CINXE.COM
Search results for: Yuan Yan Tang
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Yuan Yan Tang</title> <meta name="description" content="Search results for: Yuan Yan Tang"> <meta name="keywords" content="Yuan Yan Tang"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Yuan Yan Tang" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Yuan Yan Tang"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 469</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Yuan Yan Tang</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> Research on the Landscape of Xi'an Ancient City Based on the Poetry Text of Tang Dynasty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zou%20Yihui">Zou Yihui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of the traditional landscape of the ancient city and the poet's emotions and symbolization into ancient poetry is the unique cultural gene and spiritual core of the historical city, and re-understanding the historical landscape pattern from the poetry is conducive to continuing the historical city context and improving the current situation of the gradual decline of the poetry of the modern historical urban landscape. Starting from Tang poetry uses semantic analysis methods、combined with text mining technology, entry mining, word frequency analysis, and cluster analysis of the landscape information of Tang Chang'an City were carried out, and the method framework for analyzing the urban landscape form based on poetry text was constructed. Nearly 160 poems describing the landscape of Tang Chang'an City were screened, and the poetic landscape characteristics of Tang Chang'an City were sorted out locally in order to combine with modern urban spatial development to continue the urban spatial context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tang%20Chang%27an%20City" title="Tang Chang'an City">Tang Chang'an City</a>, <a href="https://publications.waset.org/abstracts/search?q=poetic%20texts" title=" poetic texts"> poetic texts</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20analysis" title=" semantic analysis"> semantic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20landscape" title=" historical landscape"> historical landscape</a> </p> <a href="https://publications.waset.org/abstracts/185945/research-on-the-landscape-of-xian-ancient-city-based-on-the-poetry-text-of-tang-dynasty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">468</span> Film Censorship and Female Chastity: Exploring State's Discourses and Patriarchal Values in Reconstructing Chinese Film Stardom of Tang Wei</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinchen%20Zhu">Xinchen Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid fame of the renowned female film star Tang Wei has made her a typical subject (or object) entangled with sensitive issues involving the official ideology, sexuality, and patriarchal values of contemporary China. In 2008, Tang Wei’s official ban has triggered the wave of debates concerning state power and censorship, actor’s rights, sexual ethics, and feminism in the public sphere. Her ban implies that Chinese film censorship acts as a key factor in reconstructing Chinese film stardom. Following the ban, as sensational media texts are re-interpreting the official discourses, the texts also functioned as a crucial vehicle in reconstructing Tang's female image. Therefore, the case study of Tang's film stardom allows us to further explore how female stardom has been entangled with the issues involving official ideology, female sexual ethics, and patriarchal values in contemporary China. This paper argues that Chinese female film stars shoulder the responsibility of film acting which would conform to the official male-dominated values. However, with the development of the Internet, the state no longer remains an absolute control over the new venues. The netizens’ discussion about her ban reshaped Tang’s image as a victim and scapegoat under the unfair oppression of the official authority. Additionally, this paper argues that similar to State’s discourse, netizens’ discourse did not reject patriarchal values, and in turn emphasized Tang Wei’s female chastity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=film%20censorship" title="film censorship">film censorship</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20female%20film%20stardom" title=" Chinese female film stardom"> Chinese female film stardom</a>, <a href="https://publications.waset.org/abstracts/search?q=party-state%E2%80%99s%20power" title=" party-state’s power"> party-state’s power</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20discourses" title=" national discourses"> national discourses</a>, <a href="https://publications.waset.org/abstracts/search?q=Tang%20Wei" title=" Tang Wei"> Tang Wei</a> </p> <a href="https://publications.waset.org/abstracts/108422/film-censorship-and-female-chastity-exploring-states-discourses-and-patriarchal-values-in-reconstructing-chinese-film-stardom-of-tang-wei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">467</span> Variations and Fugue on an Ancient Taiwanese Music: The Art of Combining Taiwanese Traditional Music and Western Composition in Kuo Chih-Yuan's Piano Repertoire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Wei%20Hsu">Sheng-Wei Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Taiwanese composer Kuo Chih-Yuan (1921-2013) studied composition at Tokyo University of the Arts and was influenced by the musical nationalism prevailing in Japan at the time. Determined to create world-class contemporary works to represent Taiwan, he created music with elements of traditional Taiwanese music in ways that had not been done before. The aims of this study were to examine the traditional elements used in Kuo Chih-Yuan’s Variations and Fugue on an Ancient Taiwanese Music (1972), and how an understanding of these elements might guide pianists to interpret a more proper performance of his work was also presented in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taiwanese%20traditional%20music" title="Taiwanese traditional music">Taiwanese traditional music</a>, <a href="https://publications.waset.org/abstracts/search?q=piano%20performance%20research" title=" piano performance research"> piano performance research</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo%20Chih-Yuan" title=" Kuo Chih-Yuan"> Kuo Chih-Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=fugue" title=" fugue"> fugue</a>, <a href="https://publications.waset.org/abstracts/search?q=variations" title=" variations"> variations</a> </p> <a href="https://publications.waset.org/abstracts/22461/variations-and-fugue-on-an-ancient-taiwanese-music-the-art-of-combining-taiwanese-traditional-music-and-western-composition-in-kuo-chih-yuans-piano-repertoire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">466</span> The Effects of Xiang Sha Liu Jun Zi Tang to Diarrhea and Growth Performance of Piglets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siao-Wei%20Jiang">Siao-Wei Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Boy-Young%20Hsieh"> Boy-Young Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Liang%20Hsieh"> Ching-Liang Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Yung%20Lin"> Cheng-Yung Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problems of multiple drug resistance in the pig farming industry have been emphasized in recent years. Diarrhea syndrome is common in weaning piglets and often treated with antibiotics as a feed additive, leading to the rapid spread of antibiotic resistance and posing high health risks to humans. The study aimed to alleviate diarrhea syndrome with traditional herbal medicine, Xiang Sha Liu Jun Zi Tang, whose effects enhanced digestive function. Piglets at 4 weeks old with stool classified to Bristol stool classification type 6 or type 7 were randomly divided into the control group, group A (1% of Xiang Sha Liu Jun Zi Tang) and