CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 117 results for author: <span class="mathjax">Saha, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Saha%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Saha, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Saha%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Saha, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Saha%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Saha%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Saha%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Saha%2C+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13956">arXiv:2502.13956</a> <span> [<a href="https://arxiv.org/pdf/2502.13956">pdf</a>, <a href="https://arxiv.org/format/2502.13956">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Imaging the Photochemistry of Cyclobutanone using Ultrafast Electron Diffraction: Experimental Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Green%2C+A+E">A. E. Green</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Allum%2C+F">F. Allum</a>, <a href="/search/physics?searchtype=author&query=Gra%C3%9Fl%2C+M">M. Gra脽l</a>, <a href="/search/physics?searchtype=author&query=Lenzen%2C+P">P. Lenzen</a>, <a href="/search/physics?searchtype=author&query=Ashfold%2C+M+N+R">M. N. R. Ashfold</a>, <a href="/search/physics?searchtype=author&query=Bhattacharyya%2C+S">S. Bhattacharyya</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">X. Cheng</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">M. Centurion</a>, <a href="/search/physics?searchtype=author&query=Crane%2C+S+W">S. W. Crane</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R+G">R. G. Forbes</a>, <a href="/search/physics?searchtype=author&query=Goff%2C+N+A">N. A. Goff</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">L. Huang</a>, <a href="/search/physics?searchtype=author&query=Kaufman%2C+B">B. Kaufman</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Kramer%2C+P+L">P. L. Kramer</a>, <a href="/search/physics?searchtype=author&query=Lam%2C+H+V+S">H. V. S. Lam</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">K. A. Larsen</a>, <a href="/search/physics?searchtype=author&query=Lemons%2C+R">R. Lemons</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M+-">M. -F. Lin</a>, <a href="/search/physics?searchtype=author&query=Orr-Ewing%2C+A+J">A. J. Orr-Ewing</a>, <a href="/search/physics?searchtype=author&query=Rolles%2C+D">D. Rolles</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+A">A. Rudenko</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">S. K. Saha</a>, <a href="/search/physics?searchtype=author&query=Searles%2C+J">J. Searles</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13956v1-abstract-short" style="display: inline;"> We investigated the ultrafast structural dynamics of cyclobutanone following photoexcitation at $位=200$ nm using gas-phase megaelectronvolt ultrafast electron diffraction. Our investigation complements the simulation studies of the same process within this special issue. It provides information about both electronic state population and structural dynamics through well-separable inelastic and elas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13956v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13956v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13956v1-abstract-full" style="display: none;"> We investigated the ultrafast structural dynamics of cyclobutanone following photoexcitation at $位=200$ nm using gas-phase megaelectronvolt ultrafast electron diffraction. Our investigation complements the simulation studies of the same process within this special issue. It provides information about both electronic state population and structural dynamics through well-separable inelastic and elastic electron scattering signatures. We observe the depopulation of the photoexcited S$_2$ state of cyclobutanone with n3s Rydberg character through its inelastic electron scattering signature with a time constant of $(0.29 \pm 0.2)$ ps towards the S$_1$ state. The S$_1$ state population undergoes ring-opening via a Norrish Type-I reaction, likely while passing through a conical intersection with S$_0$. The corresponding structural changes can be tracked by elastic electron scattering signatures. These changes appear with a delay of $(0.14 \pm 0.05)$ ps with respect the initial photoexcitation, which is less than the S$_2$ depopulation time constant. This behavior provides evidence for the ballistic nature of the ring-opening once the S$_1$ state is reached. The resulting biradical species react further within $(1.2 \pm 0.2)$ ps via two rival fragmentation channels yielding ketene and ethylene, or propene and carbon monoxide. Our study showcases both the value of gas-phase ultrafast diffraction studies as an experimental benchmark for nonadiabatic dynamics simulation methods and the limits in the interpretation of such experimental data without comparison to such simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13956v1-abstract-full').style.display = 'none'; document.getElementById('2502.13956v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span> [<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v3-abstract-short" style="display: inline;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy los… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v3-abstract-full" style="display: none;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'none'; document.getElementById('2409.18288v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span> [<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11028">arXiv:2408.11028</a> <span> [<a href="https://arxiv.org/pdf/2408.11028">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Radiation Resilience of $尾$-Ga$_2$O$_3$ Schottky Barrier Diodes Under High Dose Gamma Radiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Khan%2C+S+A">Saleh Ahmed Khan</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sudipto Saha</a>, <a href="/search/physics?searchtype=author&query=Singisetti%2C+U">Uttam Singisetti</a>, <a href="/search/physics?searchtype=author&query=Bhuiyan%2C+A+F+M+A+U">A F M Anhar Uddin Bhuiyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11028v2-abstract-short" style="display: inline;"> A systematic investigation of the electrical characteristics of \b{eta}-Ga2O3 Schottky barrier diodes (SBDs) has been conducted under high-dose 60Co gamma radiation, with total cumulative doses reaching up to 5 Mrad (Si). Initial exposure of the diodes to 1 Mrad resulted in a significant decrease in on-current and an increase in on-resistance compared to the pre-radiation condition, likely due to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11028v2-abstract-full').style.display = 'inline'; document.getElementById('2408.11028v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11028v2-abstract-full" style="display: none;"> A systematic investigation of the electrical characteristics of \b{eta}-Ga2O3 Schottky barrier diodes (SBDs) has been conducted under high-dose 60Co gamma radiation, with total cumulative doses reaching up to 5 Mrad (Si). Initial exposure of the diodes to 1 Mrad resulted in a significant decrease in on-current and an increase in on-resistance compared to the pre-radiation condition, likely due to the generation of radiation-induced deep-level acceptor traps. However, upon exposure to higher gamma radiation doses of 3 and 5 Mrad, partial recovery of the device performance occurred, attributed to a radiation annealing effect. The capacitance-voltage (C-V) characterization revealed that the net carrier concentration in the $尾$-Ga$_2$O$_3$ drift layer reduced from $\sim$3.19 $\times$ 10$^{16}$ cm$^{-3}$ to $\sim$3.05 $\times$ 10$^{16}$ cm$^{-3}$ after 5 Mrad (Si) irradiation. Temperature-dependent I-V characteristics showed that irradiation leads to a reduction in both forward and reverse current across all investigated temperatures ranging from 25 to 250$^\circ$C, accompanied by slight increases in on-resistance, ideality factors, and Schottky barrier heights. The reverse breakdown characteristics of the $尾$-Ga$_2$O$_3$ SBDs showed a slight increase of the breakdown voltage after radiation. Overall, $尾$-Ga$_2$O$_3$ Schottky diode exhibits high resilience to gamma irradiation, with performance degradation mitigated by radiation-induced self-recovery, highlighting its potential for radiation-hardened electronic applications in extreme environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11028v2-abstract-full').style.display = 'none'; document.getElementById('2408.11028v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04915">arXiv:2408.04915</a> <span> [<a href="https://arxiv.org/pdf/2408.04915">pdf</a>, <a href="https://arxiv.org/format/2408.04915">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Benchmark Computations of Nearly Degenerate Singlet and Triplet states of N-heterocyclic Chromophores : II. Density-based Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chanda%2C+S">Shamik Chanda</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Subhasish Saha</a>, <a href="/search/physics?searchtype=author&query=Sen%2C+S">Sangita Sen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04915v1-abstract-short" style="display: inline;"> In this paper we demonstrate the performance of several density-based methods in predicting the inversion of S$_1$ and T$_1$ states of a few N-heterocyclic fused ring molecules (popularly known as INVEST molecules) with an eye to identify a well performing but cheap preliminary screening method. Both conventional LR-TDDFT and $螖$SCF methods (namely MOM, SGM, ROKS) are considered for excited state… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04915v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04915v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04915v1-abstract-full" style="display: none;"> In this paper we demonstrate the performance of several density-based methods in predicting the inversion of S$_1$ and T$_1$ states of a few N-heterocyclic fused ring molecules (popularly known as INVEST molecules) with an eye to identify a well performing but cheap preliminary screening method. Both conventional LR-TDDFT and $螖$SCF methods (namely MOM, SGM, ROKS) are considered for excited state computations using exchange-correlation (XC) functionals from different rungs of the Jacob's ladder. A well-justified systematism is observed in the performance of the functionals when compared against FICMRCISD and/or EOM-CCSD, with the most important feature being the capture of spin-polarization in presence of correlation. A set of functionals with the least mean absolute error (MAE) is proposed for both the approaches, LR-TDDFT and $螖$SCF, which can be cheaper alternatives for computations on synthesizable larger derivatives of the templates studied here. We have based our findings on extensive studies of three cyclazine-based molecular templates, with additional studies on a set of six related templates. Previous benchmark studies for subsets of the functionals were conducted against the DLPNO-STEOM-CCSD, which resulted in an inadequate evaluation due to deficiencies in the benchmark theory. The role of exact-exchange, spin-contamination and spin-polarization in the context of DFT comes to the forefront in our studies and supports the numerical evaluation of XC functionals for these applications. Suitable connections are drawn to two and three state exciton models which identify the minimal physics governing the interactions in these molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04915v1-abstract-full').style.display = 'none'; document.getElementById('2408.04915v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 8 figures and under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04670">arXiv:2408.04670</a> <span> [<a href="https://arxiv.org/pdf/2408.04670">pdf</a>, <a href="https://arxiv.org/ps/2408.04670">ps</a>, <a href="https://arxiv.org/format/2408.04670">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0219887824502220">10.1142/S0219887824502220 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Implementation of cosmological bounce inflation with Nojiri-Odintsov generalized holographic dark fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sanghati Saha</a>, <a href="/search/physics?searchtype=author&query=Chattopadhyay%2C+S">Surajit Chattopadhyay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04670v1-abstract-short" style="display: inline;"> The current work reports a study on bounce cosmology with a highly generalized holographic dark fluid inspired by S. Nojiri and S. D. Odintsov, 2017, European Physical Journal C, 77, pp.1-8. The holographic dark fluid that is mostly used for late-time acceleration has been implemented to reconstruct towards realisation of cosmological bounce. We first used the most generalized Nojiri-Odintsov(NO)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04670v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04670v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04670v1-abstract-full" style="display: none;"> The current work reports a study on bounce cosmology with a highly generalized holographic dark fluid inspired by S. Nojiri and S. D. Odintsov, 2017, European Physical Journal C, 77, pp.1-8. The holographic dark fluid that is mostly used for late-time acceleration has been implemented to reconstruct towards realisation of cosmological bounce. We first used the most generalized Nojiri-Odintsov(NO) cutoff to implement the holographic dark fluid. Accordingly, we have reconstructed this dark fluid via some solutions of scale factors. With those solutions, we have explored the evolution of different cosmological parameters. We have examined the effects of each reconstructed parameter in the context of the realization of the cosmic bounce. Next, we use the analytical inferences of the scalar spectral index, tensor-to-scalar ratio, and slow-roll characteristics of the model to study a bounce inflationary scenario. Since inflation is usually associated with the existence of scalar fields, we looked at a possible relationship between NO generalized holographic dark energy and scalar field models. Plotting the evolution of the potential that results from the scalar fields against time. Finally, we investigated the GSL of thermodynamics in the pre-and post-bounce scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04670v1-abstract-full').style.display = 'none'; document.getElementById('2408.04670v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Geometric Methods in Modern Physics, 2024, Article No. 2450222 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span> [<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00577">arXiv:2408.00577</a> <span> [<a href="https://arxiv.org/pdf/2408.00577">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A Space-Time Knife-Edge In Epsilon-Near-Zero Films for Ultrafast Pulse Characterization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ball%2C+A">Adam Ball</a>, <a href="/search/physics?searchtype=author&query=Secondo%2C+R">Ray Secondo</a>, <a href="/search/physics?searchtype=author&query=Fomra%2C+D">Dhruv Fomra</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jingwei Wu</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Samprity Saha</a>, <a href="/search/physics?searchtype=author&query=Agrawal%2C+A">Amit Agrawal</a>, <a href="/search/physics?searchtype=author&query=Lezec%2C+H">Henri Lezec</a>, <a href="/search/physics?searchtype=author&query=Kinsey%2C+N">Nathaniel Kinsey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00577v1-abstract-short" style="display: inline;"> Epsilon-near-zero (ENZ) materials have shown strong refractive nonlinearities that can be fast in an absolute sense. While continuing to advance fundamental science, such as time varying interactions, the community is still searching for an application that can effectively make use of the strong index modulation offered. Here we combine the effect of strong space-time index modulation in ENZ mater… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00577v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00577v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00577v1-abstract-full" style="display: none;"> Epsilon-near-zero (ENZ) materials have shown strong refractive nonlinearities that can be fast in an absolute sense. While continuing to advance fundamental science, such as time varying interactions, the community is still searching for an application that can effectively make use of the strong index modulation offered. Here we combine the effect of strong space-time index modulation in ENZ materials with the beam deflection technique to introduce a new approach to optical pulse characterization that we term a space-time knife edge. We show that in this approach, we are able to extract temporal and spatial information of a Gaussian beam with only two time resolved measurements. The approach achieves this without phase-matching requirements (<1 micron thick film) and can achieve a high signal to noise ratio by combining the system with lock-in detection, facilitating the measurement of weak refractive index changes (delta_n ~ 10^-5) for low intensity beams. Thus, the space-time knife edge can offer a new avenue for ultrafast