CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 101 results for author: <span class="mathjax">Adhikari, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Adhikari%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Adhikari, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Adhikari%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Adhikari, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Adhikari%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Adhikari%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Adhikari%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Adhikari%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15635">arXiv:2407.15635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15635">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quasi-classical Trajectory Calculations on a Two-state Potential Energy Surface Including Nonadiabatic Coupling Terms as Friction for D+ + H2 Collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mukherjee%2C+S">Soumya Mukherjee</a>, <a href="/search/physics?searchtype=author&amp;query=Saha%2C+S">Swagato Saha</a>, <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+S">Sandip Ghosh</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Satrajit Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Sathyamurthy%2C+N">Narayanasami Sathyamurthy</a>, <a href="/search/physics?searchtype=author&amp;query=Baer%2C+M">Michael Baer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15635v1-abstract-short" style="display: inline;"> Akin to the traditional quasi-classical trajectory method for investigating the dynamics on a single adiabatic potential energy surface for an elementary chemical reaction, we carry out the dynamics on a 2-state ab initio potential energy surface including nonadiabatic coupling terms as friction terms for D+ + H2 collisions. It is shown that the resulting dynamics correctly accounts for nonreactiv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15635v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15635v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15635v1-abstract-full" style="display: none;"> Akin to the traditional quasi-classical trajectory method for investigating the dynamics on a single adiabatic potential energy surface for an elementary chemical reaction, we carry out the dynamics on a 2-state ab initio potential energy surface including nonadiabatic coupling terms as friction terms for D+ + H2 collisions. It is shown that the resulting dynamics correctly accounts for nonreactive charge transfer, reactive non charge transfer and reactive charge transfer processes. In addition, it leads to the formation of triatomic DH2+ species as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15635v1-abstract-full').style.display = 'none'; document.getElementById('2407.15635v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05901">arXiv:2406.05901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05901">pdf</a>, <a href="https://arxiv.org/format/2406.05901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Simulation Models for Exploring Magnetic Reconnection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shay%2C+M">Michael Shay</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Subash Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Beesho%2C+N">Naoki Beesho</a>, <a href="/search/physics?searchtype=author&amp;query=Birn%2C+J">Joachim Birn</a>, <a href="/search/physics?searchtype=author&amp;query=Buechner%2C+J">Jorg Buechner</a>, <a href="/search/physics?searchtype=author&amp;query=Cassak%2C+P">Paul Cassak</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Li-Jen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuxi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cozzani%2C+G">Giulia Cozzani</a>, <a href="/search/physics?searchtype=author&amp;query=Drake%2C+J">Jim Drake</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+F">Fan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Hesse%2C+M">Michael Hesse</a>, <a href="/search/physics?searchtype=author&amp;query=Jain%2C+N">Neeraj Jain</a>, <a href="/search/physics?searchtype=author&amp;query=Pfau-Kempf%2C+Y">Yann Pfau-Kempf</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yu Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yi-Hsin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Oka%2C+M">Mitsuo Oka</a>, <a href="/search/physics?searchtype=author&amp;query=Omelchenko%2C+Y+A">Yuri A. Omelchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Palmroth%2C+M">Minna Palmroth</a>, <a href="/search/physics?searchtype=author&amp;query=Pezzi%2C+O">Oreste Pezzi</a>, <a href="/search/physics?searchtype=author&amp;query=Reiff%2C+P+H">Patricia H. Reiff</a>, <a href="/search/physics?searchtype=author&amp;query=Swisdak%2C+M">Marc Swisdak</a>, <a href="/search/physics?searchtype=author&amp;query=Toffoletto%2C+F">Frank Toffoletto</a>, <a href="/search/physics?searchtype=author&amp;query=Toth%2C+G">Gabor Toth</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+R+A">Richard A. Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05901v1-abstract-short" style="display: inline;"> Simulations have played a critical role in the advancement of our knowledge of magnetic reconnection. However, due to the inherently multiscale nature of reconnection, it is impossible to simulate all physics at all scales. For this reason, a wide range of simulation methods have been crafted to study particular aspects and consequences of magnetic reconnection. This chapter reviews many of these&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05901v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05901v1-abstract-full" style="display: none;"> Simulations have played a critical role in the advancement of our knowledge of magnetic reconnection. However, due to the inherently multiscale nature of reconnection, it is impossible to simulate all physics at all scales. For this reason, a wide range of simulation methods have been crafted to study particular aspects and consequences of magnetic reconnection. This chapter reviews many of these methods, laying out critical assumptions, numerical techniques, and giving examples of scientific results. Plasma models described include magnetohydrodynamics (MHD), Hall MHD, Hybrid, kinetic particle-in-cell (PIC), kinetic Vlasov, Fluid models with embedded PIC, Fluid models with direct feedback from energetic populations, and the Rice Convection Model (RCM). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05901v1-abstract-full').style.display = 'none'; document.getElementById('2406.05901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Chapter 5.2 of ISSI Book on Magnetic Reconnection, submitted to Space Science Reviews</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07289">arXiv:2404.07289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07289">pdf</a>, <a href="https://arxiv.org/format/2404.07289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantifying the Errors Introduced by Continuum Scattering Models on the Inferred Structural Properties of Proteins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+R+S">Rohan S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Asthagiri%2C+D+N">Dilipkumar N. Asthagiri</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+W+G">Walter G. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07289v1-abstract-short" style="display: inline;"> Atomistic force fields that are tuned to describe folded proteins predict overly compact structures for intrinsically disordered proteins (IDPs). To correct this, improvements in force fields to better model IDPs are usually paired with scattering models for validation against experiments. For scattering calculations, protein configurations from all-atom simulations are used within the continuum-s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07289v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07289v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07289v1-abstract-full" style="display: none;"> Atomistic force fields that are tuned to describe folded proteins predict overly compact structures for intrinsically disordered proteins (IDPs). To correct this, improvements in force fields to better model IDPs are usually paired with scattering models for validation against experiments. For scattering calculations, protein configurations from all-atom simulations are used within the continuum-solvent model CRYSOL for comparison with experiments. To check this approach, we develop an equation to evaluate the radius of gyration (Rg) for any defined inner-hydration shell thickness given all-atom simulation data. Rg based on an explicit description of hydration waters compares well with the reference value of Rg obtained using Guinier analysis of the all-atom scattering model. However, these internally consistent estimates disagree with Rg from CRYSOL for the same definition of the inner-shell. CRYSOL can over-predict Rg by up to 2.5 Angstroms. We rationalize the reason for this behavior and highlight the consequences for force field design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07289v1-abstract-full').style.display = 'none'; document.getElementById('2404.07289v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19848">arXiv:2403.19848</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> A Review of Sustainable Practices in Road Freight Transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+S">Subash Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Santosh Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Hlali%2C+A">Arbia Hlali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19848v2-abstract-short" style="display: inline;"> Sustainable road freight transport becomes indispensable in the field of transportation and logistics. The new technological change, the environmental impacts, and social responsibility laid freight road transport in front of various challenges, which makes the sustainable practices a vital solution in the sector. This paper aims to provide a theoretical research findings in sustainable road freig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19848v2-abstract-full').style.display = 'inline'; document.getElementById('2403.19848v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19848v2-abstract-full" style="display: none;"> Sustainable road freight transport becomes indispensable in the field of transportation and logistics. The new technological change, the environmental impacts, and social responsibility laid freight road transport in front of various challenges, which makes the sustainable practices a vital solution in the sector. This paper aims to provide a theoretical research findings in sustainable road freight transport. The methodology discusses the road freight transport sustainability indicators among the literature studies realized in different countries in the world. The review analysis the studies and practical applications from various countries. The result exposes that the sustainability dimensions such as economic, social, environment was discussed in different cases, which prove the efforts of many countries to reduce environmental impact, improve economic efficiency, support social well-being, and expand technological innovations to achieve a sustainable transport system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19848v2-abstract-full').style.display = 'none'; document.getElementById('2403.19848v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We&#39;re withdrawing our paper from arXiv due to a critical error in our review methodology, which excluded key studies on sustainable road freight transport. This oversight could mislead the scientific community. We plan to correct this, ensuring comprehensive study inclusion, and will resubmit our paper for a more accurate review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09884">arXiv:2403.09884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09884">pdf</a>, <a href="https://arxiv.org/ps/2403.09884">ps</a>, <a href="https://arxiv.org/format/2403.09884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rspa.2024.0033">10.1098/rspa.2024.0033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metaharvesting: Emergent energy harvesting by piezoelectric metamaterials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Patrick%2C+I">Ibrahim Patrick</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Sondipon Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Hussein%2C+M+I">Mahmoud I. Hussein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09884v1-abstract-short" style="display: inline;"> Vibration energy harvesting is a technology that enables electric power generation by augmenting vibrating materials or structures with piezoelectric elements. In a recent work, we quantified the intrinsic energy-harvesting availability of a piezoelectric phononic crystal (Piezo-PnC) by calculating its damping ratio across the Brillouin zone and subtracting off the damping ratio of the correspondi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09884v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09884v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09884v1-abstract-full" style="display: none;"> Vibration energy harvesting is a technology that enables electric power generation by augmenting vibrating materials or structures with piezoelectric elements. In a recent work, we quantified the intrinsic energy-harvesting availability of a piezoelectric phononic crystal (Piezo-PnC) by calculating its damping ratio across the Brillouin zone and subtracting off the damping ratio of the corresponding non-piezoelectric version of the phononic crystal. It was highlighted that the resulting quantity is indicative of the amount of useful energy available for harvesting and is independent of the finite structure size and boundary conditions and of any forcing conditions. Here we investigate the intrinsic energy harvesting availability of two other material systems chosen to be statically equivalent to a given Piezo-PnC: a piezoelectric locally resonant metamaterial (Piezo-LRM) and a piezoelectric inertially amplified metamaterial (Piezo-IAM). Upon comparing with the intrinsic energy harvesting availability of the Piezo-PnC, we observe an emergence of energy harvesting capacity, a phenomenon we refer to as metaharvesting. This is analogous to the concept of metadamping, except the quantity evaluated is associated with piezoelectric energy harvesting rather than raw dissipation. Our results show that the intrinsic energy harvesting availability is enhanced by local resonances, and enhanced further by inertial amplification. These findings open a pathway towards fundamental design of architectured piezoelectric materials with superior energy harvesting capacity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09884v1-abstract-full').style.display = 'none'; document.getElementById('2403.09884v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under review by the Proceedings of the Royal Society A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the Royal Society A 480, 20240033 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12477">arXiv:2402.12477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12477">pdf</a>, <a href="https://arxiv.org/format/2402.12477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.109.015205">10.1103/PhysRevE.109.015205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher-order nonequilibrium term: Effective power density quantifying evolution towards or away from local thermodynamic equilibrium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barbhuiya%2C+M+H">M. Hasan Barbhuiya</a>, <a href="/search/physics?searchtype=author&amp;query=Cassak%2C+P+A">Paul A. Cassak</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Subash Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Parashar%2C+T+N">Tulasi N. Parashar</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Haoming Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Argall%2C+M+R">Matthew R. Argall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12477v1-abstract-short" style="display: inline;"> A common approach to assess the nature of energy conversion in a classical fluid or plasma is to compare power densities of the various possible energy conversion mechanisms. A forefront research area is quantifying energy conversion for systems that are not in local thermodynamic equilibrium (LTE), as is common in a number of fluid and plasma systems. Here, we introduce the ``higher-order non-equ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12477v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12477v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12477v1-abstract-full" style="display: none;"> A common approach to assess the nature of energy conversion in a classical fluid or plasma is to compare power densities of the various possible energy conversion mechanisms. A forefront research area is quantifying energy conversion for systems that are not in local thermodynamic equilibrium (LTE), as is common in a number of fluid and plasma systems. Here, we introduce the ``higher-order non-equilibrium term&#39;&#39; (HORNET) effective power density that quantifies the rate of change of departure of a phase space density from LTE. It has dimensions of power density, which allows for quantitative comparisons with standard power densities. We employ particle-in-cell simulations to calculate HORNET during two processes, namely magnetic reconnection and decaying kinetic turbulence in collisionless magnetized plasmas, that inherently produce non-LTE effects. We investigate the spatial variation of HORNET and the time evolution of its spatial average. By comparing HORNET with power densities describing changes to the internal energy (pressure dilatation, $\rm{Pi-D}$, and divergence of the vector heat flux density), we find that HORNET can be a significant fraction of these other measures (8\% and 35\% for electrons and ions, respectively, for reconnection; up to 67\% for both electrons and ions for turbulence), meaning evolution of the system towards or away from LTE can be dynamically important. Applications to numerous plasma phenomena are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12477v1-abstract-full').style.display = 