chg4Jd:focus{background-color: rgba(0,0,0,0.1199999973);}.fOU46b .usN8rf .Mz8gvb{color: rgba(0,0,0,0.8000000119);}.fOU46b .usN8rf .Mz8gvb.chg4Jd:focus:before{border-color: rgba(0,0,0,0.8000000119); display: block;}.fOU46b .usN8rf .ZXW7w{color: rgba(0,0,0,0.8000000119);}.fOU46b .usN8rf .TlfmSc{color: rgba(0,0,0,0.8000000119);}.fOU46b .usN8rf .KJll8d{background-color: rgba(0,0,0,0.8000000119);}.fOU46b .usN8rf .qV4dIc{color: rgba(0,0,0,0.6399999857);}.fOU46b .usN8rf .jgXgSe:hover{color: rgba(0,0,0,0.8199999928);}.fOU46b .usN8rf .M9vuGd{color: rgba(0,0,0,0.8199999928);}.fOU46b .usN8rf .tCHXDc{color: rgba(0,0,0,0.6399999857);}.fOU46b .usN8rf .iWs3gf.chg4Jd:focus{background-color: rgba(0,0,0,0.1199999973);}.fOU46b .aCIEDd .qV4dIc{color: rgba(33,33,33,1);}.fOU46b .aCIEDd .TlfmSc{color: rgba(33,33,33,1);}.fOU46b .aCIEDd .KJll8d{background-color: rgba(33,33,33,1);}.fOU46b .aCIEDd .ZXW7w{color: rgba(33,33,33,1);}.fOU46b .aCIEDd .jgXgSe:hover{color: rgba(33,33,33,1); opacity: 0.82;}.fOU46b .aCIEDd .Mz8gvb{color: rgba(33,33,33,1);}.fOU46b .aCIEDd .tCHXDc{color: rgba(33,33,33,1);}.fOU46b .aCIEDd .iWs3gf.chg4Jd:focus{background-color: rgba(33,33,33,0.1199999973);}.fOU46b .a3ETed .qV4dIc{color: rgba(255,255,255,1);}.fOU46b .a3ETed .TlfmSc{color: rgba(255,255,255,1);}.fOU46b .a3ETed .KJll8d{background-color: rgba(255,255,255,1);}.fOU46b .a3ETed .ZXW7w{color: rgba(255,255,255,1);}.fOU46b .a3ETed .jgXgSe:hover{color: rgba(255,255,255,1); opacity: 0.82;}.fOU46b .a3ETed .Mz8gvb{color: rgba(255,255,255,1);}.fOU46b .a3ETed .tCHXDc{color: rgba(255,255,255,1);}.fOU46b .a3ETed .iWs3gf.chg4Jd:focus{background-color: rgba(255,255,255,0.1199999973);}@media only screen and (min-width: 1280px){.XeSM4.b2Iqye.fOU46b .LBrwzc .tCHXDc{color: rgba(255,255,255,0.8700000048);}}.XeSM4.b2Iqye.fOU46b .LBrwzc .iWs3gf.chg4Jd:focus{background-color: rgba(255,255,255,0.1199999973);}@media only screen and (min-width: 1280px){.KuNac.b2Iqye.fOU46b .tCHXDc{color: rgba(0,0,0,0.6399999857);}}.KuNac.b2Iqye.fOU46b .iWs3gf.chg4Jd:focus{background-color: rgba(0,0,0,0.1199999973);}.fOU46b .zDUgLc{opacity: 0;}.LBrwzc .ZXW7w{color: rgba(0,0,0,1);}.LBrwzc .KJll8d{background-color: rgba(0,0,0,1);}.GBy4H .ZXW7w{color: rgba(255,255,255,1);}.GBy4H .KJll8d{background-color: rgba(255,255,255,1);}.eBSUbc{background-color: rgba(33,33,33,1); color: rgba(0,188,212,0.6999999881);}.BFDQOb:hover{color: rgba(255,77,163,1);}.ImnMyf{background-color: rgba(255,255,255,1); color: rgba(33,33,33,1);}.Vs12Bd{background-color: rgba(242,242,242,1); color: rgba(33,33,33,1);}.S5d9Rd{background-color: rgba(193,40,114,1); color: rgba(255,255,255,1);}.zfr3Q{color: rgba(33,33,33,1); font-family: Lato, sans-serif; font-size: 11pt; font-weight: 400; line-height: 1.6667; margin-top: 12px;}.qnVSj{color: rgba(33,33,33,1);}.Glwbz{color: rgba(33,33,33,1);}.duRjpb{color: rgba(127,17,70,1); font-family: Lato, sans-serif; font-size: 34pt; font-weight: 300; letter-spacing: 0.5px; line-height: 1.2; margin-top: 30px;}.Ap4VC{margin-bottom: -30px;}.qLrapd{color: rgba(127,17,70,1);}.JYVBee{color: rgba(127,17,70,1); font-family: Lato, sans-serif; font-size: 19pt; font-weight: 400; line-height: 1.4; margin-top: 20px;}.CobnVe{margin-bottom: -20px;}.aHM7ed{color: rgba(127,17,70,1);}.OmQG5e{color: rgba(33,33,33,1); font-family: Lato, sans-serif; font-size: 15pt; font-style: normal; font-weight: 400; line-height: 1.25; margin-top: 16px;}.GV3q8e{margin-bottom: -16px;}.NHD4Gf{color: rgba(33,33,33,1);}.LB7kq .duRjpb{font-size: 64pt; letter-spacing: 2px; line-height: 1; margin-top: 40px;}.LB7kq .JYVBee{font-size: 25pt; font-weight: 300; line-height: 1.1; margin-top: 25px;}@media only screen and (max-width: 479px){.LB7kq .duRjpb{font-size: 40pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.LB7kq .duRjpb{font-size: 53pt;}}@media only screen and (max-width: 479px){.LB7kq .JYVBee{font-size: 19pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.LB7kq .JYVBee{font-size: 22pt;}}.O13XJf{height: 340px; padding-bottom: 60px; padding-top: 60px;}@media only screen and (min-width: 480px) and (max-width: 767px){.O13XJf{height: 280px; padding-bottom: 40px; padding-top: 40px;}}@media only screen and (max-width: 479px){.O13XJf{height: 250px; padding-bottom: 30px; padding-top: 30px;}}.SBrW1{height: 520px;}@media only screen and (min-width: 480px) and (max-width: 767px){.SBrW1{height: 520px;}}@media only screen and (max-width: 479px){.SBrW1{height: 400px;}}.Wew9ke{fill: rgba(255,255,255,1);}.gk8rDe{height: 180px; padding-bottom: 32px; padding-top: 60px;}.gk8rDe .zfr3Q{color: rgba(0,0,0,1);}.gk8rDe .duRjpb{color: rgba(127,17,70,1); font-size: 45pt; line-height: 1.1;}.gk8rDe .qLrapd{color: rgba(127,17,70,1);}.gk8rDe .JYVBee{color: rgba(127,17,70,1); font-size: 27pt; line-height: 1.35; margin-top: 15px;}.gk8rDe .aHM7ed{color: rgba(127,17,70,1);}.gk8rDe .OmQG5e{color: rgba(33,33,33,1);}.gk8rDe .NHD4Gf{color: rgba(33,33,33,1);}@media only screen and (max-width: 479px){.gk8rDe .duRjpb{font-size: 30pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.gk8rDe .duRjpb{font-size: 38pt;}}@media only screen and (max-width: 479px){.gk8rDe .JYVBee{font-size: 20pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.gk8rDe .JYVBee{font-size: 24pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.gk8rDe{padding-top: 45px;}}@media only screen and (max-width: 479px){.gk8rDe{padding-bottom: 0px; padding-top: 30px;}}.dhtgD{text-decoration: underline;}.JzO0Vc{background-color: rgba(33,33,33,1); font-family: Lato, sans-serif; width: 250px;}@media only screen and (min-width: 1280px){.JzO0Vc{padding-top: 48.5px;}}.TlfmSc{font-family: Lato, sans-serif; font-size: 15pt; font-weight: 300; line-height: 1.333;}.PsKE7e{font-family: Lato, sans-serif; font-size: 12pt;}.IKA38e{line-height: 1.21;}.hDrhEe{padding-bottom: 11.5px; padding-top: 11.5px;}.zDUgLc{opacity: 1;}.QmpIrf{background-color: rgba(193,40,114,1); border-color: rgba(255,255,255,1); color: rgba(255,255,255,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.xkUom{border-color: rgba(193,40,114,1); color: rgba(193,40,114,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.xkUom:hover{background-color: rgba(193,40,114,0.1000000015);}.KjwKmc{color: rgba(193,40,114,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal; line-height: normal;}.KjwKmc:hover{background-color: rgba(193,40,114,0.1000000015);}.lQAHbd .QmpIrf{background-color: rgba(255,255,255,1); border-color: rgba(127,17,70,1); color: rgba(127,17,70,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.lQAHbd .xkUom{border-color: rgba(242,242,242,1); color: rgba(242,242,242,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.lQAHbd .xkUom:hover{background-color: rgba(255,255,255,0.1000000015);}.lQAHbd .KjwKmc{color: rgba(242,242,242,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.lQAHbd .KjwKmc:hover{background-color: rgba(255,255,255,0.1000000015);}.lQAHbd .Mt0nFe{border-color: rgba(255,255,255,0.200000003);}.cJgDec .QmpIrf{background-color: rgba(255,255,255,1); border-color: rgba(127,17,70,1); color: rgba(127,17,70,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.cJgDec .xkUom{border-color: rgba(242,242,242,1); color: rgba(242,242,242,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.cJgDec .xkUom:hover{background-color: rgba(255,255,255,0.1000000015);}.cJgDec .KjwKmc{color: rgba(242,242,242,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.cJgDec .KjwKmc:hover{background-color: rgba(255,255,255,0.1000000015);}.tpmmCb .QmpIrf{background-color: rgba(255,255,255,1); border-color: rgba(127,17,70,1); color: rgba(127,17,70,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.tpmmCb .xkUom{border-color: rgba(193,40,114,1); color: rgba(193,40,114,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.tpmmCb .xkUom:hover{background-color: rgba(193,40,114,0.1000000015);}.tpmmCb .KjwKmc{color: rgba(193,40,114,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.tpmmCb .KjwKmc:hover{background-color: rgba(193,40,114,0.1000000015);}.gk8rDe .QmpIrf{background-color: rgba(193,40,114,1); border-color: rgba(255,255,255,1); color: rgba(255,255,255,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.gk8rDe .xkUom{border-color: rgba(193,40,114,1); color: rgba(193,40,114,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.gk8rDe .xkUom:hover{background-color: rgba(193,40,114,0.1000000015);}.gk8rDe .KjwKmc{color: rgba(193,40,114,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.gk8rDe .KjwKmc:hover{background-color: rgba(193,40,114,0.1000000015);}.O13XJf .QmpIrf{background-color: rgba(255,255,255,1); border-color: rgba(127,17,70,1); color: rgba(127,17,70,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.O13XJf .xkUom{border-color: rgba(242,242,242,1); color: rgba(242,242,242,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.O13XJf .xkUom:hover{background-color: rgba(255,255,255,0.1000000015);}.O13XJf .KjwKmc{color: rgba(242,242,242,1); font-family: Lato, sans-serif; font-size: 11pt; line-height: normal;}.O13XJf .KjwKmc:hover{background-color: rgba(255,255,255,0.1000000015);}.Y4CpGd{font-family: Lato, sans-serif; font-size: 11pt;}.CMArNe{background-color: rgba(242,242,242,1);}.LBrwzc .TlfmSc{color: rgba(0,0,0,0.8000000119);}.LBrwzc .YTv4We{color: rgba(0,0,0,0.6399999857);}.LBrwzc .YTv4We.chg4Jd:focus:before{border-color: rgba(0,0,0,0.6399999857); display: block;}.LBrwzc .Mz8gvb{color: rgba(0,0,0,0.6399999857);}.LBrwzc .tCHXDc{color: rgba(0,0,0,0.6399999857);}.LBrwzc .iWs3gf.chg4Jd:focus{background-color: rgba(0,0,0,0.1199999973);}.LBrwzc .wgxiMe{background-color: rgba(255,255,255,1);}.LBrwzc .qV4dIc{color: rgba(0,0,0,0.6399999857);}.LBrwzc .M9vuGd{color: rgba(0,0,0,0.8000000119); font-weight: bold;}.LBrwzc .Zjiec{color: rgba(0,0,0,0.8000000119);}.LBrwzc .IKA38e{color: rgba(0,0,0,0.6399999857);}.LBrwzc .lhZOrc.IKA38e{color: rgba(0,0,0,0.8000000119); font-weight: bold;}.LBrwzc .j10yRb:hover{color: rgba(0,0,0,0.8000000119);}.LBrwzc .eBSUbc{color: rgba(0,0,0,0.8000000119);}.LBrwzc .hDrhEe:hover{color: rgba(0,0,0,0.8000000119);}.LBrwzc .jgXgSe:hover{color: rgba(0,0,0,0.8000000119);}.LBrwzc .M9vuGd:hover{color: rgba(0,0,0,0.8000000119);}.LBrwzc .zDUgLc{border-bottom-color: rgba(204,204,204,1); border-bottom-width: 1px; border-bottom-style: solid;}.fOU46b .LBrwzc .M9vuGd{color: rgba(0,0,0,0.8000000119);}.fOU46b .LBrwzc .jgXgSe:hover{color: rgba(0,0,0,0.8000000119);}.fOU46b .LBrwzc .zDUgLc{opacity: 1; border-bottom-style: none;}.fOU46b .LBrwzc .tCHXDc{color: rgba(0,0,0,0.6399999857);}.fOU46b .LBrwzc .iWs3gf.chg4Jd:focus{background-color: rgba(0,0,0,0.1199999973);}.fOU46b .GBy4H .M9vuGd{color: rgba(255,255,255,1);}.fOU46b .GBy4H .jgXgSe:hover{color: rgba(255,255,255,1);}.fOU46b .GBy4H .zDUgLc{opacity: 1;}.fOU46b .GBy4H .tCHXDc{color: rgba(255,255,255,0.8700000048);}.fOU46b .GBy4H .iWs3gf.chg4Jd:focus{background-color: rgba(255,255,255,0.1199999973);}.XeSM4.G9Qloe.fOU46b .LBrwzc .tCHXDc{color: rgba(0,0,0,0.6399999857);}.XeSM4.G9Qloe.fOU46b .LBrwzc .iWs3gf.chg4Jd:focus{background-color: rgba(0,0,0,0.1199999973);}.GBy4H .lhZOrc.IKA38e{color: rgba(255,255,255,1);}.GBy4H .eBSUbc{color: rgba(255,255,255,0.8700000048);}.GBy4H .hDrhEe:hover{color: rgba(255,255,255,1);}.GBy4H .j10yRb:hover{color: rgba(255,255,255,1);}.GBy4H .YTv4We{color: rgba(255,255,255,1);}.GBy4H .YTv4We.chg4Jd:focus:before{border-color: rgba(255,255,255,1); display: block;}.GBy4H .tCHXDc{color: rgba(255,255,255,0.8700000048);}.GBy4H .iWs3gf.chg4Jd:focus{background-color: rgba(255,255,255,0.1199999973);}.GBy4H .jgXgSe:hover{color: rgba(255,255,255,1);}.GBy4H .jgXgSe:hover{color: rgba(255,255,255,1);}.GBy4H .M9vuGd{color: rgba(255,255,255,1);}.GBy4H .M9vuGd:hover{color: rgba(255,255,255,1);}.QcmuFb{padding-left: 20px;}.vDPrib{padding-left: 40px;}.TBDXjd{padding-left: 60px;}.bYeK8e{padding-left: 80px;}.CuqSDe{padding-left: 100px;}.Havqpe{padding-left: 120px;}.JvDrRe{padding-left: 140px;}.o5lrIf{padding-left: 160px;}.yOJW7c{padding-left: 180px;}.rB8cye{padding-left: 200px;}.RuayVd{padding-right: 20px;}.YzcKX{padding-right: 40px;}.reTV0b{padding-right: 60px;}.vSYeUc{padding-right: 80px;}.PxtZIe{padding-right: 100px;}.ahQMed{padding-right: 120px;}.rzhcXb{padding-right: 140px;}.PBhj0b{padding-right: 160px;}.TlN46c{padding-right: 180px;}.GEdNnc{padding-right: 200px;}.TMjjoe{font-family: Lato, sans-serif; font-size: 9pt; line-height: 1.2; margin-top: 0px;}@media only screen and (min-width: 1280px){.yxgWrb{margin-left: 250px;}}@media only screen and (max-width: 479px){.Zjiec{font-size: 15pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.Zjiec{font-size: 17pt;}}@media only screen and (max-width: 479px){.TlfmSc{font-size: 13pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.TlfmSc{font-size: 14pt;}}@media only screen and (max-width: 479px){.PsKE7e{font-size: 12pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.PsKE7e{font-size: 12pt;}}@media only screen and (max-width: 479px){.duRjpb{font-size: 24pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.duRjpb{font-size: 29pt;}}@media only screen and (max-width: 479px){.JYVBee{font-size: 15pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.JYVBee{font-size: 17pt;}}@media only screen and (max-width: 479px){.OmQG5e{font-size: 13pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.OmQG5e{font-size: 14pt;}}@media only screen and (max-width: 479px){.TlfmSc{font-size: 13pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.TlfmSc{font-size: 14pt;}}@media only screen and (max-width: 479px){.PsKE7e{font-size: 12pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.PsKE7e{font-size: 12pt;}}@media only screen and (max-width: 479px){.TMjjoe{font-size: 9pt;}}@media only screen and (min-width: 480px) and (max-width: 767px){.TMjjoe{font-size: 9pt;}}section[id="h.5a9834562b5c2b71_16"] .IFuOkc:before{opacity: 0.4;}section[id="h.5a9834562b5c2b71_61"] .IFuOkc:before{opacity: 0.4;}</style><script nonce="-4MOni6pRqQrZ7h-jbswTA">_at_config = [null,"AIzaSyChg3MFqzdi1P5J-YvEyakkSA1yU7HRcDI","897606708560-a63d8ia0t9dhtpdt4i3djab2m42see7o.apps.googleusercontent.com",null,null,null,null,null,null,null,null,null,null,null,"SITES_%s",null,null,null,null,null,null,null,null,null,["AHKXmL3QvHKovIIUJkg32EME11i49C1UDGkXxd9c7YwC_sIKsMz3VdTx0IXmduT4_wNGv-Dl-_-M",1,"CMGP-sGWjIoDFTBDNwgdRdITfg",1733248686131136,[5703839,5704621,5706832,5706836,5707711,5737784,5737800,5738513,5738529,5740798,5740814,5743108,5743124,5747265,5748013,5748029,5752678,5752694,5753313,5753329,5754213,5754229,5755080,5755096,5758807,5758823,5762243,5762259,5764252,5764268,5765535,5765551,5766761,5766777,5773662,5773678,5774331,5774347,5774836,5774852,5776501,5776517,5784931,5784947,5784951,5784967,5791766,5791782,5796457,5796473,14101306,14101502,14101510,14101534,49372435,49372443,49375314,49375322,49472063,49472071,49622823,49622831,49623173,49623181,49643568,49643576,49644015,49644023,49769337,49769345,49822921,49822929,49823164,49823172,49833462,49833470,49842855,49842863,49924706,49924714,50266222,50266230,50273528,50273536,50297076,50297084,50297426,50297434,50498907,50498915,50529103,50529111,50561343,50561351,50586962,50586970,70971256,70971264,71035517,71035525,71038255,71038263,71079938,71079946,71085241,71085249,71185170,71185178,71197826,71197834,71238946,71238954,71289146,71289154,71387889,71387897,71429507,71429515,71478200,71478208,71478589,71478597,71502841,71502849,71528597,71528605,71530083,71530091,71544834,71544842,71545513,71545521,71546425,71546433,71560069,71560077,71561541,71561549,71573870,71573878,71642103,71642111,71652840,71652848,71658040,71658048,71659813,71659821,71689860,71689868,71699841,71699849,71720760,71721087,71721095,71733083,71733091,71798420,71798436,71798440,71798456,71882106,71882114,71897827,71897835,71960540,71960548,71961126,71961134,94327671,94327679,94333153,94333161,94353368,94353376,94390153,94390161,94413607,94413615,94434257,94434265,94435578,94435586,94444292,94444300,94489858,94489866,94502654,94502662,94526768,94526776,94545004,94545012,94597639,94597647,94630911,94661802,94661810,94707424,94707432,94784571,94784579,94875009,94875017,94904089,94904097,94929210,94929218,94942490,94942498,95065889,95065897,95086191,95086199,95087186,95087194,95111985,95111993,95112873,95112881,95118561,95118569,95135933,95135941,95234185,95234871,95234879,95251262,95251270,95254920,95254928,95270945,95270953,95314802,95314810,95317985,99237681,99237689,99247596,99247604,99310979,99310987,99338440,99338448,99368792,99368800,99401881,99401889,99402331,99402339,99437441,99437449,99460069,100130662,100130678,101406734,101406742,101442805,101442813,101456452,101456460,101488823,101488831,101489187,101489195,101507186,101507194,101519280,101519288,101606928,101606936,101617516,101617524,101631040,101631048,101705089,101708583,101708591,101771970,101771978,101776366,101776374,101783430,101783446,101801088,101801096,101875084,101875092,102047762,102047770]],null,null,null,null,0,null,null,null,null,null,null,null,null,null,"https://drive.google.com",null,null,null,null,null,null,null,null,null,0,1,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"v2internal","https://docs.google.com",null,null,null,null,null,null,"https://sites.google.com/new/",null,null,null,null,null,0,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,1,"",null,null,null,null,null,null,null,null,null,null,null,null,6,null,null,"https://accounts.google.com/o/oauth2/auth","https://accounts.google.com/o/oauth2/postmessageRelay",null,null,null,null,78,"https://sites.google.com/new/?usp\u003dviewer_footer",null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"https://www.gstatic.com/atari/embeds/83a60601c213b72fb19c1855fb0c5f26/intermediate-frame-minified.html",0,null,"v2beta",null,null,null,null,null,null,4,"https://accounts.google.com/o/oauth2/iframe",null,null,null,null,null,null,"https://1733579193-atari-embeds.googleusercontent.com/embeds/16cb204cf3a9d4d223a0a3fd8b0eec5d/inner-frame-minified.html",null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,0,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"https://sites.google.com/view/iccsea-2021/accepted-papers",null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,0,null,null,null,null,null,null,0,null,"",null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,1,null,null,null,null,0,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,1,null,null,[1733248686132,"editors.sites-viewer-frontend_20241119.02_p3","700264346",null,1,1,""],null,null,null,null,0,null,null,0,null,null,null,null,null,null,null,null,20,500,"https://domains.google.com",null,0,null,null,null,null,null,null,null,null,null,null,null,0,null,null,null,null,null,null,null,null,null,null,1,0,1,0,0,0,0,null,null,null,null,null,"https://www.google.com/calendar/embed",null,null,null,null,0,null,null,null,null,null,null,null,null,null,null,0,null,null,null,null,null,null,null,null,null,null,null,null,null,"PROD",0,null,0,null,1]; window.globals = {"enableAnalytics":true,"webPropertyId":"","showDebug":false,"hashedSiteId":"9876e6e7e49fe5bbc3e6106cc83ddaf6529cca9d94010036e3f5262c9aa6e9ad","normalizedPath":"view/iccsea-2021/accepted-papers","pageTitle":"Accepted Papers"}; function gapiLoaded() {if (globals.gapiLoaded == undefined) {globals.gapiLoaded = true;} else {globals.gapiLoaded();}}window.messages = []; window.addEventListener && window.addEventListener('message', function(e) {if (window.messages && e.data && e.data.magic == 'SHIC') {window.messages.push(e);}});</script><script src="https://apis.google.com/js/client.js?onload=gapiLoaded" nonce="-4MOni6pRqQrZ7h-jbswTA"></script><script nonce="-4MOni6pRqQrZ7h-jbswTA">(function(){}).call(this); </script><script nonce="-4MOni6pRqQrZ7h-jbswTA">const imageUrl = 'https:\/\/lh5.googleusercontent.com\/WLik18RVeeAHtt-BwpGKhVh-CyOu-c-Otr8tvSpm_EjUitwZfFQ4Q4WG1q_UJDi0t-x4jjupn59wQMZjtkKpGwQ\x3dw16383'; function bgImgLoaded() { if (!globals.headerBgImgLoaded) { globals.headerBgImgLoaded = new Date().getTime(); } else { globals.headerBgImgLoaded(); } } if (imageUrl) { const img = new Image(); img.src = imageUrl; img.onload = bgImgLoaded; globals.headerBgImgExists = true; } else { globals.headerBgImgExists = false; } </script></head><body dir="ltr" itemscope itemtype="http://schema.org/WebPage" id="yDmH0d" css="yDmH0d"><div jscontroller="pc62j" jsmodel="iTeaXe" jsaction="rcuQ6b:WYd;GvneHb:og1FDd;vbaUQc:uAM5ec;"><div id="docs-banner-container"><div id="docs-banners"><div id="HB1eCd-mzNpsf-r8s4j-ORHb"></div><div id="HB1eCd-TZk80d-r8s4j-ORHb" aria-live="assertive" aria-atomic="true"></div></div><div class="HB1eCd-Vkfede-NBtyUd-PvRhvb-LwH6nd"></div></div><div jscontroller="X4BaPc" jsaction="rcuQ6b:WYd;o6xM5b:Pg9eo;HuL2Hd:mHeCvf;VMhF5:FFYy5e;sk3Qmb:HI1Mdd;JIbuQc:rSzFEd(z2EeY),aSaF6e(ilzYPe);"><div jscontroller="o1L5Wb" data-sitename="iccsea-2021" data-search-scope="1" data-universe="1" jsmodel="fNFZH" jsaction="Pe9H6d:cZFEp;WMZaJ:VsGN3;hJluRd:UADL7b;zuqEgd:HI9w0;tr6QDd:Y8aXB;MxH79b:xDkBfb;JIbuQc:SPXMTb(uxAMZ),LjG1Ed(a6mxbb);" jsname="G0jgYd"><div jsname="gYwusb" class="p9b27"></div><div jscontroller="RrXLpc" jsname="XeeWQc" role="banner" jsaction="keydown:uiKYid(OH0EC);rcuQ6b:WYd;zuqEgd:ufqpf;JIbuQc:XfTnxb(lfEfFf),AlTiYc(GeGHKb),AlTiYc(m1xNUe),zZlNMe(pZn8Oc);YqO5N:ELcyfe;"><div jsname="bF1uUb" class="BuY5Fd" jsaction="click:xVuwSc;"></div><div jsname="MVsrn" class="TbNlJb "><div role="button" class="U26fgb mUbCce fKz7Od h3nfre M9Bg4d" jscontroller="VXdfxd" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;touchstart:p6p2H; touchmove:FwuNnf; touchend:yfqBxc(preventDefault=true); touchcancel:JMtRjd;" jsshadow jsname="GeGHKb" aria-label="Back to site" aria-disabled="false" tabindex="0" data-tooltip="Back to site" data-tooltip-vertical-offset="-12" data-tooltip-horizontal-offset="0"><div class="VTBa7b MbhUzd" jsname="ksKsZd"></div><span jsslot class="xjKiLb"><span class="Ce1Y1c" style="top: -12px"><svg class="V4YR2c" viewBox="0 0 24 24" focusable="false"><path d="M0 0h24v24H0z" fill="none"/><path d="M20 11H7.83l5.59-5.59L12 4l-8 8 8 8 1.41-1.41L7.83 13H20v-2z"/></svg></span></span></div><div class="E2UJ5" jsname="M6JdT"><div class="rFrNMe b7AJhc zKHdkd" jscontroller="pxq3x" jsaction="clickonly:KjsqPd; focus:Jt1EX; blur:fpfTEe; input:Lg5SV" jsshadow jsname="OH0EC" aria-expanded="true"><div class="aCsJod oJeWuf"><div class="aXBtI I0VJ4d Wic03c"><span jsslot class="A37UZe qgcB3c iHd5yb"><div role="button" class="U26fgb mUbCce fKz7Od i3PoXe M9Bg4d" jscontroller="VXdfxd" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;touchstart:p6p2H; touchmove:FwuNnf; touchend:yfqBxc(preventDefault=true); touchcancel:JMtRjd;" jsshadow jsname="lfEfFf" aria-label="Search" aria-disabled="false" tabindex="0" data-tooltip="Search" data-tooltip-vertical-offset="-12" data-tooltip-horizontal-offset="0"><div class="VTBa7b MbhUzd" jsname="ksKsZd"></div><span jsslot class="xjKiLb"><span class="Ce1Y1c" style="top: -12px"><svg class="vu8Pwe" viewBox="0 0 24 24" focusable="false"><path d="M15.5 14h-.79l-.28-.27C15.41 12.59 16 11.11 16 9.5 16 5.91 13.09 3 9.5 3S3 5.91 3 9.5 5.91 16 9.5 16c1.61 0 3.09-.59 4.23-1.57l.27.28v.79l5 4.99L20.49 19l-4.99-5zm-6 0C7.01 14 5 11.99 5 9.5S7.01 5 9.5 5 14 7.01 14 9.5 11.99 14 9.5 14z"/><path d="M0 0h24v24H0z" fill="none"/></svg></span></span></div><div class="EmVfjc SKShhf" data-loadingmessage="Loading…" jscontroller="qAKInc" jsaction="animationend:kWijWc;dyRcpb:dyRcpb" jsname="aZ2wEe"><div class="Cg7hO" aria-live="assertive" jsname="vyyg5"></div><div jsname="Hxlbvc" class="xu46lf"><div class="ir3uv uWlRce co39ub"><div class="xq3j6 ERcjC"><div class="X6jHbb GOJTSe"></div></div><div class="HBnAAc"><div class="X6jHbb GOJTSe"></div></div><div class="xq3j6 dj3yTd"><div class="X6jHbb GOJTSe"></div></div></div><div class="ir3uv GFoASc Cn087"><div class="xq3j6 ERcjC"><div class="X6jHbb GOJTSe"></div></div><div class="HBnAAc"><div class="X6jHbb GOJTSe"></div></div><div class="xq3j6 dj3yTd"><div class="X6jHbb GOJTSe"></div></div></div><div class="ir3uv WpeOqd hfsr6b"><div class="xq3j6 ERcjC"><div class="X6jHbb GOJTSe"></div></div><div class="HBnAAc"><div class="X6jHbb GOJTSe"></div></div><div class="xq3j6 dj3yTd"><div class="X6jHbb GOJTSe"></div></div></div><div class="ir3uv rHV3jf EjXFBf"><div class="xq3j6 ERcjC"><div class="X6jHbb GOJTSe"></div></div><div class="HBnAAc"><div class="X6jHbb GOJTSe"></div></div><div class="xq3j6 dj3yTd"><div class="X6jHbb GOJTSe"></div></div></div></div></div><div role="button" class="U26fgb mUbCce fKz7Od JyJRXe M9Bg4d" jscontroller="VXdfxd" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;touchstart:p6p2H; touchmove:FwuNnf; touchend:yfqBxc(preventDefault=true); touchcancel:JMtRjd;" jsshadow jsname="m1xNUe" aria-label="Back to site" aria-disabled="false" tabindex="0" data-tooltip="Back to site" data-tooltip-vertical-offset="-12" data-tooltip-horizontal-offset="0"><div class="VTBa7b MbhUzd" jsname="ksKsZd"></div><span jsslot class="xjKiLb"><span class="Ce1Y1c" style="top: -12px"><svg class="V4YR2c" viewBox="0 0 24 24" focusable="false"><path d="M0 0h24v24H0z" fill="none"/><path d="M20 11H7.83l5.59-5.59L12 4l-8 8 8 8 1.41-1.41L7.83 13H20v-2z"/></svg></span></span></div></span><div class="Xb9hP"><input type="search" class="whsOnd zHQkBf" jsname="YPqjbf" autocomplete="off" tabindex="0" aria-label="Search this site" value="" aria-disabled="false" autofocus role="combobox" data-initial-value=""/><div jsname="LwH6nd" class="ndJi5d snByac" aria-hidden="true">Search this site</div></div><span jsslot class="A37UZe sxyYjd MQL3Ob"><div role="button" class="U26fgb mUbCce fKz7Od Kk06A M9Bg4d" jscontroller="VXdfxd" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;touchstart:p6p2H; touchmove:FwuNnf; touchend:yfqBxc(preventDefault=true); touchcancel:JMtRjd;" jsshadow jsname="pZn8Oc" aria-label="Clear search" aria-disabled="false" tabindex="0" data-tooltip="Clear search" data-tooltip-vertical-offset="-12" data-tooltip-horizontal-offset="0"><div class="VTBa7b MbhUzd" jsname="ksKsZd"></div><span jsslot class="xjKiLb"><span class="Ce1Y1c" style="top: -12px"><svg class="fAUEUd" viewBox="0 0 24 24" focusable="false"><path d="M19 6.41L17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12z"></path><path d="M0 0h24v24H0z" fill="none"></path></svg></span></span></div></span><div class="i9lrp mIZh1c"></div><div jsname="XmnwAc" class="OabDMe cXrdqd"></div></div></div><div class="LXRPh"><div jsname="ty6ygf" class="ovnfwe Is7Fhb"></div></div></div></div></div></div></div><div jsname="tiN4bf"><style nonce="Bv7jlK1T0uEX9rzPvUyDEQ">.rrJNTc{opacity: 0;}.bKy5e{pointer-events: none; position: absolute; top: 0;}</style><div class="bKy5e"><div class="rrJNTc" tabindex="-1"><div class="VfPpkd-dgl2Hf-ppHlrf-sM5MNb" data-is-touch-wrapper='true'><button class="VfPpkd-LgbsSe VfPpkd-LgbsSe-OWXEXe-dgl2Hf LjDxcd XhPA0b LQeN7 WsSUlf jz7fPb" jscontroller="soHxf" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; touchstart:p6p2H; touchmove:FwuNnf; touchend:yfqBxc; touchcancel:JMtRjd; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;mlnRJb:fLiPzd;" data-idom-class="LjDxcd XhPA0b LQeN7 WsSUlf jz7fPb" jsname="z2EeY" tabindex="0"><div class="VfPpkd-Jh9lGc"></div><div class="VfPpkd-J1Ukfc-LhBDec"></div><div class="VfPpkd-RLmnJb"></div><span jsname="V67aGc" class="VfPpkd-vQzf8d">Skip to main content</span></button></div><div class="VfPpkd-dgl2Hf-ppHlrf-sM5MNb" data-is-touch-wrapper='true'><button class="VfPpkd-LgbsSe VfPpkd-LgbsSe-OWXEXe-dgl2Hf LjDxcd XhPA0b LQeN7 WsSUlf br90J" jscontroller="soHxf" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; touchstart:p6p2H; touchmove:FwuNnf; touchend:yfqBxc; touchcancel:JMtRjd; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;mlnRJb:fLiPzd;" data-idom-class="LjDxcd XhPA0b LQeN7 WsSUlf br90J" jsname="ilzYPe" tabindex="0"><div class="VfPpkd-Jh9lGc"></div><div class="VfPpkd-J1Ukfc-LhBDec"></div><div class="VfPpkd-RLmnJb"></div><span jsname="V67aGc" class="VfPpkd-vQzf8d">Skip to navigation</span></button></div></div></div><div class="M63kCb N63NQ"></div><div class="QZ3zWd"><div class="fktJzd AKpWA fOU46b G9Qloe XeSM4 XxIgdb" jsname="UzWXSb" data-uses-custom-theme="false" data-legacy-theme-name="QualityBasics" data-legacy-theme-font-kit="Light" data-legacy-theme-color-kit="Magenta" jscontroller="Md9ENb" jsaction="gsiSmd:Ffcznf;yj5fUd:cpPetb;HNXL3:q0Vyke;e2SXKd:IPDu5e;BdXpgd:nhk7K;rcuQ6b:WYd;"><header id="atIdViewHeader"><div class="BbxBP HP6J1d K5Zlne" jsname="WA9qLc" jscontroller="RQOkef" jsaction="rcuQ6b:JdcaS;MxH79b:JdcaS;VbOlFf:ywL4Jf;FaOgy:ywL4Jf; keydown:Hq2uPe; wheel:Ut4Ahc;" data-top-navigation="true" data-is-preview="false"><div class="DXsoRd YTv4We oNsfjf" role="button" tabindex="0" jsaction="click:LUvzV" jsname="z4Tpl" id="s9iPrd" aria-haspopup="true" aria-controls="yuynLe" aria-expanded="false"><svg class="wFCWne" viewBox="0 0 24 24" stroke="currentColor" jsname="B1n9ub" focusable="false"><g transform="translate(12,12)"><path class="hlJH0" d="M-9 -5 L9 -5" fill="none" stroke-width="2"/><path class="HBu6N" d="M-9 0 L9 0" fill="none" stroke-width="2"/><path class="cLAGQe" d="M-9 5 L9 5" fill="none" stroke-width="2"/></g></svg></div><nav class="JzO0Vc" jsname="ihoMLd" role="navigation" tabindex="-1" id="yuynLe" jsaction="transitionend:UD2r5"><a class="XMyrgf" href="/view/iccsea-2021/home"><img src="https://lh3.googleusercontent.com/vEU6xGaO3pSQWsie5mg3mu8p2MRStFk2JBTBTM0RMiVYAKOqBnhEf47vm3sDnHbSYhH8ko2t4TCpQBc6r-gFVyo=w16383" class="r9CsCb" role="img" aria-label="Site home"></a><ul class="jYxBte Fpy8Db" tabindex="-1"><li jsname="ibnC6b" data-nav-level="1"><div class="PsKE7e r8s4j-R6PoUb IKA38e baH5ib oNsfjf"><div class="I35ICb" jsaction="keydown:mPuKz(QwLHlb); click:vHQTA(QwLHlb);"><a class="aJHbb dk90Ob hDrhEe HlqNPb" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/home" data-url="/view/iccsea-2021/home" data-type="1" data-level="1">Home</a></div></div></li><li jsname="ibnC6b" data-nav-level="1"><div class="PsKE7e r8s4j-R6PoUb IKA38e baH5ib oNsfjf"><div class="I35ICb" jsaction="keydown:mPuKz(QwLHlb); click:vHQTA(QwLHlb);"><a class="aJHbb dk90Ob hDrhEe HlqNPb" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/paper-submission" data-url="/view/iccsea-2021/paper-submission" data-type="1" data-level="1">Paper Submission</a></div></div></li><li jsname="ibnC6b" data-nav-level="1"><div class="PsKE7e r8s4j-R6PoUb IKA38e baH5ib oNsfjf"><div class="I35ICb" jsaction="keydown:mPuKz(QwLHlb); click:vHQTA(QwLHlb);"><a class="aJHbb dk90Ob hDrhEe HlqNPb" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/program-committee" data-url="/view/iccsea-2021/program-committee" data-type="1" data-level="1">Program Committee</a></div></div></li><li jsname="ibnC6b" data-nav-level="1"><div class="PsKE7e r8s4j-R6PoUb IKA38e baH5ib oNsfjf lhZOrc" aria-current="true"><div class="I35ICb" jsaction="keydown:mPuKz(QwLHlb); click:vHQTA(QwLHlb);"><a class="aJHbb dk90Ob hDrhEe HlqNPb" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" aria-selected="true" href="/view/iccsea-2021/accepted-papers" data-url="/view/iccsea-2021/accepted-papers" data-type="1" data-level="1">Accepted Papers</a></div></div></li><li jsname="ibnC6b" data-nav-level="1"><div class="PsKE7e r8s4j-R6PoUb IKA38e baH5ib oNsfjf"><div class="I35ICb" jsaction="keydown:mPuKz(QwLHlb); click:vHQTA(QwLHlb);"><a class="aJHbb dk90Ob hDrhEe HlqNPb" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/venue" data-url="/view/iccsea-2021/venue" data-type="1" data-level="1">Venue</a></div></div></li><li jsname="ibnC6b" data-nav-level="1"><div class="PsKE7e r8s4j-R6PoUb IKA38e baH5ib oNsfjf"><div class="I35ICb" jsaction="keydown:mPuKz(QwLHlb); click:vHQTA(QwLHlb);"><a class="aJHbb dk90Ob hDrhEe HlqNPb" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/contact" data-url="/view/iccsea-2021/contact" data-type="1" data-level="1">Contact</a></div></div></li></ul></nav><div class="VLoccc K5Zlne QDWEj U8eYrb" jsname="rtFGi"><div class="Pvc6xe"><div jsname="I8J07e" class="TlfmSc YSH9J"><a class="GAuSPc" jsname="jIujaf" href="/view/iccsea-2021/home"><img src="https://lh3.googleusercontent.com/vEU6xGaO3pSQWsie5mg3mu8p2MRStFk2JBTBTM0RMiVYAKOqBnhEf47vm3sDnHbSYhH8ko2t4TCpQBc6r-gFVyo=w16383" class="lzy1Td" role="img" aria-label="Site home" jsname="SwcDWb"></a> </div><nav class="plFg0c" jscontroller="HXO1uc" jsaction="rcuQ6b:rcuQ6b;MxH79b:CfS0pe;" id="WDxLfe" data-is-preview="false" style="visibility: hidden;" role="navigation" tabindex="-1"><ul jsname="waIgnc" class="K1Ci7d oXBWEc jYxBte"><li jsname="ibnC6b" data-nav-level="1" class="VsJjtf"><div class="PsKE7e qV4dIc Qrrb5 YSH9J"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb dk90Ob jgXgSe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/home" data-url="/view/iccsea-2021/home" data-type="1" data-level="1">Home</a></div></div><div class="rgLkl"></div></li><li jsname="ibnC6b" data-nav-level="1" class="VsJjtf"><div class="PsKE7e qV4dIc Qrrb5 YSH9J"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb dk90Ob jgXgSe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/paper-submission" data-url="/view/iccsea-2021/paper-submission" data-type="1" data-level="1">Paper Submission</a></div></div><div class="rgLkl"></div></li><li jsname="ibnC6b" data-nav-level="1" class="VsJjtf"><div class="PsKE7e qV4dIc Qrrb5 YSH9J"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb dk90Ob jgXgSe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/program-committee" data-url="/view/iccsea-2021/program-committee" data-type="1" data-level="1">Program Committee</a></div></div><div class="rgLkl"></div></li><li jsname="ibnC6b" data-nav-level="1" class="VsJjtf"><div class="PsKE7e qV4dIc Qrrb5 YSH9J M9vuGd" aria-current="true"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb dk90Ob jgXgSe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" aria-selected="true" href="/view/iccsea-2021/accepted-papers" data-url="/view/iccsea-2021/accepted-papers" data-type="1" data-level="1">Accepted Papers</a></div></div><div class="rgLkl"></div></li><li jsname="ibnC6b" data-nav-level="1" class="VsJjtf"><div class="PsKE7e qV4dIc Qrrb5 YSH9J"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb dk90Ob jgXgSe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/venue" data-url="/view/iccsea-2021/venue" data-type="1" data-level="1">Venue</a></div></div><div class="rgLkl"></div></li><li jsname="ibnC6b" data-nav-level="1" class="VsJjtf"><div class="PsKE7e qV4dIc Qrrb5 YSH9J"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb dk90Ob jgXgSe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/contact" data-url="/view/iccsea-2021/contact" data-type="1" data-level="1">Contact</a></div></div><div class="rgLkl"></div></li><li jsname="ibnC6b" data-nav-level="1" class="VsJjtf ZmrVpf oXBWEc" more-menu-item jsaction="mouseenter:Vx8Jlb; mouseleave:ysDRUd"><div class="PsKE7e qV4dIc Qrrb5 YSH9J"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb dk90Ob jgXgSe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" aria-expanded="false" aria-haspopup="true" data-level="1">More</a><div class="mBHtvb u5fiyc" role="presentation" title="Expand/Collapse" jsaction="click:oESVTe" jsname="ix0Hvc"><svg class="dvmRw" viewBox="0 0 24 24" stroke="currentColor" jsname="HIH2V" focusable="false"><g transform="translate(9.7,12) rotate(45)"><path class="K4B8Y" d="M-4.2 0 L4.2 0" stroke-width="2"/></g><g transform="translate(14.3,12) rotate(-45)"><path class="MrYMx" d="M-4.2 0 L4.2 0" stroke-width="2"/></g></svg></div></div></div><div class="oGuwee eWDljc RPRy1e Mkt3Tc" style="display:none;" jsname="QXE97" jsaction="transitionend:SJBdh" role="group"><ul class="VcS63b"><li jsname="ibnC6b" data-nav-level="2" class="ijMPi ZmrVpf" in-more-item><div class="PsKE7e IKA38e oNsfjf"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb hDrhEe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/home" data-url="/view/iccsea-2021/home" data-type="1" data-in-more-submenu="true" data-level="2">Home</a></div></div></li><li jsname="ibnC6b" data-nav-level="2" class="ijMPi ZmrVpf" in-more-item><div class="PsKE7e IKA38e oNsfjf"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb hDrhEe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/paper-submission" data-url="/view/iccsea-2021/paper-submission" data-type="1" data-in-more-submenu="true" data-level="2">Paper Submission</a></div></div></li><li jsname="ibnC6b" data-nav-level="2" class="ijMPi ZmrVpf" in-more-item><div class="PsKE7e IKA38e oNsfjf"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb hDrhEe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/program-committee" data-url="/view/iccsea-2021/program-committee" data-type="1" data-in-more-submenu="true" data-level="2">Program Committee</a></div></div></li><li jsname="ibnC6b" data-nav-level="2" class="ijMPi ZmrVpf" in-more-item><div class="PsKE7e IKA38e oNsfjf lhZOrc" aria-current="true"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb hDrhEe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" aria-selected="true" href="/view/iccsea-2021/accepted-papers" data-url="/view/iccsea-2021/accepted-papers" data-type="1" data-in-more-submenu="true" data-level="2">Accepted Papers</a></div></div></li><li jsname="ibnC6b" data-nav-level="2" class="ijMPi ZmrVpf" in-more-item><div class="PsKE7e IKA38e oNsfjf"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb hDrhEe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/venue" data-url="/view/iccsea-2021/venue" data-type="1" data-in-more-submenu="true" data-level="2">Venue</a></div></div></li><li jsname="ibnC6b" data-nav-level="2" class="ijMPi ZmrVpf" in-more-item><div class="PsKE7e IKA38e oNsfjf"><div class="I35ICb" jsaction="click:vHQTA(QwLHlb); keydown:mPuKz(QwLHlb);"><a class="aJHbb hDrhEe HlqNPb" jscontroller="yUHiM" jsaction="rcuQ6b:WYd;" jsname="QwLHlb" role="link" tabindex="0" data-navtype="1" href="/view/iccsea-2021/contact" data-url="/view/iccsea-2021/contact" data-type="1" data-in-more-submenu="true" data-level="2">Contact</a></div></div></li></ul></div></li></ul></nav><div jscontroller="gK4msf" class="RBEWZc" jsname="h04Zod" jsaction="rcuQ6b:WYd;JIbuQc:AT95Ub;VbOlFf:HgE5D;FaOgy:HgE5D;MxH79b:JdcaS;" data-side-navigation="false"><div role="button" class="U26fgb mUbCce fKz7Od iWs3gf Wdnjke M9Bg4d" jscontroller="VXdfxd" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;touchstart:p6p2H; touchmove:FwuNnf; touchend:yfqBxc(preventDefault=true); touchcancel:JMtRjd;" jsshadow jsname="R9oOZd" aria-label="Open search bar" aria-disabled="false" tabindex="0" data-tooltip="Open search bar" aria-expanded="false" data-tooltip-vertical-offset="-12" data-tooltip-horizontal-offset="0"><div class="VTBa7b MbhUzd" jsname="ksKsZd"></div><span jsslot class="xjKiLb"><span class="Ce1Y1c" style="top: -12px"><svg class="vu8Pwe tCHXDc YSH9J" viewBox="0 0 24 24" focusable="false"><path d="M15.5 14h-.79l-.28-.27C15.41 12.59 16 11.11 16 9.5 16 5.91 13.09 3 9.5 3S3 5.91 3 9.5 5.91 16 9.5 16c1.61 0 3.09-.59 4.23-1.57l.27.28v.79l5 4.99L20.49 19l-4.99-5zm-6 0C7.01 14 5 11.99 5 9.5S7.01 5 9.5 5 14 7.01 14 9.5 11.99 14 9.5 14z"/><path d="M0 0h24v24H0z" fill="none"/></svg></span></span></div></div></div><div jsname="mADGA" class="zDUgLc"></div></div><div class="TxnWlb" jsname="BDdyze" jsaction="click:LUvzV"></div></div></header><div role="main" tabindex="-1" class="UtePc RCETm" dir="ltr"><section id="h.5a9834562b5c2b71_16" class="yaqOZd LB7kq cJgDec nyKByd O13XJf KEFykf" style=""><div class="Nu95r"><div class="IFuOkc" style="background-size: cover; background-position: center center; background-image: url(https://lh5.googleusercontent.com/WLik18RVeeAHtt-BwpGKhVh-CyOu-c-Otr8tvSpm_EjUitwZfFQ4Q4WG1q_UJDi0t-x4jjupn59wQMZjtkKpGwQ=w16383);" jsname="LQX2Vd"></div></div><div class="mYVXT"><div class="LS81yb VICjCf j5pSsc db35Fc" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd Ft7HRd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb ZcASvf-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c Ktthjf-AhqUyc-qWD73c JNdkSc SQVYQc"><div class="JNdkSc-SmKAyb LkDMRd"><div class="" jscontroller="sGwD4d" jsaction="zXBUYb:zTPCnb;zQF9Uc:Qxe3nd;" jsname="F57UId"><div class="oKdM2c ZZyype Kzv0Me"><div id="h.5a9834562b5c2b71_19" class="hJDwNd-AhqUyc-uQSCkd Ft7HRd-AhqUyc-uQSCkd jXK9ad D2fZ2 zu5uec OjCsFc dmUFtb wHaque g5GTcb JYTMs"><div class="jXK9ad-SmKAyb"><div class="tyJCtd mGzaTb Depvyb baZpAe lkHyyc"><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.5; margin-bottom: 8pt; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: center;"><span class=" jgG6ef" style="color: #ffffff; font-family: 'Times New Roman'; font-variant: normal; vertical-align: baseline;"><strong>11</strong></span><sup style="color: #ffffff; font-family: 'Times New Roman'; font-size: 10.799999999999999pt; font-variant: normal;"><strong>th</strong></sup><span class=" jgG6ef" style="color: #ffffff; font-family: 'Times New Roman'; font-variant: normal; vertical-align: baseline;"><strong> International Conference on Computer Science, Engineering and Applications (ICCSEA 2021)</strong></span></p><h2 id="h.25w5bcmjosj" dir="ltr" class="CDt4Ke zfr3Q JYVBee" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: center;"><span style="font-family: 'Times New Roman'; font-size: 14pt; font-variant: normal; vertical-align: baseline;"><strong>November 20 ~ 21, 2021, Zurich, Switzerland</strong></span></h2></div></div></div></div></div></div></div></div></div><div class="DnLU4" jsaction="JIbuQc:v5IJLd(ipHvib);"><div role="button" class="U26fgb mUbCce fKz7Od HqAAld Wew9ke M9Bg4d" jscontroller="VXdfxd" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;touchstart:p6p2H; touchmove:FwuNnf; touchend:yfqBxc(preventDefault=true); touchcancel:JMtRjd;" jsshadow jsname="ipHvib" aria-label="Scroll down" aria-disabled="false" tabindex="0"><div class="VTBa7b MbhUzd" jsname="ksKsZd"></div><span jsslot class="xjKiLb"><span class="Ce1Y1c" style="top: -12px"><svg class="XE8yyf" viewBox="0 0 24 24" focusable="false"><path d="M7.41 7.84L12 12.42l4.59-4.58L18 9.25l-6 6-6-6z"/><path d="M0-.75h24v24H0z" fill="none"/></svg></span></span></div></div></section><section id="h.5a9834562b5c2b71_69" class="yaqOZd lQAHbd" style=""><div class="IFuOkc"></div><div class="mYVXT"><div class="LS81yb VICjCf j5pSsc db35Fc" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd Ft7HRd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb ZcASvf-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c Ktthjf-AhqUyc-qWD73c JNdkSc SQVYQc"><div class="JNdkSc-SmKAyb LkDMRd"><div class="" jscontroller="sGwD4d" jsaction="zXBUYb:zTPCnb;zQF9Uc:Qxe3nd;" jsname="F57UId"><div class="oKdM2c ZZyype Kzv0Me"><div id="h.5a9834562b5c2b71_66" class="hJDwNd-AhqUyc-uQSCkd Ft7HRd-AhqUyc-uQSCkd jXK9ad D2fZ2 zu5uec OjCsFc dmUFtb wHaque g5GTcb JYTMs"><div class="jXK9ad-SmKAyb"><div class="tyJCtd mGzaTb Depvyb baZpAe"><p id="h.eqpths6896ad" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: center;"><span class=" jgG6ef" style="color: #ffffff; font-family: 'Times New Roman'; vertical-align: baseline;"><strong>Accepted Papers</strong></span></p></div></div></div></div></div></div></div></div></div></section><section id="h.5a9834562b5c2b71_73" class="yaqOZd" style=""><div class="IFuOkc"></div><div class="mYVXT"><div class="LS81yb VICjCf j5pSsc db35Fc" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd Ft7HRd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb ZcASvf-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c Ktthjf-AhqUyc-qWD73c JNdkSc SQVYQc"><div class="JNdkSc-SmKAyb LkDMRd"><div class="" jscontroller="sGwD4d" jsaction="zXBUYb:zTPCnb;zQF9Uc:Qxe3nd;" jsname="F57UId"><div class="oKdM2c ZZyype Kzv0Me"><div id="h.5a9834562b5c2b71_70" class="hJDwNd-AhqUyc-uQSCkd Ft7HRd-AhqUyc-uQSCkd jXK9ad D2fZ2 zu5uec OjCsFc dmUFtb wHaque g5GTcb JYTMs"><div class="jXK9ad-SmKAyb"><div class="tyJCtd mGzaTb Depvyb baZpAe"><p id="h.ed7lcm515ssl" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Real-Time Infinite Data Stream Publishing based on Differential Privacy</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Yanfei Li, Gang Liu, ZiwenTang and Hu wang, School of Computer science and technology, Xidian University, Xian, China</span></p><p id="h.18jhdo9r9wew" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Differential privacy has become one of the most effective privacy protection methods because of its strong theoretical verification foundation and strict mathematical axioms. However, the existing differential privacy methods have high publishing errors when publishing infinite data streams, which reduces the accuracy of published data. Aiming at the feature that the data at adjacent moments in the infinite data stream are correlated, this paper proposes an infinite data stream publishing algorithm with low publishing errors and meets the requirements of differential privacy. Based on adjusting the threshold to meet the sampling rate, this method uses an adaptive budget allocation mechanism to protect the sampling point privacy and uses the Kalman filter mechanism to correct the non-sampling point data. Also, the test on data sets from two different fields shows that our algorithm can effectively reduce publishing errors and significantly improve the availability of published data.</span></p><p id="h.uxo9rbknu798" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Differential Privacy, Infinite data streams, Privacy preservation, Sampling.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.n1k1ej95yfk2" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>The Evolution of Vector Machine Support in the Field of Intrusion Detection Systems</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Ouafae Elaeraj and Cherkaoui Leghris, L@M, RTM Team, Faculty of Sciences and Techniques Mohammedia, Hassan II University of Casablanca, Morocco</span></p><p id="h.tjkzpjdbu4t5" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">With the popularization of the Internet and local area networks, malicious attacks and intrusions into computer systems are increasing. The design and implementation of intrusion detection systems became extremely important to help maintain good network security. Support vector machines (SVM), a classic pattern recognition tool, has been widely used in intrusion detection. The mature and robust support vector machine algorithm is used and the grid search method is used for parameter optimization. This paper presents a new SVM model enriched with a Gaussian kernel function based on the features of the training data for intrusion detection. The new model is tested with the CICIDS2017 dataset. The test proves better results in terms of detection efficiency and false alarm rate, which can give better coverage and make the detection more effective.</span></p><p id="h.367wwlfvyasw" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Intrusion detection System, Support vector machines, Machine Learning.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.cepd56pnzcu4" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Reducing Cyber Incident Response to Protect CNI from Cyber Attacks using an N-SIEM Integration with an ICTI-CNI</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Igli Tafa and Kevin Shahollari, Department of Computer Engineering, Polytechnic University of Tirana, Tirana</span></p><p id="h.7pr21s2bfhkq" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">The rapid evolution of technology has increased the role of cybersecurity and put it at the center of national critical infrastructure. This role supports and guarantees the vital services of (CNI) while provides the proper functionalities for running operations between the public and private sectors. This evolution has had the same impact on cyberattack tools, methods, techniques used to gain unauthorized access to these computer systems that contain confidential and high-value information in the digital data sales market or as it called "darkweb". As a result, it has become necessary to monitor all events of the National Critical Infrastructure (CNI) computer systems. This proposed system uses a centralized National SIEM (N-SIEM) specializing in the correlation of security events caused by cyber attacks, collected by CNIs systems while integrating with an International Cyber Threat Intelligence system (ICTI-CNI). In addition, this conceptual model collects security breach events of CNIs systems, analyzes only cyber attacks, and correlates these security events in real-time with an intelligent automated platform while reducing the response time of security analysts.