light measurement and demonstrates a use cases of ENZ materials. In support of this, we outline temporal dynamics for refractive index changes in non-colinear experiments opening avenues for better theoretical understanding of both the spatial and temporal dynamics of emerging ENZ films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00577v1-abstract-full').style.display = 'none'; document.getElementById('2408.00577v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15635">arXiv:2407.15635</a> <span> [<a href="https://arxiv.org/pdf/2407.15635">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quasi-classical Trajectory Calculations on a Two-state Potential Energy Surface Including Nonadiabatic Coupling Terms as Friction for D+ + H2 Collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mukherjee%2C+S">Soumya Mukherjee</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Swagato Saha</a>, <a href="/search/physics?searchtype=author&query=Ghosh%2C+S">Sandip Ghosh</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+S">Satrajit Adhikari</a>, <a href="/search/physics?searchtype=author&query=Sathyamurthy%2C+N">Narayanasami Sathyamurthy</a>, <a href="/search/physics?searchtype=author&query=Baer%2C+M">Michael Baer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15635v1-abstract-short" style="display: inline;"> Akin to the traditional quasi-classical trajectory method for investigating the dynamics on a single adiabatic potential energy surface for an elementary chemical reaction, we carry out the dynamics on a 2-state ab initio potential energy surface including nonadiabatic coupling terms as friction terms for D+ + H2 collisions. It is shown that the resulting dynamics correctly accounts for nonreactiv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15635v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15635v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15635v1-abstract-full" style="display: none;"> Akin to the traditional quasi-classical trajectory method for investigating the dynamics on a single adiabatic potential energy surface for an elementary chemical reaction, we carry out the dynamics on a 2-state ab initio potential energy surface including nonadiabatic coupling terms as friction terms for D+ + H2 collisions. It is shown that the resulting dynamics correctly accounts for nonreactive charge transfer, reactive non charge transfer and reactive charge transfer processes. In addition, it leads to the formation of triatomic DH2+ species as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15635v1-abstract-full').style.display = 'none'; document.getElementById('2407.15635v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12969">arXiv:2407.12969</a> <span> [<a href="https://arxiv.org/pdf/2407.12969">pdf</a>, <a href="https://arxiv.org/format/2407.12969">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Angular dependent measurement of electron-ion recombination in liquid argon for ionization calorimetry in the ICARUS liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=ICARUS+collaboration"> ICARUS collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Abrego-Martinez%2C+N">N. Abrego-Martinez</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewic%2C+A">A. Aduszkiewic</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&query=Pons%2C+M+A">M. Artero Pons</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Badgett%2C+W+F">W. F. Badgett</a>, <a href="/search/physics?searchtype=author&query=Baibussinov%2C+B">B. Baibussinov</a>, <a href="/search/physics?searchtype=author&query=Behera%2C+B">B. Behera</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+V">V. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benocci%2C+R">R. Benocci</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+J">J. Berger</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bertolucci%2C+S">S. Bertolucci</a>, <a href="/search/physics?searchtype=author&query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Boone%2C+T">T. Boone</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Braggiotti%2C+A">A. Braggiotti</a>, <a href="/search/physics?searchtype=author&query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/physics?searchtype=author&query=Brice%2C+S+J">S. J. Brice</a>, <a href="/search/physics?searchtype=author&query=Brio%2C+V">V. Brio</a>, <a href="/search/physics?searchtype=author&query=Brizzolari%2C+C">C. Brizzolari</a> , et al. (156 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12969v2-abstract-short" style="display: inline;"> This paper reports on a measurement of electron-ion recombination in liquid argon in the ICARUS liquid argon time projection chamber (LArTPC). A clear dependence of recombination on the angle of the ionizing particle track relative to the drift electric field is observed. An ellipsoid modified box (EMB) model of recombination describes the data across all measured angles. These measurements are us… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12969v2-abstract-full').style.display = 'inline'; document.getElementById('2407.12969v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12969v2-abstract-full" style="display: none;"> This paper reports on a measurement of electron-ion recombination in liquid argon in the ICARUS liquid argon time projection chamber (LArTPC). A clear dependence of recombination on the angle of the ionizing particle track relative to the drift electric field is observed. An ellipsoid modified box (EMB) model of recombination describes the data across all measured angles. These measurements are used for the calorimetric energy scale calibration of the ICARUS TPC, which is also presented. The impact of the EMB model is studied on calorimetric particle identification, as well as muon and proton energy measurements. Accounting for the angular dependence in EMB recombination improves the accuracy and precision of these measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12969v2-abstract-full').style.display = 'none'; document.getElementById('2407.12969v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0332-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11925">arXiv:2407.11925</a> <span> [<a href="https://arxiv.org/pdf/2407.11925">pdf</a>, <a href="https://arxiv.org/format/2407.11925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Calibration and simulation of ionization signal and electronics noise in the ICARUS liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=ICARUS+collaboration"> ICARUS collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Abrego-Martinez%2C+N">N. Abrego-Martinez</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewic%2C+A">A. Aduszkiewic</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&query=Pons%2C+M+A">M. Artero Pons</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Badgett%2C+W+F">W. F. Badgett</a>, <a href="/search/physics?searchtype=author&query=Baibussinov%2C+B">B. Baibussinov</a>, <a href="/search/physics?searchtype=author&query=Behera%2C+B">B. Behera</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+V">V. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benocci%2C+R">R. Benocci</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+J">J. Berger</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bertolucci%2C+S">S. Bertolucci</a>, <a href="/search/physics?searchtype=author&query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Boone%2C+T">T. Boone</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Braggiotti%2C+A">A. Braggiotti</a>, <a href="/search/physics?searchtype=author&query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/physics?searchtype=author&query=Brice%2C+S+J">S. J. Brice</a>, <a href="/search/physics?searchtype=author&query=Brio%2C+V">V. Brio</a>, <a href="/search/physics?searchtype=author&query=Brizzolari%2C+C">C. Brizzolari</a> , et al. (156 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11925v3-abstract-short" style="display: inline;"> The ICARUS liquid argon time projection chamber (LArTPC) neutrino detector has been taking physics data since 2022 as part of the Short-Baseline Neutrino (SBN) Program. This paper details the equalization of the response to charge in the ICARUS time projection chamber (TPC), as well as data-driven tuning of the simulation of ionization charge signals and electronics noise. The equalization procedu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11925v3-abstract-full').style.display = 'inline'; document.getElementById('2407.11925v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11925v3-abstract-full" style="display: none;"> The ICARUS liquid argon time projection chamber (LArTPC) neutrino detector has been taking physics data since 2022 as part of the Short-Baseline Neutrino (SBN) Program. This paper details the equalization of the response to charge in the ICARUS time projection chamber (TPC), as well as data-driven tuning of the simulation of ionization charge signals and electronics noise. The equalization procedure removes non-uniformities in the ICARUS TPC response to charge in space and time. This work leverages the copious number of cosmic ray muons available to ICARUS at the surface. The ionization signal shape simulation applies a novel procedure that tunes the simulation to match what is measured in data. The end result of the equalization procedure and simulation tuning allows for a comparison of charge measurements in ICARUS between Monte Carlo simulation and data, showing good performance with minimal residual bias between the two. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11925v3-abstract-full').style.display = 'none'; document.getElementById('2407.11925v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0330-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01761">arXiv:2406.01761</a> <span> [<a href="https://arxiv.org/pdf/2406.01761">pdf</a>, <a href="https://arxiv.org/format/2406.01761">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> High-fidelity remote entanglement of trapped atoms mediated by time-bin photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sagnik Saha</a>, <a href="/search/physics?searchtype=author&query=Shalaev%2C+M">Mikhail Shalaev</a>, <a href="/search/physics?searchtype=author&query=O%27Reilly%2C+J">Jameson O'Reilly</a>, <a href="/search/physics?searchtype=author&query=Goetting%2C+I">Isabella Goetting</a>, <a href="/search/physics?searchtype=author&query=Toh%2C+G">George Toh</a>, <a href="/search/physics?searchtype=author&query=Kalakuntla%2C+A">Ashish Kalakuntla</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Y">Yichao Yu</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+C">Christopher Monroe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01761v1-abstract-short" style="display: inline;"> Photonic interconnects between quantum processing nodes are likely the only way to achieve large-scale quantum computers and networks. The bottleneck in such an architecture is the interface between well-isolated quantum memories and flying photons. We establish high-fidelity entanglement between remotely separated trapped atomic qubit memories, mediated by photonic qubits stored in the timing of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01761v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01761v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01761v1-abstract-full" style="display: none;"> Photonic interconnects between quantum processing nodes are likely the only way to achieve large-scale quantum computers and networks. The bottleneck in such an architecture is the interface between well-isolated quantum memories and flying photons. We establish high-fidelity entanglement between remotely separated trapped atomic qubit memories, mediated by photonic qubits stored in the timing of their pulses. Such time-bin encoding removes sensitivity to polarization errors, enables long-distance quantum communication, and is extensible to quantum memories with more than two states. Using a measurement-based error detection process and suppressing a fundamental source of error due to atomic recoil, we achieve an entanglement fidelity of 97% and show that fidelities beyond 99.9% are feasible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01761v1-abstract-full').style.display = 'none'; document.getElementById('2406.01761v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20783">arXiv:2405.20783</a> <span> [<a href="https://arxiv.org/pdf/2405.20783">pdf</a>, <a href="https://arxiv.org/ps/2405.20783">ps</a>, <a href="https://arxiv.org/format/2405.20783">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamics of the most generalized form of Holographic Dark Energy and some particular cases with Corrected Entropies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sanghati Saha</a>, <a href="/search/physics?searchtype=author&query=G%C3%BCdekli%2C+E">Ertan G眉dekli</a>, <a href="/search/physics?searchtype=author&query=Chattopadhyay%2C+S">Surajit Chattopadhyay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20783v1-abstract-short" style="display: inline;"> The holographic cut-off in generalized dark energy (HDE) formalism depends on its cut-off. Following this, a four-parameter generalized entropy has recently been developed. It reduces to various known entropies for appropriate parameter limits in the study of Odintsov, S. D., S. DOnofrio, and T. Paul. (2023) Physics of the Dark Universe, 42 pp: 101277. In the current work, we investigate the evolu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20783v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20783v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20783v1-abstract-full" style="display: none;"> The holographic cut-off in generalized dark energy (HDE) formalism depends on its cut-off. Following this, a four-parameter generalized entropy has recently been developed. It reduces to various known entropies for appropriate parameter limits in the study of Odintsov, S. D., S. DOnofrio, and T. Paul. (2023) Physics of the Dark Universe, 42 pp: 101277. In the current work, we investigate the evolution of the universe in its early phase and late phase within the framework of entropic cosmology, where the entropic energy density functions are reconstructed within the framework of the equivalence of holographic dark energy and four-parameter generalized entropy (Sg). Along with the reconstruction as mentioned earlier scheme, in this study, we demonstrate that an extensive variety of dark energy (DE) models can be considered distinct and particular candidates for the most generalized four-parameter entropic HDE family, each having their cut-off. We examined several entropic dark energy models in this regard, including the generalized holographic dark energy with Nojiri-Odintsov(NO) cut-off, the Barrow entropic HDE (BHDE) with particle horizon as IR cut-off, the Tsallis entropic HDE (THDE) with future event horizon as IR cut-off, all of three cases are particular cases of the most generalized four parameter entropic holographic dark energy. Inspired by S. Nojiri, and S. D. Odintsov (2006) (General Relativity and Gravitation, 38 p: 1285-1304 ) and (S. Nojiri and S. D. Odintsov, 2017, European Physical Journal C, 77, pp.1-8 ); our current work reports a study on cosmological parameters and thermodynamics with entropy-corrections (logarithmic and power-law) to cosmological horizon entropy as well as black hole entropy with a highly generalized viscous coupled holographic dark fluid along its particular cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20783v1-abstract-full').style.display = 'none'; document.getElementById('2405.20783v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09704">arXiv:2405.09704</a> <span> [<a href="https://arxiv.org/pdf/2405.09704">pdf</a>, <a href="https://arxiv.org/format/2405.09704">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Neutron and $\boldsymbol纬$-ray Discrimination by a Pressurized Helium-4 Based Scintillation Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dutta%2C+S">Shubham Dutta</a>, <a href="/search/physics?searchtype=author&query=Ghosh%2C+S">Sayan Ghosh</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Satyajit Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09704v3-abstract-short" style="display: inline;"> Pressurized Helium-4 (PHe) based fast neutron scintillation detector offers an useful alternative to organic liquid-based scintillator due to its relatively low response to the $纬$-rays compared to the latter type of scintillator. In the present work, we have investigated the capabilities of a PHe detector for the detection of fast neutrons in a mixed radiation field where both the neutrons and th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09704v3-abstract-full').style.display = 'inline'; document.getElementById('2405.09704v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09704v3-abstract-full" style="display: none;"> Pressurized Helium-4 (PHe) based fast neutron scintillation detector offers an useful alternative to organic liquid-based scintillator due to its relatively low response to the $纬$-rays compared to the latter type of scintillator. In the present work, we have investigated the capabilities of a PHe detector for the detection of fast neutrons in a mixed radiation field where both the neutrons and the $纬$-rays are present. Discrimination between neutrons and $纬$-rays is achieved by using fast-slow charge integration method. We have also conducted systematic studies of the attenuation of fast neutrons and $纬$-rays by high-density polyethylene (HDPE). Additionally, the simulation analyses, conducted using GEANT4, provide detailed insights into the interactions of the radiation quanta with the PHe detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09704v3-abstract-full').style.display = 'none'; document.getElementById('2405.09704v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04891">arXiv:2405.04891</a> <span> [<a href="https://arxiv.org/pdf/2405.04891">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Third Harmonic Enhancement Harnessing Photoexcitation Unveils New Nonlinearities in Zinc Oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Soham Saha</a>, <a href="/search/physics?searchtype=author&query=Gurung%2C+S">Sudip Gurung</a>, <a href="/search/physics?searchtype=author&query=Diroll%2C+B+T">Benjamin T. Diroll</a>, <a href="/search/physics?searchtype=author&query=Chakraborty%2C+S">Suman Chakraborty</a>, <a href="/search/physics?searchtype=author&query=Segal%2C+O">Ohad Segal</a>, <a href="/search/physics?searchtype=author&query=Segev%2C+M">Mordechai Segev</a>, <a href="/search/physics?searchtype=author&query=Shalaev%2C+V+M">Vladimir M. Shalaev</a>, <a href="/search/physics?searchtype=author&query=Kildishev%2C+A+V">Alexander V. Kildishev</a>, <a href="/search/physics?searchtype=author&query=Boltasseva%2C+A">Alexandra Boltasseva</a>, <a href="/search/physics?searchtype=author&query=Schaller%2C+R+D">Richard D. Schaller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04891v1-abstract-short" style="display: inline;"> Nonlinear optical phenomena are at the heart of various technological domains such as high-speed data transfer, optical logic applications, and emerging fields such as non-reciprocal optics and photonic time crystal design. However, conventional nonlinear materials exhibit inherent limitations in the post-fabrication tailoring of their nonlinear optical properties. Achieving real-time control over… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04891v1-abstract-full').style.display = 'inline'; document.getElementById('2405.04891v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04891v1-abstract-full" style="display: none;"> Nonlinear optical phenomena are at the heart of various technological domains such as high-speed data transfer, optical logic applications, and emerging fields such as non-reciprocal optics and photonic time crystal design. However, conventional nonlinear materials exhibit inherent limitations in the post-fabrication tailoring of their nonlinear optical properties. Achieving real-time control over optical nonlinearities remains a challenge. In this work, we demonstrate a method to switch third harmonic generation (THG), a commonly occurring nonlinear optical response. Third harmonic generation enhancements up to 50 times are demonstrated in zinc oxide films via the photoexcited state generation and tunable electric field enhancement. More interestingly, the enhanced third harmonic generation follows a quadratic scaling with incident power, as opposed to the conventional cubic scaling, which demonstrates a previously unreported mechanism of third harmonic generation. The THG can also be suppressed by modulating the optical losses in the film. This work shows that the photoexcitation of states can not only enhance nonlinearities, but can create new processes for third harmonic generation. Importantly, the proposed method enables real-time manipulation of the nonlinear response of a medium. The process is switchable and reversible, with the modulations occurring at picosecond timescale. Our study paves the way to boost or suppress the nonlinearities of solid-state media, enabling robust, switchable sources for nonlinear optical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04891v1-abstract-full').style.display = 'none'; document.getElementById('2405.04891v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16167">arXiv:2404.16167</a> <span> [<a href="https://arxiv.org/pdf/2404.16167">pdf</a>, <a href="https://arxiv.org/format/2404.16167">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Fast photon-mediated entanglement of continuously-cooled trapped ions for quantum networking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=O%27Reilly%2C+J">Jameson O'Reilly</a>, <a href="/search/physics?searchtype=author&query=Toh%2C+G">George Toh</a>, <a href="/search/physics?searchtype=author&query=Goetting%2C+I">Isabella Goetting</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sagnik Saha</a>, <a href="/search/physics?searchtype=author&query=Shalaev%2C+M">Mikhail Shalaev</a>, <a href="/search/physics?searchtype=author&query=Carter%2C+A">Allison Carter</a>, <a href="/search/physics?searchtype=author&query=Risinger%2C+A">Andrew Risinger</a>, <a href="/search/physics?searchtype=author&query=Kalakuntla%2C+A">Ashish Kalakuntla</a>, <a href="/search/physics?searchtype=author&query=Li%2C+T">Tingguang Li</a>, <a href="/search/physics?searchtype=author&query=Verma%2C+A">Ashrit Verma</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+C">Christopher Monroe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16167v3-abstract-short" style="display: inline;"> We entangle two co-trapped atomic barium ion qubits by collecting single visible photons from each ion through in-vacuo 0.8 NA objectives, interfering them through an integrated fiber-beamsplitter and detecting them in coincidence. This projects the qubits into an entangled Bell state with an observed fidelity lower bound of F > 94%. We also introduce an ytterbium ion for sympathetic cooling to re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16167v3-abstract-full').style.display = 'inline'; document.getElementById('2404.16167v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16167v3-abstract-full" style="display: none;"> We entangle two co-trapped atomic barium ion qubits by collecting single visible photons from each ion through in-vacuo 0.8 NA objectives, interfering them through an integrated fiber-beamsplitter and detecting them in coincidence. This projects the qubits into an entangled Bell state with an observed fidelity lower bound of F > 94%. We also introduce an ytterbium ion for sympathetic cooling to remove the need for recooling interruptions and achieve a continuous entanglement rate of 250 1/s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16167v3-abstract-full').style.display = 'none'; document.getElementById('2404.16167v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02985">arXiv:2404.02985</a> <span> [<a href="https://arxiv.org/pdf/2404.02985">pdf</a>, <a href="https://arxiv.org/format/2404.02985">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> R-matrix with time-dependence calculations for three-sideband RABBITT in helium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bondy%2C+A+T">A. T. Bondy</a>, <a href="/search/physics?searchtype=author&query=del+Valle%2C+J+C">J. C. del Valle</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">S. Saha</a>, <a href="/search/physics?searchtype=author&query=Hamilton%2C+K+R">K. R. Hamilton</a>, <a href="/search/physics?searchtype=author&query=Bharti%2C+D">D. Bharti</a>, <a href="/search/physics?searchtype=author&query=Harth%2C+A">A. Harth</a>, <a href="/search/physics?searchtype=author&query=Bartschat%2C+K">K. Bartschat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02985v1-abstract-short" style="display: inline;"> Following up on a recent paper [Bharti et al., Phys. Rev. A 109 (2024) 023110], we compare the predictions from severalR-matrix with time-dependence calculations for a modified three-sideband version of the "reconstruction of attosecond beating by interference of two-photon transitions" (RABBITT) configuration applied to helium. Except for the special case of the threshold sideband, which appears… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02985v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02985v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02985v1-abstract-full" style="display: none;"> Following up on a recent paper [Bharti et al., Phys. Rev. A 109 (2024) 023110], we compare the predictions from severalR-matrix with time-dependence calculations for a modified three-sideband version of the "reconstruction of attosecond beating by interference of two-photon transitions" (RABBITT) configuration applied to helium. Except for the special case of the threshold sideband, which appears to be very sensitive to the details of coupling to the bound Rydberg states, increasing the number of coupled states in the close-coupling expansion used to describe the ejected-electron--residual-ion interaction hardly changes the results. Consequently, the remaining discrepancies between the experimental data and the theoretical predictions are likely due to uncertainties in the experimental parameters, particularly the detailed knowledge of the laser pulse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02985v1-abstract-full').style.display = 'none'; document.getElementById('2404.02985v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00471">arXiv:2404.00471</a> <span> [<a href="https://arxiv.org/pdf/2404.00471">pdf</a>, <a href="https://arxiv.org/format/2404.00471">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ICASSP48485.2024.10447579">10.1109/ICASSP48485.2024.10447579 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Score-Based Diffusion Models for Photoacoustic Tomography Image Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dey%2C+S">Sreemanti Dey</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Snigdha Saha</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+B+T">Berthy T. Feng</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+M">Manxiu Cui</a>, <a href="/search/physics?searchtype=author&query=Delisle%2C+L">Laure Delisle</a>, <a href="/search/physics?searchtype=author&query=Leong%2C+O">Oscar Leong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L+V">Lihong V. Wang</a>, <a href="/search/physics?searchtype=author&query=Bouman%2C+K+L">Katherine L. Bouman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00471v1-abstract-short" style="display: inline;"> Photoacoustic tomography (PAT) is a rapidly-evolving medical imaging modality that combines optical absorption contrast with ultrasound imaging depth. One challenge in PAT is image reconstruction with inadequate acoustic signals due to limited sensor coverage or due to the density of the transducer array. Such cases call for solving an ill-posed inverse reconstruction problem. In this work, we use… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00471v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00471v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00471v1-abstract-full" style="display: none;"> Photoacoustic tomography (PAT) is a rapidly-evolving medical imaging modality that combines optical absorption contrast with ultrasound imaging depth. One challenge in PAT is image reconstruction with inadequate acoustic signals due to limited sensor coverage or due to the density of the transducer array. Such cases call for solving an ill-posed inverse reconstruction problem. In this work, we use score-based diffusion models to solve the inverse problem of reconstructing an image from limited PAT measurements. The proposed approach allows us to incorporate an expressive prior learned by a diffusion model on simulated vessel structures while still being robust to varying transducer sparsity conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00471v1-abstract-full').style.display = 'none'; document.getElementById('2404.00471v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, Republic of, 2024, pp. 2470-2474 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16856">arXiv:2402.16856</a> <span> [<a href="https://arxiv.org/pdf/2402.16856">pdf</a>, <a href="https://arxiv.org/format/2402.16856">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Fabrication of $^{108}$Cd target for the astrophysical p-process studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sukhendu Saha</a>, <a href="/search/physics?searchtype=author&query=Paul%2C+M">Mousri Paul</a>, <a href="/search/physics?searchtype=author&query=Sahoo%2C+L+K">Lalit Kumar Sahoo</a>, <a href="/search/physics?searchtype=author&query=Basak%2C+D">Dipali Basak</a>, <a href="/search/physics?searchtype=author&query=Bar%2C+T">Tanmoy Bar</a>, <a href="/search/physics?searchtype=author&query=Datta%2C+J">Jagannath Datta</a>, <a href="/search/physics?searchtype=author&query=Dasgupta%2C+S">Sandipan Dasgupta</a>, <a href="/search/physics?searchtype=author&query=Reddy%2C+G+L+N">G. L. N. Reddy</a>, <a href="/search/physics?searchtype=author&query=Basu%2C+C">Chinmay Basu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16856v1-abstract-short" style="display: inline;"> The detailed process of preparing enriched $^{108}$Cd targets on mylar and copper backing using the vacuum evaporation technique is described. These targets were employed in an experiment to measure the proton capture cross-section at energies significantly below the Coulomb barrier, for the astrophysical p-process studies. Due to the low melting point and high vapor pressure of cadmium, some adju… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16856v1-abstract-full').style.display = 'inline'; document.getElementById('2402.16856v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16856v1-abstract-full" style="display: none;"> The detailed process of preparing enriched $^{108}$Cd targets on mylar and copper backing using the vacuum evaporation technique is described. These targets were employed in an experiment to measure the proton capture cross-section at energies significantly below the Coulomb barrier, for the astrophysical p-process studies. Due to the low melting point and high vapor pressure of cadmium, some adjustments were implemented in the Telemark multipocket e-beam setup. The target thickness was determined through the measurement of alpha particle energy loss from a triple alpha source and also by RBS measurements. The thickness of the $^{108}$Cd films varies between 290 to 660 $渭$g/cm$^2$, with a non-uniformity of approximately 10$\%$. X-ray Photoelectron Spectroscopy (XPS) and X-ray Fluorescence (XRF) analyses were conducted to examine the presence of impurities and to assess surface morphology, phase, and chemical composition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16856v1-abstract-full').style.display = 'none'; document.getElementById('2402.16856v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03344">arXiv:2402.03344</a> <span> [<a href="https://arxiv.org/pdf/2402.03344">pdf</a>, <a href="https://arxiv.org/format/2402.03344">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> First (calibration) experiment using proton beam from FRENA at SINP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Basu%2C+C">C. Basu</a>, <a href="/search/physics?searchtype=author&query=Banerjee%2C+K">K. Banerjee</a>, <a href="/search/physics?searchtype=author&query=Ghosh%2C+T+K">T. K. Ghosh</a>, <a href="/search/physics?searchtype=author&query=Mukherjee%2C+G">G. Mukherjee</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+C">C. Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Desai%2C+S+S">Shraddha S Desai</a>, <a href="/search/physics?searchtype=author&query=Shil%2C+R">R. Shil</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+A+K">A. K. Saha</a>, <a href="/search/physics?searchtype=author&query=Meena%2C+J+K">J. K. Meena</a>, <a href="/search/physics?searchtype=author&query=Bar%2C+T">T. Bar</a>, <a href="/search/physics?searchtype=author&query=Basak%2C+D">D. Basak</a>, <a href="/search/physics?searchtype=author&query=Sahoo%2C+L+K">L. K. Sahoo</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">S. Saha</a>, <a href="/search/physics?searchtype=author&query=Marick%2C+C">C. Marick</a>, <a href="/search/physics?searchtype=author&query=Das%2C+D">D. Das</a>, <a href="/search/physics?searchtype=author&query=Das%2C+D">D. Das</a>, <a href="/search/physics?searchtype=author&query=Das%2C+D">D. Das</a>, <a href="/search/physics?searchtype=author&query=Kujur%2C+M">M. Kujur</a>, <a href="/search/physics?searchtype=author&query=Roy%2C+S">S. Roy</a>, <a href="/search/physics?searchtype=author&query=Basu%2C+S+S">S. S. Basu</a>, <a href="/search/physics?searchtype=author&query=Gond%2C+U">U. Gond</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+A">A. Saha</a>, <a href="/search/physics?searchtype=author&query=Das%2C+A">A. Das</a>, <a href="/search/physics?searchtype=author&query=Samanta%2C+M">M. Samanta</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+P">P. Saha</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03344v1-abstract-short" style="display: inline;"> This work presents the first calibration experiment of a 3 MV Tandetron accelerator, FRENA, performed in May 2022. The $^7$Li(p,n) reaction threshold was measured to calibrate the terminal voltage measuring device. A LiF target of thickness 175 $渭$g/cm$^2$ was used in the experiment. The measured threshold was 1872$\pm$2.7 keV, indicating 6$-$10 keV energy shift. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03344v1-abstract-full" style="display: none;"> This work presents the first calibration experiment of a 3 MV Tandetron accelerator, FRENA, performed in May 2022. The $^7$Li(p,n) reaction threshold was measured to calibrate the terminal voltage measuring device. A LiF target of thickness 175 $渭$g/cm$^2$ was used in the experiment. The measured threshold was 1872$\pm$2.7 keV, indicating 6$-$10 keV energy shift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03344v1-abstract-full').style.display = 'none'; document.getElementById('2402.03344v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14745">arXiv:2401.14745</a> <span> [<a href="https://arxiv.org/pdf/2401.14745">pdf</a>, <a href="https://arxiv.org/format/2401.14745">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Anomalous fluctuations in a droplet of chemically active colloids or enzymes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Prathyusha%2C+K+R">K. R. Prathyusha</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Suropriya Saha</a>, <a href="/search/physics?searchtype=author&query=Golestanian%2C+R">Ramin Golestanian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14745v1-abstract-short" style="display: inline;"> Chemically active colloids or enzymes cluster into dense droplets driven by their phoretic response to collectively generated chemical gradients. Employing Brownian dynamics simulation techniques, our study of the dynamics of such a chemically active droplet uncovers a rich variety of structures and dynamical properties, including the full range of fluid-like to solid-like behaviour, and non-Gauss… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14745v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14745v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14745v1-abstract-full" style="display: none;"> Chemically active colloids or enzymes cluster into dense droplets driven by their phoretic response to collectively generated chemical gradients. Employing Brownian dynamics simulation techniques, our study of the dynamics of such a chemically active droplet uncovers a rich variety of structures and dynamical properties, including the full range of fluid-like to solid-like behaviour, and non-Gaussian positional fluctuations. Our work sheds light on the complex dynamics of the active constituents of metabolic clusters, which are the main drivers of non-equilibrium activity in living systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14745v1-abstract-full').style.display = 'none'; document.getElementById('2401.14745v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03005">arXiv:2401.03005</a> <span> [<a href="https://arxiv.org/pdf/2401.03005">pdf</a>, <a href="https://arxiv.org/format/2401.03005">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Evolution of urban areas and land surface temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sudipan Saha</a>, <a href="/search/physics?searchtype=author&query=Verma%2C+T">Tushar Verma</a>, <a href="/search/physics?searchtype=author&query=Oliveira%2C+D+A+B">Dario Augusto Borges Oliveira</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03005v1-abstract-short" style="display: inline;"> With the global population on the rise, our cities have been expanding to accommodate the growing number of people. The expansion of cities generally leads to the engulfment of peripheral areas. However, such expansion of urban areas is likely to cause increment in areas with increased land surface temperature (LST). By considering each summer as a data point, we form LST multi-year time-series an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03005v1-abstract-full').style.display = 'inline'; document.getElementById('2401.03005v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03005v1-abstract-full" style="display: none;"> With the global population on the rise, our cities have been expanding to accommodate the growing number of people. The expansion of cities generally leads to the engulfment of peripheral areas. However, such expansion of urban areas is likely to cause increment in areas with increased land surface temperature (LST). By considering each summer as a data point, we form LST multi-year time-series and cluster it to obtain spatio-temporal pattern. We observe several interesting phenomena from these patterns, e.g., some clusters show reasonable similarity to the built-up area, whereas the locations with high temporal variation are seen more in the peripheral areas. Furthermore, the LST center of mass shifts over the years for cities with development activities tilted towards a direction. We conduct the above-mentioned studies for three different cities in three different continents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03005v1-abstract-full').style.display = 'none'; document.getElementById('2401.03005v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12482">arXiv:2311.12482</a> <span> [<a href="https://arxiv.org/pdf/2311.12482">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.3c13046">10.1021/jacs.3c13046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monitoring the evolution of relative product populations at early times during a photochemical reaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nunes%2C+J+P+F">Joao Pedro Figueira Nunes</a>, <a href="/search/physics?searchtype=author&query=Ibele%2C+L+M">Lea Maria Ibele</a>, <a href="/search/physics?searchtype=author&query=Pathak%2C+S">Shashank Pathak</a>, <a href="/search/physics?searchtype=author&query=Attar%2C+A+R">Andrew R. Attar</a>, <a href="/search/physics?searchtype=author&query=Bhattacharyya%2C+S">Surjendu Bhattacharyya</a>, <a href="/search/physics?searchtype=author&query=Boll%2C+R">Rebecca Boll</a>, <a href="/search/physics?searchtype=author&query=Borne%2C+K">Kurtis Borne</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">Martin Centurion</a>, <a href="/search/physics?searchtype=author&query=Erk%2C+B">Benjamin Erk</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R+J+G">Ruaridh J. G. Forbes</a>, <a href="/search/physics?searchtype=author&query=Goff%2C+N">Nate Goff</a>, <a href="/search/physics?searchtype=author&query=Hansen%2C+C+S">Christopher S. Hansen</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M">Matthias Hoffmann</a>, <a href="/search/physics?searchtype=author&query=Holland%2C+D+M+P">David M. P. Holland</a>, <a href="/search/physics?searchtype=author&query=Ingle%2C+R+A">Rebecca A. Ingle</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&query=Muvva%2C+S+B">Sri Bhavya Muvva</a>, <a href="/search/physics?searchtype=author&query=Reid%2C+A">Alex Reid</a>, <a href="/search/physics?searchtype=author&query=Rouz%C3%A9e%2C+A">Arnaud Rouz茅e</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+A">Artem Rudenko</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">Sajib Kumar Saha</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Venkatachalam%2C+A+S">Anbu Selvam Venkatachalam</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12482v1-abstract-short" style="display: inline;"> Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps towards understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species amongst the emerging re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12482v1-abstract-full').style.display = 'inline'; document.getElementById('2311.12482v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12482v1-abstract-full" style="display: none;"> Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps towards understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species amongst the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (~50%) yield of an episulfide isomer containing a strained 3-membered ring within ~1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12482v1-abstract-full').style.display = 'none'; document.getElementById('2311.12482v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Am. Chem. Soc. 2024, 146, 6, 4134-4143 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03677">arXiv:2311.03677</a> <span> [<a href="https://arxiv.org/pdf/2311.03677">pdf</a>, <a href="https://arxiv.org/format/2311.03677">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> High-Order Harmonic Generation in Helium: A Comparison Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bondy%2C+A+T">A. T. Bondy</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">S. Saha</a>, <a href="/search/physics?searchtype=author&query=del+Valle%2C+J+C">J. C. del Valle</a>, <a href="/search/physics?searchtype=author&query=Harth%2C+A">A. Harth</a>, <a href="/search/physics?searchtype=author&query=Douguet%2C+N">N. Douguet</a>, <a href="/search/physics?searchtype=author&query=Hamilton%2C+K+R">K. R. Hamilton</a>, <a href="/search/physics?searchtype=author&query=Bartschat%2C+K">K. Bartschat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03677v3-abstract-short" style="display: inline;"> We report a detailed study of high-order harmonic generation (HHG) in helium. When comparing predictions from a single-active-electron model with those from all-electron simulations, such as ATTOMESA and R-matrix with time-dependence, which can include different numbers of states in the close-coupling expansion, it seems imperative to generate absolute numbers for the HHG spectrum in a well-define… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03677v3-abstract-full').style.display = 'inline'; document.getElementById('2311.03677v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03677v3-abstract-full" style="display: none;"> We report a detailed study of high-order harmonic generation (HHG) in helium. When comparing predictions from a single-active-electron model with those from all-electron simulations, such as ATTOMESA and R-matrix with time-dependence, which can include different numbers of states in the close-coupling expansion, it seems imperative to generate absolute numbers for the HHG spectrum in a well-defined framework. While qualitative agreement in the overall frequency dependence of the spectrum, including the cut-off frequency predicted by a semi-classical model, can be achieved by many models in arbitrary units, only absolute numbers can be used for benchmark comparisons between different approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03677v3-abstract-full').style.display = 'none'; document.getElementById('2311.03677v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07058">arXiv:2310.07058</a> <span> [<a href="https://arxiv.org/pdf/2310.07058">pdf</a>, <a href="https://arxiv.org/format/2310.07058">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0180732">10.1063/5.0180732 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ion Trap with In-Vacuum High Numerical Aperture Imaging for a Dual-Species Modular Quantum Computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Carter%2C+A+L">Allison L. Carter</a>, <a href="/search/physics?searchtype=author&query=O%27Reilly%2C+J">Jameson O'Reilly</a>, <a href="/search/physics?searchtype=author&query=Toh%2C+G">George Toh</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sagnik Saha</a>, <a href="/search/physics?searchtype=author&query=Shalaev%2C+M">Mikhail Shalaev</a>, <a href="/search/physics?searchtype=author&query=Goetting%2C+I">Isabella Goetting</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+C">Christopher Monroe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07058v2-abstract-short" style="display: inline;"> Photonic interconnects between quantum systems will play a central role in both scalable quantum computing and quantum networking. Entanglement of remote qubits via photons has been demonstrated in many platforms; however, improving the rate of entanglement generation will be instrumental for integrating photonic links into modular quantum computers. We present an ion trap system that has the high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07058v2-abstract-full').style.display = 'inline'; document.getElementById('2310.07058v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07058v2-abstract-full" style="display: none;"> Photonic interconnects between quantum systems will play a central role in both scalable quantum computing and quantum networking. Entanglement of remote qubits via photons has been demonstrated in many platforms; however, improving the rate of entanglement generation will be instrumental for integrating photonic links into modular quantum computers. We present an ion trap system that has the highest reported free-space photon collection efficiency for quantum networking. We use a pair of in-vacuum aspheric lenses, each with a numerical aperture of 0.8, to couple 10% of the 493 nm photons emitted from a $^{138}$Ba$^+$ ion into single-mode fibers. We also demonstrate that proximal effects of the lenses on the ion position and motion can be mitigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07058v2-abstract-full').style.display = 'none'; document.getElementById('2310.07058v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 95, 033201 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10877">arXiv:2309.10877</a> <span> [<a href="https://arxiv.org/pdf/2309.10877">pdf</a>, <a href="https://arxiv.org/format/2309.10877">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-sideband interference structures by high-order photon-induced continuum-continuum transitions in helium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bharti%2C+D">D. Bharti</a>, <a href="/search/physics?searchtype=author&query=Srinivas%2C+H">H. Srinivas</a>, <a href="/search/physics?searchtype=author&query=Shobeiry%2C+F">F. Shobeiry</a>, <a href="/search/physics?searchtype=author&query=Bondy%2C+A+T">A. T. Bondy</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">S. Saha</a>, <a href="/search/physics?searchtype=author&query=Hamilton%2C+K+R">K. R. Hamilton</a>, <a href="/search/physics?searchtype=author&query=Moshammer%2C+R">R. Moshammer</a>, <a href="/search/physics?searchtype=author&query=Pfeifer%2C+T">T. Pfeifer</a>, <a href="/search/physics?searchtype=author&query=Bartschat%2C+K">K. Bartschat</a>, <a href="/search/physics?searchtype=author&query=Harth%2C+A">A. Harth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10877v2-abstract-short" style="display: inline;"> Following up on a previous paper on two-color photoionization of Ar(3p) [Bharti et al., Phys. Rev. A 103 (2021) 022834], we present measurements and calculations for a modified three-sideband (3-SB) version of the "reconstruction of attosecond beating by interference of two-photon transitions" (RABBITT) configuration applied to He(1s). The 3-SB RABBITT approach allows us to explore interference ef… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10877v2-abstract-full').style.display = 'inline'; document.getElementById('2309.10877v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10877v2-abstract-full" style="display: none;"> Following up on a previous paper on two-color photoionization of Ar(3p) [Bharti et al., Phys. Rev. A 103 (2021) 022834], we present measurements and calculations for a modified three-sideband (3-SB) version of the "reconstruction of attosecond beating by interference of two-photon transitions" (RABBITT) configuration applied to He(1s). The 3-SB RABBITT approach allows us to explore interference effects between pathways involving different orders of transitions within the continuum. The relative differences in the retrieved oscillation phases of the three sidebands provide insights into the continuum-continuum transitions. The ground state of helium has zero orbital angular momentum, which simplifies the analysis of oscillation phases and their angle-dependence within the three sidebands. We find qualitative agreement between our experimental results and the theoretical predictions for many cases but also observe some significant quantitative discrepancies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10877v2-abstract-full').style.display = 'none'; document.getElementById('2309.10877v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05828">arXiv:2309.05828</a> <span> [<a href="https://arxiv.org/pdf/2309.05828">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring Geometric Deep Learning For Precipitation Nowcasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+S">Shan Zhao</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sudipan Saha</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+Z">Zhitong Xiong</a>, <a href="/search/physics?searchtype=author&query=Boers%2C+N">Niklas Boers</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+X+X">Xiao Xiang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05828v1-abstract-short" style="display: inline;"> Precipitation nowcasting (up to a few hours) remains a challenge due to the highly complex local interactions that need to be captured accurately. Convolutional Neural Networks rely on convolutional kernels convolving with grid data and the extracted features are trapped by limited receptive field, typically expressed in excessively smooth output compared to ground truth. Thus they lack the capaci… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05828v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05828v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05828v1-abstract-full" style="display: none;"> Precipitation nowcasting (up to a few hours) remains a challenge due to the highly complex local interactions that need to be captured accurately. Convolutional Neural Networks rely on convolutional kernels convolving with grid data and the extracted features are trapped by limited receptive field, typically expressed in excessively smooth output compared to ground truth. Thus they lack the capacity to model complex spatial relationships among the grids. Geometric deep learning aims to generalize neural network models to non-Euclidean domains. Such models are more flexible in defining nodes and edges and can effectively capture dynamic spatial relationship among geographical grids. Motivated by this, we explore a geometric deep learning-based temporal Graph Convolutional Network (GCN) for precipitation nowcasting. The adjacency matrix that simulates the interactions among grid cells is learned automatically by minimizing the L1 loss between prediction and ground truth pixel value during the training procedure. Then, the spatial relationship is refined by GCN layers while the temporal information is extracted by 1D convolution with various kernel lengths. The neighboring information is fed as auxiliary input layers to improve the final result. We test the model on sequences of radar reflectivity maps over the Trento/Italy area. The results show that GCNs improves the effectiveness of modeling the local details of the cloud profile as well as the prediction accuracy by achieving decreased error measures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05828v1-abstract-full').style.display = 'none'; document.getElementById('2309.05828v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted and accepted in IGARSS2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13400">arXiv:2307.13400</a> <span> [<a href="https://arxiv.org/pdf/2307.13400">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Tuning the magnetic properties in MPS3 (M = Mn, Fe, and Ni) by proximity-induced Dzyaloshinskii Moriya interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Paul%2C+S">Suvodeep Paul</a>, <a href="/search/physics?searchtype=author&query=Negi%2C+D">Devesh Negi</a>, <a href="/search/physics?searchtype=author&query=Talukdar%2C+S">Saswata Talukdar</a>, <a href="/search/physics?searchtype=author&query=Karak%2C+S">Saheb Karak</a>, <a href="/search/physics?searchtype=author&query=Badola%2C+S">Shalini Badola</a>, <a href="/search/physics?searchtype=author&query=Poojitha%2C+B">Bommareddy Poojitha</a>, <a href="/search/physics?searchtype=author&query=Mandal%2C+M">Manasi Mandal</a>, <a href="/search/physics?searchtype=author&query=Marik%2C+S">Sourav Marik</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+R+P">R. P. Singh</a>, <a href="/search/physics?searchtype=author&query=Pistawala%2C+N">Nashra Pistawala</a>, <a href="/search/physics?searchtype=author&query=Harnagea%2C+L">Luminita Harnagea</a>, <a href="/search/physics?searchtype=author&query=Thomas%2C+A">Aksa Thomas</a>, <a href="/search/physics?searchtype=author&query=Soni%2C+A">Ajay Soni</a>, <a href="/search/physics?searchtype=author&query=Bhattacharjee%2C+S">Subhro Bhattacharjee</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Surajit Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13400v1-abstract-short" style="display: inline;"> Tailoring the quantum many-body interactions in layered materials through appropriate heterostructure engineering can result in emergent properties that are absent in the constituent materials thus promising potential future applications. In this article, we have demonstrated controlling the otherwise robust magnetic properties of transition metal phosphorus trisulphides (Mn/Fe/NiPS3) in their het… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13400v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13400v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13400v1-abstract-full" style="display: none;"> Tailoring the quantum many-body interactions in layered materials through appropriate heterostructure engineering can result in emergent properties that are absent in the constituent materials thus promising potential future applications. In this article, we have demonstrated controlling the otherwise robust magnetic properties of transition metal phosphorus trisulphides (Mn/Fe/NiPS3) in their heterostructures with Weyl semimetallic MoTe2 which can be attributed to the Dzyaloshinskii Moriya (DM) interactions at the interface of the two different layered materials. While the DM interaction is known to scale with the strength of the spin-orbit coupling (SOC), we also demonstrate here that the effect of DM interaction strongly varies with the spin orientation/dimensionality of the magnetic layer and the low-energy electronic density of state of the spin-orbit coupled layer. The observations are further supported by a series of experiments on heterostructures with a variety of substrates/underlayers hosting variable SOC and electronic density of states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13400v1-abstract-full').style.display = 'none'; document.getElementById('2307.13400v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 5 figures (main text), supporting information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.07844">arXiv:2304.07844</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Aerodynamic performance of a tandem wing configuration inspired from dragonfly gliding flight for MAV application </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adak%2C+R">Rajosik Adak</a>, <a href="/search/physics?searchtype=author&query=Mandal%2C+A">Arindam Mandal</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sandeep Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.07844v1-abstract-short" style="display: inline;"> The design of micro air vehicles (MAVs) introduces aerodynamic performance challenges due to the small size and, consequently, the low Reynolds number 10000-100000. Natural fliers are naturally optimized and are comparable in size to MAVs, making them a potent candidate to mimic for the design of MAVs. The dragonfly frequently uses a gliding mode of flight relative to the other small fliers and op… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07844v1-abstract-full').style.display = 'inline'; document.getElementById('2304.07844v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.07844v1-abstract-full" style="display: none;"> The design of micro air vehicles (MAVs) introduces aerodynamic performance challenges due to the small size and, consequently, the low Reynolds number 10000-100000. Natural fliers are naturally optimized and are comparable in size to MAVs, making them a potent candidate to mimic for the design of MAVs. The dragonfly frequently uses a gliding mode of flight relative to the other small fliers and operates at a range of 100-10000. The literature suggests that the corrugated profile improves the aerodynamic efficiency around Re at 104. It allows us to investigate the aerodynamic advantages of tandem corrugated airfoil inspired by the dragonfly wing. In this paper, we perform direct numerical simulations of flow past bio-inspired corrugated wing to understand the impact of the tandem wing configuration. The horizontal distance between the wings is fixed, and the vertical distance varies. The results reveal that the forewing/hindwing interaction increases the lift of the forewing relative to the isolated wing for all the case studies. The combined drag coefficient drops by approximately 7%, and overall efficiency drops by approximately 13% relative to an isolated wing for a case study with zero vertical spacing between forewing and hindwing at 3 degree angle of attack, fixed for both wings. With no vertical gap, the aerodynamic efficiency matches close to the isolated wing with the decrease in tandem wing combined drag coefficient compared to an isolated wing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07844v1-abstract-full').style.display = 'none'; document.getElementById('2304.07844v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version has been removed by arXiv administrators because the submitter did not have the authority to grant the license at the time of submission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05904">arXiv:2304.05904</a> <span> [<a href="https://arxiv.org/pdf/2304.05904">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrical Characteristics of in situ Mg-doped beta-Ga2O3 Current-Blocking Layer for Vertical Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sudipto Saha</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+L">Lingyu Meng</a>, <a href="/search/physics?searchtype=author&query=Bhuiyan%2C+A+F+M+A+U">A F M Anhar Uddin Bhuiyan</a>, <a href="/search/physics?searchtype=author&query=Sharma%2C+A">Ankit Sharma</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+C+N">Chinmoy Nath Saha</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Hongping Zhao</a>, <a href="/search/physics?searchtype=author&query=Singisetti%2C+U">Uttam Singisetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05904v1-abstract-short" style="display: inline;"> The lack of p-type doping has impeded the development of vertical gallium oxide (Ga2O3) devices. Current blocking layers (CBL) using implanted deep acceptors has been used to demonstrate vertical devices. This paper presents the first demonstration of in situ Mg-doped beta-Ga2O3 CBLs grown using metalorganic chemical vapor deposition. Device structures were designed with in-situ Mg doped layers wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05904v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05904v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05904v1-abstract-full" style="display: none;"> The lack of p-type doping has impeded the development of vertical gallium oxide (Ga2O3) devices. Current blocking layers (CBL) using implanted deep acceptors has been used to demonstrate vertical devices. This paper presents the first demonstration of in situ Mg-doped beta-Ga2O3 CBLs grown using metalorganic chemical vapor deposition. Device structures were designed with in-situ Mg doped layers with varied targeted Mg doping concentrations, which were calibrated by quantitative secondary ion mass spectroscopy (SIMS). The effectiveness of the CBL is characterized using temperature dependent current-voltage measurements using n-Mg-doped-n structures, providing crucial insight into the underlying mechanisms. To further validate the experimental results, a TCAD simulation is performed and the electrically active effective doping is found to be dependent on the Mg-doping density, offering a new perspective on the optimization of CBL performance. Breakdown measurements show a 3.4 MV/cm field strength. This study represents a significant step forward in the development of Ga2O3-based devices and paves the way for future advancements in this exciting field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05904v1-abstract-full').style.display = 'none'; document.getElementById('2304.05904v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01483">arXiv:2301.01483</a> <span> [<a href="https://arxiv.org/pdf/2301.01483">pdf</a>, <a href="https://arxiv.org/format/2301.01483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Performance enhancement of a 100 watts class Tesla turbine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mandal%2C+A">Arindam Mandal</a>, <a href="/search/physics?searchtype=author&query=Adak%2C+R">Rajosik Adak</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sandeep Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01483v1-abstract-short" style="display: inline;"> Tesla turbines are an attractive but less explored area in low-power applications. This article presents an experimental investigation of a centimeter scale Tesla turbine in bi and unidirectional outlet configuration with compressed air at 6 bar. The turbine's performance is enhanced by approximately 38% for a unidirectional outlet configuration. Furthermore, we also investigate the electrical pow… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01483v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01483v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01483v1-abstract-full" style="display: none;"> Tesla turbines are an attractive but less explored area in low-power applications. This article presents an experimental investigation of a centimeter scale Tesla turbine in bi and unidirectional outlet configuration with compressed air at 6 bar. The turbine's performance is enhanced by approximately 38% for a unidirectional outlet configuration. Furthermore, we also investigate the electrical power of the turbine in a bi-directional outlet configuration by coupling the turbine with a generator. Despite achieving higher performance in unidirectional outlet configuration, we observe substantial losses at the inlet we use for the experiment. To illustrate and improve the losses, we numerically investigate the turbine inlet at a total pressure and temperature difference of 2 bar and 50 degree K, respectively. Subsequently, we design two more nozzles and compared their performance with the nozzle we used in our experiment. Our findings suggest that nozzle 3 performs the best in delivering the highest Mach no and uniformity across the slits. This observation would help optimize the nozzle suitable for the Tesla turbine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01483v1-abstract-full').style.display = 'none'; document.getElementById('2301.01483v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9th International And 49th National Conference On Fluid Mechanics And Fluid Power</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09751">arXiv:2211.09751</a> <span> [<a href="https://arxiv.org/pdf/2211.09751">pdf</a>, <a href="https://arxiv.org/format/2211.09751">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Heart Abnormality Detection from Heart Sound Signals using MFCC Feature and Dual Stream Attention Based Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rashid%2C+N">Nayeeb Rashid</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Swapnil Saha</a>, <a href="/search/physics?searchtype=author&query=Subah%2C+M+R">Mohseu Rashid Subah</a>, <a href="/search/physics?searchtype=author&query=Robin%2C+R+A">Rizwan Ahmed Robin</a>, <a href="/search/physics?searchtype=author&query=Fahim%2C+S+M+H">Syed Mortuza Hasan Fahim</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">Shahed Ahmed</a>, <a href="/search/physics?searchtype=author&query=Mahmud%2C+T+I">Talha Ibn Mahmud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09751v1-abstract-short" style="display: inline;"> Cardiovascular diseases are one of the leading cause of death in today's world and early screening of heart condition plays a crucial role in preventing them. The heart sound signal is one of the primary indicator of heart condition and can be used to detect abnormality in the heart. The acquisition of heart sound signal is non-invasive, cost effective and requires minimum equipment. But currently… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09751v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09751v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09751v1-abstract-full" style="display: none;"> Cardiovascular diseases are one of the leading cause of death in today's world and early screening of heart condition plays a crucial role in preventing them. The heart sound signal is one of the primary indicator of heart condition and can be used to detect abnormality in the heart. The acquisition of heart sound signal is non-invasive, cost effective and requires minimum equipment. But currently the detection of heart abnormality from heart sound signal depends largely on the expertise and experience of the physician. As such an automatic detection system for heart abnormality detection from heart sound signal can be a great asset for the people living in underdeveloped areas. In this paper we propose a novel deep learning based dual stream network with attention mechanism that uses both the raw heart sound signal and the MFCC features to detect abnormality in heart condition of a patient. The deep neural network has a convolutional stream that uses the raw heart sound signal and a recurrent stream that uses the MFCC features of the signal. The features from these two streams are merged together using a novel attention network and passed through the classification network. The model is trained on the largest publicly available dataset of PCG signal and achieves an accuracy of 87.11, sensitivity of 82.41, specificty of 91.8 and a MACC of 87.12. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09751v1-abstract-full').style.display = 'none'; document.getElementById('2211.09751v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.15463">arXiv:2209.15463</a> <span> [<a href="https://arxiv.org/pdf/2209.15463">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.477576">10.1364/JOSAB.477576 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 10 dB emission suppression in a structured low index medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Soumyadeep Saha</a>, <a href="/search/physics?searchtype=author&query=Mustafa%2C+M+E">Meraj E Mustafa</a>, <a href="/search/physics?searchtype=author&query=Eich%2C+M">Manfred Eich</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+Y">Alexander Yu. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.15463v1-abstract-short" style="display: inline;"> Significant suppression of radiation in 3D structured media with small refractive index 1.4-1.6, such as of glass or polymers, is a desirable feature yet to be obtained. For periodical structures this is realised at frequencies of the complete photonic band gap (CPBG), which up to now was demonstrated to open for materials with refractive index of at least 1.9. We present here a quasiperiodic 3D s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15463v1-abstract-full').style.display = 'inline'; document.getElementById('2209.15463v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.15463v1-abstract-full" style="display: none;"> Significant suppression of radiation in 3D structured media with small refractive index 1.4-1.6, such as of glass or polymers, is a desirable feature yet to be obtained. For periodical structures this is realised at frequencies of the complete photonic band gap (CPBG), which up to now was demonstrated to open for materials with refractive index of at least 1.9. We present here a quasiperiodic 3D structure consisting of multiple overlapping gratings with a homogeneous distribution of Bragg peaks on a sphere in reciprocal space, which allows efficient suppression of emission. Recently we have presented the theoretical model, considering interaction with the neighbouring gratings only, that estimates a finite CPBG for arbitrarily small refractive indices and thus complete emission suppression in infinite structures. However, numerical simulations demonstrate a finite leakage of power from emitter not predicted by the model. Still the simulations show -10 dB suppression in 3D structures with optimised number of gratings. Astonishingly, as we show here, this limit is almost independent of the refractive index contrast. Also, the structures with a defined number of gratings show maximal suppression at certain refractive indices, losing the suppression even at higher refractive indices. The -10 dB suppression is demonstrated for refractive index contrast as low as 1.30. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15463v1-abstract-full').style.display = 'none'; document.getElementById('2209.15463v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13691">arXiv:2209.13691</a> <span> [<a href="https://arxiv.org/pdf/2209.13691">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38513-6">10.1038/s41467-023-38513-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rehybridization dynamics into the pericyclic minimum of an electrcyclic reaction imaged in real-time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yusong Liu</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+D+M">David M. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Ware%2C+M+R">Matthew R. Ware</a>, <a href="/search/physics?searchtype=author&query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&query=Nunes%2C+J+P+F">J. Pedro F. Nunes</a>, <a href="/search/physics?searchtype=author&query=Attar%2C+A">Andrew Attar</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">Martin Centurion</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J+P">James P. Cryan</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R+G">Ruaridh G. Forbes</a>, <a href="/search/physics?searchtype=author&query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+F">Fuhao Ji</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">Sajib K. Saha</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+T+J">Todd J. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Wolf%2C+T+J+A">Thomas J. A. Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13691v1-abstract-short" style="display: inline;"> Electrocyclic reactions are characterized by the concerted formation and cleavage of both 蟽 and 蟺 bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13691v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13691v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13691v1-abstract-full" style="display: none;"> Electrocyclic reactions are characterized by the concerted formation and cleavage of both 蟽 and 蟺 bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule 伪-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated 蟺 bonds. The 蟽 bond dissociation largely happens after internal conversion from the pericyclic minimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13691v1-abstract-full').style.display = 'none'; document.getElementById('2209.13691v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Combined manuscript and supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.12927">arXiv:2208.12927</a> <span> [<a href="https://arxiv.org/pdf/2208.12927">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Engineering the Temporal Dynamics with Fast and Slow Materials for All-Optical Switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Soham Saha</a>, <a href="/search/physics?searchtype=author&query=Diroll%2C+B">Benjamin Diroll</a>, <a href="/search/physics?searchtype=author&query=Ozlu%2C+M+G">Mustafa Goksu Ozlu</a>, <a href="/search/physics?searchtype=author&query=Chowdhury%2C+S+N">Sarah N. Chowdhury</a>, <a href="/search/physics?searchtype=author&query=Peana%2C+S">Samuel Peana</a>, <a href="/search/physics?searchtype=author&query=Kudyshev%2C+Z">Zhaxylyk Kudyshev</a>, <a href="/search/physics?searchtype=author&query=Schaller%2C+R">Richard Schaller</a>, <a href="/search/physics?searchtype=author&query=Jacob%2C+Z">Zubin Jacob</a>, <a href="/search/physics?searchtype=author&query=Shalaev%2C+V+M">Vladimir M. Shalaev</a>, <a href="/search/physics?searchtype=author&query=Kildishev%2C+A+V">Alexander V. Kildishev</a>, <a href="/search/physics?searchtype=author&query=Boltasseva%2C+A">Alexandra Boltasseva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.12927v1-abstract-short" style="display: inline;"> All optical switches offer advanced control over the properties of light at ultrafast timescales using optical pulses as both the signal and the control. Limited only by material response times, these switches can operate at terahertz speeds, essential for technology-driven applications such as all-optical signal processing and ultrafast imaging, as well as for fundamental studies such as frequenc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12927v1-abstract-full').style.display = 'inline'; document.getElementById('2208.12927v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.12927v1-abstract-full" style="display: none;"> All optical switches offer advanced control over the properties of light at ultrafast timescales using optical pulses as both the signal and the control. Limited only by material response times, these switches can operate at terahertz speeds, essential for technology-driven applications such as all-optical signal processing and ultrafast imaging, as well as for fundamental studies such as frequency translation and novel optical media concepts such as photonic time crystals. In conventional systems, the switching time is determined by the relaxation response of a single active material, which is challenging to adjust dynamically. This work demonstrates that the zero-to-zero response time of an all-optical switch can instead be varied through the combination of so-called fast and slow materials in a single device. When probed in the epsilon-near-zero operational regime of a material with a slow response time, namely, plasmonic titanium nitride, the switch exhibits a relatively slow, nanosecond response time. The response time then decreases reaching the picosecond time scale in the ENZ regime of the faster material, namely, aluminum-doped zinc oxide. Overall, the response time of the switch is shown to vary by two orders of magnitude in a single device and can be selectively controlled through the interaction of the probe signal with the constituent materials. The ability to adjust the switching speed by controlling the light-matter interaction in a multi-material structure provides an additional degree of freedom in all-optical switch design. Moreover, the proposed approach utilizes slower materials that are very robust and allow to enhance the field intensities while faster materials ensure an ultrafast dynamic response. The proposed control of the switching time could lead to new functionalities within key applications in multiband transmission, optical computing, and nonlinear optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12927v1-abstract-full').style.display = 'none'; document.getElementById('2208.12927v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15156">arXiv:2206.15156</a> <span> [<a href="https://arxiv.org/pdf/2206.15156">pdf</a>, <a href="https://arxiv.org/format/2206.15156">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/03/P03038">10.1088/1748-0221/18/03/P03038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulse Shape Simulation and Discrimination using Machine-Learning Techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dutta%2C+S">Shubham Dutta</a>, <a href="/search/physics?searchtype=author&query=Ghosh%2C+S">Sayan Ghosh</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+S">Satyaki Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Satyajit Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15156v2-abstract-short" style="display: inline;"> An essential metric for the quality of a particle-identification experiment is its statistical power to discriminate between signal and background. Pulse shape discrimination (PSD) is a basic method for this purpose in many nuclear, high-energy and rare-event search experiments where scintillation detectors are used. Conventional techniques exploit the difference between decay-times of the pulses… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15156v2-abstract-full').style.display = 'inline'; document.getElementById('2206.15156v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15156v2-abstract-full" style="display: none;"> An essential metric for the quality of a particle-identification experiment is its statistical power to discriminate between signal and background. Pulse shape discrimination (PSD) is a basic method for this purpose in many nuclear, high-energy and rare-event search experiments where scintillation detectors are used. Conventional techniques exploit the difference between decay-times of the pulses from signal and background events or pulse signals caused by different types of radiation quanta to achieve good discrimination. However, such techniques are efficient only when the total light-emission is sufficient to get a proper pulse profile. This is only possible when adequate amount of energy is deposited from recoil of the electrons or the nuclei of the scintillator materials caused by the incident particle on the detector. But, rare-event search experiments like direct search for dark matter do not always satisfy these conditions. Hence, it becomes imperative to have a method that can deliver a very efficient discrimination in these scenarios. Neural network based machine-learning algorithms have been used for classification problems in many areas of physics especially in high-energy experiments and have given better results compared to conventional techniques. We present the results of our investigations of two network based methods \viz Dense Neural Network and Recurrent Neural Network, for pulse shape discrimination and compare the same with conventional methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15156v2-abstract-full').style.display = 'none'; document.getElementById('2206.15156v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 39 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Instrumentation, Volume 18, March 2023 P03038 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.11226">arXiv:2206.11226</a> <span> [<a href="https://arxiv.org/pdf/2206.11226">pdf</a>, <a href="https://arxiv.org/format/2206.11226">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fevo.2023.1152384">10.3389/fevo.2023.1152384 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transoceanic migration of dragonflies and branched optimal route networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ranjan%2C+K+S">K. S. Ranjan</a>, <a href="/search/physics?searchtype=author&query=Pawar%2C+A+A">Amit A. Pawar</a>, <a href="/search/physics?searchtype=author&query=Roy%2C+A">Arnab Roy</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sandeep Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.11226v4-abstract-short" style="display: inline;"> The intriguing annual migration of the dragonfly species, Pantala flavescens was reported almost a century ago (Fraser 1924). The multi-generational, transoceanic migration circuit spanning from India to Africa is an astonishing feat for an inches-long insect. Wind, precipitation, fuel, breeding, and life cycle affect the migration, yet understanding of their collective role in the migration remai… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11226v4-abstract-full').style.display = 'inline'; document.getElementById('2206.11226v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.11226v4-abstract-full" style="display: none;"> The intriguing annual migration of the dragonfly species, Pantala flavescens was reported almost a century ago (Fraser 1924). The multi-generational, transoceanic migration circuit spanning from India to Africa is an astonishing feat for an inches-long insect. Wind, precipitation, fuel, breeding, and life cycle affect the migration, yet understanding of their collective role in the migration remains elusive. We identify the transoceanic migration route by imposing a time constraint emerging from energetics on Djikstra's path-planning algorithm. Energetics calculations reveal a Pantala flavescens can endure 90 hours of steady flight at 4.5m/s. We incorporate active wind compensation in Djikstra's algorithm to compute the migration route from years 2002 to 2007. The prevailing winds play a pivotal role; a direct crossing of the Indian Ocean from Africa to India is feasible with the Somali Jet, whereas the return requires stopovers in Maldives and Seychelles. The migration timing, identified using monthly-successful trajectories, life cycle, and precipitation data, corroborates reported observations. Finally, our timely sighting in Cherrapunji, India (25.2N 91.7E) and a branched network hypothesis connect the likely origin of the migration in North-Eastern India with Pantala flavescens's arrival in South-Eastern India with the retreating monsoons; a clue to their extensive global dispersal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11226v4-abstract-full').style.display = 'none'; document.getElementById('2206.11226v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.02101">arXiv:2206.02101</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Selection of turbulence models via multiscaling analysis of an axisymmetric pipe flow and heat transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nandi%2C+I">Indrajit Nandi</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Saikat Saha</a>, <a href="/search/physics?searchtype=author&query=Subedi%2C+S">Sabir Subedi</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sumon Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.02101v2-abstract-short" style="display: inline;"> To fully evaluate a turbulent flow, Direct Numerical Simulation (DNS) is the most accurate method by far and requires considerable computational power and time; not optimum for industry standards. Developing an alternative model, providing results with reasonable accuracy would resolve this issue. Reynolds Averaged Navier Stokes (RANS) modeling has proven its worth in addressing this phenomenon. I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02101v2-abstract-full').style.display = 'inline'; document.getElementById('2206.02101v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.02101v2-abstract-full" style="display: none;"> To fully evaluate a turbulent flow, Direct Numerical Simulation (DNS) is the most accurate method by far and requires considerable computational power and time; not optimum for industry standards. Developing an alternative model, providing results with reasonable accuracy would resolve this issue. Reynolds Averaged Navier Stokes (RANS) modeling has proven its worth in addressing this phenomenon. In this study, we investigated the RANS turbulence models from COMSOL for fully developed single-phase flow in a two-dimensional axisymmetric pipe domain with constant heating at the wall and periodic boundary conditions at the inlet and outlet. Heat transfer in the fluid module has been added to address the heat transfer phenomenon. We evaluated the computed results with existing DNS data to match the accuracy of the RANS models. RANS simulations are conducted for friction Reynolds number, i.e., Re_蟿= 180, 314, and 395 with varying Prandtl numbers, i.e., Pr = 0.71, 2, 5, and 7. Multiscaling analyses in the flow's inner, outer, and meso scaling regions are performed for fluid and heat transfer profiles, i.e., mean streamwise velocity, Reynolds shear stress, mean