CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 384 results for author: <span class="mathjax">Xu, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Xu%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Xu, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Xu%2C+X&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Xu, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xu%2C+X&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xu%2C+X&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+X&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+X&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+X&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+X&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12677">arXiv:2501.12677</a> <span> [<a href="https://arxiv.org/pdf/2501.12677">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Mai%2C+T+N+A">Thi Ngoc Anh Mai</a>, <a href="/search/quant-ph?searchtype=author&query=Hossain%2C+M+S">Md Shakhawath Hossain</a>, <a href="/search/quant-ph?searchtype=author&query=Nguyen%2C+N+M">Nhat Minh Nguyen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yongliang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+C">Chaohao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiaoxue Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Trinh%2C+Q+T">Quang Thang Trinh</a>, <a href="/search/quant-ph?searchtype=author&query=Dinh%2C+T">Toan Dinh</a>, <a href="/search/quant-ph?searchtype=author&query=Tran%2C+T+T">Toan Trong Tran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12677v1-abstract-short" style="display: inline;"> Solid-state quantum emitters, molecular-sized complexes releasing a single photon at a time, have garnered much attention owing to their use as a key building block in various quantum technologies. Among these, quantum emitters in hexagonal boron nitride (hBN) have emerged as front runners with superior attributes compared to other competing platforms. These attributes are attainable thanks to the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12677v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12677v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12677v1-abstract-full" style="display: none;"> Solid-state quantum emitters, molecular-sized complexes releasing a single photon at a time, have garnered much attention owing to their use as a key building block in various quantum technologies. Among these, quantum emitters in hexagonal boron nitride (hBN) have emerged as front runners with superior attributes compared to other competing platforms. These attributes are attainable thanks to the robust, two-dimensional lattice of the material formed by the extremely strong B-N bonds. This review discusses the fundamental properties of quantum emitters in hBN and highlights recent progress in the field. The focus is on the fabrication and engineering of these quantum emitters facilitated by state-of-the-art equipment. Strategies to integrate the quantum emitters with dielectric and plasmonic cavities to enhance their optical properties are summarized. The latest developments in new classes of spin-active defects, their predicted structural configurations, and the proposed suitable quantum applications are examined. Despite the current challenges, quantum emitters in hBN have steadily become a promising platform for applications in quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12677v1-abstract-full').style.display = 'none'; document.getElementById('2501.12677v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12130">arXiv:2501.12130</a> <span> [<a href="https://arxiv.org/pdf/2501.12130">pdf</a>, <a href="https://arxiv.org/format/2501.12130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum-enhanced neural networks for quantum many-body simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Z">Zongkang Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Ying Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiaosi Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12130v1-abstract-short" style="display: inline;"> Neural quantum states (NQS) have gained prominence in variational quantum Monte Carlo methods in approximating ground-state wavefunctions. Despite their success, they face limitations in optimization, scalability, and expressivity in addressing certain problems. In this work, we propose a quantum-neural hybrid framework that combines parameterized quantum circuits with neural networks to model qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12130v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12130v1-abstract-full" style="display: none;"> Neural quantum states (NQS) have gained prominence in variational quantum Monte Carlo methods in approximating ground-state wavefunctions. Despite their success, they face limitations in optimization, scalability, and expressivity in addressing certain problems. In this work, we propose a quantum-neural hybrid framework that combines parameterized quantum circuits with neural networks to model quantum many-body wavefunctions. This approach combines the efficient sampling and optimization capabilities of autoregressive neural networks with the enhanced expressivity provided by quantum circuits. Numerical simulations demonstrate the scalability and accuracy of the hybrid ansatz in spin systems and quantum chemistry problems. Our results reveal that the hybrid method achieves notably lower relative energy compared to standalone NQS. These findings underscore the potential