</span></p><p id="h.mqjcdv6jwq7t" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">CNI, N-SIEM, ICTI-CNI, IOC, cyber attacks security events.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.ifbldrrfaszx" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>An Enhanced Naive Bayes Model for Crime Prediction using Recursive Feature Elimination</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Sphamandla May, Omowunmi Isafiade and Olasupo Ajayi, University of the Western Cape, South Africa</span></p><p id="h.s6f7nhou0bry" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">It is no secret that crime affects everyone and has devastating socio-economic impact with long lasting effects. For this reason, law enforcement agents work tirelessly to reduce crime. However, despite their best efforts, crime still prevails and is constantly on the rise. Predictive approaches have shown positive results in mitigating this problem, hence in this paper, we have adopted the well known Naive Bayes algorithm to tackle crime. In this work, we augmented the classic Naive Bayes with recursive feature elimination and applied it to crime prediction. When compared with the original Naive Bayes, it was observed that our approach indeed improved the performance of Naive Bayes by about 30%. We further bench-marked our Naive Bayes variant with other predictive algorithms such as Random Forest and Extremely Randomized Trees, and obtained results showed that our variant was equally as good and even better in some instances.</span></p><p id="h.uprtqqa5fb5m" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Crime prediction, Extremely Randomized Trees, Random Forest, Naive Bayes.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.ch941hn6bl6" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Burnoutwords - Detecting Burnout for a Clinical Setting</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Sukanya Nath and Mascha Kurpicz-Briki, Bern University of Applied Sciences, Switzerland</span></p><p id="h.pi81fhk9h1zb" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Burnout is a major problem of todays society, in particular in crisis times such as a global pandemic situation. Burnout detection is hard, because the symptoms often overlap with other diseases and syndromes. Typical clinical approaches are using inventories to assess burnout for their patients, even though free-text approaches are considered promising. In research of natural language processing applied to mental health, often data from social media is used and not real patient data, which leads to some limitations for the application in clinical use cases. In this paper, we fill the gap and provide a dataset using extracts from interviews with burnout patients containing 216 records. We train an SVM classifier to detect burnout in text snippets with an accuracy of around 80%, which is clearly higher than the random baseline of our setup. This provides the foundation for a next generation of clinical methods based on NLP.</span></p><p id="h.cblhmy2vgy" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Natural Language Processing, Psychology, Burnout, Machine Learning.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.kca4ot1f2u0y" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Using AI to Learn Industry Specific Big Data for Business Operation and Crisis Management</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Yew Kee Wong, School of Information Engineering, HuangHuai University, Henan, China</span></p><p id="h.j053afi7544a" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Artificial intelligence has been a buzz word that is impacting every industry in the world. With the rise of such advanced technology, there will be always a question regarding its impact on our social life, environment and economy thus impacting all efforts exerted towards sustainable development. In the information era, enormous amounts of data have become available on hand to decision makers. Big data refers to datasets that are not only big, but also high in variety and velocity, which makes them difficult to handle using traditional tools and techniques. Due to the rapid growth of such data, solutions need to be studied and provided in order to handle and extract value and knowledge from these datasets for different industries and business operations. Numerous use cases have shown that AI can ensure an effective supply of information to citizens, users and customers in times of crisis. This paper aims to analyse some of the different methods and scenario which can be applied to AI and big data, as well as the opportunities provided by the application in various business operations and crisis management domains.</span></p><p id="h.hxpgfx6piip2" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Artificial Intelligence, Big Data, Business Operations, Crisis Management.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.sohlzczddonr" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Hybrid Parthenogenetic Algorithm for Job-shop Scheduling Problems</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Atefeh Momenikorbekandi and Maysam F. Abbod, Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge, UK</span></p><p id="h.a5qob2814rrw" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">This paper applies an integrated genetic algorithm (GA) based on parthenogenetic algorithm to optimise job shop scheduling problems for single machine and multi-machine job-shops. The integrated GA has been tested with and without three parthenogenetic operators, namely swap, reverse and insert. The makespan of job shop scheduling problems refers to the total length of the schedule when all the jobs have been finished. The proposed GA algorithm utilises a combination of different types of GA selection functions, namely stochastic, roulette, sexual, and ageing, with parthenogenetic procedure which employs gene recombination instead of the traditional crossover operator in order to produce off springs. The proposed GA has been applied to single machine job shop and multi-machine with tardiness, earliness, and due date penalties.</span></p><p id="h.sij5myahyoz" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Genetic Algorithm, single machine job shop, multi-machine job shop, parthenogenetic algorithm.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.78r3tsheg2m" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Convolutional Neural Networks Based Weapon Detection: A Comparative Study</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Pradhi Anil Kumar Das, Deepak Singh Tomar, Department of Computer Science & Engineering, Maulana Azad National Institute of Technology Bhopal, India</span></p><p id="h.goxmpvtnda43" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Lately, one of the most common illegal activities include the use of shooting weapons. In such dangerous situations, there is a dire need of preventive measures that can automatically detect such munitions. This paper presents the use of computer vision and deep learning to detect weapons like guns, revolvers and pistols. Convolutional Neural Networks can be efficiently used for object detection. In this paper, precisely, two Convolutional Neural Network (CNN) architectures - Faster R-CNN with VGG16 and YOLOv3, have been used, to carry out the detection of such weapons. The pre-trained neural networks were fed with images of guns from the Internet Movie Firearms Database (IMFDB) which is a benchmark gun database. For negative case images, MS COCO dataset was used. The goal of this paper is to present and compare performance of the two models to bring about gun detection in any given scenario. The results of YOLOv3 outperforms Faster R-CNN with VGG16. The ultimate aim of this paper is to detect guns in an image accurately which in turn can aid crime investigation.</span></p><p id="h.lly2m99p6zh7" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">weapon detection, gun detection, computer vision, deep learning, artificial intelligence.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.kj4ocd9c8xj2" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Federated Learning with Random Communication and Dynamic Aggregation</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Ruolin Huang, Ting Lu1, Yiyang Luo, Guohua Liu and Shan Chang, College of Computer Science and Technology, Donghua University, Shanghai, China 201620</span></p><p id="h.6r7wgnwc2ahi" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Federated Learning (FL) is a setting that allows clients to train a joint global model collaboratively while keeping data locally. Due to FL has advantages of data confidential and distributed computing, interest in this area has increased. In this paper, we designed a new FL algorithm named FedRAD. Random communication and dynamic aggregation methods are proposed for FedRAD. Random communication method enables FL system use the combination of fixed communication intervals and constrained variable intervals in a single task. Dynamic aggregation method reforms aggregation weights and makes weights update automately. Both methods aim to improve model performance. We evaluated two proposed methods respectively, and compared FedRAD with three algorithms on three hyperparameters. Results at CIFAR-10 demonstrate that each method has good performance, and FedRAD can achieve higher classification accuracy than state-of-the-art FL algorithms.</span></p><p id="h.9jtca2tjdy7s" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">federated learning, random communication, dynamic aggregation, self-learning.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.fsgnpyno94p1" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Fault Detection in Ball Bearing using One Statistical Feature and Extreme Learning Machine</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Jivitesh Sharma, Center for Artificial Intelligence Research, University of Agder, Norway</span></p><p id="h.d4r9f6u3zfoo" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">All of the fault detection methods proposed so far have been very complex and complicated procedures, which makes the fault detection models very slow and rigid. Also, the classification problems formulated for fault detection have not been exhaustive enough. All of the above problems, i.e. simplicity, speed, accuracy and class distribution for fault detection have been addressed in this paper and a new methodology is proposed. The proposed methodology uses the simplest feature extraction technique, which is the statistical feature extraction and uses only one feature for feature extraction, instead of using 10-15 of them, which has generally been the norm in previous works. So, there is a huge reduction in the number of feature. The Extre me Learning Machine which is one of the fastest and most accurate learning algorithms is used for classification. Also, the classification problem for fault detection considered in this paper is the most exhaustive, consisting of 19 classes and distinguishes between fault type, fault size and bearing position (DE or FE). The results show that the proposed method achieves 99.6% accuracy with ELM using only one feature and also 5x to 6700x speed up compared to other algorithms like SVM and its variants, Decision Trees, KNN and its variants and Ensemble methods.</span></p><p id="h.xa19jz4lse8v" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Fault Detection, Ball Bearing, Statistical Features, Extreme Learning Machine.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.yu79hek2vq6b" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>K-Nearest Neighbour and Dynamic Time Warping for Online Signature Verification</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Mohammad Saleem and BenceKovari, Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Budapest, Hungary</span></p><p id="h.unu2pt119kcu" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Online signatures are one of the most commonly used biometrics. Several verification systems and public databases were presented in this field. This paper presents a combination of k-nearest neighbour and dynamic time warping algorithm as a verification system using the newly published DeepSignDB database. It was applied on both finger and stylus input signatures which represents both once and mobile scenarios. The system first tested on the development set of the database and achieved 6.04% for the stylus input signatures, 5.20% for the finger input signatures, and 6.00% for a combination of both types. These results ranked second and first in the SVC2021 signature verification competition development phase for both scenarios. The system also achieved a bronze medal in the evaluation phase of the competition for the finger input signatures task.</span></p><p id="h.irix0qw8sjn4" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Online signature verification, k-nearest neighbour, dynamic time warping.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.dmd33uqxvc5r" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Survey on Some Optimization Possibilities for Data Plane Applications</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Gereltsetseg Altangerel and Tejfel Máté, Department of Programming Languages and Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary</span></p><p id="h.d2r4llwk3s6s" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">By programming both the data plane and the control plane, network operators can customize their networks based on their needs, regardless of the hardware manufacturer. Control plane programming, a major component of the SDN (Software Defined Network) concept, has been developed for more than 10 years and successfully implemented in real networks. Efforts to develop reconfigurable data planes and highlevel network programming languages make it truly possible to program data planes. Therefore, the programmable data planes and SDNs offer great flexibility in network customization, allowing many innovations to be introduced on the network. The general focus of research on the data plane is data-plane abstractions, languages and compilers, data plane algorithms, and applications. This article outlines some emerging applications on the data plane and offers opportunities for further improvement and optimization.</span></p><p id="h.2ggp5euhk2zp" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Data plane applications, load balancing, in-network caching, in-network computing, in-network data aggregation, in-band network telemetry (INT).</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.wi1djrmbbslv" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Comparative analysis of contemporary network simulators</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Ms. Agampreet Kaur Walia</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Mr. Dakshraj Sharma</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;"> and Dr. Amit Chhabra</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">3</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Computer Science, Chandigarh College of Engineering and Technology, India, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Computer Science, Chandigarh College of Engineering and Technology, India, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">3</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Faculty of Engineering, Chandigarh College of Engineering and Technology, India</span></p><p id="h.cxumzk6j3pw4" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Network simulations are a popular methodology for the testing and study of the behavior of Network systems under specific situations and with specific inputs without having to put the actual corresponding system at risk. These network simulations, carried out through network simulation software, tend to be much more realistic and accurate in their outcomes compared to basic mathematical or analytical models. In addition, the advantages of using network simulation for testing, feature planning, etc. over testing on the actual system are too many to count — savings in money and time, risk avoidance in case of failures, etc. Today, there are several competitive as well as feature-rich network simulators available in the market for researchers, each with its own strengths and merits. When deciding on a simulator to utilize to satisfy their purpose, researches may be led to compare the various positives and negatives of one network simulator over another. Our work intends to aid researchers in such a comparison, by providing an overview of the various features of some of the most popular network simulators available for use in the research community.