group B (0.1% Colistin). The piglets were administrated for 7 days, and their weight, feed intake, and stool score were recorded daily before and after the trial. The results showed that the diarrhea index score in group A and group B improved significantly compared to the control group, indicating that Xiang Sha Liu Jun Zi Tang may have the same effect on alleviating diarrhea syndrome as Colistin, and it may be another replacement for antibiotics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pig" title="pig">pig</a>, <a href="https://publications.waset.org/abstracts/search?q=diarrhea" title=" diarrhea"> diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20medicine" title=" herbal medicine"> herbal medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Sha%20Liu%20Jun%20Zi%20Tang" title=" Xiang Sha Liu Jun Zi Tang"> Xiang Sha Liu Jun Zi Tang</a> </p> <a href="https://publications.waset.org/abstracts/182911/the-effects-of-xiang-sha-liu-jun-zi-tang-to-diarrhea-and-growth-performance-of-piglets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Research on Transverse Ecological Compensation Mechanism in Yangtze River Economic Belt Based on Evolutionary Game Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tingyu%20Zhang">Tingyu Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cross-basin ecological compensation mechanism is key to stimulating active participation in ecological protection across the entire basin. This study constructs an evolutionary game model of cross-basin ecological compensation in the Yangtze River Economic Belt (YREB), introducing a central government constraint and incentive mechanism (CGCIM) to explore the conditions for achieving strategies of protection and compensation that meet societal expectations. Furthermore, using a water quality-water quantity model combined with factual data from the YREB in 2020, the amount of ecological compensation is calculated. The results indicate that the stability of the evolutionary game model of the upstream and downstream governments in the YREB is closely related to the CGCIM. When the sum of the central government's reward amount to the upstream government and the penalty amount to both sides simultaneously is greater than 39.948 billion yuan, and the sum of the reward amount to the downstream government and the penalty amount to only the lower reaches is greater than 1.567 billion yuan, or when the sum of the reward amount to the downstream government and the penalty amount to both sides simultaneously is greater than 1.567 billion yuan, and the sum of the reward amount to the upstream government and the penalty amount to only the upstream government is greater than 399.48 billion yuan, the protection and compensation become the only evolutionarily stable strategy for the evolutionary game system composed of the upstream and downstream governments in the YREB. At this point, the total ecological compensation that the downstream government of the YREB should pay to the upstream government is 1.567 billion yuan, with Hunan paying 0.03 billion yuan, Hubei 2.53 billion yuan, Jiangxi 0.18 billion yuan, Anhui 1.68 billion yuan, Zhejiang 0.75 billion yuan, Jiangsu 6.57 billion yuan, and Shanghai 3.93 billion yuan. The research results can provide a reference for promoting the improvement and perfection of the cross-basin ecological compensation system in the YREB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20compensation" title="ecological compensation">ecological compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20game%20model" title=" evolutionary game model"> evolutionary game model</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20government%20constraint%20and%20incentive%20mechanism" title=" central government constraint and incentive mechanism"> central government constraint and incentive mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=Yangtze%20river%20economic%20belt" title=" Yangtze river economic belt"> Yangtze river economic belt</a> </p> <a href="https://publications.waset.org/abstracts/183109/research-on-transverse-ecological-compensation-mechanism-in-yangtze-river-economic-belt-based-on-evolutionary-game-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">464</span> Development of a Small-Group Teaching Method for Enhancing the Learning of Basic Acupuncture Manipulation Optimized with the Theory of Motor Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Chao%20Tang">Wen-Chao Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tang-Yi%20Liu"> Tang-Yi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Gao"> Ming Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Xu"> Gang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua-Yuan%20Yang"> Hua-Yuan Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study developed a method for teaching acupuncture manipulation in small groups optimized with the theory of motor learning. Sixty acupuncture students and their teacher participated in our research. Motion videos were recorded of their manipulations using the lifting-thrusting method. These videos were analyzed using Simi Motion software to acquire the movement parameters of the thumb tip. The parameter velocity curves along Y axis was used to generate small teaching groups clustered by a self-organized map (SOM) and K-means. Ten groups were generated. All the targeted instruction based on the comparative results groups as well as the videos of teacher and student was provided to the members of each group respectively. According to the theory and research of motor learning, the factors or technologies such as video instruction, observational learning, external focus and summary feedback were integrated into this teaching method. Such efforts were desired to improve and enhance the effectiveness of current acupuncture teaching methods in limited classroom teaching time and extracurricular training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acupuncture" title="acupuncture">acupuncture</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20teaching" title=" group teaching"> group teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20instruction" title=" video instruction"> video instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=observational%20learning" title=" observational learning"> observational learning</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20focus" title=" external focus"> external focus</a>, <a href="https://publications.waset.org/abstracts/search?q=summary%20feedback" title=" summary feedback"> summary feedback</a> </p> <a href="https://publications.waset.org/abstracts/100464/development-of-a-small-group-teaching-method-for-enhancing-the-learning-of-basic-acupuncture-manipulation-optimized-with-the-theory-of-motor-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">463</span> A Prediction Method for Large-Size Event Occurrences in the Sandpile Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Channgam">S. Channgam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sae-Tang"> A. Sae-Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Termsaithong"> T. Termsaithong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bak-Tang-Wiesenfeld%20sandpile%20model" title="Bak-Tang-Wiesenfeld sandpile model">Bak-Tang-Wiesenfeld sandpile model</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-correlation" title=" cross-correlation"> cross-correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=avalanches" title=" avalanches"> avalanches</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20method" title=" prediction method"> prediction method</a> </p> <a href="https://publications.waset.org/abstracts/43151/a-prediction-method-for-large-size-event-occurrences-in-the-sandpile-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">462</span> Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tian%20Xia">Tian Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang"> Yuan