of quantum-neural hybrid methods for tackling challenging problems in quantum many-body simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12130v1-abstract-full').style.display = 'none'; document.getElementById('2501.12130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04558">arXiv:2501.04558</a> <span> [<a href="https://arxiv.org/pdf/2501.04558">pdf</a>, <a href="https://arxiv.org/format/2501.04558">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Physics-inspired Machine Learning for Quantum Error Mitigation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Yue Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+X">Xin Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+T">Tianyu Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+C">Chen Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+T">Tian Li</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+H">Haoyi Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+H">He-Liang Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Bao%2C+W">Wan-Su Bao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04558v1-abstract-short" style="display: inline;"> Noise is a major obstacle in current quantum computing, and Machine Learning for Quantum Error Mitigation (ML-QEM) promises to address this challenge, enhancing computational accuracy while reducing the sampling overheads of standard QEM methods. Yet, existing models lack physical interpretability and rely heavily on extensive datasets, hindering their scalability in large-scale quantum circuits.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04558v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04558v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04558v1-abstract-full" style="display: none;"> Noise is a major obstacle in current quantum computing, and Machine Learning for Quantum Error Mitigation (ML-QEM) promises to address this challenge, enhancing computational accuracy while reducing the sampling overheads of standard QEM methods. Yet, existing models lack physical interpretability and rely heavily on extensive datasets, hindering their scalability in large-scale quantum circuits. To tackle these issues, we introduce the Neural Noise Accumulation Surrogate (NNAS), a physics-inspired neural network for ML-QEM that incorporates the structural characteristics of quantum noise accumulation within multi-layer circuits, endowing the model with physical interpretability. Experimental results demonstrate that NNAS outperforms current methods across a spectrum of metrics, including error mitigation capability, quantum resource consumption, and training dataset size. Notably, for deeper circuits where QEM methods typically struggle, NNAS achieves a remarkable reduction of over half in errors. NNAS also demands substantially fewer training data, reducing dataset reliance by at least an order of magnitude, due to its ability to rapidly capture noise accumulation patterns across circuit layers. This work pioneers the integration of quantum process-derived structural characteristics into neural network architectures, broadly enhancing QEM's performance and applicability, and establishes an integrative paradigm that extends to various quantum-inspired neural network architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04558v1-abstract-full').style.display = 'none'; document.getElementById('2501.04558v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Please feel free to contact He-Liang Huang or Haoyi Zhou for any suggestions or comments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03586">arXiv:2501.03586</a> <span> [<a href="https://arxiv.org/pdf/2501.03586">pdf</a>, <a href="https://arxiv.org/format/2501.03586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Highly sensitive temperature sensing via quadratic optomechanical coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tang%2C+Y">Yu-Sheng Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Liao%2C+J">Jie-Qiao Liao</a>, <a href="/search/quant-ph?searchtype=author&query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&query=Kuang%2C+L">Le-Man Kuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03586v1-abstract-short" style="display: inline;"> The effective frequency of a mechanical resonator can be tuned via the spring effect induced by quadratic optomechanical (QOM) coupling, and both spontaneous symmetry breaking and anti-parity-time phase transition were predicted in the QOM systems. Here, we show that the mechanical susceptibility can be enhanced significantly by driving the QOM system with a strong external optical field, and dive… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03586v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03586v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03586v1-abstract-full" style="display: none;"> The effective frequency of a mechanical resonator can be tuned via the spring effect induced by quadratic optomechanical (QOM) coupling, and both spontaneous symmetry breaking and anti-parity-time phase transition were predicted in the QOM systems. Here, we show that the mechanical susceptibility can be enhanced significantly by driving the QOM system with a strong external optical field, and divergence will happen as the driving strength approaches the critical point (CP) for spontaneous symmetry breaking. Based on the CP, we propose a highly sensitive temperature sensor with a mechanical resonator quadratically coupled to an optical mode. We find that the sensitivity