</span></p><p id="h.81zq9rrcxoep" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">QualNet, PSIM, GrooveNet, PeerSim, Mininet.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.ohfkxkgrpmy" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>LFO2: An Enhanced Version of Learning-From-OPT Caching Algorithm</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Yipkei Kwok and David L. Sullivan, Department of Computer Science, Mathematics and Physics, Missouri Western State University, Saint Joseph, Missouri, USA</span></p><p id="h.y346nlq7esvp" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Recent machine learning-based caching algorithm have shown promise. Among them, Learning-From-OPT (LFO) is the state-of-the-art supervised learning caching algorithm. LFO has a parameter named Window Size, which defines how often the algorithm generates a new machine-learning model. While using a small window size allows the algorithm to be more adaptive to changes in request behaviors, through experimenting with LFO, we realized that LFOs performance suffers dramatically with small window sizes. In this paper, we proposed LFO2, an improved LFO algorithm, which achieves high object hit ratios (OHR) with small window sizes. Our results show a 9% OHR increase with LFO2.</span></p><p id="h.mb5k4ev8zk78" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Content Delivery Network, Cache, Machine Learning, Supervised learning.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.urd5yju214wq" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>In-Time Guarantee for Multiple Concurrent Packets on the Internet</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Lijun Dong, Richard Li, Futurewei Technologies Inc., 2220 Central Expressway, Santa Clara, CA, USA</span></p><p id="h.1prf9a7na61s" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">The services provided by the today’s Internet cannot satisfy the precise latency guarantee required by many emerging applications. With New IP framework, the paper proposes that the order of the packets in the outgoing queue could be deliberately manipulated in order to satisfy the deadline constraints for as many packets as possible while achieving the minimum average stay time in a router. The algorithms based on backtracking, branch and bound are proposed to address the optimal scheduling problem for multiple concurrent packets. The performance evaluation verifies that the proposed scheduling schemes can achieve the best performance on the in-time delivery of packets from multiple flows.</span></p><p id="h.b2snszpoy91a" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">in-time guarantee, multiple packets, New IP, best effort, contract, metadata, high precision communication, QoS, precise latency, backtracking, branch and bound.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.d5xffjl9qkcm" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>GPF: A Green Power Forwarding Technique for Energy-Efficient Network Operations</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Rahil Gandotra</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;"> and Levi Perigo</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Interdisciplinary Telecom Program, University of Colorado Boulder, USA, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Department of Computer Science, University of Colorado Boulder, USA</span></p><p id="h.4330odjjy0oi" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">The energy consumption of network infrastructures is increasing; therefore, research efforts designed to diminish this growing carbon footprint are necessary. Building on our prior work, which determined a difference in the energy consumption of network hardware based on their forwarding configurations and developed a real-time network energy monitoring tool, this research proposes a novel technique to incorporate individual device energy efficiency into network routing decisions. A new routing metric and algorithm are presented to select the lowest-power, least-congested paths between destinations, known as Green Power Forwarding (GPF). In addition, a network dial is developed to enhance GPF by allowing network administrators to tune the network to optimally operate between energy savings and network performance. To ensure the scope of this research for industry adoption, implementation details for different generations of networking infrastructure (past, present, and future) are also discussed. The experiment results indicate that significant energy and, in turn, cost savings can be achieved by employing the proposed GPF technique without a reduction in network performance.</span></p><p id="h.87eijhitnq2y" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Energy efficiency, intent-based networking, network optimization dial, SDN, programmable control plane, OpenFlow, programmable data plane, P4.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.7tugz7fv6sl2" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>An Analysis of Face Recognition under Face Mask Occlusions</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Susith Hemathilaka and Achala Aponso, Department of Computer Science, Informatics Institute of Technology, Colombo, Sri Lanka</span></p><p id="h.ih83soaxa0r3" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">The face mask is an essential sanitaryware in daily lives growing during the pandemic period and is a big threat to current face recognition systems. The masks destroy a lot of details in a large area of face and it makes it difficult to recognize them even for humans. The evaluation report shows the difficulty well when recognizing masked faces. Rapid development and breakthrough of deep learning in the recent past have witnessed most promising results from face recognition algorithms. But they fail to perform far from satisfactory levels in the unconstrained environment during the challenges such as varying lighting conditions, low resolution, facial expressions, pose variation and occlusions. Facial occlusions are considered one of the most intractable problems. Especially when the occlusion occupies a large region of the face because it destroys lots of official features.</span></p><p id="h.13j0or3lolb" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">CNN, Deep Learning, Face Recognition, Multi-Branch ConvNets.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.1jpddnyd1vkb" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Characteristics of Super-Utilizers of Care at the University Hospitals of Geneva using Latent Class Analysis</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Gilles Cohen</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Pascal Briot</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;"> and Pierre Chopard</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Finance Directorate Geneva University Hospitals Geneva, Switzerland, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Quality and Patient Safety Division Geneva University Hospitals Geneva, Switzerland</span></p><p id="h.yntptecobfky" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">In hospitalized populations, there is significant heterogeneity in patient characteristics, disease severity, and treatment responses, which generally translates into very different related outcomes and costs. A better understanding of this heterogeneity can lead to better management, more effective and efficient treatment by personalizing care to better meet patient’s profiles. Thus, identifying distinct clinical profiles among patients can lead to more homogenous subgroups of patients. Super-utilizers (SUs) are such a group, who contribute a substantial proportion of health care costs and utilize a disproportionately high share of health care resources. This study uses cost, utilization metrics and clinical information to segment the population of patients (N=32,759) admitted to the University Hospital of Geneva in 2019 and thus identify the characteristics of its SUs group using Latent Class Analysis. This study demonstrates how cluster analysis might be useful to hospitals for identifying super-utilizers within their patient population and determining their characteristics.</span></p><p id="h.5gss4ygo68d" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Latent Class Analysis, Clustering, Super-Utilizers, Inpatient Segmentation, Hospital Efficiency, Quality Improvement.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.f4oq7ylip91j" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>A Comprehensive Study on Various Statistical Techniques for Prediction of Movie Success</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Manav Agarwal, Shreya Venugopal, Rishab Kashyap, Department of CSE, PES University, Bangalore, India</span></p><p id="h.ncdx2h23oxxp" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">The film industry is one of the most popular entertainment industries and one of the biggest markets for business. Among the contributing factors to this would be the success of a movie in terms of its popularity as well as its box office performance. Hence, we create a comprehensive comparison between the various machine learning models to predict the rate of success of a movie. The effectiveness of these models along with their statistical significance is studied to conclude which of these models is the best predictor. Some insights regarding factors that affect the success of the movies are also found. The models studied include some Regression models, Machine Learning models, a Time Series model and a Neural Network with the Neural Network being the best performing model with an accuracy of about 86%. Additionally, as part of the testing data for the movies released in 2020 are analysed.</span></p><p id="h.75y3uv90hrud" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Machine Learning models, Time Series, Movie Success, Neural Network, Statistical significance.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.oaibzf8lxetb" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Finding Clusters of Similar-Minded People on Twitter Regarding the Covid-19 Pandemic</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Paul Groß and Philipp Kappus, Department of Computer Engineering, Baden-Wuerttemberg Cooperative State University, Friedrichshafen, Germany</span></p><p id="h.lyuxo86u58jk" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">In this paper we present two clustering methods to determine users with similar opinions on the Covid-19 pandemic and the related public debate in Germany. We believe, they can help gaining an overview over similar-minded groups and could support the prevention of fake-news distribution. The first method uses a new approach to create a network based on retweet-relationships between users and the most retweeted characters (influencers). The second method extracts hashtags from users posts to create a “user feature vector” which is then clustered using a similarity matrix based on [1] to identify groups using the same language. With both approaches it was possible to identify clusters that seem to fit groups of different public opinion in Germany. However, we also found that clusters from one approach cannot be associated with clusters from the other due to filtering steps in the two methods.</span></p><p id="h.ifm0v09w3me8" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Data Analysis, Twitter, Covid-19, Retweet network, Hashtags.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.i3lp6esbyrqd" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Classification Methods for Motor Vibration in Predictive Maintenace</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Christoph Kammerer</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Michael Gaust</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Pascal Starke</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Roman Radtke1and Alexander Jesser</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">University of Applied Sciences Heilbronn, Max-Planck-Str. 39, 74081 Heilbronn, Germany, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">CeraCon GmbH, Talstraße 2, 97990 Weikersheim, Germany</span></p><p id="h.o2jthwu9lj69" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Reducing costs is an important part in todays business. Therefore manufacturers try to reduce unnecessary work processes and storage costs. Machine maintenance is a big, complex, regular process. In addition, the spare parts required for this must be kept in stock until a machine fails. In order to avoid a production breakdown in the event of an unexpected failure, more and more manufacturers rely on predictive maintenance for their machines. This enables more precise planning of necessary maintenance and repair work, as well as a precise ordering of the spare parts required for this. A large amount of past as well as current information is required to create such a predictive forecast about machines. With the classification of motors based on vibration, this paper deals with the implementation of predictive maintenance for thermal systems. There is an overview of suitable sensors and data processing methods, as well as various classification algorithms. In the end, the best sensor-algorithm combinations are shown.</span></p><p id="h.g69pmcsh9ocq" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Predictive Maintenance, Industry 4.0, Internet of Things, Big Data, Industrial Internet, ARMA.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.3ieatzbyycto" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>A Review of Deep-Learning Based Chatbots for Customer Service</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Bayan Aldashnan and Maram Alkhayyal, Information Systems Department, King Saud University, Riyadh, Saudi Arabia</span></p><p id="h.6ncpljpkoo4p" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Due to the need for extensively customized services and the rapid diffusion of technological innovations in artificial intelligence and deep learning, chatbots are a notable development that have been adopted across diverse sectors including e-commerce. A chatbot can provide customers with a more convenient way of receiving answers in a timely manner instead of waiting for a call center or e-mail while also utilizing customer care representatives in more critical tasks that require human involvement. Chatbots can be equipped with deep learning and natural language processing tools to automate customer service and facilitate communication which consequently enhances customer satisfaction and overall profits. This review provides a classification and assessment of recent state-of-the-art deep learning based chatbot systems for customer service.</span></p><p id="h.q9eswtpq88k5" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Deep Learning, Chatbot, Customer Service.