streamwise temperature, and turbulent heat flux, to compare with the DNS data. The investigation reports the scaling analysis's effectiveness and shows that RANS turbulence models can be used to describe such flow with reasonable accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02101v2-abstract-full').style.display = 'none'; document.getElementById('2206.02101v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We have a major revision of this paper. I will share the updated one once I have it</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10829">arXiv:2205.10829</a> <span> [<a href="https://arxiv.org/pdf/2205.10829">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ferrocene as an iconic redox marker: from solution chemistry to molecular electronic devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Roy%2C+G">Gargee Roy</a>, <a href="/search/physics?searchtype=author&query=Gupta%2C+R">Ritu Gupta</a>, <a href="/search/physics?searchtype=author&query=Sahoo%2C+S+R">Satya Ranjan Sahoo</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sumit Saha</a>, <a href="/search/physics?searchtype=author&query=Asthana%2C+D">Deepak Asthana</a>, <a href="/search/physics?searchtype=author&query=Mondal%2C+P+C">Prakash Chandra Mondal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10829v1-abstract-short" style="display: inline;"> Ferrocene, since its discovery in 1951, has been extensively exploited as a redox probe in a variety of processes ranging from solution chemistry, medicinal chemistry, supramolecular chemistry, surface chemistry to solid-state molecular electronic and spintronic circuit elements to unravel electrochemical charge-transfer dynamics. Ferrocene represents an extremely chemically and thermally stable,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10829v1-abstract-full').style.display = 'inline'; document.getElementById('2205.10829v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10829v1-abstract-full" style="display: none;"> Ferrocene, since its discovery in 1951, has been extensively exploited as a redox probe in a variety of processes ranging from solution chemistry, medicinal chemistry, supramolecular chemistry, surface chemistry to solid-state molecular electronic and spintronic circuit elements to unravel electrochemical charge-transfer dynamics. Ferrocene represents an extremely chemically and thermally stable, and highly reproducible redox probe that undergoes reversible one-electron oxidation and reduction occurring at the interfaces of electrode/ferrocene solution in response to applied anodic and cathodic potentials, respectively. It has been almost 70 years after its discovery and has become one of the most widely studied and model organometallic compounds not only for probing electrochemical charge-transfer process but also as molecular building blocks for the synthesis of chiral organometallic catalysts, potential drug candidates, polymeric compounds, electrochemical sensors, to name a few. Ferrocene and its derivatives have been a breakthrough in many aspects due to its versatile reactivity, fascinating chemical structures, unconventional metal-ligand coordination, and the magic number of electrons (18 e-). The present review discusses the recent progress made towards ferrocene-containing molecular systems exploited for redox reactions, surface attachment, spin-dependent electrochemical process to probe spin polarization, photo-electrochemistry, and integration into prototype molecular electronic devices. Overall, the present reviews demonstrate a piece of collective information about the recent advancements made towards the ferrocene and its derivatives that have been utilized as iconic redox markers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10829v1-abstract-full').style.display = 'none'; document.getElementById('2205.10829v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10245">arXiv:2205.10245</a> <span> [<a href="https://arxiv.org/pdf/2205.10245">pdf</a>, <a href="https://arxiv.org/format/2205.10245">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.165128">10.1103/PhysRevB.107.165128 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microscopic analysis of spin-momentum locking on a geometric phase metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lor%C3%A9n%2C+F">Fernando Lor茅n</a>, <a href="/search/physics?searchtype=author&query=Paravicini-Bagliani%2C+G+L">Gian L. Paravicini-Bagliani</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sudipta Saha</a>, <a href="/search/physics?searchtype=author&query=Gautier%2C+J">J茅r么me Gautier</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Minghao Li</a>, <a href="/search/physics?searchtype=author&query=Genet%2C+C">Cyriaque Genet</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADn-Moreno%2C+L">Luis Mart铆n-Moreno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10245v2-abstract-short" style="display: inline;"> We revisit spin-orbit coupling in a plasmonic Berry metasurface comprised of rotated nanoapertures, which is known to imprint a robust far-field polarization response. We present a scattering formalism that shows how that spin-momentum locking emerges from the geometry of the unit cell without requiring global rotation symmetries. We find and confirm with Mueller polarimetry measurements that spin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10245v2-abstract-full').style.display = 'inline'; document.getElementById('2205.10245v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10245v2-abstract-full" style="display: none;"> We revisit spin-orbit coupling in a plasmonic Berry metasurface comprised of rotated nanoapertures, which is known to imprint a robust far-field polarization response. We present a scattering formalism that shows how that spin-momentum locking emerges from the geometry of the unit cell without requiring global rotation symmetries. We find and confirm with Mueller polarimetry measurements that spin-momentum locking is an approximate symmetry. The symmetry breakdown is ascribed to the elliptical projection of circularly polarized light into the planar surface. This breakdown is maximal when surface waves are excited, and a new set of spin-momentum locking rules is presented for this case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10245v2-abstract-full').style.display = 'none'; document.getElementById('2205.10245v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 3 figures. 1 Supplemental material with 15 pages and 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.07974">arXiv:2205.07974</a> <span> [<a href="https://arxiv.org/pdf/2205.07974">pdf</a>, <a href="https://arxiv.org/format/2205.07974">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.064427">10.1103/PhysRevB.108.064427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Element resolved evidence of superdiffusive terahertz spin current arising from ultrafast demagnetization process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gupta%2C+R">R. Gupta</a>, <a href="/search/physics?searchtype=author&query=Cosco%2C+F">F. Cosco</a>, <a href="/search/physics?searchtype=author&query=Malik%2C+R+S">R. S. Malik</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">X. Chen</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">S. Saha</a>, <a href="/search/physics?searchtype=author&query=Ghosh%2C+A">A. Ghosh</a>, <a href="/search/physics?searchtype=author&query=Pohlmann%2C+T">T. Pohlmann</a>, <a href="/search/physics?searchtype=author&query=Mardegan%2C+J+R+L">J. R. L. Mardegan</a>, <a href="/search/physics?searchtype=author&query=Francoual%2C+S">S. Francoual</a>, <a href="/search/physics?searchtype=author&query=Stefanuik%2C+R">R. Stefanuik</a>, <a href="/search/physics?searchtype=author&query=Soderstrom%2C+J">J. Soderstrom</a>, <a href="/search/physics?searchtype=author&query=Sanyal%2C+B">B. Sanyal</a>, <a href="/search/physics?searchtype=author&query=Karis%2C+O">O. Karis</a>, <a href="/search/physics?searchtype=author&query=Svedlindh%2C+P">P. Svedlindh</a>, <a href="/search/physics?searchtype=author&query=Oppeneer%2C+P+M">P. M. Oppeneer</a>, <a href="/search/physics?searchtype=author&query=Knut%2C+R">R. Knut</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.07974v2-abstract-short" style="display: inline;"> Using element-specific measurements of the ultrafast demagnetization of Ru/Fe$_{65}$Co$_{35}$ heterostructures, we show that Ru can exhibit a significant magnetic contrast (3% asymmetry) resulting from ultrafast spin currents emanating from the demagnetization process of the FeCo layer. We use this magnetic contrast to investigate how superdiffusive spin currents are affected by the doping of heav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.07974v2-abstract-full').style.display = 'inline'; document.getElementById('2205.07974v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.07974v2-abstract-full" style="display: none;"> Using element-specific measurements of the ultrafast demagnetization of Ru/Fe$_{65}$Co$_{35}$ heterostructures, we show that Ru can exhibit a significant magnetic contrast (3% asymmetry) resulting from ultrafast spin currents emanating from the demagnetization process of the FeCo layer. We use this magnetic contrast to investigate how superdiffusive spin currents are affected by the doping of heavy elements in the FeCo layer. We find that the spin currents are strongly suppressed, and that the recovery process in Ru slows down, by Re doping. This is in accordance with a change in interface reflectivity of spin currents as found by the superdiffusive spin transport model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.07974v2-abstract-full').style.display = 'none'; document.getElementById('2205.07974v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02699">arXiv:2205.02699</a> <span> [<a href="https://arxiv.org/pdf/2205.02699">pdf</a>, <a href="https://arxiv.org/format/2205.02699">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Detection of signaling mechanisms from cellular responses to multiple cues </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Soutick Saha</a>, <a href="/search/physics?searchtype=author&query=Moon%2C+H">Hye-ran Moon</a>, <a href="/search/physics?searchtype=author&query=Han%2C+B">Bumsoo Han</a>, <a href="/search/physics?searchtype=author&query=Mugler%2C+A">Andrew Mugler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02699v2-abstract-short" style="display: inline;"> Cell signaling networks are complex and often incompletely characterized, making it difficult to obtain a comprehensive picture of the mechanisms they encode. Mathematical modeling of these networks provides important clues, but the models themselves are often complex, and it is not always clear how to extract falsifiable predictions. Here we take an inverse approach, using experimental data at th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02699v2-abstract-full').style.display = 'inline'; document.getElementById('2205.02699v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02699v2-abstract-full" style="display: none;"> Cell signaling networks are complex and often incompletely characterized, making it difficult to obtain a comprehensive picture of the mechanisms they encode. Mathematical modeling of these networks provides important clues, but the models themselves are often complex, and it is not always clear how to extract falsifiable predictions. Here we take an inverse approach, using experimental data at the cell level to {deduce} the minimal signaling network. We focus on cells' response to multiple cues, specifically on the surprising case in which the response is antagonistic: the response to multiple cues is weaker than the response to the individual cues. We systematically build candidate signaling networks one node at a time, using the ubiquitous ingredients of (i) up- or down-regulation, (ii) molecular conversion, or (iii) reversible binding. In each case, our method reveals a minimal, interpretable signaling mechanism that explains the antagonistic response. Our work provides a systematic way to {deduce} molecular mechanisms from cell-level data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02699v2-abstract-full').style.display = 'none'; document.getElementById('2205.02699v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01699">arXiv:2204.01699</a> <span> [<a href="https://arxiv.org/pdf/2204.01699">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Surface tension effects on flow dynamics and alveolar mechanics in the acinar region of human lung </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Francis%2C+I">Isabella Francis</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Suvash Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01699v1-abstract-short" style="display: inline;"> Computational fluid dynamics (CFD) simulations, in-vitro setups, and experimental ex-vivo approaches have been applied to numerous alveolar geometries over the past years. They aimed to study and examine airflow patterns, particle transport, and particle-alveolar wall deposition fractions. These studies are imperative to both pharmaceutical and toxicological studies, especially nowadays with the e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01699v1-abstract-full').style.display = 'inline'; document.getElementById('2204.01699v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01699v1-abstract-full" style="display: none;"> Computational fluid dynamics (CFD) simulations, in-vitro setups, and experimental ex-vivo approaches have been applied to numerous alveolar geometries over the past years. They aimed to study and examine airflow patterns, particle transport, and particle-alveolar wall deposition fractions. These studies are imperative to both pharmaceutical and toxicological studies, especially nowadays with the escalation of the menacing COVID-19 virus. However, most of these studies ignored the surfactant layer that covers the alveoli and the effect of the air-surfactant surface tension on flow dynamics and air-alveolar surface mechanics. The present study employs a realistic human breathing profile of 4.75 to emphasize the importance of the surfactant layer by numerically comparing airflow phenomena between a surfactant-enriched and surfactant-deficient model. The acinar model exhibits physiologically accurate alveolar and duct dimensions extending from lung generations 18 to 23. Proximal lung generations experience dominant recirculating flow while farther generations in the distal alveolar region exhibit dominant radial flows. In the surfactant-enriched model, surface tension values alternate during inhalation and exhalation. In the surfactant-deficient model, only water coats the alveolar walls. Results showed that surfactant deficiency in the alveoli adversely alters airflow behavior and generates unsteady chaotic breathing through the production of vorticities, accompanied by higher vorticity and velocity magnitudes. In addition, high air-water surface tension in the surfactant-deficient case was found to induce higher shear stress values on the alveolar walls than that of the surfactant-enriched case. Overall, it was concluded that the presence of the surfactant improves respiratory mechanics and allows for smooth breathing and normal respiration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01699v1-abstract-full').style.display = 'none'; document.getElementById('2204.01699v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00978">arXiv:2204.00978</a> <span> [<a href="https://arxiv.org/pdf/2204.00978">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2123056119">10.1073/pnas.2123056119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Active emulsions in living cell membranes driven by contractile stresses and transbilayer coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Suvrajit Saha</a>, <a href="/search/physics?searchtype=author&query=Das%2C+A">Amit Das</a>, <a href="/search/physics?searchtype=author&query=Patra%2C+C">Chandrima Patra</a>, <a href="/search/physics?searchtype=author&query=Anilkumar%2C+A+A">Anupama Ambika Anilkumar</a>, <a href="/search/physics?searchtype=author&query=Sil%2C+P">Parijat Sil</a>, <a href="/search/physics?searchtype=author&query=Mayor%2C+S">Satyajit Mayor</a>, <a href="/search/physics?searchtype=author&query=Rao%2C+M">Madan Rao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00978v1-abstract-short" style="display: inline;"> The spatiotemporal organisation of proteins and lipids on the cell surface has direct functional consequences for signaling, sorting and endocytosis. Earlier studies have shown that multiple types of membrane proteins including transmembrane proteins that have cytoplasmic actin binding capacity and lipid-tethered GPI-anchored proteins (GPI-APs) form nanoscale clusters driven by active contractile… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00978v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00978v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00978v1-abstract-full" style="display: none;"> The spatiotemporal organisation of proteins and lipids on the cell surface has direct functional consequences for signaling, sorting and endocytosis. Earlier studies have shown that multiple types of membrane proteins including transmembrane proteins that have