of the temperature sensor can be enhanced by several orders of magnitude as the driving strength approaches the CP, and the sensitivity of the temperature sensor remains high in the low-temperature limit. Our work provides an effective way to realize highly sensitive temperature sensing at ultra-low temperature in the QOM systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03586v1-abstract-full').style.display = 'none'; document.getElementById('2501.03586v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20925">arXiv:2412.20925</a> <span> [<a href="https://arxiv.org/pdf/2412.20925">pdf</a>, <a href="https://arxiv.org/format/2412.20925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Active Learning with Variational Quantum Circuits for Quantum Process Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jiaqi Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiaohua Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Xie%2C+W">Wei Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20925v1-abstract-short" style="display: inline;"> Quantum process tomography (QPT), used for reconstruction of an unknown quantum process from measurement data, is a fundamental tool for the diagnostic and full characterization of quantum systems. It relies on querying a set of quantum states as input to the quantum process. Previous works commonly use a straightforward strategy to select a set of quantum states randomly, overlooking differences… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20925v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20925v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20925v1-abstract-full" style="display: none;"> Quantum process tomography (QPT), used for reconstruction of an unknown quantum process from measurement data, is a fundamental tool for the diagnostic and full characterization of quantum systems. It relies on querying a set of quantum states as input to the quantum process. Previous works commonly use a straightforward strategy to select a set of quantum states randomly, overlooking differences in informativeness among quantum states. Since querying the quantum system requires multiple experiments that can be prohibitively costly, it is always the case that there are not enough quantum states for high-quality reconstruction. In this paper, we propose a general framework for active learning (AL) to adaptively select a set of informative quantum states that improves the reconstruction most efficiently. In particular, we introduce a learning framework that leverages the widely-used variational quantum circuits (VQCs) to perform the QPT task and integrate our AL algorithms into the query step. We design and evaluate three various types of AL algorithms: committee-based, uncertainty-based, and diversity-based, each exhibiting distinct advantages in terms of performance and computational cost. Additionally, we provide a guideline for selecting algorithms suitable for different scenarios. Numerical results demonstrate that our algorithms achieve significantly improved reconstruction compared to the baseline method that selects a set of quantum states randomly. Moreover, these results suggest that active learning based approaches are applicable to other complicated learning tasks in large-scale quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20925v1-abstract-full').style.display = 'none'; document.getElementById('2412.20925v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20893">arXiv:2412.20893</a> <span> [<a href="https://arxiv.org/pdf/2412.20893">pdf</a>, <a href="https://arxiv.org/format/2412.20893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Redesign Quantum Circuits on Quantum Hardware Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=He%2C+R">Runhong He</a>, <a href="/search/quant-ph?searchtype=author&query=Guan%2C+J">Ji Guan</a>, <a href="/search/quant-ph?searchtype=author&query=Hong%2C+X">Xin Hong</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xusheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+G">Guolong Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+S">Shengbin Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Ying%2C+S">Shenggang Ying</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20893v1-abstract-short" style="display: inline;"> In the process of exploring quantum algorithms, researchers often need to conduct equivalence checking of quantum circuits with different structures or to reconstruct a circuit in a variational manner, aiming to reduce the depth of the target circuit. Whereas the exponential resource overhead for describing quantum systems classically makes the existing methods not amenable to serving large-scale… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20893v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20893v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20893v1-abstract-full" style="display: none;"> In the process of exploring quantum algorithms, researchers often need to conduct equivalence checking of quantum circuits with different structures or to reconstruct a circuit in a variational manner, aiming to reduce the depth of the target circuit. Whereas the exponential resource overhead for describing quantum systems classically makes the existing methods not amenable to serving large-scale quantum circuits. Grounded in the entangling quantum generative adversarial network (EQ-GAN), we present in this article a new architecture which enables one to redesign large-scale quantum circuits