'none'; document.getElementById('2402.12477v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages (including references), 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E 109, 015205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16973">arXiv:2310.16973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16973">pdf</a>, <a href="https://arxiv.org/format/2310.16973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Scale Filtering Analysis of Kinetic Reconnection and its Associated Turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Subash Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Matthaeus%2C+W+H">William H. Matthaeus</a>, <a href="/search/physics?searchtype=author&amp;query=Cassak%2C+P+A">Paul A. Cassak</a>, <a href="/search/physics?searchtype=author&amp;query=Parashar%2C+T+N">Tulasi N. Parashar</a>, <a href="/search/physics?searchtype=author&amp;query=Shay%2C+M+A">Michael A. Shay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16973v1-abstract-short" style="display: inline;"> Previously, using an incompressible von K谩rm谩n-Howarth formalism, the behavior of cross-scale energy transfer in magnetic reconnection and turbulence was found to be essentially identical to each other, independent of an external magnetic (guide) field, in the inertial and energy-containing ranges (Adhikari et al., Phys. Plasmas 30, 082904, 2023). However, this description did not account for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16973v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16973v1-abstract-full" style="display: none;"> Previously, using an incompressible von K谩rm谩n-Howarth formalism, the behavior of cross-scale energy transfer in magnetic reconnection and turbulence was found to be essentially identical to each other, independent of an external magnetic (guide) field, in the inertial and energy-containing ranges (Adhikari et al., Phys. Plasmas 30, 082904, 2023). However, this description did not account for the energy transfer in the dissipation range for kinetic plasmas. In this letter, we adopt a scale-filtering approach to investigate this previously unaccounted-for energy transfer channel in reconnection. Using kinetic particle-in-cell (PIC) simulations of antiparallel and component reconnection, we show that the pressure-strain (PS) interaction becomes important at scales smaller than the ion inertial length, where the nonlinear energy transfer term drops off. Also, the presence of a guide field makes a significant difference in the morphology of the scale-filtered energy transfer. These results are consistent with kinetic turbulence simulations, suggesting that the pressure strain interaction is the dominant energy transfer channel between electron scales and ion scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16973v1-abstract-full').style.display = 'none'; document.getElementById('2310.16973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02068">arXiv:2305.02068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02068">pdf</a>, <a href="https://arxiv.org/format/2305.02068">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Statistics of Pressure Fluctuations in Turbulent Kinetic Plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Subash Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Matthaeus%2C+W+H">William H. Matthaeus</a>, <a href="/search/physics?searchtype=author&amp;query=Parashar%2C+T+N">Tulasi N. Parashar</a>, <a href="/search/physics?searchtype=author&amp;query=Shay%2C+M+A">Michael A. Shay</a>, <a href="/search/physics?searchtype=author&amp;query=Cassak%2C+P+A">Paul A. Cassak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02068v1-abstract-short" style="display: inline;"> In this study we explore the statistics of pressure fluctuations in kinetic collisionless turbulence. A 2.5D kinetic particle-in-cell (PIC) simulation of decaying turbulence is used to investigate pressure balance via the evolution of thermal and magnetic pressure in a plasma with beta of order unity. We also discuss the behavior of thermal, magnetic and total pressure structure functions and thei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02068v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02068v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02068v1-abstract-full" style="display: none;"> In this study we explore the statistics of pressure fluctuations in kinetic collisionless turbulence. A 2.5D kinetic particle-in-cell (PIC) simulation of decaying turbulence is used to investigate pressure balance via the evolution of thermal and magnetic pressure in a plasma with beta of order unity. We also discuss the behavior of thermal, magnetic and total pressure structure functions and their corresponding wavenumber spectra. The total pressure spectrum exhibits a slope of -7/3 extending for about a decade in the ion-inertial range. In contrast, shallower -5/3 spectra are characteristic of the magnetic pressure and thermal pressure. The steeper total pressure spectrum is a consequence of cancellation caused by density-magnetic field magnitude anticorrelation. Further, we evaluate higher order total pressure structure functions in an effort to discuss intermittency and compare the power exponents with higher order structure functions of velocity and magnetic fluctuations. Finally, applications to astrophysical systems are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02068v1-abstract-full').style.display = 'none'; document.getElementById('2305.02068v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13730">arXiv:2304.13730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13730">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-adiabatic coupling as friction in the formation of H3+: A classical mechanical study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baer%2C+M">Michael Baer</a>, <a href="/search/physics?searchtype=author&amp;query=Mukherjee%2C+S">Soumya Mukherjee</a>, <a href="/search/physics?searchtype=author&amp;query=Ravi%2C+S">Satyam Ravi</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Satrajit Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Sathyamurthy%2C+N">Narayanasami Sathyamurthy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13730v1-abstract-short" style="display: inline;"> By going beyond the Born-Oppenheimer approximation and treating the non-adiabatic coupling terms (NACTs) as equivalent to a frictional force in a molecular system, the classical equations of motion are solved for a test case of H3+. Using an ab initio potential energy surface for the ground electronic state and its NACTs with the first excited state of H3+, it is shown that (D+, H2) collisions are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13730v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13730v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13730v1-abstract-full" style="display: none;"> By going beyond the Born-Oppenheimer approximation and treating the non-adiabatic coupling terms (NACTs) as equivalent to a frictional force in a molecular system, the classical equations of motion are solved for a test case of H3+. Using an ab initio potential energy surface for the ground electronic state and its NACTs with the first excited state of H3+, it is shown that (D+, H2) collisions are slowed enough to result in trapping and formation of a stable DH2+. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13730v1-abstract-full').style.display = 'none'; document.getElementById('2304.13730v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09635">arXiv:2302.09635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09635">pdf</a>, <a href="https://arxiv.org/format/2302.09635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Effect of a guide field on the turbulence like properties of magnetic reconnection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Subash Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Shay%2C+M+A">Michael A. Shay</a>, <a href="/search/physics?searchtype=author&amp;query=Parashar%2C+T+N">Tulasi N. Parashar</a>, <a href="/search/physics?searchtype=author&amp;query=Matthaeus%2C+W+H">William H. Matthaeus</a>, <a href="/search/physics?searchtype=author&amp;query=Pyakurel%2C+P+S">Prayash S. Pyakurel</a>, <a href="/search/physics?searchtype=author&amp;query=Stawarz%2C+J+E">Julia E. Stawarz</a>, <a href="/search/physics?searchtype=author&amp;query=Eastwood%2C+J+P">Jonathan P. Eastwood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09635v1-abstract-short" style="display: inline;"> The effect of an external guide field on the turbulence-like properties of magnetic reconnection is studied using five different 2.5D kinetic particle-in-cell (PIC) simulations. The magnetic energy spectrum is found to exhibit a slope of approximately -5/3 in the inertial range, independent of the guide field. On the contrary, the electric field spectrum, in the inertial range steepens more with t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09635v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09635v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09635v1-abstract-full" style="display: none;"> The effect of an external guide field on the turbulence-like properties of magnetic reconnection is studied using five different 2.5D kinetic particle-in-cell (PIC) simulations. The magnetic energy spectrum is found to exhibit a slope of approximately -5/3 in the inertial range, independent of the guide field. On the contrary, the electric field spectrum, in the inertial range steepens more with the guide field and approaches a slope of -5/3. In addition, spectral analysis of the different terms of the generalized Ohm&#39;s law is performed and found to be consistent with PIC simulations of turbulence and MMS observations. Finally, guide field effect on the energy transfer behavior is examined using von-K谩rm谩n Howarth (vKH) equation based on incompressible Hall-MHD. The general characteristics of the vKH equation with constant rate of energy transfer in the inertial range, is consistent in all the simulations. This suggests that the qualitative behavior of energy spectrum, and energy transfer in reconnection is similar to that of turbulence, indicating that reconnection fundamentally involves an energy cascade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09635v1-abstract-full').style.display = 'none'; document.getElementById('2302.09635v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submission to Physics of Plasmas</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12676">arXiv:2211.12676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.12676">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> The essential role of multi-point measurements in investigations of turbulence, three-dimensional structure, and dynamics: the solar wind beyond single scale and the Taylor Hypothesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Matthaeus%2C+W+H">W. H. Matthaeus</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Bandyopadhyay%2C+R">R. Bandyopadhyay</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+M+R">M. R. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+R">R. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Borovsky%2C+J">J. Borovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Carbone%2C+V">V. Carbone</a>, <a href="/search/physics?searchtype=author&amp;query=Caprioli%2C+D">D. Caprioli</a>, <a href="/search/physics?searchtype=author&amp;query=Chasapis%2C+A">A. Chasapis</a>, <a href="/search/physics?searchtype=author&amp;query=Chhiber%2C+R">R. Chhiber</a>, <a href="/search/physics?searchtype=author&amp;query=Dasso%2C+S">S. Dasso</a>, <a href="/search/physics?searchtype=author&amp;query=Dmitruk%2C+P">P. Dmitruk</a>, <a href="/search/physics?searchtype=author&amp;query=Del+Zanna%2C+L">L. Del Zanna</a>, <a href="/search/physics?searchtype=author&amp;query=Dmitruk%2C+P+A">P. A. Dmitruk</a>, <a href="/search/physics?searchtype=author&amp;query=Franci%2C+L">Luca Franci</a>, <a href="/search/physics?searchtype=author&amp;query=Gary%2C+S+P">S. P. Gary</a>, <a href="/search/physics?searchtype=author&amp;query=Goldstein%2C+M+L">M. L. Goldstein</a>, <a href="/search/physics?searchtype=author&amp;query=Gomez%2C+D">D. Gomez</a>, <a href="/search/physics?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/physics?searchtype=author&amp;query=Horbury%2C+T+S">T. S. Horbury</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+H">Hantao Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Kasper%2C+J+C">J. C. Kasper</a>, <a href="/search/physics?searchtype=author&amp;query=Klein%2C+K+G">K. G. Klein</a>, <a href="/search/physics?searchtype=author&amp;query=Landi%2C+S">S. Landi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hui Li</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12676v2-abstract-short" style="display: inline;"> Space plasmas are three-dimensional dynamic entities. Except under very special circumstances, their structure in space and their behavior in time are not related in any simple way. Therefore, single spacecraft in situ measurements cannot unambiguously unravel the full space-time structure of the heliospheric plasmas of interest in the inner heliosphere, in the Geospace environment, or the outer h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12676v2-abstract-full').style.display = 'inline'; document.getElementById('2211.12676v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12676v2-abstract-full" style="display: none;"> Space plasmas are three-dimensional dynamic entities. Except under very special circumstances, their structure in space and their behavior in time are not related in any simple way. Therefore, single spacecraft in situ measurements cannot unambiguously unravel the full space-time structure of the heliospheric plasmas of interest in the inner heliosphere, in the Geospace environment, or the outer heliosphere. This shortcoming leaves numerous central questions incompletely answered. Deficiencies remain in at least two important subjects, Space Weather and fundamental plasma turbulence theory, due to a lack of a more complete understanding of the space-time structure of dynamic plasmas. Only with multispacecraft measurements over suitable spans of spatial separation and temporal duration can these ambiguities be resolved. We note that these characterizations apply to turbulence across a wide range of scales, and also equally well to shocks, flux ropes, magnetic clouds, current sheets, stream interactions, etc. In the following, we will describe the basic requirements for resolving space-time structure in general, using turbulence&#39; as both an example and a principal target or study. Several types of missions are suggested to resolve space-time structure throughout the Heliosphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12676v2-abstract-full').style.display = 'none'; document.getElementById('2211.12676v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">White Paper submitted to: Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033. arXiv admin note: substantial text overlap with arXiv:1903.06890</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.00208">arXiv:2209.00208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.00208">pdf</a>, <a href="https://arxiv.org/format/2209.00208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac8f90">10.3847/1538-4357/ac8f90 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strategies for determining the cascade rate in MHD turbulence: isotropy, anisotropy, and spacecraft sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yanwen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chhiber%2C+R">Rohit Chhiber</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Subash Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Bandyopadhyay%2C+R">Riddhi Bandyopadhyay</a>, <a href="/search/physics?searchtype=author&amp;query=Shay%2C+M+A">Michael A. Shay</a>, <a href="/search/physics?searchtype=author&amp;query=Oughton%2C+S">Sean Oughton</a>, <a href="/search/physics?searchtype=author&amp;query=Matthaeus%2C+W+H">William H. Matthaeus</a>, <a href="/search/physics?searchtype=author&amp;query=Cuesta%2C+M+E">Manuel E. Cuesta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.00208v2-abstract-short" style="display: inline;"> ``Exact&#39;&#39; laws for evaluating cascade rates, tracing back to the Kolmogorov ``4/5&#39;&#39; law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00208v2-abstract-full').style.display = 'inline'; document.getElementById('2209.00208v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.00208v2-abstract-full" style="display: none;"> ``Exact&#39;&#39; laws for evaluating cascade rates, tracing back to the Kolmogorov ``4/5&#39;&#39; law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such ``third-order&#39;&#39; (or Yaglom) relations is most effectively accomplished by examining the von Karman-Howarth equation in increment form, a framework from which the third-order laws are derived as asymptotic approximations. Using this approach, we examine the context of third-order laws for incompressible MHD in some detail. The simplest versions rely on the assumption of isotropy and the presence of a well-defined inertial range, while related procedures generalize the same idea to arbitrary rotational symmetries. Conditions for obtaining correct and accurate values of the dissipation rate from these laws based on several sampling and fitting strategies are investigated using results from simulations. The questions we address are of particular relevance to sampling of solar wind turbulence by one or more spacecraft. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00208v2-abstract-full').style.display = 'none'; document.getElementById('2209.00208v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.12445">arXiv:2208.12445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.12445">pdf</a>, <a href="https://arxiv.org/format/2208.12445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Study of two-electron temperature plasma sheath using nonextensive electron distribution in presence of an external magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+G">G. Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Paul%2C+R">R. Paul</a>, <a href="/search/physics?searchtype=author&amp;query=Deka%2C+K">K. Deka</a>, <a href="/search/physics?searchtype=author&amp;query=Moulick%2C+R">R. Moulick</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Kausik%2C+S+S">S. S. Kausik</a>, <a href="/search/physics?searchtype=author&amp;query=Saikia%2C+B+K">B. K. Saikia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.12445v1-abstract-short" style="display: inline;"> In this study, the physics of sheath formation in a collisional two-electron temperature plasma in the presence of an oblique external magnetic field has been investigated. At first, a comparative study among the fluid electron model, Boltzmann electron model and the nonextensive electron model has been carried out and a suitable range of nonextensive parameter q has been predicted. In the latter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12445v1-abstract-full').style.display = 'inline'; document.getElementById('2208.12445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.12445v1-abstract-full" style="display: none;"> In this study, the physics of sheath formation in a collisional two-electron temperature plasma in the presence of an oblique external magnetic field has been investigated. At first, a comparative study among the fluid electron model, Boltzmann electron model and the nonextensive electron model has been carried out and a suitable range of nonextensive parameter q has been predicted. In the latter part, a collisional two-electron temperature plasma is considered. Both the hot and cold electron densities are described using the non-extensive distribution whereas cold ions are described by the fluid equations. The properties of the sheath are investigated in different collisional regimes by varying the non-extensive parameter (q) and the hot to cold electron densities and temperatures. The magnetic field inclination angle is varied in the limit $1^0 \leq 伪\leq 5^0$. It is observed that electron distribution significantly deviates from Boltzmann distribution for nearly parallel magnetic field. Moreover, collision enhanced flux deposition for highly magnetised case is a significant finding of the study. The results obtained in this study can enhance the understanding of plasma matter interaction processes where multiple electron groups with near parallel magnetic field are found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12445v1-abstract-full').style.display = 'none'; document.getElementById('2208.12445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07866">arXiv:2207.07866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07866">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Magnetization Switching of Single Magnetite Nanoparticles Monitored Optically </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Spaeth%2C+P">P. Spaeth</a>, <a href="/search/physics?searchtype=author&amp;query=Scalerandi%2C+F">F. Scalerandi</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+W">W. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">J. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Orrit%2C+M">M. Orrit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07866v2-abstract-short" style="display: inline;"> Magnetic nanomaterials record information as fast as picoseconds in computer memories but retain it for millions of years in ancient rocks. This exceedingly broad range of times is covered by hopping over a potential energy barrier through temperature, ultrafast optical excitation for demagnetization or magnetization manipulation, mechanical stress, or microwaves. As switching depends on nanoparti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07866v2-abstract-full').style.display = 'inline'; document.getElementById('2207.07866v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07866v2-abstract-full" style="display: none;"> Magnetic nanomaterials record information as fast as picoseconds in computer memories but retain it for millions of years in ancient rocks. This exceedingly broad range of times is covered by hopping over a potential energy barrier through temperature, ultrafast optical excitation for demagnetization or magnetization manipulation, mechanical stress, or microwaves. As switching depends on nanoparticle size, shape, orientation, and material properties, only single-nanoparticle studies can eliminate ensemble heterogeneity. Here, we push the sensitivity of photothermal magnetic circular dichroism down to individual 20-nm magnetite nanoparticles. Single-particle magnetization curves display superparamagnetic to ferromagnetic behaviors, depending on size, shape, and orientation. Some nanoparticles undergo thermally activated switching on time scales of milliseconds to minutes. Surprisingly, the switching barrier appears to vary in time, leading to dynamical heterogeneity. Our observations will help to identify and eventually control the nanoscale parameters influencing the switching of magnetic nanoparticles, an important step for applications in many fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07866v2-abstract-full').style.display = 'none'; document.getElementById('2207.07866v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09070">arXiv:2206.09070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.09070">pdf</a>, <a href="https://arxiv.org/format/2206.09070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Hydration free energies of polypeptides from popular implicit solvent models versus all-atom simulation results based on molecular quasichemical theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+R+S">Rohan S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Parambathu%2C+A+V">Arjun Valiya Parambathu</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+W+G">Walter G. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Asthagiri%2C+D+N">Dilipkumar N. Asthagiri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09070v1-abstract-short" style="display: inline;"> The hydration free energy of a macromolecule is the central property of interest for understanding its distribution over conformations and its state of aggregation. Calculating the hydration free energy of a macromolecule in all-atom simulations has long remained a challenge, necessitating the use of models wherein the effect of the solvent is captured without explicit account of solvent degrees o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09070v1-abstract-full').style.display = 'inline'; document.getElementById('2206.09070v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09070v1-abstract-full" style="display: none;"> The hydration free energy of a macromolecule is the central property of interest for understanding its distribution over conformations and its state of aggregation. Calculating the hydration free energy of a macromolecule in all-atom simulations has long remained a challenge, necessitating the use of models wherein the effect of the solvent is captured without explicit account of solvent degrees of freedom. This situation has changed with developments in the molecular quasi-chemical theory (QCT), an approach that enables calculation of the hydration free energy of macromolecules within all-atom simulations at the same resolution as is possible for small molecule solutes. The theory also provides a rigorous and physically transparent framework to conceptualize and model interactions in molecular solutions, and thus provides a convenient framework to investigate the assumptions in implicit-solvent models. In this study, we compare the results using molecular QCT versus predictions from EEF1, ABSINTH, and GB/SA implicit-solvent models for poly-glycine and poly-alanine solutes covering a range of chain lengths and conformations. Among the three models, GB/SA does best in capturing the broad trends in hydration free energy. We trace the deficiencies of the group-additive EEF1 and ABSINTH models to their under-appreciation of the cooperativity of hydration between solute groups; seen in this light, the better performance of GB/SA can be attributed to its treatment of the collective properties of hydration, albeit within a continuum dielectric framework. We highlight the importance of validating the individual physical components that enter implicit solvent models for protein solution thermodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09070v1-abstract-full').style.display = 'none'; document.getElementById('2206.09070v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16814">arXiv:2203.16814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.16814">pdf</a>, <a href="https://arxiv.org/format/2203.16814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Effect of external magnetic field and dust grains on the properties of Ion Acoustic Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Deka%2C+K">K. Deka</a>, <a href="/search/physics?searchtype=author&amp;query=Paul%2C+R">R. Paul</a>, <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+G">G. Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+N">N. Das</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Moulick%2C+R">R. Moulick</a>, <a href="/search/physics?searchtype=author&amp;query=Kausik%2C+S+S">S. S. Kausik</a>, <a href="/search/physics?searchtype=author&amp;query=Saikia%2C+B+K">B. K. Saikia</a>, <a href="/search/physics?searchtype=author&amp;query=Chin%2C+O+H">O. H. Chin</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+C+S">C. S. Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16814v1-abstract-short" style="display: inline;"> An experimental study to investigate the effect of an external magnetic field on the propagation of ion-acoustic waves (IAWs) has been carried out in hydrogen plasma containing two-temperature electrons and dust grains. A low-pressure hot cathode discharge method is opted for plasma production. The desired two electron groups with distinct temperatures are achieved by inserting two magnetic cages&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16814v1-abstract-full').style.display = 'inline'; document.getElementById('2203.16814v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16814v1-abstract-full" style="display: none;"> An experimental study to investigate the effect of an external magnetic field on the propagation of ion-acoustic waves (IAWs) has been carried out in hydrogen plasma containing two-temperature electrons and dust grains. A low-pressure hot cathode discharge method is opted for plasma production. The desired two electron groups with distinct temperatures are achieved by inserting two magnetic cages with a cusp-shaped magnetic field of different surface field strengths in the same chamber. The dust grains are dropped into the plasma with the help of a dust dropper, which gain negative charges by interacting with the plasma. The IAWs are excited with the help of a mesh-grid inserted into the plasma. A planar Langmuir probe is used as a detector to detect the IAWs. The time of flight technique has been applied to measure the phase velocity of the IAWs. The results suggest that in the presence of a magnetic field, the phase velocity of IAWs increases, whereas introducing the dust particles leads to the lower phase velocity. The magnetic field is believed to have a significant effect on the wave damping. This study will aid in utilising IAWs as a diagnostic tool to estimate plasma parameters in the presence of an external magnetic field. Moreover, the study might be useful for estimating the relative ion concentrations in a two positive ion species plasma, as well as the relative concentration of the negative ions in the presence of an external magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16814v1-abstract-full').style.display = 'none'; document.getElementById('2203.16814v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16277">arXiv:2203.16277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.16277">pdf</a>, <a href="https://arxiv.org/format/2203.16277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.043068">10.1103/PhysRevResearch.5.043068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal Aspects of Barrier Crossing Under Bias </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Sudeep Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Beach%2C+K+S+D">K. S. D. Beach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16277v2-abstract-short" style="display: inline;"> The thermal activation process by which a system passes from one local energy minimum to another is a recurring motif in physics, chemistry, and biology. For instance, biopolymer chains are typically modeled in terms of energy landscapes, with folded and unfolded conformations represented by two distinct wells separated by a barrier. The rate of transfer between wells depends primarily on the heig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16277v2-abstract-full').style.display = 'inline'; document.getElementById('2203.16277v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16277v2-abstract-full" style="display: none;"> The thermal activation process by which a system passes from one local energy minimum to another is a recurring motif in physics, chemistry, and biology. For instance, biopolymer chains are typically modeled in terms of energy landscapes, with folded and unfolded conformations represented by two distinct wells separated by a barrier. The rate of transfer between wells depends primarily on the height of the barrier, but it also depends on the details of the shape of the landscape along the trajectory. We consider the case of bias due to an external force, analogous to the pulling force applied in optical tweezer experiments on biopolymers. Away from the Arrhenius-law limit and well out of equilibrium, somewhat idiosyncratic behavior might be expected. Instead, we identify universal behavior of the biased activated-barrier-crossing process and demonstrate that data collapse onto a universal curve can be achieved for simulated data over a wide variety of energy landscapes having barriers of different height and shape and for loading rates spanning many orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16277v2-abstract-full').style.display = 'none'; document.getElementById('2203.16277v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Research 5, 043068 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07467">arXiv:2203.07467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07467">pdf</a>, <a href="https://arxiv.org/format/2203.07467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Current-driven Langmuir Oscillations and Streaming Instabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Marholm%2C+S">Sigvald Marholm</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Sayan Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Miloch%2C+W+J">Wojciech J. Miloch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07467v1-abstract-short" style="display: inline;"> The Buneman and ion acoustic instabilities are usually associated with different electron and ion drift velocities, in such a way that there is a large current through the plasma. However, due to the recently discovered current-driven Langmuir oscillations (1-3), the relative drift velocity in these configurations will oscillate at the plasma frequency, and with an amplitude of at least the initia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07467v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07467v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07467v1-abstract-full" style="display: none;"> The Buneman and ion acoustic instabilities are usually associated with different electron and ion drift velocities, in such a way that there is a large current through the plasma. However, due to the recently discovered current-driven Langmuir oscillations (1-3), the relative drift velocity in these configurations will oscillate at the plasma frequency, and with an amplitude of at least the initial drift velocity. In contrast, the textbooks assume a constant drift velocity. Since the growth rates arrived at under that assumption are far less than the plasma frequency, several oscillation periods will take place during the linear growth phase, and this will dampen the instabilities. We provide general theoretical derivations of these oscillations, and show simulation results of the altered behavior of the instabilities. Towards the end, we hypothesize that drift-averaging might be a viable method of calculating the modified growth rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07467v1-abstract-full').style.display = 'none'; document.getElementById('2203.07467v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.14322">arXiv:2112.14322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.14322">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jsv.2022.116977">10.1016/j.jsv.2022.116977 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metadamping in inertially amplified metamaterials: Trade-off between spatial attenuation and temporal attenuation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hussein%2C+M+I">Mahmoud I. Hussein</a>, <a href="/search/physics?searchtype=author&amp;query=Patrick%2C+I">Ibrahim Patrick</a>, <a href="/search/physics?searchtype=author&amp;query=Banerjee%2C+A">Arnab Banerjee</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Sondipon Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.14322v1-abstract-short" style="display: inline;"> Metadamping is the phenomenon of either enhanced or diminished intrinsic dissipation in a material stemming from the material&#39;s internal structural dynamics. It has been previously shown that a locally resonant elastic metamaterial may be designed to exhibit higher or lower dissipation compared to a statically equivalent phononic crystal with the same amount of prescribed damping. Here we reveal t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14322v1-abstract-full').style.display = 'inline'; document.getElementById('2112.14322v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.14322v1-abstract-full" style="display: none;"> Metadamping is the phenomenon of either enhanced or diminished intrinsic dissipation in a material stemming from the material&#39;s internal structural dynamics. It has been previously shown that a locally resonant elastic metamaterial may be designed to exhibit higher or lower dissipation compared to a statically equivalent phononic crystal with the same amount of prescribed damping. Here we reveal that even further dissipation, or