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.h2e4y0s8ga27" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Identification of Propaganda Techniques in Internet Memes using Multimodal Fusion Techniques</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Sunil Gundapu and Radhika Mamidi, Language Technologies Research Centre, KCIS, IIIT Hyderabad, Telangana, India</span></p><p id="h.1b4c3ybq4meq" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">The exponential rise of social media networks has allowed the production, distribution, and consumption of data at a phenomenal rate. Moreover, the social media revolution has brought a unique phenomenon to social media platforms called Internet memes. Internet memes are one of the most popular contents used on social media, and they can be in the form of images with a witty, catchy, or satirical text description. In this paper, we are dealing with propaganda that is often seen in Internet memes. Propaganda is communication, which frequently includes psychological and rhetorical techniques to manipulate or influence an audience to act or respond as the propagandist wants. To detect propaganda in Internet memes, we propose a multimodal deep learning fusion system. Our approach fusing the text and image feature representations and outperforms individual models based solely on either text or images.</span></p><p id="h.z7i2c7ksdhwb" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Social Media, Internet Memes, Propaganda, Multimodal Fusion, Language & Vision.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.aiwhck8fhx54" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Symptomatic Analysis Prediction of Kidney Related Diseases using Machine Learning</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Dulitha Lansakara, Chamara Niroshana, Thinusha Gunasekera, Imali Weerasinghe, Department of Information Technology, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka</span></p><p id="h.r1afk2chqw5e" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Sri Lanka has been witnessing an increase in kidney disease issues for a while. Elderly kidney patients, kidney transplant patients who passed the risk level after the surgery are not treated in the emergency clinic. These patients are handed over to their families to take care of them. In any case, it is impossible to tackle a portion of the issues that emerge regarding the patient at home. It is hoped to enter patient’s data from home every day and to develop a system that can use that entered data to predict whether a patient is in an essential circumstance or not. Additionally, individuals in high-hazard regions are unable to know whether they are in danger of creating kidney disappointments or not and individuals in danger of creating kidney sickness because of Diabetes Mellitus. Thus, we desire to emphasize the framework to improve answers for this issue. The research focuses on developing a system that includes early kidney disease prediction models involving machine learning classification algorithms by considering the relevant variables. In predictive analysis, six machine learning methods are used: Support Vector Machine (SVM with kernels), Random Forest (RF), Decision Tree, Logistic Regression, and Multilayer Perceptron. These classification algorithms performance is evaluated using statistical measures such as sensitivity (recall), precision, accuracy, and F-score. In categorizing, accuracy determines which examples are accurate. The experimental results reveal that Support Vector Machine outperforms other classification algorithms in terms of accuracy.</span></p><p id="h.mogn9olb1k79" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Chronic Kidney Disease, Support Vector Machine, Diabetes Mellitus, Random Forest.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.kouuzcguv6on" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Automated Testing of Data Survivability and Restorability</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Sylvain Muller and Ciaran Bryce, University of Applied Sciences (HES-SO), Geneva, Switzerland</span></p><p id="h.w2noccdx632x" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Regular data backups are fundamental for protection against cyber-attacks and damage to infrastructure. However, the real challenge is not a successful backup, but rather to ensure a successful restoration. It is important to ensure that backed up data remains usable for restoration in the companys current environment. The paper proposes an automated test framework that validates the continued usability of backed up data for target restoration environments. The framework tests backups of Excel files, MySQL and Postgres databases, PDP documents and flat files.</span></p><p id="h.qbl8spo47r86" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Security, backup, automation, testing, infrastructure-as-code.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.t9gzsla6qms7" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>A Framework for Aspectual Requirement Validation: An Experimental Study</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Abdelsalam M. Maatuk, Sohil F. Alshareef and Tawfig M. Abdelaziz, Faculty of Information Technology, University of Benghazi, Libya & Faculty of Information Technology, Libyan International Medical University, Libya</span></p><p id="h.51bps8vogxuf" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Requirement engineering is a discipline of software engineering that is concerned with the identification and handling of user and system requirements. Aspect-Oriented Requirements Engineering (AORE) extends the existing requirements engineering approaches to cope with the issue of tangling and scattering resulted from crosscutting concerns. Crosscutting concerns are considered as potential aspects and can lead to the phenomena “tyranny of the dominant decomposition”. Requirements-level aspects are responsible for producing scattered and tangled descriptions of requirements in the requirements document. Validation of requirements artifacts is an essential task in software development. This task ensures that requirements are correct and valid in terms of completeness and consistency, hence, reducing the development cost, maintenance and establish an approximately correct estimate of effort and completion time of the project. In this paper, we present a validation framework to validate the aspectual requirements and the crosscutting relationship of concerns that are resulted from the requirements engineering phase. The proposed framework comprises a high-level and low-level validation to implement on software requirements specification (SRS). The high-level validation validates the concerns with stakeholders, whereas the low-level validation validates the aspectual requirement by requirements engineers and analysts using a checklist. The approach has been evaluated using an experimental study on two AORE approaches. The approaches are viewpoint-based called AORE with ArCaDe and lexical analysis based on Theme/Doc approach. The results obtained from the study demonstrate that the proposed framework is an effective validation model for AORE artifacts.</span></p><p id="h.uxb5rde4fds1" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">AORE, Validation and Verification, Requirements Engineering, Aspectual Requirements, Crosscutting Concerns.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.vkf99rrp62zk" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Security in Agile Development, Use Case in Typeform</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Pau Julià, David Salvador, Marc Peña, Department of Security, Typeform, Barcelona, Spain</span></p><p id="h.8mjpwtsnwj57" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Software development methodologies have evolved during the last years with the goal of reducing the time to market to the minimum possible. Agile is one of the most common and used methodologies for rapid application development. As the agile manifesto defines in its 12 principles, one of its main goals is to satisfy the customer needs through early and continuous delivery of valuable software. It is significant that none of the principles refers to security. In this paper, we will explain how Typeform integrates security activities into the whole development process, reducing at the same time the phases on the SSDLC to reduce friction and improve delivery maintaining the security level</span></p><p id="h.atf1aijwfv0y" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Security, S-SDLC, SDLC, AGILE, Development, Methodology.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.fxj5i83hlrf" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Proactive Research Design Decision Making Via the use of Visirule</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Ismail Olaniyi MURAINA and Imran Ademola ADELEKE, Department of Computer Science, Adeniran Ogunsanya College of Education,Otto/Ijanikin, Lagos, Nigeria</span></p><p id="h.am9cw2f5w820" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">One of the pillars of research writing is research design. Students’ understanding of research design will enable such student(s) to know the kind of variable he/she has in hand and also be able to select appropriate instrument to collect the relevant data needed to complete the research. Once the design of the project is in vague to the researcher or graduating students writing research then the problem begins to set in. Research design gives the researcher the direction of the study in terms of research questions or hypotheses formulation, use of the instrument and the analysis type. This paper presents Research Design Selection – Expert (RDS-Expert) via WIN-PROLOG 6.000 and LPA Toolkits,which available to be employed in selecting appropriate research design for a desired study. The Visirule software was used as a decision supporting tool, using Logic Programming Model to present RDS-Expert in a concisely and precisely way. The RDS-Expert serves as a guide for researchers to use in making good decision regarding the type of research design fit their studies.</span></p><p id="h.y7ya00a4ajnt" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Research Design, Visirule, Logic Programming Model, Project writing.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.9bk07evcbdpw" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>ISSDG: Internet of Things (IoT) Enabled Smart Social Distancing Gadget to Fight Against the Pandemic of Covid -19</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Prof. Hiral M. Patel, Prof. Rupal R. Patel and Ms. Akshita A. Patel, Department of Computer Engineering, Sankalchand Patel College of Engineering, Sankalchand Patel University, Gujarat, India</span></p><p id="h.x0j8oouik7ww" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Internet of Things (IoT) innovation can possibly be used to battle the COVID-19 pandemic. Shut spaces that are important for public or private workspaces like gathering rooms, lounge areas, homerooms, latrines, and so on are imparted to others in associations. These common spaces are obvious objectives for the spread of an infection and thus it turns out to be considerably more basic to know whether individuals who enter the workspace are debilitated. At the point when the entire world is battling a similar foe, we have all needed to accept new advancements and find their advantages, in spite of the fact that there is as yet far to go. Therefore, COVID-19 may well have been the epitome of the Internet of Things (IoT). Taking into account the current circumstance the COVID-19 has gotten pervasive in each edge of the world. We should target forestalling the local area spread of the infection. To accomplish this we should ensure a legitimate social distance is kept up from one individual to another. To ensure that an appropriate social distance is kept up from one individual to another we are concocting the possibility of social distancing shoes.</span></p><p id="h.4fix26yhw5ik" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">COVID-19, Coronavirus, Internet of Things, Social Distance, Pandemic.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.50jzn8hf0zug" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Data Protection through Data Security-as-a-service using Blockchain Enabled Platform</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Magesh Kasthuri, Hitarshi Buch, Krishna Moorthy, Vinod Panicker, Wipro Limited</span></p><p id="h.48ietpe5o4l1" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Data is a new currency today and it is vulnerable to threat attack and data security is utmost important for any organization. The economics of data being used across the industries rapidly growing in current digital world so the potential data related threats is also rapidly growing. Data security is an integrated solution component for any Enterprise solution but with the growing demand on data security and potential threat handling, Data Security as a Service a.k.a DSaaS is a new model widely accepted in modern age architecture in Blockchain and Big Data world combining the power of cloud based security services, decentralized network in Blockchain and tamper-proof ledger management. Any Enterprise Security architecture comprises of how data is handled in a secured way and how integration between services (consumers/producers or API interaction or any middleware services) handles data between them. Hence it is inevitable to that future technology adoption should include Data Security-as-a-service for zero-trust solution design complying with compliance and security standards for industry.</span></p><p id="h.b3fwzkg6pzm1" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Data Security, Blockchain, Decentralized Ledger, DSaaS, DLP, UEBA, CASB, Certificate Management, Key Management.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.15l0w4bo71n" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>The effects of selected industrial revolution (4IR) digital technology on SMMEs resilience; Serial mediation of strategy and workflow process</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Mamoipone Elisa Masupa, Central University of Technology Free State, South Africa</span></p><p id="h.mjryan4vvrde" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">The Fourth Industrial Revolution (4IR) is a new phenomenon that will impact human society drastically. It is complex, highly dynamic and constantly evolving at an ever-increasing pace. To date most of the research on the topic of the 4IR is focused on technological and scientific topics, with little to no work done on SMMEs resilience. The issue of the ability to survive and successfully compete in a turbulent business environment (i.e., resilience) is becoming more and more noteworthy within entrepreneurial, managerial and strategic studies. SMMEs constitute the backbone of the national economy as they create job opportunities, steer Gross Domestic Product (GDP) growth, encourage entrepreneurial innovation and contribute to increased exports of the nation.However, SMEs face a number of challenges that impede their ability to fully provide the much-needed boost to the economic development of countries. The lack of technology adoption is often cited as one of the key challenges of most SMEs in South Africa. As we stand at the cusp of the 4IR digital technologies dimensions such as Blockchain, big data analytics and cloud computing and many more have become the means and solutions to many of the SMMEs resilience. This study examines the effects of 4IR digital technologies dimensions such as (blockchain,big data analytics and cloud computing) on SMMEs resilience, mediation of strategies such as (information management strategy and change management strategy) and workflow process.</span></p><p id="h.x23cm0r4ez8d" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Fourth industrial revolution (4IR), Blockchain, Big data analytics, Cloud computing, SMMEs resilience.