on quantum hardware. For concreteness, we apply this architecture to three crucial applications in circuit optimization, including the equivalence checking of (non-) parameterized circuits, as well as the variational reconstruction of quantum circuits. The feasibility of our approach is demonstrated by the excellent results of these applications, which are implemented both in classical computers and current NISQ hardware. We believe our work should facilitate the implementation and validation of the advantages of quantum algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20893v1-abstract-full').style.display = 'none'; document.getElementById('2412.20893v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19608">arXiv:2412.19608</a> <span> [<a href="https://arxiv.org/pdf/2412.19608">pdf</a>, <a href="https://arxiv.org/format/2412.19608">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Achieving Robust Single-Photon Blockade with a Single Nanotip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tang%2C+J">Jian Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Zuo%2C+Y">Yun-Lan Zuo</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+R">Ran Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Miranowicz%2C+A">Adam Miranowicz</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Jing%2C+H">Hui Jing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19608v1-abstract-short" style="display: inline;"> Backscattering losses, due to intrinsic imperfections or external perturbations that are unavoidable in optical resonators, can severely affect the performance of practical photonic devices. In particular, for quantum single-photon devices, robust quantum correlations against backscattering losses, which are highly desirable for diverse applications, have remained largely unexplored. Here, we show… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19608v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19608v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19608v1-abstract-full" style="display: none;"> Backscattering losses, due to intrinsic imperfections or external perturbations that are unavoidable in optical resonators, can severely affect the performance of practical photonic devices. In particular, for quantum single-photon devices, robust quantum correlations against backscattering losses, which are highly desirable for diverse applications, have remained largely unexplored. Here, we show that single-photon blockade against backscattering loss, an important purely quantum effect, can be achieved by introducing a nanotip near a Kerr nonlinear resonator with intrinsic defects. We find that the quantum correlation of single photons can approach that of a lossless cavity even in the presence of strong backscattering losses. Moreover, the behavior of such quantum correlation is distinct from that of the classical mean-photon number with different strengths of the nonlinearity, due to the interplay of the resonator nonlinearity and the tip-induced optical coupling. Our work sheds new light on protecting and engineering fragile quantum devices against imperfections, for applications in robust single-photon sources and backscattering-immune quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19608v1-abstract-full').style.display = 'none'; document.getElementById('2412.19608v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13805">arXiv:2412.13805</a> <span> [<a href="https://arxiv.org/pdf/2412.13805">pdf</a>, <a href="https://arxiv.org/format/2412.13805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> AI-Powered Algorithm-Centric Quantum Processor Topology Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+T">Tian Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Yue Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+C">Chen Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Tian%2C+T">Tian-Ci Tian</a>, <a href="/search/quant-ph?searchtype=author&query=Liao%2C+W">Wei-You Liao</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+S">Shuo Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+H">He-Liang Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13805v1-abstract-short" style="display: inline;"> Quantum computing promises to revolutionize various fields, yet the execution of quantum programs necessitates an effective compilation process. This involves strategically mapping quantum circuits onto the physical qubits of a quantum processor. The qubits' arrangement, or topology, is pivotal to the circuit's performance, a factor that often defies traditional heuristic or manual optimization me… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13805v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13805v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13805v1-abstract-full" style="display: none;"> Quantum computing promises to revolutionize various fields, yet the execution of quantum programs necessitates an effective compilation process. This involves strategically mapping quantum circuits onto the physical qubits of a quantum processor. The qubits' arrangement, or topology, is pivotal to the circuit's performance, a factor that often defies traditional heuristic or manual optimization methods due to its complexity. In this study, we introduce a novel approach leveraging reinforcement learning to dynamically tailor qubit topologies to the unique specifications of individual quantum circuits, guiding algorithm-driven quantum processor topology design for reducing the depth of