Yan Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20target%20detection" title="small target detection">small target detection</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20contrast" title=" local contrast"> local contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20vision%20system" title=" human vision system"> human vision system</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20of%20Gaussian" title=" Laplacian of Gaussian"> Laplacian of Gaussian</a> </p> <a href="https://publications.waset.org/abstracts/19199/biologically-inspired-small-infrared-target-detection-using-local-contrast-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">461</span> Robust Pattern Recognition via Correntropy Generalized Orthogonal Matching Pursuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulong%20Wang">Yulong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang"> Yuan Yan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuiming%20Zou"> Cuiming Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Yang"> Lina Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel sparse representation method for robust pattern classification. Generalized orthogonal matching pursuit (GOMP) is a recently proposed efficient sparse representation technique. However, GOMP adopts the mean square error (MSE) criterion and assign the same weights to all measurements, including both severely and slightly corrupted ones. To reduce the limitation, we propose an information-theoretic GOMP (ITGOMP) method by exploiting the correntropy induced metric. The results show that ITGOMP can adaptively assign small weights on severely contaminated measurements and large weights on clean ones, respectively. An ITGOMP based classifier is further developed for robust pattern classification. The experiments on public real datasets demonstrate the efficacy of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correntropy%20induced%20metric" title="correntropy induced metric">correntropy induced metric</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20pursuit" title=" matching pursuit"> matching pursuit</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20classification" title=" pattern classification"> pattern classification</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a> </p> <a href="https://publications.waset.org/abstracts/63135/robust-pattern-recognition-via-correntropy-generalized-orthogonal-matching-pursuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">460</span> Assessing Relationships between Glandularity and Gray Level by Using Breast Phantoms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun-Xuan%20Tang">Yun-Xuan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Yuan%20Liu"> Pei-Yuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun-Mu%20Lu"> Kun-Mu Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Tsung%20Tseng"> Min-Tsung Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Kuang%20Chen"> Liang-Kuang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuh-Feng%20Tsai"> Yuh-Feng Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Wen%20Lee"> Ching-Wen Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Wu"> Jay Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is predominant of malignant tumors in females. The increase in the glandular density increases the risk of breast cancer. BI-RADS is a frequently used density indicator in mammography; however, it significantly overestimates the glandularity. Therefore, it is very important to accurately and quantitatively assess the glandularity by mammography. In this study, 20%, 30% and 50% glandularity phantoms were exposed using a mammography machine at 28, 30 and 31 kVp, and 30, 55, 80 and 105 mAs, respectively. The regions of interest (ROIs) were drawn to assess the gray level. The relationship between the glandularity and gray level under various compression thicknesses, kVp, and mAs was established by the multivariable linear regression. A phantom verification was performed with automatic exposure control (AEC). The regression equation was obtained with an R-square value of 0.928. The average gray levels of the verification phantom were 8708, 8660 and 8434 for 0.952, 0.963 and 0.985 g/cm3, respectively. The percent differences of glandularity to the regression equation were 3.24%, 2.75% and 13.7%. We concluded that the proposed method could be clinically applied in mammography to improve the glandularity estimation and further increase the importance of breast cancer screening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mammography" title="mammography">mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=glandularity" title=" glandularity"> glandularity</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20value" title=" gray value"> gray value</a>, <a href="https://publications.waset.org/abstracts/search?q=BI-RADS" title=" BI-RADS"> BI-RADS</a> </p> <a href="https://publications.waset.org/abstracts/60797/assessing-relationships-between-glandularity-and-gray-level-by-using-breast-phantoms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">459</span> The Structural Pattern: An Event-Related Potential Study on Tang Poetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ShuHui%20Yang">ShuHui Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=ChingChing%20Lu"> ChingChing Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measuring event-related potentials (ERPs) has been fundamental to our understanding of how people process language. One specific ERP component, a P600, has been hypothesized to be associated with syntactic reanalysis processes. We, however, propose that the P600 is not restricted to reanalysis processes, but is the index of the structural pattern processing. To investigate the structural pattern processing, we utilized the effects of stimulus degradation in structural priming. To put it another way, there was no P600 effect if the structure of the prime was the same with the structure of the target. Otherwise, there would be a P600 effect if the structure were different between the prime and the target. In the experiment, twenty-two participants were presented with four sentences of Tang poetry. All of the first two sentences, being prime, were conducted with SVO+VP. The last two sentences, being the target, were divided into three types. Type one of the targets was SVO+VP. Type two of the targets was SVO+VPVP. Type three of the targets was VP+VP. The result showed that both of the targets, SVO+VPVP and VP+VP, elicited positive-going brainwave, a P600 effect, at 600~900ms time window. Furthermore, the P600 component was lager for the target’ VP+VP’ than the target’ SVO+VPVP’. That meant the more dissimilar the structure was, the lager the P600 effect we got. These results indicate that P600 was the index of the structure processing, and it would affect the P600 effect intensity with the degrees of structural heterogeneity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ERPs" title="ERPs">ERPs</a>, <a href="https://publications.waset.org/abstracts/search?q=P600" title=" P600"> P600</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20pattern" title=" structural pattern"> structural pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20priming" title=" structural priming"> structural priming</a>, <a href="https://publications.waset.org/abstracts/search?q=Tang%20poetry" title=" Tang poetry"> Tang poetry</a> </p> <a href="https://publications.waset.org/abstracts/120398/the-structural-pattern-an-event-related-potential-study-on-tang-poetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">458</span> Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haonan%20Hu">Haonan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuge%20Lei"> Shuge Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Dasheng%20Sun"> Dasheng Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Huabin%20Zhang"> Huabin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kehong%20Yuan"> Kehong Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Dai"> Jian Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jijun%20Tang"> Jijun Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title="medical