cytoplasmic actin binding capacity and lipid-tethered GPI-anchored proteins (GPI-APs) form nanoscale clusters driven by active contractile flows generated by the actin cortex. To gain insight into the role of lipids in organizing membrane domains in living cells, we study the molecular interactions that promote the actively generated nanoclusters of GPI-APs and transmembrane proteins. This motivates a theoretical description, wherein a combination of active contractile stresses and transbilayer coupling drive the creation of active emulsions, mesoscale liquid ordered (lo) domains of the GPI-APs and lipids, at temperatures greater than equilibrium lipid-phase segregation. To test these ideas we use spatial imaging of homo-FRET combined with local membrane order and demonstrate that mesoscopic domains enriched in nanoclusters of GPI-APs are maintained by cortical actin activity and transbilayer interactions, and exhibit significant lipid order, consistent with predictions of the active composite model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00978v1-abstract-full').style.display = 'none'; document.getElementById('2204.00978v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14170">arXiv:2203.14170</a> <span> [<a href="https://arxiv.org/pdf/2203.14170">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Tailoring the Thickness-Dependent Optical Properties of Conducting Nitrides and Oxides for Epsilon-Near-Zero-Enhanced Photonic Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Soham Saha</a>, <a href="/search/physics?searchtype=author&query=Ozlu%2C+M+G">Mustafa Goksu Ozlu</a>, <a href="/search/physics?searchtype=author&query=Chowdhury%2C+S+N">Sarah N. Chowdhury</a>, <a href="/search/physics?searchtype=author&query=Diroll%2C+B+T">Benjamin T. Diroll</a>, <a href="/search/physics?searchtype=author&query=Schaller%2C+R+D">Richard D. Schaller</a>, <a href="/search/physics?searchtype=author&query=Kildishev%2C+A">Alexander Kildishev</a>, <a href="/search/physics?searchtype=author&query=Boltasseva%2C+A">Alexandra Boltasseva</a>, <a href="/search/physics?searchtype=author&query=Shalaev%2C+V+M">Vladimir M. Shalaev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14170v1-abstract-short" style="display: inline;"> The unique properties of the emerging photonic materials - conducting nitrides and oxides - especially their tailorability, large damage thresholds, and the so-called epsilon-near-zero (ENZ) behavior, have enabled novel photonic phenomena spanning optical circuitry, tunable metasurfaces, and nonlinear optical devices. This work explores direct control of the optical properties of polycrystalline t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14170v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14170v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14170v1-abstract-full" style="display: none;"> The unique properties of the emerging photonic materials - conducting nitrides and oxides - especially their tailorability, large damage thresholds, and the so-called epsilon-near-zero (ENZ) behavior, have enabled novel photonic phenomena spanning optical circuitry, tunable metasurfaces, and nonlinear optical devices. This work explores direct control of the optical properties of polycrystalline titanium nitride (TiN) and aluminum-doped zinc oxide (AZO) by tailoring the film thickness, and their potential for ENZ-enhanced photonic applications. We demonstrate that TiN-AZO bilayers act as Ferrell-Berreman metasurfaces with thickness-tailorable epsilon-near-zero resonances in the AZO films operating in the telecom wavelengths spanning from 1470 to 1750 nm. The bilayer stacks also act as strong light absorbers in the ultraviolet regime employing the radiative ENZ modes and the Fabry-Perot modes in the constituent TiN films. The studied Berreman metasurfaces exhibit optically-induced reflectance modulation of 15% with picosecond response-time. Together with the optical response tailorability of conducting oxides and nitrides, utilizing the field-enhancement near the tunable ENZ regime could enable a wide range of nonlinear optical phenomena, including all-optical switching, time refraction, and high-harmonic generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14170v1-abstract-full').style.display = 'none'; document.getElementById('2203.14170v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02309">arXiv:2203.02309</a> <span> [<a href="https://arxiv.org/pdf/2203.02309">pdf</a>, <a href="https://arxiv.org/format/2203.02309">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac841a">10.1088/1361-6471/ac841a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Aerne%2C+V">V. Aerne</a>, <a href="/search/physics?searchtype=author&query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/physics?searchtype=author&query=Akshat%2C+J">J. Akshat</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02309v1-abstract-short" style="display: inline;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neut… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02309v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02309v1-abstract-full" style="display: none;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'none'; document.getElementById('2203.02309v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages, 40 figures, 1262 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-22-003 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11771">arXiv:2202.11771</a> <span> [<a href="https://arxiv.org/pdf/2202.11771">pdf</a>, <a href="https://arxiv.org/format/2202.11771">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Puff-like instability in laminar to turbulence supercritical transition of round jets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Biswas%2C+N">Neelakash Biswas</a>, <a href="/search/physics?searchtype=author&query=Sharma%2C+A">Aviral Sharma</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sandeep Saha</a>, <a href="/search/physics?searchtype=author&query=Das%2C+D">Debopam Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11771v1-abstract-short" style="display: inline;"> We explore the laminar to turbulence transition of round jets at low Reynolds number (Re < 1000) using a novel experimental setup and linear stability theory (LST). The setup has a large domain and a low disturbance environment which increases the critical Re to approximately 500, permitting the appearance of a hitherto unknown puff-like instability (PFI). The instability is identified in the self… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11771v1-abstract-full').style.display = 'inline'; document.getElementById('2202.11771v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11771v1-abstract-full" style="display: none;"> We explore the laminar to turbulence transition of round jets at low Reynolds number (Re < 1000) using a novel experimental setup and linear stability theory (LST). The setup has a large domain and a low disturbance environment which increases the critical Re to approximately 500, permitting the appearance of a hitherto unknown puff-like instability (PFI). The instability is identified in the self-similar region of the jet through clean flow visualizations (FV) and further corroborated by particle image velocimetry (PIV) measurements. For 400< Re <700, the flow exhibits PFI embedded in a puff-train encapsulated by a laminar flow analogous to 'puffs' in pipe-flow transition; the latter being symbolic of the finite-amplitude disturbance transition scenario. The observation that PFI convects close to the average local velocity with an inflectional velocity profile further strengthens the analogy. LST predicts that PFI is effectively a superposition of the helical mode (HM) pair with azimuthal wavenumbers n=+-1. Hence, PFI can also appear in the infinitesimal-amplitude supercritical route to transition of linearly unstable flows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11771v1-abstract-full').style.display = 'none'; document.getElementById('2202.11771v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10538">arXiv:2201.10538</a> <span> [<a href="https://arxiv.org/pdf/2201.10538">pdf</a>, <a href="https://arxiv.org/format/2201.10538">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Simulation of Nuclear Recoils due to Supernova Neutrino-induced Neutrons in Liquid Xenon Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ghosh%2C+S">Sayan Ghosh</a>, <a href="/search/physics?searchtype=author&query=Bandyopadhyay%2C+A">Abhijit Bandyopadhyay</a>, <a href="/search/physics?searchtype=author&query=Bhattacharjee%2C+P">Pijushpani Bhattacharjee</a>, <a href="/search/physics?searchtype=author&query=Chakraborty%2C+S">Sovan Chakraborty</a>, <a href="/search/physics?searchtype=author&query=Kar%2C+K">Kamales Kar</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Satyajit Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10538v1-abstract-short" style="display: inline;"> Neutrinos from supernova (SN) bursts can give rise to detectable number of nuclear recoil (NR) events through the coherent elastic neutrino-nucleus scattering (CE$谓$NS) process in large scale liquid xenon detectors designed for direct dark matter search, depending on the SN progenitor mass and distance. Here we show that in addition to the direct NR events due to CE$谓$NS process, the SN neutrinos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10538v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10538v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10538v1-abstract-full" style="display: none;"> Neutrinos from supernova (SN) bursts can give rise to detectable number of nuclear recoil (NR) events through the coherent elastic neutrino-nucleus scattering (CE$谓$NS) process in large scale liquid xenon detectors designed for direct dark matter search, depending on the SN progenitor mass and distance. Here we show that in addition to the direct NR events due to CE$谓$NS process, the SN neutrinos can give rise to additional nuclear recoils due to the elastic scattering of neutrons produced through inelastic interaction of the neutrinos with the xenon nuclei. We find that the contribution of the supernova neutrino-induced neutrons ($谓$I$n$) can significantly modify the total xenon NR spectrum at large recoil energies compared to that expected from the CE$谓$NS process alone. Moreover, for recoil energies $\gtrsim20$ keV, dominant contribution is obtained from the ($谓$I$n$) events. We numerically calculate the observable S1 and S2 signals due to both CE$谓$NS and $谓$I$n$ processes for a typical liquid xenon based detector, accounting for the multiple scattering effects of the neutrons in the case of $谓$I$n$, and find that sufficiently large signal events, those with S1$\gtrsim$50 photo-electrons (PE) and S2$\gtrsim$2300 PE, come mainly from the $谓$I$n$ scatterings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10538v1-abstract-full').style.display = 'none'; document.getElementById('2201.10538v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in the Proceedings of TAUP2021. (Journal of Physics: Conference Series (JPCS)) (5 pages, 4 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02872">arXiv:2112.02872</a> <span> [<a href="https://arxiv.org/pdf/2112.02872">pdf</a>, <a href="https://arxiv.org/format/2112.02872">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.2514/6.2025-0256">10.2514/6.2025-0256 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of Flight Conditions where Box-Wing Outperforms Mono-Wing Configurations for Small UAVs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aloor%2C+J+J">Jasmine Jerry Aloor</a>, <a href="/search/physics?searchtype=author&query=Gurung%2C+B+B">Bikalpa Bomjan Gurung</a>, <a href="/search/physics?searchtype=author&query=Wadhwa%2C+G">Gauri Wadhwa</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+M">Mohit Singh</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+R">Raktim Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S">Sandeep Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02872v2-abstract-short" style="display: inline;"> We investigate the aerodynamic efficiency and flight dynamics of mono-wing and box-wing configurations across various parameters, including aspect ratio, velocity, and lift requirements. We find that although mono-wing configurations exhibit superior aerodynamic efficiency in certain regimes, box-wing designs perform better in circumstances like high velocities and increased lift demands. Box-wing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02872v2-abstract-full').style.display = 'inline'; document.getElementById('2112.02872v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02872v2-abstract-full" style="display: none;"> We investigate the aerodynamic efficiency and flight dynamics of mono-wing and box-wing configurations across various parameters, including aspect ratio, velocity, and lift requirements. We find that although mono-wing configurations exhibit superior aerodynamic efficiency in certain regimes, box-wing designs perform better in circumstances like high velocities and increased lift demands. Box-wing configurations also prove advantageous when induced drag is higher than friction drag due to their ability to suppress the tip vortices. Furthermore, while analyzing the flight dynamics, low aspect ratio box-wing configurations show improved gust tolerance and stability in longitudinal and lateral dynamics. However, no substantial difference in flight dynamics is observed between box-wing and mono-wing designs for high aspect ratio configurations. The findings underscore the importance of selecting the appropriate wing configuration based on specific performance requirements and operational conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02872v2-abstract-full').style.display = 'none'; document.getElementById('2112.02872v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript accepted for presentation at the 2025 AIAA SciTech Forum</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03956">arXiv:2110.03956</a> <span> [<a href="https://arxiv.org/pdf/2110.03956">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2021GL096489">10.1029/2021GL096489 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Seasonal Predictability of Lightning over the Global Hotspot Regions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mallick%2C+C">Chandrima Mallick</a>, <a href="/search/physics?searchtype=author&query=Hazra%2C+A">Anupam Hazra</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">Subodh K. Saha</a>, <a href="/search/physics?searchtype=author&query=Chaudhari%2C+H+S">Hemantkumar S. Chaudhari</a>, <a href="/search/physics?searchtype=author&query=Pokhrel%2C+S">Samir Pokhrel</a>, <a href="/search/physics?searchtype=author&query=Konwar%2C+M">Mahen Konwar</a>, <a href="/search/physics?searchtype=author&query=Dutta%2C+U">Ushnanshu Dutta</a>, <a href="/search/physics?searchtype=author&query=Mohan%2C+G+M">Greeshma M. Mohan</a>, <a href="/search/physics?searchtype=author&query=Vani%2C+K+G">K. Gayatri Vani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03956v1-abstract-short" style="display: inline;"> Skillful seasonal prediction of lightning is crucial over several global hotspot regions, as it causes severe damages to infrastructures and losses of human life. While major emphasis has been given for predicting rainfall, prediction of lightning in one season advance remained uncommon, owing to the nature of the problem, which is short-lived local phenomenon. Here we show that on the seasonal ti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03956v1-abstract-full').style.display = 'inline'; document.getElementById('2110.03956v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03956v1-abstract-full" style="display: none;"> Skillful seasonal prediction of lightning is crucial over several global hotspot regions, as it causes severe damages to infrastructures and losses of human life. While major emphasis has been given for predicting rainfall, prediction of lightning in one season advance remained uncommon, owing to the nature of the problem, which is short-lived local phenomenon. Here we show that on the seasonal time scale, lightning over the major global hot-spot regions is strongly tied with slowly varying global predictors (e.g., El Nino and Southern Oscillation). Moreover, the sub-seasonal variance of lightning is highly correlated with global predictors, suggesting a seminal role played by the global climate mode in shaping the local land-atmosphere interactions, which eventually affects seasonal lightning variability. It is shown that the seasonal predictability of lightning over the hotspot is comparable to that of seasonal rainfall, which opens up an avenue for reliable seasonal forecasting of lightning for special awareness and preventive measures. Keywords: Lightning, Seasonal forecasting, SST, Global predictors <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03956v1-abstract-full').style.display = 'none'; document.getElementById('2110.03956v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Saha%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Saha%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Saha%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Saha%2C+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>