mapped circuit, which is particularly critical for the output accuracy on noisy quantum processors. Our method marks a significant departure from previous methods that have been constrained to mapping circuits onto a fixed processor topology. Experiments demonstrate that we have achieved notable enhancements in circuit performance, with a minimum of 20\% reduction in circuit depth in 60\% of the cases examined, and a maximum enhancement of up to 46\%. Furthermore, the pronounced benefits of our approach in reducing circuit depth become increasingly evident as the scale of the quantum circuits increases, exhibiting the scalability of our method in terms of problem size. This work advances the co-design of quantum processor architecture and algorithm mapping, offering a promising avenue for future research and development in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13805v1-abstract-full').style.display = 'none'; document.getElementById('2412.13805v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by AAAI 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12874">arXiv:2412.12874</a> <span> [<a href="https://arxiv.org/pdf/2412.12874">pdf</a>, <a href="https://arxiv.org/format/2412.12874">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Near-Term Spin-Qubit Architecture Design via Multipartite Maximally-Entangled States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Paraskevopoulos%2C+N">Nikiforos Paraskevopoulos</a>, <a href="/search/quant-ph?searchtype=author&query=Steinberg%2C+M">Matthew Steinberg</a>, <a href="/search/quant-ph?searchtype=author&query=Undseth%2C+B">Brennan Undseth</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+X">Xiao Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Sarkar%2C+A">Aritra Sarkar</a>, <a href="/search/quant-ph?searchtype=author&query=Vandersypen%2C+L+M+K">Lieven M. K. Vandersypen</a>, <a href="/search/quant-ph?searchtype=author&query=Feld%2C+S">Sebastian Feld</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12874v1-abstract-short" style="display: inline;"> The design and benchmarking of quantum computer architectures traditionally rely on practical hardware restrictions, such as gate fidelities, control, and cooling. At the theoretical and software levels, numerous approaches have been proposed for benchmarking quantum devices, ranging from, inter alia, quantum volume to randomized benchmarking. In this work, we utilize the quantum information-theor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12874v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12874v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12874v1-abstract-full" style="display: none;"> The design and benchmarking of quantum computer architectures traditionally rely on practical hardware restrictions, such as gate fidelities, control, and cooling. At the theoretical and software levels, numerous approaches have been proposed for benchmarking quantum devices, ranging from, inter alia, quantum volume to randomized benchmarking. In this work, we utilize the quantum information-theoretic properties of multipartite maximally-entangled quantum states, in addition to their correspondence with quantum error correction codes, permitting us to quantify the entanglement generated on near-term bilinear spin-qubit architectures. For this aim, we introduce four metrics which ascertain the quality of genuine multipartite quantum entanglement, along with circuit-level fidelity measures. As part of the task of executing a quantum circuit on a device, we devise simulations which combine expected hardware characteristics of spin-qubit devices with appropriate compilation techniques; we then analyze three different architectural choices of varying lattice sizes for bilinear arrays, under three increasingly realistic noise models. We find that if the use of a compiler is assumed, sparsely-connected spin-qubit lattices can approach comparable values of our metrics to those of the most highly-connected device architecture. Even more surprisingly, by incorporating crosstalk into our last noise model, we find that, as error rates for crosstalk approach realistic values, the benefits of utilizing a bilinear array with advanced connectivity vanish. Our results highlight the limitations of adding local connectivity to near-term spin-qubit devices, and can be readily adapted to other qubit technologies. The framework developed here can be used for analyzing quantum entanglement on a device before fabrication, informing experimentalists on concomitant realistic expectations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12874v1-abstract-full').style.display = 'none'; document.getElementById('2412.12874v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19139">arXiv:2411.19139</a> <span> [<a href="https://arxiv.org/pdf/2411.19139">pdf</a>, <a href="https://arxiv.org/format/2411.19139">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Sensing Based on Quantum Correlation of Photons in the Weak Nonlinear Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yin%2C+Z">Zi-Qiang Yin</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zhi-Hao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+J">Jian Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19139v1-abstract-short" style="display: inline;"> Quantum correlation of photons based on quantum interference, such as unconventional photon blockade (UPB), has been extensively studied for realizing single-photon sources in weak nonlinear regime. However, how