imaging">medical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20imaging" title=" ultrasound imaging"> ultrasound imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=XAI" title=" XAI"> XAI</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20measurement" title=" uncertainty measurement"> uncertainty measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=trustworthy%20AI" title=" trustworthy AI"> trustworthy AI</a> </p> <a href="https://publications.waset.org/abstracts/176771/dual-channel-reliable-breast-ultrasound-image-classification-based-on-explainable-attribution-and-uncertainty-quantification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">457</span> Macroeconomic Reevaluation of CNY/USD Exchange Rate: Quantitative Impact on EUR/USD Exchange Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Henry">R. Henry</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Andriamboavonjy"> H. Andriamboavonjy</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20B.%20Paulin"> J. B. Paulin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Drahy"> S. Drahy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Gourichon"> R. Gourichon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During past decade, Chinese monetary policy has been to maintain stability of exchange rate CNY/USD by creating parity between the two currencies. This policy, against market equilibrium, impacts the exchange rate in having low Yuan currency, and keeping attractiveness of Chinese industries. Using macroeconomic and statistic approach, the impact of such policy onto CNY/USD exchange rate is quantitatively determined. It is also pointed out how Chinese banks respect Basel III ratios, in particular the foreign exchange ratio. The main analysis is focusing on how Chinese banks will respect these ratios in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=macroeconomics%20models" title="macroeconomics models">macroeconomics models</a>, <a href="https://publications.waset.org/abstracts/search?q=yuan%20floating%20exchange%20rate" title=" yuan floating exchange rate"> yuan floating exchange rate</a>, <a href="https://publications.waset.org/abstracts/search?q=basel%20iii" title=" basel iii"> basel iii</a>, <a href="https://publications.waset.org/abstracts/search?q=china%20banking%20system" title=" china banking system"> china banking system</a> </p> <a href="https://publications.waset.org/abstracts/34471/macroeconomic-reevaluation-of-cnyusd-exchange-rate-quantitative-impact-on-eurusd-exchange-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">456</span> Image Transform Based on Integral Equation-Wavelet Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang">Yuan Yan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Yang"> Lina Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li"> Hong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harmonic model is a very important approximation for the image transform. The harmanic model converts an image into arbitrary shape; however, this mode cannot be described by any fixed functions in mathematics. In fact, it is represented by partial differential equation (PDE) with boundary conditions. Therefore, to develop an efficient method to solve such a PDE is extremely significant in the image transform. In this paper, a novel Integral Equation-Wavelet based method is presented, which consists of three steps: (1) The partial differential equation is converted into boundary integral equation and representation by an indirect method. (2) The boundary integral equation and representation are changed to plane integral equation and representation by boundary measure formula. (3) The plane integral equation and representation are then solved by a method we call wavelet collocation. Our approach has two main advantages, the shape of an image is arbitrary and the program code is independent of the boundary. The performance of our method is evaluated by numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=harmonic%20model" title="harmonic model">harmonic model</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation%20%28PDE%29" title=" partial differential equation (PDE)"> partial differential equation (PDE)</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equation" title=" integral equation"> integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20representation" title=" integral representation"> integral representation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20measure%20formula" title=" boundary measure formula"> boundary measure formula</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20collocation" title=" wavelet collocation"> wavelet collocation</a> </p> <a href="https://publications.waset.org/abstracts/3920/image-transform-based-on-integral-equation-wavelet-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">455</span> Discovery the Relics of Buddhist Stupa at Thanesar, Kurukshetra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chander%20Shekhar">Chander Shekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar"> Manoj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present paper deal with the discovery of the stupa’s relics which belongs to the Kushana period. These remains were found during the scientific clearance work at a mound near Brahma-SarovarThanesar, Kurukshetra. This archaeological work was done by Department of Archaeology & Museums Haryana Government. The relics of stupa show that it would have been similar to Assandh and Damekhstupa. As per-Buddhist literature, GoutamBudhha reached Thanesar. In memory of Buddh’s Journey, King Ashoka built a big Stupa at Thanesar on the bank of Sarasvati River. Chinese pilgrim Yuan Chuang also referred a Monastery and stupa near Aujas-ghatof Brahma-sarovar. It may be part of that settlement which was mentioned by Yuan Chuang. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaeology" title="archaeology">archaeology</a>, <a href="https://publications.waset.org/abstracts/search?q=stupa" title=" stupa"> stupa</a>, <a href="https://publications.waset.org/abstracts/search?q=buddhism" title=" buddhism"> buddhism</a>, <a href="https://publications.waset.org/abstracts/search?q=excavtoin" title=" excavtoin"> excavtoin</a> </p> <a href="https://publications.waset.org/abstracts/145977/discovery-the-relics-of-buddhist-stupa-at-thanesar-kurukshetra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">454</span> Compilation of Load Spectrum of Loader Drive Axle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yongxiang">Wei Yongxiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Haoyue"> Zhu Haoyue</a>, <a href="https://publications.waset.org/abstracts/search?q=Tang%20Heng"> Tang Heng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Qunwei"> Yuan Qunwei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two-dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20spectrum" title="load spectrum">load spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=axle" title=" axle"> axle</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a>, <a href="https://publications.waset.org/abstracts/search?q=rain-flow%20counting%20method" title=" rain-flow counting method"> rain-flow counting method</a>, <a href="https://publications.waset.org/abstracts/search?q=extrapolation" title=" extrapolation"> extrapolation</a> </p> <a href="https://publications.waset.org/abstracts/78796/compilation-of-load-spectrum-of-loader-drive-axle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">453</span> Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rei-Tang%20Tsai">Rei-Tang Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yang%20Wu"> Chih-Yang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Yuan%20Chang"> Chia-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Ying%20Kuo"> Ming-Ying Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with