alternatively further reduction of loss, may be reached in an inertially amplified metamaterial that is also statically equivalent and has the same amount of prescribed damping. This is demonstrated by a passive configuration whereby an attenuation peak is generated by the motion of a mass supported by an inclined lever arm. We further show that by coupling this inertially amplified attenuation peak with that of a local resonance attenuation peak, a trade-off between the intensity of spatial attenuation versus temporal attenuation is realized for a range of the inclination angles. Design for performance along this trade-off is therefore possible by adjustment of the lever angle. These findings open the way for highly expanding the Ashby space for stiffness-damping capacity or stiffness-spatial attenuation capacity through design of the internal structure of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14322v1-abstract-full').style.display = 'none'; document.getElementById('2112.14322v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Sound and Vibrations 531, 116977 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12440">arXiv:2112.12440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.12440">pdf</a>, <a href="https://arxiv.org/format/2112.12440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Effect of Positive Polarity in an Inertial Electrostatic Confinement Fusion Device: Electron Confinement, X-ray Production, and Radiography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bhattacharjee%2C+D">D. Bhattacharjee</a>, <a href="/search/physics?searchtype=author&amp;query=Mohanty%2C+S+R">S. R. Mohanty</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12440v1-abstract-short" style="display: inline;"> The conventional inertial electrostatic confinement fusion (IECF) operation is based on the application of high negative voltage to the central grid which results in the production of neutrons due to the fusion of lighter ions. The neutron has enormous applications in diversified fields. Apart from the neutrons, it can also be used as an application based x-ray source by altering the polarity of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12440v1-abstract-full').style.display = 'inline'; document.getElementById('2112.12440v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12440v1-abstract-full" style="display: none;"> The conventional inertial electrostatic confinement fusion (IECF) operation is based on the application of high negative voltage to the central grid which results in the production of neutrons due to the fusion of lighter ions. The neutron has enormous applications in diversified fields. Apart from the neutrons, it can also be used as an application based x-ray source by altering the polarity of the central grid. In this work, the electron dynamics during the positive polarity of the central grid have been studied using an object-oriented particle-in-cell code (XOOPIC). The trapped electron density inside the anode is found to be of the order of 1016 m-3 during 10 kV simulation. The re-circulatory characteristics of the electrons are also studied from the velocity distribution function. The x-ray production, imaging and radiography have been investigated at different voltages and using different structure of the anode. The x-ray emitting zone have been studied via pinhole imaging technique. Lastly, the radiography of metallic as well as biological samples have been studied in the later part of this paper. This study shows the versatile nature of the IECF device in terms of its applications, both in the field of neutron and x-ray. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12440v1-abstract-full').style.display = 'none'; document.getElementById('2112.12440v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06884">arXiv:2112.06884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06884">pdf</a>, <a href="https://arxiv.org/format/2112.06884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0082954">10.1063/5.0082954 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding the surface wave characteristics using 2D particle-in-cell simulation and deep neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mishra%2C+R">Rinku Mishra</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Sayan Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Mukherjee%2C+R">Rupak Mukherjee</a>, <a href="/search/physics?searchtype=author&amp;query=Saikia%2C+B+J">B. J. Saikia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06884v4-abstract-short" style="display: inline;"> The characteristics of the surface waves along the interface between a plasma and a dielectric material have been investigated using kinetic Particle-In-Cell (PIC) simulations. A microwave source of GHz frequency has been used to trigger the surface wave in the system. The outcome indicates that the surface wave gets excited along the interface of plasma and the dielectric tube and appears as ligh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06884v4-abstract-full').style.display = 'inline'; document.getElementById('2112.06884v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06884v4-abstract-full" style="display: none;"> The characteristics of the surface waves along the interface between a plasma and a dielectric material have been investigated using kinetic Particle-In-Cell (PIC) simulations. A microwave source of GHz frequency has been used to trigger the surface wave in the system. The outcome indicates that the surface wave gets excited along the interface of plasma and the dielectric tube and appears as light and dark patterns in the electric field profiles. The dependency of radiation pressure on the dielectric permittivity and supplied input frequency has been investigated. Further, we assessed the capabilities of neural networks to predict the radiation pressure for a given system. The proposed Deep Neural Network model is aimed at developing accurate and efficient data-driven plasma surface wave devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06884v4-abstract-full').style.display = 'none'; document.getElementById('2112.06884v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76P05; 76X05; 68T07 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2; I.6.5; I.2.6; G.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04904">arXiv:2109.04904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.04904">pdf</a>, <a href="https://arxiv.org/format/2109.04904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ac44e5">10.1088/1361-6587/ac44e5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental study of charging of dust grains in presence of energetic electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Paul%2C+R">R. Paul</a>, <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+G">G. Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Deka%2C+K">K. Deka</a>, <a href="/search/physics?searchtype=author&amp;query=Kausik%2C+S+S">S. S. Kausik</a>, <a href="/search/physics?searchtype=author&amp;query=Saikia%2C+B+K">B. K. Saikia</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Moulick%2C+R">R. Moulick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04904v2-abstract-short" style="display: inline;"> The role of hot electrons in charging of dust grains is investigated in a two-temperature hydrogen plasma. A variety of dust particles are introduced into the system and secondary electron emission (SEE) from each of the dust grains has been reported. A cylindrical Langmuir probe is used for determining the plasma parameters and a Faraday cup is connected to an electrometer in order to measure the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04904v2-abstract-full').style.display = 'inline'; document.getElementById('2109.04904v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04904v2-abstract-full" style="display: none;"> The role of hot electrons in charging of dust grains is investigated in a two-temperature hydrogen plasma. A variety of dust particles are introduced into the system and secondary electron emission (SEE) from each of the dust grains has been reported. A cylindrical Langmuir probe is used for determining the plasma parameters and a Faraday cup is connected to an electrometer in order to measure the dust current. The electrometer readings confirm the electron emission from the dust and SEE is observed from the tungsten dust in a low-pressure experimental plasma device for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04904v2-abstract-full').style.display = 'none'; document.getElementById('2109.04904v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01431">arXiv:2109.01431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.01431">pdf</a>, <a href="https://arxiv.org/format/2109.01431">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Beam-Plasma Dynamics in Finite-Length, Collisionless Inhomogeneous Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mishra%2C+R">R. Mishra</a>, <a href="/search/physics?searchtype=author&amp;query=Moulick%2C+R">R. Moulick</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Marholm%2C+S">S. Marholm</a>, <a href="/search/physics?searchtype=author&amp;query=Eklund%2C+A+J">A. J. Eklund</a>, <a href="/search/physics?searchtype=author&amp;query=Miloch%2C+W+J">W. J. Miloch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01431v2-abstract-short" style="display: inline;"> This study investigates the streaming instability triggered by ion motion in a plasma system that is finite in length, collisionless, and inhomogeneous. Employing numerical simulations using Particle-In-Cell (PIC) techniques and kinetic equations, the study examines how inhomogeneity emerges from integrating a cold ion beam with a background plasma within a confined system. The findings suggest th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01431v2-abstract-full').style.display = 'inline'; document.getElementById('2109.01431v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01431v2-abstract-full" style="display: none;"> This study investigates the streaming instability triggered by ion motion in a plasma system that is finite in length, collisionless, and inhomogeneous. Employing numerical simulations using Particle-In-Cell (PIC) techniques and kinetic equations, the study examines how inhomogeneity emerges from integrating a cold ion beam with a background plasma within a confined system. The findings suggest that steady ion flow can modify ion sound waves through acoustic reflections from system boundaries, leading to instability. Such phenomena are known to be a hydrodynamic effect. However, there are also signatures of the beam-driven ion sound instability where kinetic resonances play a pivotal role. The main objective is to understand the impact of a finite-length system on beam-plasma instability and to identify the wave modes supported in such configurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01431v2-abstract-full').style.display = 'none'; document.getElementById('2109.01431v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76X05; 76E20; 85-10; 82D10 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2; I.6.5; G.1.5; G.1.8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13631">arXiv:2107.13631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.13631">pdf</a>, <a href="https://arxiv.org/format/2107.13631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0056561">10.1063/5.0056561 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-interaction corrected Kohn-Sham effective potentials using the density-consistent effective potential method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Diaz%2C+C+M">Carlos M. Diaz</a>, <a href="/search/physics?searchtype=author&amp;query=Basurto%2C+L">Luis Basurto</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Santosh Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+Y">Yoh Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Ruzsinszky%2C+A">Adrienn Ruzsinszky</a>, <a href="/search/physics?searchtype=author&amp;query=Baruah%2C+T">Tunna Baruah</a>, <a href="/search/physics?searchtype=author&amp;query=Zope%2C+R+R">Rajendra R. Zope</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13631v1-abstract-short" style="display: inline;"> Density functional theory (DFT) and beyond-DFT methods are often used in combination with photoelectron spectroscopy to obtain physical insights into the electronic structure of molecules and solids. The Kohn-Sham eigenvalues are not electron removal energies except for the highest occupied orbital. The eigenvalues of the highest occupied molecular orbitals often underestimate the electron removal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13631v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13631v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13631v1-abstract-full" style="display: none;"> Density functional theory (DFT) and beyond-DFT methods are often used in combination with photoelectron spectroscopy to obtain physical insights into the electronic structure of molecules and solids. The Kohn-Sham eigenvalues are not electron removal energies except for the highest occupied orbital. The eigenvalues of the highest occupied molecular orbitals often underestimate the electron removal or ionization energies due to the self-interaction (SI) errors in approximate density functionals. In this work, we adapt and implement the density-consistent effective potential(DCEP) method of Kohut, Ryabinkin, and Staroverov to obtain SI corrected local effective potentials from the SI corrected Fermi-L枚wdin orbitals and density in the FLOSIC scheme. The implementation is used to obtain the density of states (photoelectron spectra) and HOMO-LUMO gaps for a set of molecules and polyacenes. Good agreement with experimental values is obtained compared to a range of SI uncorrected density functional approximations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13631v1-abstract-full').style.display = 'none'; document.getElementById('2107.13631v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.10517">arXiv:2105.10517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.10517">pdf</a>, <a href="https://arxiv.org/format/2105.10517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2021.107926">10.1016/j.cpc.2021.107926 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> OpenMP solver for rotating spin-one spin-orbit- and Rabi-coupled Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Muruganandam%2C+P">Paulsamy Muruganandam</a>, <a href="/search/physics?searchtype=author&amp;query=Balaz%2C+A">Antun Balaz</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S+K">Sadhan K. Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.10517v1-abstract-short" style="display: inline;"> We present OpenMP version of a Fortran program for solving the Gross-Pitaevskii equation for a harmonically trapped three-component rotating spin-1 spinor Bose-Einstein condensate (BEC) in two spatial dimensions with or without spin-orbit (SO) and Rabi couplings. The program uses either Rashba or Dresselhaus SO coupling. We use the split-step Crank-Nicolson discretization scheme for imaginary- and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10517v1-abstract-full').style.display = 'inline'; document.getElementById('2105.10517v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.10517v1-abstract-full" style="display: none;"> We present OpenMP version of a Fortran program for solving the Gross-Pitaevskii equation for a harmonically trapped three-component rotating spin-1 spinor Bose-Einstein condensate (BEC) in two spatial dimensions with or without spin-orbit (SO) and Rabi couplings. The program uses either Rashba or Dresselhaus SO coupling. We use the split-step Crank-Nicolson discretization scheme for imaginary- and real-time propagation to calculate stationary states and BEC dynamics, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10517v1-abstract-full').style.display = 'none'; document.getElementById('2105.10517v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure; programs can be downloaded at https://doi.org/10.17632/j3wr4wn946.2. arXiv admin note: text overlap with arXiv:2009.13507</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comput. Phys. Commun. 