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.4wx8u1lxmeuo" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Comparison of SVM-based Feature Selection Method for Biological Omics Dataset</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Gao Xiao, Department of Software Engineering, Xi an University of Posts and Telecommunications, China</span></p><p id="h.tvdcfz0ypx4" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">With the development of omics technology, more and more data will be generated in cancer research. Machine learning methods have become the main method of analyzing these data. Omics data have the characteristics of a large number of features and small samples, but features are redundant to some extent for analysis. We can use the feature selection method to remove these redundant features. In this paper, we compare two SVM-based feature selection methods to complete the task of feature selection. We evaluate the performance of these two methods on three omics datasets, and the results showed that the SVM-RFE method performed better than the pure SVM method on these cancer datasets.</span></p><p id="h.qi6qi938ozut" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Cancer Classification, Feature Selection, Support Vector Machines, Recursive Feature Elimination.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.dwex4rlqosgx" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Information Filtering on the Web</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Saima Ishaq, Reshma Mahjabeen, Ruheena Mahveen, Department of Computer Science, King Khalid University Saudi Arabia, Abha</span></p><p id="h.8o37shh1v9y0" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">In the present era of big data, the overwhelming number of choices on the web has raised the need of prioritization, filtering and effective delivery of relevant information for alleviating the issue of information overload, which has resulted in problems to numerous web users. Various information filtering (IF) systems have been developed for tackling the issue of information overload for particular tastes. Different techniques and models from varied research areas such as behavioral science, artificial intelligence and information retrieval etc. are used by these systems. This paper is focused on highlighting the main concept of web information filtering and clarifying the difference between IF systems and related ones. Moreover, the IF techniques employed in available research studies are discussed and their pros and cons are analyzed in depth. The limitations of the current IF systems are described and some amendments are suggested for future, to enhance the procedure of information filtering on web and making web experience more productive and less time-consuming for the users.</span></p><p id="h.k20jdv4q8t1j" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Information filtering, Web information, User profile, Content-based Filtering, Collaborative filtering, Web mining.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.cv0oplbj95up" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Improving the Requirements Engineering Process through Automated Support: An Industrial Case Study</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Fabio Alexandre M.H. Silva, Bruno A. Bonifacio, Fabio Oliveira Ferreira, Fabio Coelho Ramos, Marcos Aurelio Dias and Andre Ferreira Neto, Sidia Institute of Science & Technology, Manaus, Amazonas, Brazil</span></p><p id="h.agvuszcd10ul" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Although Distributed Software Development (DSD) has been a growing trend in the software industry, performing requirements management in such conditions implies overcoming new limitations resulting from geographic separation. SIDIA is a Research and Development (R&D) Institute, located in Brazil, responsible for producing improvements on the Android Platform for Samsung Products in all Latin America. As we work in collaboration stakeholders provided by Mobile Network Operators (MNO) from Latin countries, it is common that software requirements be provided by external stakeholders. As such, it is difficult to manage these requirements due to the coordination of many different stakeholders in a distributed setting. In order to minimize the risks, we developed a tool to assist our requirements management and development process. This experience paper explores the experience in designing and deploying a software approach that facilitates (I) Distributed Software Development, (II) minimizes requirements error rate, (III) teams and task allocations and (IV) requirements managements. We also report three lessons learned from adopting automated support in the DDS environment.</span></p><p id="h.50nzy9ggq0j" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">industrial case study, requirement management, DSD, distributed software development, RM, automation, industrial experience.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.q2q163ioyxva" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Comparison of Machine Learning Techniques for Risk Assessment of Cardiovascular Disease Development by Health Indicators</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Thallys Rubens Moreira Costalat</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;"> and Géssica Fortes Tavares</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Institute of Technology, Federal University of Pará, Pará, Brazil, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Institute of Health Science, Federal University of Pará, Pará, Brazil</span></p><p id="h.hulc223ili3a" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Currently, one of the leading causes of death around the world are caused by diseases or acute syndromes installed in the cardiovascular system of the human body. Thus, this paper presents a modern alternative for the detection of cardiovascular diseases from health indicators such as age, gender, glucose and cholesterol indices, used as inputs for machine learning systems. The evaluation is made by using supervised learning algorithms, such as K-Nearest Neighbours, Decision Tree, Logistic Regression, Voting Classification, from the accuracy observed during the testing period, in order to conclude what is the best alternative for the construction of an effective cardiovascular event predictor in the clinical routine.</span></p><p id="h.lmg25xbpb5st" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Machine Learning, Health Science, Supervised Learning, Heart Disease, Scikit-Learn, Python.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.7pil1rrl0tpp" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Imbalance-aware Machine Learning for Epileptic Seizure Detection</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Khadidja Henni</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1,2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Lina Abou-Abbas</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1,2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Imene Jmel</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1,3</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Amar Mitiche</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">3</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Neila Mezghani</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1,2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Imaging and Orthopaedics Research Laboratory, The CHUM Research Center, Montreal, Canada, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Research Institute LICEF, TELUQ University, Montreal, Canada, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">3</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">INRS-Centre Énergie, Matériaux et Télécommunications, Montréal, Canada</span></p><p id="h.xvvbhuy2dvkg" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Automatic epileptic seizure detection is a challenging task that could cope with sudden seizures and help epileptic patients to have a normal life. The electroencephalography (EEG) recording remains the most common method used for detecting epileptic seizures. The precision and accuracy of seizure detection are the most important elements in automatic EEG-based seizure detection systems, which could be achieved by training the classification models with relevant features. In this work, we propose a robust machine learning framework for epileptic seizure detection from EEG data. Imbalance class problem and high dimensional feature space issue have been handled for classification. Our approach has been tested on the largest EEG database (The Temple University Hospital EEG Seizure Corpus, TUSZ). A comparative study on three categories of data balancing techniques: cost-sensitive learning (weighting), oversampling and under sampling has been made. An efficient feature selection algorithm based on feature interaction graph analysis has been used for selecting minimal number of relevant inputs before classification. Results in terms of accuracy and area under the curve (AUC), have showed that the features subset selected using the graph-based method, balanced by the Synthetic Minority Over Sampling method (SMOTE) achieved the highest classification performance using random forest classifier.</span></p><p id="h.fwdf2caar2mj" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Epileptic seizure detection, EEG, Graph analysis, SMOTE, imbalanced classes, Random Forest.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.eqq9wl69yggc" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>A Novel Privacy-Preserving Scheme in IoT-Based Social Distancing Technologies</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Arwa Alrawais</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Fatemah Alharbi</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Moteeb Almoteri</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">3</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, Sara A Aljwair</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">4</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;"> and Sara S Aljwair</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">5</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1,4,5</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj,16278, Saudi Arabia, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">College of Computer Science and Engineering, Taibah University, Yanbu 46522, Saudi Arabia, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">3</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">College of Business Administration, King Saud University, Riyadh, 11451, Saudi Arabia</span></p><p id="h.slinwe6z93it" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">The COVID-19 pandemic has swapped the world, causing enormous cases, which led to high mortality rates across the globe. Internet of Things (IoT) based social distancing techniques and many current and emerging technologies have contributed to the fight against the spread of pandemics and reduce the number of positive cases. These technologies generate massive data, which will pose a significant threat to data owners’ privacy by revealing their lifestyle and personal information since that data is stored and managed by a third party like a cloud. This paper provides a new privacy-preserving scheme based on anonymization using an improved slicing technique and implying distributed fog computing. Our implementation shows that the proposed approach ensures data privacy against a third party intending to violate it for any purpose. Furthermore, our results illustrate our scheme’s efficiency and effectiveness.</span></p><p id="h.phd5tovkl4tf" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Anonymization, Fog computing, IoT, Privacy, Social distancing technologies.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.9umajogxu2or" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Digital Transformation and Its Opportunities for Sustainable Manufacturing</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Issam Moghrabi, Gulf University for Science and Technology, Kuwait</span></p><p id="h.5z8g69oqupsz" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">This paper explores the impacts of digital technologies on supply chains and coordination, the manufacturing process, energy conservation, efficiency, and environmental conservation. Digital transformation has led to the popularization of sustainable manufacturing, which entails creating sustainable products that promote social, economic, and environmental sustainability. Digital transformation has boosted sustainability in production and manufacturing in a variety of ways. These ways include increasing cross-border communication through the internet, decentralizing supply chains, Internet of Things (IoT) solutions, artificial intelligence, machine learning, big data analytics in predictive analysis, robotics, horizontal and vertical integration of businesses, efficient management, and various other ways. The findings of the paper indicate that digital transformation has changed manufacturing in various ways. Aspects like cloud computing, vertical and horizontal integration, communication, and the internet have contributed to sustainable manufacturing by decentralizing supply chains. In addition, some digital transformation tools such as predictive analysis and big data analytics have helped optimize sustainable manufacturing by reducing overproduction or underproduction through predicting customer demands.</span></p><p id="h.3ytboyociqwx" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Internet of Things, Digital Transformation, Machine Learning, sustainable organization.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.7k7zaqho9pgn" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Method for Orthogonal Edge Routing of Directed Layered Graphs with Edge Crossings Reduction</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Jordan Raykov, JDElite Consulting,Boulder, Colorado, USA</span></p><p id="h.7xt7d341zcf0" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">This paper presents a method for automated orthogonal edge routing of directed layered graphs usingthedescribededge crossings reduction heuristic algorithm. The method assumes the nodes are pre-arranged on a rectangular grid consisting of layers across the flow direction and lanes along the flow direction. Both the layers and lanes are separated by rectangular regions defined as pipes. Each pipe has associated segment tracks. The edges are routed along the shortest paths as orthogonal polylines composed of chained line segments. Each segment is assigned to a pipe and to a segment track in it. The edge crossings reduction phase uses an iterative algorithm to resolve crossings between segments. Conflicting segments are repositioned on adjacent segment tracks, either by swapping with adjacent segments, or by inserting additional tracks while considering the shortest paths of edges. The algorithm proved to be efficient and was implemented in an interactive graph design tool.</span></p><p id="h.2aoibnkm6m1z" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Directed Graphs, Orthogonal Edge Routing, Crossings Reduction Algorithms.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.5sqkpm4w55wi" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Automotive Hacking, Cyberattacks on the CAN Bus and Countermeasures</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Igli Tafa, Fotion Konomi, Denis Koleci, Kledisa Gjuta, Polytechnic University of Tirana, Faculty of Information Technology, Information Engineering Department</span></p><p id="h.piqzbe801yqc" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">During the last decade, different companies are thriving on re-search and development for creating full self-driving cars. To reach this state, the parts inside of a vehicle are communicating with each other harder than ever before and more securely than ever before. Therefore, the CAN Bus, which con-nects all inner electronic components inside of a car, has been developing at a rapid pace. During this development, one of the key aspects has been and will al-ways be security. CAN is a protocol that had no security mechanisms built in when it was invented. But as the components in the inner network of vehicles started to exchange more and more sensitive data, and furthermore, this network even started to communicate with outside networks, the CAN Bus was seriously threated by cyberattacks. In this paper we analyze many vulnerabilities of the CAN Bus and what countermeasures have been implemented to tackle every vulnerability, together with their advantages and their disadvantages. We will make a short recap for what is the CAN Bus, and which are the internal com-ponents that connect to it. Then, we will see some of the attacks that can be performed on the CAN Bus and then how some of the countermeasures, e.g., cryptography, intrusion detection systems deal with the attacks and their limita-tions.