serpentine channel of the same overall channel length. From the results, we can find the following trends. When fluid mixing is dominated by convection, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller center-line radius is better than that of a micromixer consisting of major-segment repeating units with a larger center-line radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20channel" title="curved channel">curved channel</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=non-newtonian%20fluids" title=" non-newtonian fluids"> non-newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/25985/mixing-behaviors-of-shear-thinning-fluids-in-serpentine-channel-micromixers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">452</span> UCP1 Regulates Cardiolipin Metabolism and Mediates Mitochondrial Homeostasis Maintenance of ANXA1 in Diabetic Nephropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zi-Han%20Li">Zi-Han Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Fang"> Lu Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Wu"> Liang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Yuan%20Chang"> Dong-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Manyuan%20Dong"> Manyuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Ji"> Liang Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Hui%20Zhao"> Ming-Hui Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sydney%20C.%20W.%20Tang"> Sydney C. W. Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemin%20Zheng"> Lemin Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncoupling of mitochondrial respiration by chemical uncouplers has proven effective in ameliorating obesity, insulin resistance, and hyperglycemia, which were risk factors for diabetic nephropathy (DN). Recently, we found that ANXA1 could improve mitochondrial function to mitigate DN progression. However, the underlying mechanism is not fully clear yet. Here, we identified uncoupling protein 1 (UCP1), an inner membrane protein of mitochondria, as a key to mitochondrial homeostasis improved by ANXA1. Specifically, ANXA1 attenuated mitochondrial dysfunction via appropriately upregulating UCP1 by stabilizing its transcription factor GATA binding protein 3 (GATA3) by combining it with thioredoxin. Moreover, specific overexpression of UCP1 in the renal cortex rescued renal injuries in diabetic Anxa1-KO mice. UCP1 deletion aggravated renal injuries in HFD/STZ-induced diabetic mice. Mechanistically, UCP1 reduced mitochondrial fission through the aristaless-related homeobox (ARX)/cardiolipin synthase 1 (CRLS1) pathway. Therapeutically, CL316243, a UCP1 agonist, could attenuate established DN in db/db mice. This work established an alternative principle to harness the power of uncouplers for the treatment of DN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=uncoupling%20protein%201" title=" uncoupling protein 1"> uncoupling protein 1</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20homeostasis" title=" mitochondrial homeostasis"> mitochondrial homeostasis</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiolipin%20metabolism" title=" cardiolipin metabolism"> cardiolipin metabolism</a> </p> <a href="https://publications.waset.org/abstracts/178981/ucp1-regulates-cardiolipin-metabolism-and-mediates-mitochondrial-homeostasis-maintenance-of-anxa1-in-diabetic-nephropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">451</span> ANXA1 Plays A Nephroprotective Role By Maintaining Mitochondrial Homeostasis Via Upregulating Uncoupling Protein 1 In Diabetic Nephropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zi-Han%20Li">Zi-Han Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Fang"> Lu Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Wu"> Liang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Yuan%20Chang"> Dong-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Manyuan%20Dong"> Manyuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Ji"> Liang Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Hui%20Zhao"> Ming-Hui Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sydney%20C.W.%20Tang"> Sydney C.W. Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemin%20Zheng"> Lemin Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncoupling of mitochondrial respiration by chemical uncouplers has proven effective in ameliorating obesity, insulin resistance, and hyperglycemia, which were risk factors for diabetic nephropathy (DN). Recently, it was found that annexin A1(ANXA1) could improve mitochondrial function to mitigate DN progression. However, the underlying mechanism is not fully clear yet. Here, it was identified that uncoupling protein 1 (UCP1), an inner membrane protein of mitochondria, as a key to mitochondrial homeostasis improved by ANXA1. Specifically, ANXA1 attenuated mitochondrial dysfunction via appropriately upregulating UCP1 by stabilizing its transcription factor GATA binding protein 3 (GATA3) through combining with thioredoxin. Moreover, specific overexpression of UCP1 in renal cortex rescued renal injuries in diabetic Anxa1-KO mice. UCP1 deletion aggravated renal injuries in HFD/STZ-induced diabetic mice. Mechanistically, UCP1 reduced mitochondrial fission through the aristaless-related homeobox (ARX)/cardiolipin synthase 1 (CRLS1) pathway. Therapeutically, CL316243, a UCP1 agonist, could attenuate established DN in db/db mice. This work established a novel principle to harness the power of uncouplers for the treatment of DN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=uncoupling%20protein%201" title=" uncoupling protein 1"> uncoupling protein 1</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20homeostasis" title=" mitochondrial homeostasis"> mitochondrial homeostasis</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiolipin%20metabolism" title=" cardiolipin metabolism"> cardiolipin metabolism</a> </p> <a href="https://publications.waset.org/abstracts/178984/anxa1-plays-a-nephroprotective-role-by-maintaining-mitochondrial-homeostasis-via-upregulating-uncoupling-protein-1-in-diabetic-nephropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">450</span> CMPD: Cancer Mutant Proteome Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Jung%20Huang">Po-Jung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Ching%20Lee"> Chi-Ching Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bertrand%20Chin-Ming%20Tan"> Bertrand Chin-Ming Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Ming%20Yeh"> Yuan-Ming Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Lichieh%20Chu"> Julie Lichieh Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tin-Wen%20Chen"> Tin-Wen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Yang%20Lee"> Cheng-Yang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruei-Chi%20Gan"> Ruei-Chi Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsuan%20Liu"> Hsuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrus%20Tang"> Petrus Tang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whole-exome sequencing focuses on the protein coding regions of disease/cancer associated genes based on a priori knowledge is the most cost-effective method to study the association between genetic alterations and disease. Recent advances in high throughput sequencing technologies and proteomic techniques has provided an opportunity to integrate genomics and proteomics, allowing readily detectable mutated peptides corresponding to mutated genes. Since sequence database search is the most widely used method for protein identification using Mass spectrometry (MS)-based proteomics technology, a mutant proteome database is required to better approximate the real protein pool to improve disease-associated mutated protein identification. Large-scale whole exome/genome sequencing studies were launched by National Cancer Institute (NCI), Broad