264 (2021) 107926 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.00837">arXiv:2105.00837</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.00837">pdf</a>, <a href="https://arxiv.org/format/2105.00837">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0035830">10.1063/5.0035830 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of surface temperature on quantum dynamics of H$_2$ on Cu(111) using a chemically accurate potential energy surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dutta%2C+J">Joy Dutta</a>, <a href="/search/physics?searchtype=author&amp;query=Mandal%2C+S">Souvik Mandal</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Satrajit Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Spiering%2C+P">Paul Spiering</a>, <a href="/search/physics?searchtype=author&amp;query=Meyer%2C+J">J枚rg Meyer</a>, <a href="/search/physics?searchtype=author&amp;query=Somers%2C+M+F">Mark F. Somers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.00837v1-abstract-short" style="display: inline;"> The effect of surface atom vibrations for H$_2$ scattering from a Cu(111) surface at different temperatures is being investigated for hydrogen molecules in their rovibrational ground state ($v$=0, $j$=0). We assume weakly correlated interactions between molecular degrees of freedom and surface modes through a Hartree product type wavefunction. While constructing the six dimensional effective Hamil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00837v1-abstract-full').style.display = 'inline'; document.getElementById('2105.00837v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.00837v1-abstract-full" style="display: none;"> The effect of surface atom vibrations for H$_2$ scattering from a Cu(111) surface at different temperatures is being investigated for hydrogen molecules in their rovibrational ground state ($v$=0, $j$=0). We assume weakly correlated interactions between molecular degrees of freedom and surface modes through a Hartree product type wavefunction. While constructing the six dimensional effective Hamiltonian, we employ: (a) a chemically accurate potential energy surface according to the Static Corrugation Model [Wijzenbroek and Somers, J. Chem. Phys. 137, 054703 (2012)]; (b) normal mode frequencies and displacement vectors calculated with different surface atom interaction potentials within a cluster approximation; (c) initial state distributions for the vibrational modes according to Bose-Einstein probability factors. We carry out 6D quantum dynamics with the so-constructed effective Hamiltonian, and analyze sticking and state-to-state scattering probabilities. The surface atom vibrations affect the chemisorption dynamics. The results show physically meaningful trends both for reaction as well as scattering probabilities compared to experimental and other theoretical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00837v1-abstract-full').style.display = 'none'; document.getElementById('2105.00837v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 154, 104103 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.12013">arXiv:2104.12013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.12013">pdf</a>, <a href="https://arxiv.org/format/2104.12013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.104.065206">10.1103/PhysRevE.104.065206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic reconnection as an energy cascade process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Parashar%2C+T+N">T. N. Parashar</a>, <a href="/search/physics?searchtype=author&amp;query=Shay%2C+M+A">M. A. Shay</a>, <a href="/search/physics?searchtype=author&amp;query=Matthaeus%2C+W+H">W. H. Matthaeus</a>, <a href="/search/physics?searchtype=author&amp;query=Pyakurel%2C+P+S">P. Sharma Pyakurel</a>, <a href="/search/physics?searchtype=author&amp;query=Fordin%2C+S">S. Fordin</a>, <a href="/search/physics?searchtype=author&amp;query=Stawarz%2C+J+E">J. E. Stawarz</a>, <a href="/search/physics?searchtype=author&amp;query=Eastwood%2C+J+P">J. P. Eastwood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.12013v1-abstract-short" style="display: inline;"> Reconnection and turbulence are two of the most commonly observed dynamical processes in plasmas, but their relationship is still not fully understood. Using 2.5D kinetic particle-in-cell simulations of both strong turbulence and reconnection, we compare the cross-scale transfer of energy in the two systems by analyzing the generalization of the von K谩rm谩n Howarth equations for Hall magnetohydrody&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.12013v1-abstract-full').style.display = 'inline'; document.getElementById('2104.12013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.12013v1-abstract-full" style="display: none;"> Reconnection and turbulence are two of the most commonly observed dynamical processes in plasmas, but their relationship is still not fully understood. Using 2.5D kinetic particle-in-cell simulations of both strong turbulence and reconnection, we compare the cross-scale transfer of energy in the two systems by analyzing the generalization of the von K谩rm谩n Howarth equations for Hall magnetohydrodynamics, a formulation that subsumes the third-order law for steady cascade rates. Even though the large scale features are quite different, the finding is that the decomposition of the energy transfer is structurally very similar in the two cases. In the reconnection case, the time evolution of the energy transfer also exhibits a correlation with the reconnection rate. These results provide explicit evidence that reconnection itself is fundamentally an energy cascade process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.12013v1-abstract-full').style.display = 'none'; document.getElementById('2104.12013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.16830">arXiv:2103.16830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.16830">pdf</a>, <a href="https://arxiv.org/format/2103.16830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6595/ac4c4b">10.1088/1361-6595/ac4c4b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental study on controlled production of two-electron temperature plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+G">G. Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Deka%2C+K">K. Deka</a>, <a href="/search/physics?searchtype=author&amp;query=Paul%2C+R">R. Paul</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Moulick%2C+R">R. Moulick</a>, <a href="/search/physics?searchtype=author&amp;query=Kausik%2C+S+S">S. S. Kausik</a>, <a href="/search/physics?searchtype=author&amp;query=Saikia%2C+B+K">B. K. Saikia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.16830v1-abstract-short" style="display: inline;"> A two-electron temperature plasma is produced by the method of diffusion of two different plasmas with distinct temperatures and densities. The method is simple and provides an adequate control over the plasma parameters. The study reveals that the temperature and density of both the electron groups can be effectively controlled by just changing the discharge currents of both the plasmas. An ion-a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16830v1-abstract-full').style.display = 'inline'; document.getElementById('2103.16830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.16830v1-abstract-full" style="display: none;"> A two-electron temperature plasma is produced by the method of diffusion of two different plasmas with distinct temperatures and densities. The method is simple and provides an adequate control over the plasma parameters. The study reveals that the temperature and density of both the electron groups can be effectively controlled by just changing the discharge currents of both the plasmas. An ion-acoustic (IA) wave is excited in the plasma and is detected using a planar Langmuir probe. The damped amplitude of the wave is measured and is used as a diagnostic tool for establishing the presence of two-electron components. This production method can be helpful in controlling the hot electron density and temperature in plasma processing industries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16830v1-abstract-full').style.display = 'none'; document.getElementById('2103.16830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13507">arXiv:2009.13507</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13507">pdf</a>, <a href="https://arxiv.org/format/2009.13507">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2020.107657">10.1016/j.cpc.2020.107657 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-1 spin-orbit- and Rabi-coupled Bose-Einstein condensate solver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ravisankar%2C+R">Rajamanickam Ravisankar</a>, <a href="/search/physics?searchtype=author&amp;query=Vudragovic%2C+D">Dusan Vudragovic</a>, <a href="/search/physics?searchtype=author&amp;query=Muruganandam%2C+P">Paulsamy Muruganandam</a>, <a href="/search/physics?searchtype=author&amp;query=Balaz%2C+A">Antun Balaz</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S+K">Sadhan K. Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13507v3-abstract-short" style="display: inline;"> We present OpenMP versions of FORTRAN programs for solving the Gross-Pitaevskii equation for a harmonically trapped three-component spin-1 spinor Bose-Einstein condensate (BEC) in one (1D) and two (2D) spatial dimensions with or without spin-orbit (SO) and Rabi couplings. Several different forms of SO coupling are included in the programs. We use the split-step Crank-Nicolson discretization for im&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13507v3-abstract-full').style.display = 'inline'; document.getElementById('2009.13507v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13507v3-abstract-full" style="display: none;"> We present OpenMP versions of FORTRAN programs for solving the Gross-Pitaevskii equation for a harmonically trapped three-component spin-1 spinor Bose-Einstein condensate (BEC) in one (1D) and two (2D) spatial dimensions with or without spin-orbit (SO) and Rabi couplings. Several different forms of SO coupling are included in the programs. We use the split-step Crank-Nicolson discretization for imaginary- and real-time propagation to calculate stationary states and BEC dynamics, respectively. The imaginary-time propagation programs calculate the lowest-energy stationary state. The real-time propagation programs can be used to study the dynamics. The simulation input parameters are provided at the beginning of each program. The programs propagate the condensate wave function and calculate several relevant physical quantities. Outputs of the programs include the wave function, energy, root-mean-square sizes, different density profiles (linear density for the 1D program, linear and surface densities for the 2D program). The imaginary- or real-time propagation can start with an analytic wave function or a pre-calculated numerical wave function. The imaginary-time propagation usually starts with an analytic wave function, while the real-time propagation is often initiated with the previously calculated converged imaginary-time wave function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13507v3-abstract-full').style.display = 'none'; document.getElementById('2009.13507v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures; programs can be downloaded at https://doi.org/10.17632/j3wr4wn946.1</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comput. Phys. Commun. 259 (2021) 107657 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05057">arXiv:2008.05057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.05057">pdf</a>, <a href="https://arxiv.org/format/2008.05057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> The Fermi-L枚wdin self-interaction correction for ionization energies of organic molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Santosh Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Santra%2C+B">Biswajit Santra</a>, <a href="/search/physics?searchtype=author&amp;query=Ruan%2C+S">Shiqi Ruan</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattarai%2C+P">Puskar Bhattarai</a>, <a href="/search/physics?searchtype=author&amp;query=Nepal%2C+N+K">Niraj K. Nepal</a>, <a href="/search/physics?searchtype=author&amp;query=Jackson%2C+K+A">Koblar A. Jackson</a>, <a href="/search/physics?searchtype=author&amp;query=Ruzsinszky%2C+A">Adrienn Ruzsinszky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05057v1-abstract-short" style="display: inline;"> (Semi)-local density functional approximations (DFAs) suffer from self-interaction error (SIE). When the first ionization energy (IE) is computed as the negative of the highest-occupied orbital (HO) eigenvalue, DFAs notoriously underestimate them compared to quasi-particle calculations. The inaccuracy for the HO is attributed to SIE inherent in DFAs. We assessed the IE based on Perdew-Zunger self-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05057v1-abstract-full').style.display = 'inline'; document.getElementById('2008.05057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05057v1-abstract-full" style="display: none;"> (Semi)-local density functional approximations (DFAs) suffer from self-interaction error (SIE). When the first ionization energy (IE) is computed as the negative of the highest-occupied orbital (HO) eigenvalue, DFAs notoriously underestimate them compared to quasi-particle calculations. The inaccuracy for the HO is attributed to SIE inherent in DFAs. We assessed the IE based on Perdew-Zunger self-interaction corrections on 14 small to moderate-sized organic molecules relevant in organic electronics and polymer donor materials. Though self-interaction corrected DFAs were found to significantly improve the IE relative to the uncorrected DFAs, they overestimate. However, when the self-interaction correction is interiorly scaled using a function of the iso-orbital indicator z蟽, only the regions where SIE is significant get a correction. We discuss these approaches and show how these methods significantly improve the description of the HO eigenvalue for the organic molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05057v1-abstract-full').style.display = 'none'; document.getElementById('2008.05057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.01904">arXiv:2006.01904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.01904">pdf</a>, <a href="https://arxiv.org/format/2006.01904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.024032">10.1103/PhysRevApplied.15.024032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accelerating ultrafast spectroscopy with compressive sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Sushovit Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Cortes%2C+C+L">Cristian L. Cortes</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X">Xiewen Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Panuganti%2C+S">Shobhana Panuganti</a>, <a href="/search/physics?searchtype=author&amp;query=Gosztola%2C+D+J">David J. Gosztola</a>, <a href="/search/physics?searchtype=author&amp;query=Schaller%2C+R+D">Richard D. Schaller</a>, <a href="/search/physics?searchtype=author&amp;query=Wiederrecht%2C+G+P">Gary P. Wiederrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Gray%2C+S+K">Stephen K. Gray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.01904v1-abstract-short" style="display: inline;"> Ultrafast spectroscopy is an important tool for studying photoinduced dynamical processes in atoms, molecules, and nanostructures. Typically, the time to perform these experiments ranges from several minutes to hours depending on the choice of spectroscopic method. It is desirable to reduce this time overhead to not only to shorten time and laboratory resources, but also to make it possible to exa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01904v1-abstract-full').style.display = 'inline'; document.getElementById('2006.01904v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.01904v1-abstract-full" style="display: none;"> Ultrafast spectroscopy is an important tool for studying photoinduced dynamical processes in atoms, molecules, and nanostructures. Typically, the time to perform these experiments ranges from several minutes to hours depending on the choice of spectroscopic method. It is desirable to reduce this time overhead to not only to shorten time and laboratory resources, but also to make it possible to examine fragile specimens which quickly degrade during long experiments. In this article, we motivate using compressive sensing to significantly shorten data acquisition time by reducing the total number of measurements in ultrafast spectroscopy. We apply this technique to experimental data from ultrafast transient absorption spectroscopy and ultrafast terahertz spectroscopy and show that good estimates can be obtained with as low as 15% of the total measurements, implying a 6-fold reduction in data acquisition time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01904v1-abstract-full').style.display = 'none'; document.getElementById('2006.01904v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 024032 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14272">arXiv:2005.14272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.14272">pdf</a>, <a href="https://arxiv.org/format/2005.14272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164807">10.1016/j.nima.2020.164807 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The GlueX Beamline and Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Akondi%2C+C+S">C. S. Akondi</a>, <a href="/search/physics?searchtype=author&amp;query=Ghoul%2C+H+A">H. Al Ghoul</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&amp;query=Anassontzis%2C+E+G">E. G. Anassontzis</a>, <a href="/search/physics?searchtype=author&amp;query=Austregesilo%2C+A">A. Austregesilo</a>, <a href="/search/physics?searchtype=author&amp;query=Barbosa%2C+F">F. Barbosa</a>, <a href="/search/physics?searchtype=author&amp;query=Barlow%2C+J">J. Barlow</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+A">A. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barriga%2C+E">E. Barriga</a>, <a href="/search/physics?searchtype=author&amp;query=Barsotti%2C+R">R. Barsotti</a>, <a href="/search/physics?searchtype=author&amp;query=Beattie%2C+T+D">T. D. Beattie</a>, <a href="/search/physics?searchtype=author&amp;query=Benesch%2C+J">J. Benesch</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+V+V">V. V. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Biallas%2C+G">G. Biallas</a>, <a href="/search/physics?searchtype=author&amp;query=Black%2C+T">T. Black</a>, <a href="/search/physics?searchtype=author&amp;query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&amp;query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&amp;query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/physics?searchtype=author&amp;query=Britton%2C+T">T. Britton</a>, <a href="/search/physics?searchtype=author&amp;query=Brock%2C+J">J. Brock</a>, <a href="/search/physics?searchtype=author&amp;query=Brooks%2C+W+K">W. K. Brooks</a>, <a href="/search/physics?searchtype=author&amp;query=Cannon%2C+B+E">B. E. Cannon</a>, <a href="/search/physics?searchtype=author&amp;query=Carlin%2C+C">C. Carlin</a> , et al. (165 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14272v2-abstract-short" style="display: inline;"> The GlueX experiment at Jefferson Lab has been designed to study photoproduction reactions with a 9-GeV linearly polarized photon beam. The energy and arrival time of beam photons are tagged using a scintillator hodoscope and a scintillating fiber array. The photon flux is determined using a pair spectrometer, while the linear polarization of the photon beam is determined using a polarimeter based&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14272v2-abstract-full').style.display = 'inline'; document.getElementById('2005.14272v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14272v2-abstract-full" style="display: none;"> The GlueX experiment at Jefferson Lab has been designed to study photoproduction reactions with a 9-GeV linearly polarized photon beam. The energy and arrival time of beam photons are tagged using a scintillator hodoscope and a scintillating fiber array. The photon flux is determined using a pair spectrometer, while the linear polarization of the photon beam is determined using a polarimeter based on triplet photoproduction. Charged-particle tracks from interactions in the central target are analyzed in a solenoidal field using a central straw-tube drift chamber and six packages of planar chambers with cathode strips and drift wires. Electromagnetic showers are reconstructed in a cylindrical scintillating fiber calorimeter inside the magnet and a lead-glass array downstream. Charged particle identification is achieved by measuring energy loss in the wire chambers and using the flight time of particles between the target and detectors outside the magnet. The signals from all detectors are recorded with flash ADCs and/or pipeline TDCs into memories allowing trigger decisions with a latency of 3.3 $渭$s. The detector operates routinely at trigger rates of 40 kHz and data rates of 600 megabytes per second. We describe the photon beam, the GlueX detector components, electronics, data-acquisition and monitoring systems, and the performance of the experiment during the first three years of operation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14272v2-abstract-full').style.display = 'none'; document.getElementById('2005.14272v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Nuclear Instruments and Methods A, 78 pages, 54 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-PHY-20-3195 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. &amp; Meth. A987, 164807 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.12199">arXiv:2005.12199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.12199">pdf</a>, <a href="https://arxiv.org/format/2005.12199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.0c05620">10.1021/acsnano.0c05620 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser-induced frequency tuning of Fourier-limited single-molecule emitters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Colautti%2C+M">Maja Colautti</a>, <a href="/search/physics?searchtype=author&amp;query=Piccioli%2C+F+S">Francesco S. Piccioli</a>, <a href="/search/physics?searchtype=author&amp;query=Lombardi%2C+P">Pietro Lombardi</a>, <a href="/search/physics?searchtype=author&amp;query=Toninelli%2C+C">Costanza Toninelli</a>, <a href="/search/physics?searchtype=author&amp;query=ristanovic%2C+Z">Zoran ristanovic</a>, <a href="/search/physics?searchtype=author&amp;query=Moradi%2C+A">Amin Moradi</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Subhasis Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Orrit%2C+M">Michel Orrit</a>, <a href="/search/physics?searchtype=author&amp;query=Deperasinska%2C+I">Irena Deperasinska</a>, <a href="/search/physics?searchtype=author&amp;query=Kozankiewicz%2C+B">Boleslaw Kozankiewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.12199v1-abstract-short" style="display: inline;"> The local interaction of charges and light in organic solids is the basis of distinct and fundamental effects. We here observe, at the single molecule scale, how a focused laser beam can locally shift by hundreds-time their natural linewidth and in a persistent way the transition frequency of organic chromophores, cooled at liquid helium temperatures in different host matrices. Supported by quantu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12199v1-abstract-full').style.display = 'inline'; document.getElementById('2005.12199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.12199v1-abstract-full" style="display: none;"> The local interaction of charges and light in organic solids is the basis of distinct and fundamental effects. We here observe, at the single molecule scale, how a focused laser beam can locally shift by hundreds-time their natural linewidth and in a persistent way the transition frequency of organic chromophores, cooled at liquid helium temperatures in different host matrices. Supported by quantum chemistry calculations, the results are interpreted as effects of a photo-ionization cascade, leading to a stable electric field, which Stark-shifts the molecular electronic levels. The experimental method is then applied to a common challenge in quantum photonics, i.e. the independent tuning and synchronization of close-by quantum emitters, which is desirable for multi-photon experiments. Five molecules that are spatially separated by about 50 microns and originally 20 GHz apart are brought into resonance within twice their linewidth. Combining this ability with an emission linewidth that is only limited by the spontaneous decay, the system enables fabrication-free, independent tuning of multiple molecules integrated on the same photonic chip. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12199v1-abstract-full').style.display = 'none'; document.getElementById('2005.12199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures. Supplementary Informations 23 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.11468">arXiv:2005.11468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.11468">pdf</a>, <a href="https://arxiv.org/format/2005.11468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Towards using general purpose graphics processing unit (GPGPU) units for accelerating the batched perfectly stirred reactor (PSR) calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Sudip Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Sayre%2C+A">Alan Sayre</a>, <a href="/search/physics?searchtype=author&amp;query=Chandy%2C+A+J">Abhilash J Chandy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.11468v1-abstract-short" style="display: inline;"> Detailed analysis of efficiency and pollutant emission characteristics of practical turbulent combustion devices using complex combustion kinetics often depend on the interactions between the combustion chemistry involving both gasses species and soot, and turbulent flow characteristics. Modeling of such combustion system often requires the use of chemical kinetic mechanisms with hundreds of speci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11468v1-abstract-full').style.display = 'inline'; document.getElementById('2005.11468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.11468v1-abstract-full" style="display: none;"> Detailed analysis of efficiency and pollutant emission characteristics of practical turbulent combustion devices using complex combustion kinetics often depend on the interactions between the combustion chemistry involving both gasses species and soot, and turbulent flow characteristics. Modeling of such combustion system often requires the use of chemical kinetic mechanisms with hundreds of species and thousands of reactions. Perfectly stirred reactors (PSR) are idealized reactor environments, where the reacting species have high rate of stirring, and the combustion products are uniformly distributed inside the reactor. PSRs have been found very useful in the study of flame stabilization, prediction of pollutants such as NOx formation, development and testing chemical reaction mechanisms, and investigation of soot formation and growth. The fundamental equations describing a PSR constitute systems of highly nonlinear algebraic equations, due to the complex relationship between the net production rate of the species and the species concentration, which ultimately makes the equations stiff, and the solution of such equations become highly compute-intensive leading to the need for a efficient and robust solution algorithms. Graphics processing units (GPUs) have widely been used in the past as a cost-effective alternate to central processing units (CPUs), and highly parallel threads of GPUs can be used in a efficient manner to improve the performance of such algorithms for speeding up the calculations. A highly parallelized GPU implementation is presented for a batched calculation of PSR model, using a robust and efficient non-linear solver for gas phase chemical reactions and is further coupled to one of the widely used moment <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11468v1-abstract-full').style.display = 'none'; document.getElementById('2005.11468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05941">arXiv:2002.05941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.05941">pdf</a>, <a href="https://arxiv.org/format/2002.05941">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.102.063205">10.1103/PhysRevE.102.063205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinetic characteristics of ions in an inertial electrostatic confinement device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bhattacharjee%2C+D">D. Bhattacharjee</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Buzarbaruah%2C+N">N. Buzarbaruah</a>, <a href="/search/physics?searchtype=author&amp;query=Mohanty%2C+S+R">S. R. Mohanty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05941v2-abstract-short" style="display: inline;"> The kinetic analyses are quite important when it comes to understand the particle behavior in any device as they start to deviate from continuum nature. In the present study, kinetic simulations are performed using Particle-in-Cell (PIC) method to analyze the behavior of ions inside a cylindrical Inertial Electrostatic Confinement Fusion (IECF) device which is being developed as a tabletop neutron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05941v2-abstract-full').style.display = 'inline'; document.getElementById('2002.05941v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05941v2-abstract-full" style="display: none;"> The kinetic analyses are quite important when it comes to understand the particle behavior in any device as they start to deviate from continuum nature. In the present study, kinetic simulations are performed using Particle-in-Cell (PIC) method to analyze the behavior of ions inside a cylindrical Inertial Electrostatic Confinement Fusion (IECF) device which is being developed as a tabletop neutron source. Here, the lighter ions, like deuterium are accelerated by applying an electrostatic field between the chamber wall (anode) and the cathode (cylindrical gridded wire), placed at the center of the device. The plasma potential profiles obtained from the simulated results indicate the formation of multiple potential well structures inside the cathode grid depending upon the applied cathode potential (from $-1$ to $-5~kV$). The ion density at the core region of the device is found to be of the order of $10^{16}~m^{-3}$, which closely resembles the experimental observations. Spatial variation of Ion Energy Distribution Function (IEDF) has been measured in order to observe the characteristics of ions at different cathode voltages. Finally, the simulated results are compared and found to be in good agreement with the experimental profiles. The present analysis can serve as a reference guide to optimize the technological parameters of the discharge process in IECF devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05941v2-abstract-full').style.display = 'none'; document.getElementById('2002.05941v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 82D10; 76X05; 76T15; 76W05 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.6.0 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 102, 063205 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05445">arXiv:2002.05445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.05445">pdf</a>, <a href="https://arxiv.org/format/2002.05445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0004796">10.1063/5.0004796 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetized Plasma Sheath in the Presence of Negative Ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Paul%2C+R">R. Paul</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Moulick%2C+R">R. Moulick</a>, <a href="/search/physics?searchtype=author&amp;query=Kausik%2C+S+S">S. S. Kausik</a>, <a href="/search/physics?searchtype=author&amp;query=Saikia%2C+B+K">B. K. Saikia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05445v1-abstract-short" style="display: inline;"> The sheath formation in a weakly magnetized collisionless electronegative plasma consisting of electrons, negative and positive ions has been numerically investigated using the hydrodynamic equations. The electrons and negative ions are assumed to follow Boltzmann relation. A sheath formation criterion has been analytically derived. The paper focuses on studying the sheath structure by varying the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05445v1-abstract-full').style.display = 'inline'; document.getElementById('2002.05445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05445v1-abstract-full" style="display: none;"> The sheath formation in a weakly magnetized collisionless electronegative plasma consisting of electrons, negative and positive ions has been numerically investigated using the hydrodynamic equations. The electrons and negative ions are assumed to follow Boltzmann relation. A sheath formation criterion has been analytically derived. The paper focuses on studying the sheath structure by varying the electronegativity. It has been observed that the presence of negative ions has a substantial effect on the sheath structure. The observations made in the present work have profound significance on processing plasmas, especially in the semiconductor industry as well as in fusion studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05445v1-abstract-full').style.display = 'none'; document.getElementById('2002.05445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76X05; 76W05; 82D10; 76T15 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> G.1.7 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Plasmas 27, 063520 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.02702">arXiv:2001.02702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.02702">pdf</a>, <a href="https://arxiv.org/format/2001.02702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.023276">10.1103/PhysRevResearch.2.023276 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reliable extraction of energy landscape properties from critical force distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Sudeep Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Beach%2C+K+S+D">K. S. D. Beach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.02702v2-abstract-short" style="display: inline;"> The structural dynamics of a biopolymer is governed by a process of diffusion through its conformational energy landscape. In pulling experiments using optical tweezers, features of the energy landscape can be extracted from the probability distribution of the critical force at which the polymer unfolds. The analysis is often based on rate equations having Bell-Evans form, although it is understoo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02702v2-abstract-full').style.display = 'inline'; document.getElementById('2001.02702v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.02702v2-abstract-full" style="display: none;"> The structural dynamics of a biopolymer is governed by a process of diffusion through its conformational energy landscape. In pulling experiments using optical tweezers, features of the energy landscape can be extracted from the probability distribution of the critical force at which the polymer unfolds. The analysis is often based on rate equations having Bell-Evans form, although it is understood that this modeling is inadequate and leads to unreliable landscape parameters in many common situations. Dudko and co-workers [Phys. Rev. Lett. 96, 108101 (2006)] have emphasized this critique and proposed an alternative form that includes an additional shape parameter (and that reduces to Bell-Evans as a special case). Their fitting function, however, is pathological in the tail end of the pulling force distribution, which presents problems of its own. We propose a modified closed-form expression for the distribution of critical forces that correctly incorporates the next-order correction in pulling force and is everywhere well behaved. Our claim is that this new expression provides superior parameter extraction and is valid even up to intermediate pulling rates. We present results based on simulated data that confirm its utility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02702v2-abstract-full').style.display = 'none'; document.getElementById('2001.02702v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures; v2 includes minor edits to match the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 023276 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.02389">arXiv:2001.02389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.02389">pdf</a>, <a href="https://arxiv.org/format/2001.02389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1402-4896/abfc81">10.1088/1402-4896/abfc81 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of collisions on the plasma sheath in the presence of an inhomogeneous magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Deka%2C+K">K. Deka</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Moulick%2C+R">R. Moulick</a>, <a href="/search/physics?searchtype=author&amp;query=Kausik%2C+S+S">S. S. Kausik</a>, <a href="/search/physics?searchtype=author&amp;query=Saikia%2C+B+K">B. K. Saikia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.02389v3-abstract-short" style="display: inline;"> A low-pressure magnetized plasma is studied to find the dependency of sheath properties on ion-neutral collisions in presence of an inhomogeneous magnetic field. A self-consistent one-dimensional two-fluid hydrodynamic model is considered, and the system of equations is solved numerically. The study reveals that the width of the plasma sheath expands and space charge increases with collisions. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02389v3-abstract-full').style.display = 'inline'; document.getElementById('2001.02389v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.02389v3-abstract-full" style="display: none;"> A low-pressure magnetized plasma is studied to find the dependency of sheath properties on ion-neutral collisions in presence of an inhomogeneous magnetic field. A self-consistent one-dimensional two-fluid hydrodynamic model is considered, and the system of equations is solved numerically. The study reveals that the width of the plasma sheath expands and space charge increases with collisions. The ion-neutral collisions and the inhomogeneous magnetic field restrict the ions to move towards the surface. The movement of the ions towards the wall can be controlled by choosing a suitable configuration of the magnetic field and ion-neutral collision frequency. A comparison between two different magnetic field configurations has been presented alongside to differentiate the commonly found scenarios in the field. The outcome of the study is supposed to help in understanding the complex dynamics of ions in plasma confinement and plasma processing of materials. Furthermore, the present work seeks to create a framework for two-fluid modeling of magnetized plasmas with any arbitrary magnetic field profiles. The analysis provided here is supposed to act as a basis for any future work in the respective field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02389v3-abstract-full').style.display = 'none'; document.getElementById('2001.02389v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 figures and 22 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76Xxx; 76W05; 65M22 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> G.1.7; I.6.1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.11076">arXiv:1912.11076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.11076">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological Studies related to Molecular Systems formed soon after the Big Bang: HeH2+ as the Precursor for HeH+ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sathyamurthy%2C+N">Narayanasami Sathyamurthy</a>, <a href="/search/physics?searchtype=author&amp;query=Baer%2C+M">Michael Baer</a>, <a href="/search/physics?searchtype=author&amp;query=Ravi%2C+S">Satyam Ravi</a>, <a href="/search/physics?searchtype=author&amp;query=Mukherjee%2C+S">Soumya Mukherjee</a>, <a href="/search/physics?searchtype=author&amp;query=Mukherjee%2C+B">Bijit Mukherjee</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Satrajit Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.11076v1-abstract-short" style="display: inline;"> In the early universe, following the nucleosynthesis, conditions were right for recombination processes to take place yielding neutral atoms H, He and Li. The understanding so far in astrophysics is that the first molecule to be formed was HeH+ by radiative association (He + H+ -&gt; HeH+ + h(nu) and He+ + H -&gt; HeH+ + h(nu). The recent report by Guesten et al (Nature, 568, 357, 2019) of detection of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11076v1-abstract-full').style.display = 'inline'; document.getElementById('1912.11076v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.11076v1-abstract-full" style="display: none;"> In the early universe, following the nucleosynthesis, conditions were right for recombination processes to take place yielding neutral atoms H, He and Li. The understanding so far in astrophysics is that the first molecule to be formed was HeH+ by radiative association (He + H+ -&gt; HeH+ + h(nu) and He+ + H -&gt; HeH+ + h(nu). The recent report by Guesten et al (Nature, 568, 357, 2019) of detection of HeH+ in planetary Nebula NGC 7027 confirms its presence, but it does not conclusively prove the origin of this species. To create molecules from free moving quasi-ions surrounded by an electronic cloud, the Born-Oppenheimer-Huang (BOH) theory furnishes two kinds of forces, namely, one that results from the Potential Energy Surfaces (PESs) and the other from Non-Adiabatic Coupling Terms (NACTs). Whereas the PESs are known to manage slow moving quasi-ions the NACTs, with their, frequently, infinitely large values at the vicinity of the singularities can control the fast moving quasi-ions. To achieve that the BOH equation indicates that the NACTs are affecting the fast moving quasi-ions directly and if they are attributed with dissipative features or in other words to behave as a Friction Force they indeed could serve (like any other ordinary friction) as moderators for the fast atomic(ionic) species. It is proposed in the present paper that the triatomic HeH2+ was the precursor to HeH+ and it could have been formed by the (He, H, H)+ nuclei coming together under the electron cloud, facilitated by the NACTs between different electronic states acting as an astronomical friction force. This is possible because of the singularities in the NACTs for triatomic systems and NOT for diatomic systems. Although the existence of HeH2+ was established in the laboratory in 1996, it has not been detected in the interstellar media so far. But, there is no reason why it cannot be detected in near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11076v1-abstract-full').style.display = 'none'; document.getElementById('1912.11076v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06219">arXiv:1911.06219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.06219">pdf</a>, <a href="https://arxiv.org/format/1911.06219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5128376">10.1063/1.5128376 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconnection from a Turbulence Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Shay%2C+M+A">M. A. Shay</a>, <a href="/search/physics?searchtype=author&amp;query=Parashar%2C+T+N">T. N. Parashar</a>, <a href="/search/physics?searchtype=author&amp;query=Pyakurel%2C+P+S">P. Sharma Pyakurel</a>, <a href="/search/physics?searchtype=author&amp;query=Matthaeus%2C+W+H">W. H. Matthaeus</a>, <a href="/search/physics?searchtype=author&amp;query=Godzieba%2C+D">D. Godzieba</a>, <a href="/search/physics?searchtype=author&amp;query=Stawarz%2C+J+E">J. E. Stawarz</a>, <a href="/search/physics?searchtype=author&amp;query=Eastwood%2C+J+P">J. P. Eastwood</a>, <a href="/search/physics?searchtype=author&amp;query=Dahlin%2C+J+T">J. T. Dahlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06219v2-abstract-short" style="display: inline;"> The spectral properties associated with laminar, anti-parallel reconnection are examined using a 2.5D kinetic particle in cell (PIC) simulation. Both the reconnection rate and the energy spectrum exhibit three distinct phases: an initiation phase where the reconnection rate grows, a quasi-steady phase, and a declining phase where both the reconnection rate and the energy spectrum decrease. During&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06219v2-abstract-full').style.display = 'inline'; document.getElementById('1911.06219v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06219v2-abstract-full" style="display: none;"> The spectral properties associated with laminar, anti-parallel reconnection are examined using a 2.5D kinetic particle in cell (PIC) simulation. Both the reconnection rate and the energy spectrum exhibit three distinct phases: an initiation phase where the reconnection rate grows, a quasi-steady phase, and a declining phase where both the reconnection rate and the energy spectrum decrease. During the steady phase, the energy spectrum exhibits approximately a double power-law behavior, with a slope near -5/3 at wavenumbers smaller than the inverse ion inertial length, and a slope steeper than -8/3 for larger wavenumbers up to the inverse electron inertial length. This behavior is consistent with a Kolmogorov energy cascade and implies that laminar reconnection may fundamentally be an energy cascade process. Consistent with this idea is that the reconnection rate exhibits a rough correlation with the energy spectrum at wave numbers near the inverse ion inertial length. The 2D spectrum is strongly anisotropic with most energy associated with the wave vector direction normal to the current sheet. Reconnection acts to isotropize the energy spectrum, reducing the Shebalin angle from an initial value of 70 degrees to about 48 degrees (nearly isotropic) by the end of the simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06219v2-abstract-full').style.display = 'none'; document.getElementById('1911.06219v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.05935">arXiv:1911.05935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.05935">pdf</a>, <a href="https://arxiv.org/format/1911.05935">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5143786">10.1063/1.5143786 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accelerating quantum optics experiments with statistical learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cortes%2C+C+L">Cristian L. Cortes</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Sushovit Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xuedan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Gray%2C+S+K">Stephen K. Gray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.05935v2-abstract-short" style="display: inline;"> Quantum optics experiments, involving the measurement of low-probability photon events, are known to be extremely time-consuming. We present a new methodology for accelerating such experiments using physically-motivated ansatzes together with simple statistical learning techniques such as Bayesian maximum a posteriori estimation based on few-shot data. We show that it is possible to reconstruct ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05935v2-abstract-full').style.display = 'inline'; document.getElementById('1911.05935v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.05935v2-abstract-full" style="display: none;"> Quantum optics experiments, involving the measurement of low-probability photon events, are known to be extremely time-consuming. We present a new methodology for accelerating such experiments using physically-motivated ansatzes together with simple statistical learning techniques such as Bayesian maximum a posteriori estimation based on few-shot data. We show that it is possible to reconstruct time-dependent data using a small number of detected photons, allowing for fast estimates in under a minute and providing a one-to-two order of magnitude speed up in data acquisition time. We test our approach using real experimental data to retrieve the second order intensity correlation function, $G^{(2)}(蟿)$, as a function of time delay $蟿$ between detector counts, for thermal light as well as anti-bunched light emitted by a quantum dot driven by periodic laser pulses. The proposed methodology has a wide range of applicability and has the potential to impact the scientific discovery process across a multitude of domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05935v2-abstract-full').style.display = 'none'; document.getElementById('1911.05935v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 116, 184003 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.10280">arXiv:1907.10280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.10280">pdf</a>, <a href="https://arxiv.org/format/1907.10280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1402-4896/ab5548">10.1088/1402-4896/ab5548 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of two temperature electrons in a collisional magnetized plasma sheath </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+G">G. Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Moulick%2C+R">R. Moulick</a>, <a href="/search/physics?searchtype=author&amp;query=Kausik%2C+S+S">S. S. Kausik</a>, <a href="/search/physics?searchtype=author&amp;query=Saikia%2C+B+K">B. K. Saikia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.10280v1-abstract-short" style="display: inline;"> A collisional magnetized plasma consisting of two temperature electrons has been investigated numerically to study the sheath structure and the ion energy flux to the wall. The low-temperature electrons are described by Maxwellian distribution, and the high-temperature electrons are described by truncated Maxwellian distribution. It has been observed that high-temperature electrons play a major ro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10280v1-abstract-full').style.display = 'inline'; document.getElementById('1907.10280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.10280v1-abstract-full" style="display: none;"> A collisional magnetized plasma consisting of two temperature electrons has been investigated numerically to study the sheath structure and the ion energy flux to the wall. The low-temperature electrons are described by Maxwellian distribution, and the high-temperature electrons are described by truncated Maxwellian distribution. It has been observed that high-temperature electrons play a major role in the sheath potential as well as the ion energy flux to the wall. The presence of collision in the sheath has a significant effect on the properties of the sheath. The study of such a system can help in understanding of plasma surface interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10280v1-abstract-full').style.display = 'none'; document.getElementById('1907.10280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76W05; 76X05; 82D10 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Scr. 95 035605 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06327">arXiv:1906.06327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.06327">pdf</a>, <a href="https://arxiv.org/format/1906.06327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2019.03.004">10.1016/j.cpc.2019.03.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> C and Fortran OpenMP programs for rotating Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+R+K">Ramavarmaraja Kishor Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Loncar%2C+V">Vladimir Loncar</a>, <a href="/search/physics?searchtype=author&amp;query=Muruganandam%2C+P">Paulsamy Muruganandam</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S+K">Sadhan K. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Balaz%2C+A">Antun Balaz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06327v1-abstract-short" style="display: inline;"> We present OpenMP versions of C and Fortran programs for solving the Gross-Pitaevskii equation for a rotating trapped Bose-Einstein condensate (BEC) in two (2D) and three (3D) spatial dimensions. The programs can be used to generate vortex lattices and study dynamics of rotating BECs. We use the split-step Crank-Nicolson algorithm for imaginary- and real-time propagation to calculate stationary st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06327v1-abstract-full').style.display = 'inline'; document.getElementById('1906.06327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06327v1-abstract-full" style="display: none;"> We present OpenMP versions of C and Fortran programs for solving the Gross-Pitaevskii equation for a rotating trapped Bose-Einstein condensate (BEC) in two (2D) and three (3D) spatial dimensions. The programs can be used to generate vortex lattices and study dynamics of rotating BECs. We use the split-step Crank-Nicolson algorithm for imaginary- and real-time propagation to calculate stationary states and BEC dynamics, respectively. The programs propagate the condensate wave function and calculate several relevant physical quantities, such as the energy, the chemical potential, and the root-mean-square sizes. The imaginary-time propagation starts with an analytic wave function with one vortex at the trap center, modulated by a random phase at different space points. Nevertheless, the converged wave function for a rapidly rotating BEC with a large number of vortices is most efficiently calculated using the pre-calculated converged wave function of a rotating BEC containing a smaller number of vortices as the initial state rather than using an analytic wave function with one vortex as the initial state. These pre-calculated initial states exhibit rapid convergence for fast-rotating condensates to states containing multiple vortices with an appropriate phase structure. This is illustrated here by calculating vortex lattices with up to 61 vortices in 2D and 3D. Outputs of the programs include calculated physical quantities, as well as the wave function and different density profiles (full density, integrated densities in lower dimensions, and density cross-sections). The provided real-time propagation programs can be used to study the dynamics of a rotating BEC using the imaginary-time stationary wave function as the initial state. We also study the efficiency of parallelization of the present OpenMP C and Fortran programs with different compilers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06327v1-abstract-full').style.display = 'none'; document.getElementById('1906.06327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures; to download the programs, click &#39;Other formats&#39; and download the source</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comput. Phys. Commun. 