</span></p><p id="h.g79w5ppextu0" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">CAN, Bus, ECU, Cyberattacks, Cryptography, Intrusion Detec-tion Systems, Sensors, Security.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.vnjjq1826zfi" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>A Comprehensive Survey of Energy-Efficiency Approaches in Wired Networks</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Rahil Gandotra</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;"> and Levi Perigo</span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">1</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Interdisciplinary Telecom Program, University of Colorado Boulder, USA, </span><sup style="color: #000000; font-family: 'Times New Roman'; font-size: 7.199999999999999pt; font-weight: normal;">2</sup><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Department of Computer Science, University of Colorado Boulder, USA</span></p><p id="h.ag5qoy2xvdg9" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Energy consumption by the network infrastructure is growing expeditiously with the rise of the Internet. Critical research efforts have been pursued by academia, industry and governments to make networks, such as the Internet, operate more energy efficiently and reduce their power consumption. This work presents an in-depth survey of the approaches to reduce energy consumption in wired networks by first categorizing existing research into broad categories and then presenting the specific techniques, research challenges, and important conclusions. At a broad level, we present five categories of approaches for energy efficiency in wired networks – (i) sleeping of network elements, (ii) link rate adaptation, (iii) proxying, (iv) store and forward, and (v) network traffic aggregation. Additionally, this survey reviews work in energy modeling and measurement, energy-related standards and metrics, and enumerates discussion points for future work and motivations.</span></p><p id="h.kts2f3fzsvv0" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Energy efficiency, energy proportionality, energy-aware protocols, wired networks.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.gnsi9bj509m" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Hybrid Deep Learning Model for Classification of Physiological Signals</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">William da Rosa Frhlich, UNISINOS University, Brazil</span></p><p id="h.ya9s9cb5popb" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Wearables sensors are essential devices that can get reliable physiological signals for disease diagnostics pattern identification. Few studies evaluate the effect of combining several different signs, pattern detection architectures, and the implication of wearable sensor data acquisition procedures. This paper aims to investigate the possible integration of data obtained from heart rate variability (HRV), electrocardiographic (ECG), electrodermal activity (EDA) electromyography (EMG), blood volume pulse (BVP), respiration changes (RSP), body temperature (BT) and three-axis acceleration (ACC) to detect stress patterns. We compared using different machine learning and deep learning architectures among different architectures and datasets. The developed model shows promising results. In order to test the proposed model, we used two different datasets. The results obtained during the model training varied between 60 % for four classes and 87% accuracy for two classes.</span></p><p id="h.jiq7kseivxu6" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Wearables, Deep Learning, Physiological Signals, Diagnostics.</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 1.38; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><br></p><p id="h.sdsfkvvvswe1" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; vertical-align: baseline;"><strong>Smartphone Model Fingerprinting using WIFI Radiation Patterns</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Thomas Burton, University of Oxford, United Kingdom</span></p><p id="h.on2pgv6lgj2" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">ABSTRACT</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">In this paper, we propose a new method for fingerprinting different classes of wireless devices. Our method relies on the observation that different device types, or indeed different models of the same type (e.g., different models of smartphones), have different wireless radiation patterns. We show in detail how a small set of stationary receivers can measure the radiation pattern of a transmitting device in a completely passive manner. As the observed device moves, our method can gather enough data to characterize the shape of the radiation pattern, which can be used to determine the type of the transmitting device from a database of patterns. We apply this idea to the problem of identifying the model of smartphones present in an office environment. We demonstrate that the patterns produced by different models of smartphones are easily different enough to be identified. Our measurements are repeatably measurable using RSS with commercial-off-the-shelf hardware.</span></p><p id="h.2rwuhfdaqiv2" dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4354; margin-bottom: 2pt; margin-top: 11pt; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">KEYWORDS</span></p><p dir="ltr" class="CDt4Ke zfr3Q" style="background-color: transparent; border-bottom: none; border-left: none; border-right: none; border-top: none; line-height: 2.4; margin-bottom: 0; margin-top: 0; padding-bottom: 0; padding-left: 0; padding-right: 0; padding-top: 0; text-align: justify; white-space: normal;"><span style="color: #000000; font-family: 'Times New Roman'; font-size: 12pt; font-weight: normal; vertical-align: baseline;">Wireless Radiation Patterns, Device Fingerprinting, Identification.</span></p></div></div></div></div></div></div></div></div></div></section><section id="h.5a9834562b5c2b71_61" class="yaqOZd cJgDec nyKByd" style=""><div class="IFuOkc" style="background-size: cover; background-position: center center; background-image: url(https://lh5.googleusercontent.com/0aVlZR7IMO3fPeufNwaBOKYfq_qilhEkHXO-hASgk1jhWdOoNIZQjdN4642WVyvNJAEZyIFP15NceSiF_MQQhQ=w16383);"></div><div class="mYVXT"><div class="LS81yb VICjCf j5pSsc db35Fc" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd Ft7HRd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb ZcASvf-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c Ktthjf-AhqUyc-qWD73c JNdkSc SQVYQc"><div class="JNdkSc-SmKAyb LkDMRd"><div class="" jscontroller="sGwD4d" jsaction="zXBUYb:zTPCnb;zQF9Uc:Qxe3nd;" jsname="F57UId"><div class="oKdM2c ZZyype Kzv0Me"><div id="h.5a9834562b5c2b71_58" class="hJDwNd-AhqUyc-uQSCkd Ft7HRd-AhqUyc-uQSCkd jXK9ad D2fZ2 zu5uec OjCsFc dmUFtb wHaque g5GTcb JYTMs"><div class="jXK9ad-SmKAyb"><div class="tyJCtd mGzaTb Depvyb baZpAe"><p dir="ltr" class="CDt4Ke zfr3Q"><span style="font-family: 'Times New Roman'; font-size: 14pt; font-variant: normal; vertical-align: baseline;"><strong>Contact</strong></span></p><p dir="ltr" class="CDt4Ke zfr3Q"><span class=" aw5Odc" style="font-family: 'Times New Roman'; font-size: 14pt; font-variant: normal; text-decoration: underline; vertical-align: baseline;"><a class="XqQF9c" href="mailto:iccseaconf@yahoo.com" target="_blank"><strong>iccseaconf@yahoo.com</strong></a></span><span style="color: #000000; font-family: 'Times New Roman'; font-size: 14pt; font-variant: normal; vertical-align: baseline;"><strong> </strong></span></p></div></div></div></div></div></div></div></div></div></section></div><div class="Xpil1b xgQ6eb"></div><footer jsname="yePe5c"><section id="h.5a9834562b5c2b71_41" class="yaqOZd lQAHbd" style=""><div class="IFuOkc"></div><div class="mYVXT"><div class="LS81yb VICjCf j5pSsc db35Fc" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd Ft7HRd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb ZcASvf-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c Ktthjf-AhqUyc-qWD73c JNdkSc SQVYQc"><div class="JNdkSc-SmKAyb LkDMRd"><div class="" jscontroller="sGwD4d" jsaction="zXBUYb:zTPCnb;zQF9Uc:Qxe3nd;" jsname="F57UId"><div class="oKdM2c ZZyype Kzv0Me"><div id="h.5a9834562b5c2b71_38" class="hJDwNd-AhqUyc-uQSCkd Ft7HRd-AhqUyc-uQSCkd jXK9ad D2fZ2 zu5uec OjCsFc dmUFtb wHaque g5GTcb JYTMs"><div class="jXK9ad-SmKAyb"><div class="tyJCtd mGzaTb Depvyb baZpAe"><div id="h.5g3fcjoav7m9" class="GV3q8e aP9Z7e"></div><h3 id="h.5g3fcjoav7m9_l" dir="ltr" class="CDt4Ke zfr3Q OmQG5e" style="text-align: center;" tabindex="-1"><div jscontroller="Ae65rd" jsaction="touchstart:UrsOsc; click:KjsqPd; focusout:QZoaZ; mouseover:y0pDld; mouseout:dq0hvd;fv1Rjc:jbFSOd;CrfLRd:SzACGe;" class="CjVfdc"><div class="PPhIP rviiZ" jsname="haAclf"><div role="presentation" class="U26fgb mUbCce fKz7Od LRAOtb Znu9nd M9Bg4d" jscontroller="mxS5xe" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;" jsshadow aria-describedby="h.5g3fcjoav7m9_l" aria-label="Copy heading link" aria-disabled="false" data-tooltip="Copy heading link" aria-hidden="true" data-tooltip-position="top" data-tooltip-vertical-offset="12" data-tooltip-horizontal-offset="0"><a class="FKF6mc TpQm9d" href="#h.5g3fcjoav7m9" aria-label="Copy heading link" jsname="hiK3ld" role="button" aria-describedby="h.5g3fcjoav7m9_l"><div class="VTBa7b MbhUzd" jsname="ksKsZd"></div><span jsslot class="xjKiLb"><span class="Ce1Y1c" style="top: -11px"><svg class="OUGEr QdAdhf" width="22px" height="22px" viewBox="0 0 24 24" fill="currentColor" focusable="false"><path d="M0 0h24v24H0z" fill="none"/><path d="M3.9 12c0-1.71 1.39-3.1 3.1-3.1h4V7H7c-2.76 0-5 2.24-5 5s2.24 5 5 5h4v-1.9H7c-1.71 0-3.1-1.39-3.1-3.1zM8 13h8v-2H8v2zm9-6h-4v1.9h4c1.71 0 3.1 1.39 3.1 3.1s-1.39 3.1-3.1 3.1h-4V17h4c2.76 0 5-2.24 5-5s-2.24-5-5-5z"/></svg></span></span></a></div></div><span style="font-family: 'Times New Roman'; font-size: 14pt; vertical-align: baseline;"><strong>All Rights Reserved ® ICCSEA 2021</strong></span></div></h3></div></div></div></div></div></div></div></div></div></section></footer><div jscontroller="j1RDQb" jsaction="rcuQ6b:rcuQ6b;MxH79b:JdcaS;FaOgy:XuHpsb;" class="dZA9kd ynRLnc" data-last-updated-at-time="1639023681962" data-is-preview="false"><div role="button" class="U26fgb JRtysb WzwrXb I12f0b K2mXPb zXBiaf ynRLnc" jscontroller="iSvg6e" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;touchstart:p6p2H; touchmove:FwuNnf; touchend:yfqBxc(preventDefault=true); touchcancel:JMtRjd;;keydown:I481le;" jsshadow jsname="Bg3gkf" aria-label="Site actions" aria-disabled="false" tabindex="0" aria-haspopup="true" aria-expanded="false" data-menu-corner="bottom-start" data-anchor-corner="top-start"><div class="NWlf3e MbhUzd" jsname="ksKsZd"></div><span jsslot class="MhXXcc oJeWuf"><span class="Lw7GHd snByac"><svg width="24" height="24" viewBox="0 0 24 24" focusable="false" class=" NMm5M"><path d="M11 17h2v-6h-2v6zm1-15C6.48 2 2 6.48 2 12s4.48 10 10 10 10-4.48 10-10S17.52 2 12 2zm0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8zM11 9h2V7h-2v2z"/></svg></span></span><div jsname="xl07Ob" style="display:none" aria-hidden="true"><div class="JPdR6b hVNH5c" jscontroller="uY3Nvd" jsaction="IpSVtb:TvD9Pc;fEN2Ze:xzS4ub;frq95c:LNeFm;cFpp9e:J9oOtd; click:H8nU8b; mouseup:H8nU8b; keydown:I481le; keypress:Kr2w4b; blur:O22p3e; focus:H8nU8b" role="menu" tabindex="0" style="position:fixed"><div class="XvhY1d" jsaction="mousedown:p8EH2c; touchstart:p8EH2c;"><div class="JAPqpe K0NPx"><span jsslot class="z80M1 FeRvI" jsaction="click:o6ZaF(preventDefault=true); mousedown:lAhnzb; mouseup:Osgxgf; mouseenter:SKyDAe; mouseleave:xq3APb;touchstart:jJiBRc; touchmove:kZeBdd; touchend:VfAz8" jsname="j7LFlb" aria-label="Google Sites" role="menuitem" tabindex="-1"><div class="aBBjbd MbhUzd" jsname="ksKsZd"></div><div class="uyYuVb oJeWuf" jsaction="JIbuQc:Toy3n;" jsname="V2zOu"><div class="jO7h3c">Google Sites</div></div></span><span jsslot class="z80M1 FeRvI" jsaction="click:o6ZaF(preventDefault=true); mousedown:lAhnzb; mouseup:Osgxgf; mouseenter:SKyDAe; mouseleave:xq3APb;touchstart:jJiBRc; touchmove:kZeBdd; touchend:VfAz8" jsname="j7LFlb" data-disabled-tooltip="Report abuse is not available in preview mode" aria-label="Report abuse" role="menuitem" tabindex="-1"><div class="aBBjbd MbhUzd" jsname="ksKsZd"></div><div class="uyYuVb oJeWuf" jscontroller="HYv29e" jsaction="JIbuQc:dQ6O0c;" jsname="lV5oke" data-abuse-proto="%.@.null,null,"https://sites.google.com/view/iccsea-2021/accepted-papers"]" data-abuse-reporting-widget-proto="%.@.null,"https://sites.google.com/view/iccsea-2021/accepted-papers"]"><div class="jO7h3c">Report abuse</div></div></span><span jsslot class="z80M1 FeRvI" jsaction="click:o6ZaF(preventDefault=true); mousedown:lAhnzb; mouseup:Osgxgf; mouseenter:SKyDAe; mouseleave:xq3APb;touchstart:jJiBRc; touchmove:kZeBdd; touchend:VfAz8" jsname="j7LFlb" aria-label="Page details" role="menuitem" tabindex="-1"><div class="aBBjbd MbhUzd" jsname="ksKsZd"></div><div class="uyYuVb oJeWuf" jsaction="JIbuQc:hriXLd;" jsname="Rg8K2c"><div class="jO7h3c">Page details</div></div></span></div></div></div></div></div></div><div jscontroller="j1RDQb" jsaction="focusin:gBxDVb(srlkmf); focusout:zvXhGb(srlkmf); click:ro2KTd(psdQ5e);JIbuQc:DSypkd(Bg3gkf);MxH79b:JdcaS;rcuQ6b:rcuQ6b;" class="LqzjUe ynRLnc" data-last-updated-at-time="1639023681962" data-is-preview="false"><div jsname="psdQ5e" class="Q0cSn"></div><div jsname="bN97Pc" class="hBW7Hb"><div role="button" class="U26fgb mUbCce fKz7Od kpPxtd QMuaBc M9Bg4d" jscontroller="VXdfxd" jsaction="click:cOuCgd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:JywGue; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;touchstart:p6p2H; touchmove:FwuNnf; touchend:yfqBxc(preventDefault=true); touchcancel:JMtRjd;" jsshadow jsname="Bg3gkf" aria-label="Site actions" aria-disabled="false" tabindex="-1" aria-hidden="true"><div class="VTBa7b MbhUzd" jsname="ksKsZd"></div><span jsslot class="xjKiLb"><span class="Ce1Y1c" style="top: -12px"><svg width="24" height="24" viewBox="0 0 24 24" focusable="false" class=" NMm5M"><path d="M11 17h2v-6h-2v6zm1-15C6.48 2 2 6.48 2 12s4.48 10 10 10 10-4.48 10-10S17.52 2 12 2zm0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8zM11 9h2V7h-2v2z"/></svg></span></span></div><div jsname="srlkmf" class="hUphyc"><div class="YkaBSd"><div class="iBkmkf"><span>Page updated</span> <span jsname="CFIm1b" class="dji00c" jsaction="AHmuwe:eGiyHb; mouseover:eGiyHb;" tabindex="0" role="contentinfo"></span></div></div><div class="YkaBSd" jsaction="click:Toy3n;"><div role="button" class="U26fgb kpPxtd J7BuEb" jsshadow jsname="V2zOu" aria-disabled="false" tabindex="0">Google Sites</div></div><div class="YkaBSd" jscontroller="HYv29e" jsaction="click:dQ6O0c;" data-abuse-proto="%.@.null,null,"https://sites.google.com/view/iccsea-2021/accepted-papers"]" data-abuse-reporting-widget-proto="%.@.null,"https://sites.google.com/view/iccsea-2021/accepted-papers"]"><div role="button" class="U26fgb kpPxtd J7BuEb" jsshadow aria-label="Report abuse" aria-disabled="false" tabindex="0">Report abuse</div></div></div></div></div></div></div></div><script nonce="-4MOni6pRqQrZ7h-jbswTA">DOCS_timing['cov']=new Date().getTime();</script><script src="https://www.gstatic.com/_/atari/_/js/k=atari.vw.en_US.qGOLMiQVDqM.O/am=HAxA/d=1/rs=AGEqA5moXCCZKjrIwjyeuzG482ByKsAzEQ/m=view" id="base-js" nonce="-4MOni6pRqQrZ7h-jbswTA"></script></div></div><div jscontroller="YV8yqd" jsaction="rcuQ6b:npT2md"></div></body></html>