Institute, and The Cancer Genome Atlas (TCGA), which provide not only a comprehensive report on the analysis of coding variants in diverse samples cell lines but a invaluable resource for extensive research community. No existing database is available for the collection of mutant protein sequences related to the identified variants in these studies. CMPD is designed to address this issue, serving as a bridge between genomic data and proteomic studies and focusing on protein sequence-altering variations originated from both germline and cancer-associated somatic variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TCGA" title="TCGA">TCGA</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=mutant" title=" mutant"> mutant</a>, <a href="https://publications.waset.org/abstracts/search?q=proteome" title=" proteome"> proteome</a> </p> <a href="https://publications.waset.org/abstracts/16077/cmpd-cancer-mutant-proteome-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">449</span> “Protection” or “Destruction”: Taking the Cultural Heritage Protection of the Grand Canal in Huaxian and Xunxian Sections of Henan Province as Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yue%20Sun">Yue Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Wang"> Yuan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Grand Canal of China has been in use for more than two thousand years. It runs through the central and eastern regions of China and communicates with the five major river systems of Haihe River, Yellow River, Huaihe River, Yangtze River and Qiantang River from north to south. It is a complex, systematic and comprehensive water conservancy project in the period of agricultural civilization and includes the three parts of the Beijing-Hangzhou Canal, the Sui and Tang Dynasties Canal and the Eastern Zhejiang Canal. It covers eight provinces and cities including Beijing, Tianjin, Hebei, Shandong, Jiangsu, Zhejiang, Henan and Anhui. The Grand Canal is an important channel connecting the Central Plains and the Beijing-Hangzhou Canal, and it is also an important waterway trade channel. Nowadays, although the Grand Canal no longer bears the burden of communicating water transportation between the north and the south, the site of the Grand Canal is still a “historical museum” of the lifestyle of people who lived on the canal from the Ming and Qing Dynasties to the Republic of China. By means of literature reading and field investigation, this paper compares the different protection strategies of the Grand Canal in the region between the ancient villages of Huaxian and Xunxian, which witness the vicissitudes of canal water transport, to explore whether the protective renovation of historical and cultural routes is “protection” or “destruction”, and puts forward some protection suggestions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=The%20Grand%20Canal" title="The Grand Canal">The Grand Canal</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage%20conservation" title=" heritage conservation"> heritage conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20route" title=" cultural route"> cultural route</a>, <a href="https://publications.waset.org/abstracts/search?q=ancient%20villages" title=" ancient villages"> ancient villages</a>, <a href="https://publications.waset.org/abstracts/search?q=strategies" title=" strategies"> strategies</a> </p> <a href="https://publications.waset.org/abstracts/102854/protection-or-destruction-taking-the-cultural-heritage-protection-of-the-grand-canal-in-huaxian-and-xunxian-sections-of-henan-province-as-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">448</span> Cost-Effective Indoor-Air Quality (IAQ) Monitoring via Cavity Enhanced Photoacoustic Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jifang%20Tao">Jifang Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Gao"> Fei Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Cai"> Hong Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Jin%20Zheng"> Yuan Jin Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Dong%20Gu"> Yuan Dong Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic technology is used to measure effect absorption of a light by means of acoustic detection, which provides a high sensitive, low-cross response, cost-effective solution for gas molecular detection. In this paper, we proposed an integrated photoacoustic sensor for Indoor-air quality (IAQ) monitoring. The sensor consists of an acoustically resonant cavity, a high silicon acoustic transducer chip, and a low-cost light source. The light is modulated at the resonant frequency of the cavity to create an enhanced periodic heating and result in an amplified acoustic pressure wave. The pressure is readout by a novel acoustic transducer with low noise. Based on this photoacoustic sensor, typical indoor gases, including CO2, CO, O2, and H2O have been successfully detected, and their concentration are also evaluated with very high accuracy. It has wide potential applications in IAQ monitoring for agriculture, food industry, and ventilation control systems used in public places, such as schools, hospitals and airports. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor-air%20quality%20%28IAQ%29%20monitoring" title="indoor-air quality (IAQ) monitoring">indoor-air quality (IAQ) monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20gas%20sensor" title=" photoacoustic gas sensor"> photoacoustic gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement" title=" cavity enhancement"> cavity enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20gas%20sensor" title=" integrated gas sensor"> integrated gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/35061/cost-effective-indoor-air-quality-iaq-monitoring-via-cavity-enhanced-photoacoustic-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">447</span> Steepest Descent Method with New Step Sizes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bib%20Paruhum%20Silalahi">Bib Paruhum Silalahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Djihad%20Wungguli"> Djihad Wungguli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sugi%20Guritman"> Sugi Guritman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steepest%20descent" title="steepest descent">steepest descent</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20search" title=" line search"> line search</a>, <a href="https://publications.waset.org/abstracts/search?q=iteration" title=" iteration"> iteration</a>, <a href="https://publications.waset.org/abstracts/search?q=running%20time" title=" running time"> running time</a>, <a href="https://publications.waset.org/abstracts/search?q=unconstrained%20optimization" title=" unconstrained optimization"> unconstrained optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence" title=" convergence"> convergence</a> </p> <a href="https://publications.waset.org/abstracts/29734/steepest-descent-method-with-new-step-sizes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">446</span> Study on Horizontal Ecological Compensation Mechanism in Yangtze River Economic Belt Basin: Based on Evolutionary Game Analysis and Water Quality and Quantity Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tingyu%20Zhang">Tingyu Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The horizontal ecological compensation (HEC) mechanism is the key to stimulating the active participation of the whole basin in ecological protection. In this paper, we construct an evolutionary model for HEC in the Yangtze River Economic Belt (YREB) basin with the introduction of the central government constraint and incentive mechanism (CGCIM) and explore the conditions for the realization of a (Protection and compensation) strategy that meets the social expectations. Further, the water quality-water quantity model is utilized to measure the HEC amount with the characteristic factual data of the YREB in 2020-2022. The results show that the stability of the