240 (2019) 74 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.03931">arXiv:1904.03931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.03931">pdf</a>, <a href="https://arxiv.org/format/1904.03931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1402-4896/ab3a5b">10.1088/1402-4896/ab3a5b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of dust ion acoustic soliton in the presence of superthermal electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dutta%2C+D">D. Dutta</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Moulick%2C+R">R. Moulick</a>, <a href="/search/physics?searchtype=author&amp;query=Goswami%2C+K+S">K. S. Goswami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.03931v1-abstract-short" style="display: inline;"> Propagation of solitary wave in dusty plasmas started to draw the attention of the physicists since the early 90s. The presence of superthermal particles seems to have a great impact on such waves, as they indicate the existence of non-thermal systems. It has been observed that the superthermal population is capable of altering the nature of the plasmas waves. In the present paper, the effect of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03931v1-abstract-full').style.display = 'inline'; document.getElementById('1904.03931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.03931v1-abstract-full" style="display: none;"> Propagation of solitary wave in dusty plasmas started to draw the attention of the physicists since the early 90s. The presence of superthermal particles seems to have a great impact on such waves, as they indicate the existence of non-thermal systems. It has been observed that the superthermal population is capable of altering the nature of the plasmas waves. In the present paper, the effect of the superthermal electron population on the dust ion acoustic solitary wave has been explored. The plasma is considered un-magnetized and composed of two components of superthermal electrons (of two distinct temperature) along with positive ions, and negative dust particles. A major part of the work has been concentrated on the stability of the solitary structures considering the effect of the superthermal parameter. In addition, the dust charge has been considered as a variable and a detailed analysis has been provided on the same. The proposed plasma model is most suitable for analyzing Saturn magnetosphere and can be extended to any space plasmas with superthermal population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03931v1-abstract-full').style.display = 'none'; document.getElementById('1904.03931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Scr. 94 125210 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00611">arXiv:1903.00611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.00611">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5087065">10.1063/1.5087065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stretched or noded orbital densities and self-interaction correction in density functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shahi%2C+C">Chandra Shahi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattarai%2C+P">Puskar Bhattarai</a>, <a href="/search/physics?searchtype=author&amp;query=Wagle%2C+K">Kamal Wagle</a>, <a href="/search/physics?searchtype=author&amp;query=Santra%2C+B">Biswajit Santra</a>, <a href="/search/physics?searchtype=author&amp;query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&amp;query=Hahn%2C+T">Torsten Hahn</a>, <a href="/search/physics?searchtype=author&amp;query=Kortus%2C+J">Jens Kortus</a>, <a href="/search/physics?searchtype=author&amp;query=Jackson%2C+K+A">Koblar A. Jackson</a>, <a href="/search/physics?searchtype=author&amp;query=Peralta%2C+J+E">Juan E. Peralta</a>, <a href="/search/physics?searchtype=author&amp;query=Trepte%2C+K">Kai Trepte</a>, <a href="/search/physics?searchtype=author&amp;query=Lehtola%2C+S">Susi Lehtola</a>, <a href="/search/physics?searchtype=author&amp;query=Nepal%2C+N+K">Niraj K. Nepal</a>, <a href="/search/physics?searchtype=author&amp;query=Myneni%2C+H">Hemanadhan Myneni</a>, <a href="/search/physics?searchtype=author&amp;query=Neupane%2C+B">Bimal Neupane</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Santosh Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Ruzsinszky%2C+A">Adrienn Ruzsinszky</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+Y">Yoh Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Baruah%2C+T">Tunna Baruah</a>, <a href="/search/physics?searchtype=author&amp;query=Zope%2C+R+R">Rajendra R. Zope</a>, <a href="/search/physics?searchtype=author&amp;query=Perdew%2C+J+P">John P. Perdew</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00611v2-abstract-short" style="display: inline;"> Semi-local approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but closely-related noded ones. The Perdew-Zunger (PZ) self-interaction correction (SIC) to a semi-local approximation makes that approximation exact for al&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00611v2-abstract-full').style.display = 'inline'; document.getElementById('1903.00611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00611v2-abstract-full" style="display: none;"> Semi-local approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but closely-related noded ones. The Perdew-Zunger (PZ) self-interaction correction (SIC) to a semi-local approximation makes that approximation exact for all one-electron ground- or excited-state densities and accurate for stretched bonds. When the minimization of the PZ total energy is made over real localized orbitals, the orbital densities can be noded, leading to energy errors in many-electron systems. Minimization over complex localized orbitals yields nodeless orbital densities, which reduce but typically do not eliminate the SIC errors of atomization energies. Other errors of PZ SIC remain, attributable to the loss of the exact constraints and appropriate norms that the semi-local approximations satisfy, and suggesting the need for a generalized SIC. These conclusions are supported by calculations for one-electron densities, and for many-electron molecules. While PZ SIC raises and improves the energy barriers of standard generalized gradient approximations (GGA&#39;s) and meta-GGA&#39;s, it reduces and often worsens the atomization energies of molecules. Thus PZ SIC raises the energy more as the nodality of the valence localized orbitals increases from atoms to molecules to transition states. PZ SIC is applied here in particular to the SCAN meta-GGA, for which the correlation part is already self-interaction-free. That property makes SCAN a natural first candidate for a generalized SIC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00611v2-abstract-full').style.display = 'none'; document.getElementById('1903.00611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 150, 174102 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.08433">arXiv:1902.08433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.08433">pdf</a>, <a href="https://arxiv.org/format/1902.08433">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b00773">10.1021/acs.nanolett.9b00773 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A single-crystalline silver plasmonic circuit for visible quantum emitters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6rner%2C+C">Christian Sch枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Subhasis Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Lippitz%2C+M">Markus Lippitz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.08433v1-abstract-short" style="display: inline;"> Plasmonic waveguides are key elements in nanophotonic devices serving as optical interconnects between nanoscale light sources and detectors. Multimode operation in plasmonic two-wire transmission lines promises important degrees of freedom for near-field manipulation and information encoding. However, highly confined plasmon propagation in gold nanostructures is typically limited to the near-infr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08433v1-abstract-full').style.display = 'inline'; document.getElementById('1902.08433v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.08433v1-abstract-full" style="display: none;"> Plasmonic waveguides are key elements in nanophotonic devices serving as optical interconnects between nanoscale light sources and detectors. Multimode operation in plasmonic two-wire transmission lines promises important degrees of freedom for near-field manipulation and information encoding. However, highly confined plasmon propagation in gold nanostructures is typically limited to the near-infrared region due to ohmic losses, excluding all visible quantum emitters from plasmonic circuitry. Here, we report on top-down fabrication of complex plasmonic nanostructures in single-crystalline silver plates. We demonstrate controlled remote excitation of a small ensemble of fluorophores by a set of waveguide modes and emission of the visible luminescence into the waveguide with high efficiency. This approach opens up the study of nanoscale light-matter interaction between complex plasmonic waveguides and a large variety of quantum emitters available in the visible spectral range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08433v1-abstract-full').style.display = 'none'; document.getElementById('1902.08433v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.02265">arXiv:1808.02265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.02265">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5066427">10.1063/1.5066427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation between two non-linear events in a complex dusty plasma system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mishra%2C+R">Rinku Mishra</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Mukherjee%2C+R">Rupak Mukherjee</a>, <a href="/search/physics?searchtype=author&amp;query=Dey%2C+M">M. Dey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.02265v2-abstract-short" style="display: inline;"> A phenomenological model using fluid theory is developed to show that the decay of two seemingly independent nonlinear structures namely the dust void and dust soliton strongly depends on the plasma ionization parameter in an unmagnetized complex plasma system. Numerical solution of model equations has shown that the evolution of dust voids and their subsequent decay in a time frame is intimately&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.02265v2-abstract-full').style.display = 'inline'; document.getElementById('1808.02265v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.02265v2-abstract-full" style="display: none;"> A phenomenological model using fluid theory is developed to show that the decay of two seemingly independent nonlinear structures namely the dust void and dust soliton strongly depends on the plasma ionization parameter in an unmagnetized complex plasma system. Numerical solution of model equations has shown that the evolution of dust voids and their subsequent decay in a time frame is intimately related with the ionization parameter. A similar result also holds good in case of dust solitons where stability of soliton is found to depend critically upon ionization parameter. Most importantly, it is observed that time of the collapse of a dust soliton precedes the onset time of a dust void decay and therefore soliton decay acts as a precursor for void decay to occur in a given dusty plasma system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.02265v2-abstract-full').style.display = 'none'; document.getElementById('1808.02265v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76Pxx; 76Xxx </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Plasmas 25, 123703 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.05208">arXiv:1807.05208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.05208">pdf</a>, <a href="https://arxiv.org/ps/1807.05208">ps</a>, <a href="https://arxiv.org/format/1807.05208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Improved effective-range expansions for small and large values of scattering length </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S+K">S K Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.05208v1-abstract-short" style="display: inline;"> The textbook effective-range expansion of scattering theory is useful in the analysis of low-energy scattering phenomenology when the scattering length $|a|$ is much larger than the range $R$ of the scattering potential: $|a|\gg R$. Nevertheless, the same has been used for systems where the scattering length is much smaller than the range of the potential, which could be the case in many scatterin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05208v1-abstract-full').style.display = 'inline'; document.getElementById('1807.05208v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.05208v1-abstract-full" style="display: none;"> The textbook effective-range expansion of scattering theory is useful in the analysis of low-energy scattering phenomenology when the scattering length $|a|$ is much larger than the range $R$ of the scattering potential: $|a|\gg R$. Nevertheless, the same has been used for systems where the scattering length is much smaller than the range of the potential, which could be the case in many scattering problems. We suggest and numerically study improved two-parameter effective-range expansions for the cases $|a| &gt; R$ and $|a| &lt; R$. The improved effective-range expansion for $|a| &gt; R$ reduces to the textbook expansion for $|a|/R \gg 1$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05208v1-abstract-full').style.display = 'none'; document.getElementById('1807.05208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. J. Phys. 39 (2018) 055403 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.01675">arXiv:1801.01675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.01675">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Highly Efficient Carrier Multiplication in van der Waals layered Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">Ji-Hee Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Bergren%2C+M+R">Matthew R. Bergren</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+J+C">Jin Cheol Park</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Subash Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Lorke%2C+M">Michael Lorke</a>, <a href="/search/physics?searchtype=author&amp;query=Fraunheim%2C+T">Thomas Fraunheim</a>, <a href="/search/physics?searchtype=author&amp;query=Choe%2C+D">Duk-Hyun Choe</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+B">Beom Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+H">Hyunyong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Gregorkiewicz%2C+T">Tom Gregorkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y+H">Young Hee Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.01675v1-abstract-short" style="display: inline;"> Carrier multiplication (CM), a photo-physical process to generate multiple electron-hole pairs by exploiting excess energy of free carriers, is explored for efficient photovoltaic conversion of photons from the blue solar band, predominantly wasted as heat in standard solar cells. Current state-of-the-art approaches with nanomaterials have demonstrated improved CM but are not satisfactory due to h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01675v1-abstract-full').style.display = 'inline'; document.getElementById('1801.01675v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.01675v1-abstract-full" style="display: none;"> Carrier multiplication (CM), a photo-physical process to generate multiple electron-hole pairs by exploiting excess energy of free carriers, is explored for efficient photovoltaic conversion of photons from the blue solar band, predominantly wasted as heat in standard solar cells. Current state-of-the-art approaches with nanomaterials have demonstrated improved CM but are not satisfactory due to high energy loss and inherent difficulties with carrier extraction. Here, we report ultra-efficient CM in van der Waals (vdW) layered materials that commences at the energy conservation limit and proceeds with nearly 100% conversion efficiency. A small threshold energy, as low as twice the bandgap, was achieved, marking an onset of quantum yield with enhanced carrier generation. Strong Coulomb interactions between electrons confined within vdW layers allow rapid electron-electron scattering to prevail over electron-phonon scattering. Additionally, the presence of electron pockets spread over momentum space could also contribute to the high CM efficiency. Combining with high conductivity and optimal bandgap, these superior CM characteristics identify vdW materials for third-generation solar cell. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01675v1-abstract-full').style.display = 'none'; document.getElementById('1801.01675v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.00103">arXiv:1801.00103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.00103">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/00268976.2018.1442940">10.1080/00268976.2018.1442940 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Study of the $H_3^{++}$ Molecular System: $H_3^{++}$ as a Cornerstone for Building Molecules during the Big Bang </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mukherjee%2C+B">Bijit Mukherjee</a>, <a href="/search/physics?searchtype=author&amp;query=Mukhopadhyay%2C+D">Debasis Mukhopadhyay</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+S">Satrajit Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Baer%2C+M">Michael Baer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.00103v3-abstract-short" style="display: inline;"> The present study is devoted to the possibility that tri-atomic molecules were formed during or shortly after the Big Bang. For this purpose we consider the ordinary $H_3^{+}$ and $H_3$ and the primitive tri-atomic molecular system, $H_3^{++}$, which, as is shown, behaves differently. The study is carried out by comparing the topological features of these systems as they are reflected through thei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00103v3-abstract-full').style.display = 'inline'; document.getElementById('1801.00103v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.00103v3-abstract-full" style="display: none;"> The present study is devoted to the possibility that tri-atomic molecules were formed during or shortly after the Big Bang. For this purpose we consider the ordinary $H_3^{+}$ and $H_3$ and the primitive tri-atomic molecular system, $H_3^{++}$, which, as is shown, behaves differently. The study is carried out by comparing the topological features of these systems as they are reflected through their non-adiabatic coupling terms. Although the $H_3^{++}$ is not known to exist as a molecule, we found that it behaves as such at intermediate distances. However this illusion breaks down as its asymptotic region is reached. Our study indicates that whereas $H_3^{+}$ and $H_3$ dissociate smoothly, the $H_3^{++}$, does not seem to do so. Nevertheless, the fact that $H_3^{++}$ is capable of living as a molecule on borrowed time enables it to catch an electron and form a molecule via the reaction $H_3^{++} + e \to H_3^{+}$ that may dissociate properly: $H_3^{+} \to H^{+} + H_2$ or $H + H_2^+$. Thus, the two unique features acquired by $H_3^{++}$ namely, that it is the most primitive system formed by three protons and one electron and topologically, still remain for an instant a molecule, may make it the sole candidate for becoming the \bold{cornerstone} for creating the molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00103v3-abstract-full').style.display = 'none'; document.getElementById('1801.00103v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Adhikari%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Adhikari%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Adhikari%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Adhikari%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10