evolutionary game model of upstream and downstream governments in the YREB is closely related to the CGCIM. If (Protection Compensation) is to be realized as the only evolutionary stable strategy of the evolutionary game system composed of upstream and downstream governments, it is necessary for the CGCIM to satisfy that the sum of the incentives for the protection side and its unilateral or bilateral constraints is greater than twice the input cost of the active strategy, and the sum of the incentives for the compensation side and its unilateral or bilateral constraints is greater than the amount of ecological compensation that needs to be paid by it when it adopts the active strategy. At this point, the total amount of HEC that the downstream government should give to the upstream government of the YREB is 2856.7 million yuan in 2020, 5782.1 million yuan in 2021, and 23166.7 million yuan in 2022. The results of the study can provide a reference for promoting the improvement and refinement of the HEC mechanism in the YREB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horizontal%20ecological%20compensation" title="horizontal ecological compensation">horizontal ecological compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=Yangtze%20river%20economic%20belt" title=" Yangtze river economic belt"> Yangtze river economic belt</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20game%20analysis" title=" evolutionary game analysis"> evolutionary game analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20and%20quantity%20model%20research%20on%20territorial%20ecological%20restoration%20in%20Mianzhu%20city" title=" water quality and quantity model research on territorial ecological restoration in Mianzhu city"> water quality and quantity model research on territorial ecological restoration in Mianzhu city</a>, <a href="https://publications.waset.org/abstracts/search?q=Sichuan" title=" Sichuan"> Sichuan</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20the%20dual%20evaluation%20framework" title=" under the dual evaluation framework"> under the dual evaluation framework</a> </p> <a href="https://publications.waset.org/abstracts/185516/study-on-horizontal-ecological-compensation-mechanism-in-yangtze-river-economic-belt-basin-based-on-evolutionary-game-analysis-and-water-quality-and-quantity-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">445</span> Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chong%20Zhang">Chong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoming%20Tang"> Guoming Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Ge"> Bin Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiuyang%20Tang"> Jiuyang Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=riding%20pattern%20mining" title="riding pattern mining">riding pattern mining</a>, <a href="https://publications.waset.org/abstracts/search?q=bike-sharing%20system" title=" bike-sharing system"> bike-sharing system</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transportation" title=" public transportation"> public transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=bike-and-ride%20behavior" title=" bike-and-ride behavior"> bike-and-ride behavior</a> </p> <a href="https://publications.waset.org/abstracts/81820/mining-riding-patterns-in-bike-sharing-system-connecting-with-public-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">781</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> How Influencers Influence: The Effects of Social Media Influencers Influence on Purchase Intention and the Differences among Generation X and Millennials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samatha%20Ss%20Sutton">Samatha Ss Sutton</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaouther%20%20Kooli"> Kaouther Kooli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years social media influences (SMI) have become integrated into many companies marketing strategies to create buzz, target new and younger markets and further expand social media coverage in business (Lim et al 2017). SMI’s can be defined as online personalities with a substantial number of followers, across one or more social media platforms, with influence on their followers (Lou and Yuan 2018). Recently expenditure on influencer marketing has increased exponentially becoming an important area for marketing opportunities and strategies in the future (Lou and Yuan 2018). In order to market products and brands effectively through SMI’s it is important for business to understand the attributes of SMI that effect purchase intention (Lim et al 2017) of their followers and whether or not these attributes vary across generations so to market effectively to their specific segment or target market. The present study involves quantitative research to understand the attributes by which influence differs across generations namely Generation X and Millennials and its effects on purchase intentions of these generational groups. A survey will be conducted using an online questionnaire. Structural Equation Modelling and Multi group analysis will be applied. The study provides insight to marketers/decision makers on how to use influencers accordingly with their target consumer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20media%20marketing" title="social media marketing">social media marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media%20influencers" title=" social media influencers"> social media influencers</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude%20towards%20social%20media%20influencers" title=" attitude towards social media influencers"> attitude towards social media influencers</a>, <a href="https://publications.waset.org/abstracts/search?q=intention%20to%20purchase" title=" intention to purchase"> intention to purchase</a> </p> <a href="https://publications.waset.org/abstracts/121334/how-influencers-influence-the-effects-of-social-media-influencers-influence-on-purchase-intention-and-the-differences-among-generation-x-and-millennials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> Addition of Phosphates on Stability of Sterilized Goat Milk in Different Seasons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei-Jen%20Lin">Mei-Jen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Yuan%20Yu"> Yuan-Yuan Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low heat stability of goat milk limited the application of ultra-high temperature (UHT) sterilization on producing sterilized goat milk in order to keep excess goat milk in summer for producing goat dairy products in winter in Taiwan. Therefore, this study aimed to add stabilizers in goat milk to increase the heat stability for producing UHT sterilized goat milk preserved for making goat dairy products in winter. The amounts of 0.05-0.11% blend of sodium phosphates (Na) and blend of sodium/potassium phosphates (Sp) were added in raw goat milk at different seasons a night before autoclaved sterilization at 135°C 4 sec. The coagulation, ion calcium concentration and ethanol stability of sterilized goat milk were analyzed. Results showed that there were seasonal differences on choosing the optimal stabilizers and the addition levels. Addition of 0.05% and 0.22% of both Na and Sp salts in Spring goat milk, 0.10-0.11% of both Na and Sp salts in Summer goat milk, and 0.05%Na Sp group in Autumn goat milk were coagulated after autoclaved, respectively. There was no coagulation found with the addition of 0.08-0.09% both Na and Sp salts in goat milk; furthermore, the ionic calcium concentration were lower than 2.00 mM and ethanol stability higher than 70% in both 0.08-0.09% Na and Sp salts added goat milk. Therefore, the optimal addition level of blend of sodium phosphates and blend of sodium/potassium phosphates were 0.08-0.09% for producing sterilized goat milk at different seasons in Taiwan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation" title="coagulation">coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20milk" title=" goat milk"> goat milk</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphates" title=" phosphates"> phosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/63070/addition-of-phosphates-on-stability-of-sterilized-goat-milk-in-different-seasons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> Anti-Inflammatory Studies on Chungpye-Tang in Asthmatic Human Lung Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Bang">J. H. Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Baek"> H. J. Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Kim"> K. I. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Lee"> B. J. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Jung"> H. J. Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Jang"> H. J. Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Jung"> S. K. Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asthma is a chronic inflammatory lung disease characterized by airway hyper responsiveness (AHR), airway obstruction and airway wall remodeling responsible for significant morbidity and mortality worldwide. Genetic and environment factors may result in asthma, but there are no the exact causes of asthma. Chungpye-tang (CPT) has been prescribed as a representative aerosol agent for patients with dyspnea, cough and phlegm in the respiratory clinic at Kyung Hee Korean Medicine Hospital. This Korean herbal medicines have the effect of dispelling external pathogen and dampness pattern. CPT is composed of 4 species of herbal medicines. The 4 species of herbal medicines are Ephedrae herba, Pogostemonis(Agatachis) herba, Caryophylli flos and Zingiberis rhizoma crudus. CPT suppresses neutrophil infiltration and the production of pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. Moreover, the anti-inflammatory effects of CPT on a mouse model of Chronic Obstructive Pulmonary Disease (COPD) was proved. Activation of the NF-κB has been proven that it plays an important role in inflammation via inducing transcription of pro-inflammatory genes. Over-expression of NF-κB has been believed be related to many inflammatory diseases such as arthritis, gastritis, asthma and COPD. So we firstly hypothesize whether CPT has an anti-inflammatory effect on asthmatic human airway epithelial tissue via inhibiting NF-κB pathway. In this study, CPT was extracted with distilled water for 3 hours at 100°C. After process of filtration and evaporation, it was freeze dried. And asthmatic human lung tissues were provided by MatTek Corp. We investigated the precise mechanism of the anti-inflammatory effect of CPT by western blotting analysis. We observed whether the decoction extracts could reduce NF-κB activation, COX-2 protein expression and NF-κB-mediated pro-inflammatory cytokines such as TNF-α, eotaxin, IL-4, IL-9 and IL-13 in asthmatic human lung tissue. As results of this study, there was a trend toward decreased NF-κB expression in asthmatic human airway epithelial tissue. We found that the inhibition effects of CPT on COX-2 expression was not determined. IL-9 and IL-13 secretion was significantly reduced in the asthmatic human lung tissue treated with CPT. Overall, our results indicate that CPT has an anti-inflammatory effect through blocking the signaling pathway of NF-κB, thereby CPT may be a potential remedial agent for allergic asthma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chungpye-tang" title="Chungpye-tang">Chungpye-tang</a>, <a href="https://publications.waset.org/abstracts/search?q=allergic%20asthma" title=" allergic asthma"> allergic asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=asthmatic%20human%20airway%20epithelial%20tissue" title=" asthmatic human airway epithelial tissue"> asthmatic human airway epithelial tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20factor%20kappa%20B%20%28NF-%CE%BAB%29%20pathway" title=" nuclear factor kappa B (NF-κB) pathway"> nuclear factor kappa B (NF-κB) pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=COX-2" title=" COX-2"> COX-2</a> </p> <a href="https://publications.waset.org/abstracts/42524/anti-inflammatory-studies-on-chungpye-tang-in-asthmatic-human-lung-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">441</span> A New Car-Following Model with Consideration of the Brake Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiyuan%20Tang">Zhiyuan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Zhang"> Ju Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenyuan%20Wu"> Wenyuan Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a car-following model with consideration of the status of the brake light is proposed. The numerical results show that the stability of the traffic flow is improved. The ability of the brake light to reduce car accident is also showed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20light" title="brake light">brake light</a>, <a href="https://publications.waset.org/abstracts/search?q=car-following%20model" title=" car-following model"> car-following model</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow"> traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20planning" title=" regional planning"> regional planning</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/28404/a-new-car-following-model-with-consideration-of-the-brake-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">440</span> The Role of Bone Marrow Fatty Acids in the Early Stage of Post-Menopausal Osteoporosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sizhu%20Wang">Sizhu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuisong%20Tang"> Cuisong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Zhang"> Lin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangyu%20Tang"> Guangyu Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: We aimed to detect the composition of bone marrow fatty acids early after ovariectomized (OVX) surgery and explore the potential mechanism. Methods: Thirty-two female Sprague-Dawley (SD) rats (12 weeks) were randomly divided into OVX group and Sham group (N=16/group), and received ovariectomy or sham surgery respectively. After 3 and 28 days, eight rats in each group were sacrificed to detect the composition of bone marrow fatty acids by gas chromatography–mass spectrometry (GC–MS) and evaluate the trabecular bone microarchitecture by micro-CT. Significant different fatty acids in the early stage of post-menopausal osteoporosis were selected by OPLS-DA and t test. Then selected fatty acids were further studied in the process of osteogenic differentiation through RT-PCR and Alizarin Red S staining. Results: An apparent sample clustering and group separation were observed between OVX group and sham group three days after surgery, which suggested the role of bone marrow fatty acids in the early stage of postmenopausal osteoporosis. Specifically, myristate, palmitoleate and arachidonate were found to play an important role in classification between OVX group and sham group. We further investigated the effect of palmitoleate and arachidonate on osteogenic differentiation and found that palmitoleate promoted the osteogenic differentiation of MC3T3-E1 cells while arachidonate inhibited this process. Conclusion: Profound bone marrow fatty acids changes have taken place in the early stage of post-menopausal osteoporosis. Bone marrow fatty acids may begin to affect osteogenic differentiation shortly after deficiency of estrogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow%20fatty%20acids" title="bone marrow fatty acids">bone marrow fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblast" title=" osteoblast"> osteoblast</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=post-menopausal" title=" post-menopausal"> post-menopausal</a> </p> <a href="https://publications.waset.org/abstracts/156509/the-role-of-bone-marrow-fatty-acids-in-the-early-stage-of-post-menopausal-osteoporosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>