to use this effect for other practical applications is rarely studied. Here, we propose schemes to realize sensitive sensing by the quantum correlation of photons based on quantum interfer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19139v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19139v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19139v1-abstract-full" style="display: none;"> Quantum correlation of photons based on quantum interference, such as unconventional photon blockade (UPB), has been extensively studied for realizing single-photon sources in weak nonlinear regime. However, how to use this effect for other practical applications is rarely studied. Here, we propose schemes to realize sensitive sensing by the quantum correlation of photons based on quantum interference. We demonstrate that UPB can be observed in the mixing field output from a Mach-Zehnder interferometer (MZI) with two cavities in the two arms based on quantum interference. We show that the second-order correlation function of the output field is sensitive to the parameters of system and propose schemes to realize angular velocity and temperature sensing by measuring the second-order correlation of the photons output from the MZI. We find that the second-order correlation function of the output field is much more sensitive to the parameters of system than the mean photon number, which provides an application scenario for the quantum correlation of photons in sensitive sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19139v1-abstract-full').style.display = 'none'; document.getElementById('2411.19139v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19136">arXiv:2411.19136</a> <span> [<a href="https://arxiv.org/pdf/2411.19136">pdf</a>, <a href="https://arxiv.org/format/2411.19136">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.19.034093">10.1103/PhysRevApplied.19.034093 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal noise cancellation for optomechanically induced nonreciprocity in a whispering-gallery-mode microresonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tang%2C+Z">Zhi-Xiang Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19136v1-abstract-short" style="display: inline;"> Magnetic-free optomechanically induced nonreciprocity may stimulate a wide range of practical applications in quantum technologies. However, how to suppress the thermal noise flow from the mechanical reservoir is still a difficulty encountered in achieving optomechanically nonreciprocal effects on a few- and even single-photon level. Here, we show how to realize thermal noise cancellation by quant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19136v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19136v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19136v1-abstract-full" style="display: none;"> Magnetic-free optomechanically induced nonreciprocity may stimulate a wide range of practical applications in quantum technologies. However, how to suppress the thermal noise flow from the mechanical reservoir is still a difficulty encountered in achieving optomechanically nonreciprocal effects on a few- and even single-photon level. Here, we show how to realize thermal noise cancellation by quantum interference for optomechanically induced nonreciprocity in a whispering-gallery-mode (WGM) microresonator. We find that both nonreciprocal transmission and amplification can be achieved in the WGM microresonator when it coupled to two coupled mechanical resonators. More interestingly, the thermal noise can be suppressed when the two coupled mechanical resonators couple to a common thermal reservoir. The thermal noise cancellation is induced by the destructive quantum interference between the two flow paths of the thermal noises from the common reservoir. The scheme of quantum interference induced thermal noise cancellation can be applied in both sideband resolved and unresolved regimes, even with strong backscattering taken into account. Our work provides an effective way to achieve nonreciprocal effects on a few- or single-photon level without precooling the mechanical mode to the ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19136v1-abstract-full').style.display = 'none'; document.getElementById('2411.19136v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 19, 034093 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13158">arXiv:2411.13158</a> <span> [<a href="https://arxiv.org/pdf/2411.13158">pdf</a>, <a href="https://arxiv.org/format/2411.13158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cooperative quantum interface for noise mitigation in quantum networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yan-Lei Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+M">Ming Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xin-Biao Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Dong%2C+C">Chun-Hua Dong</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Xiang%2C+Z">Ze-Liang Xiang</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+a+X">and Xu-Bo Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13158v1-abstract-short" style="display: inline;"> Quantum frequency converters that enable the interface between the itinerant photons and qubits are indispensable for realizing long-distance quantum network. However, the cascaded connection between converters and qubits usually brings additional insertion loss and intermediate noises. Here, we propose a cooperative quantum interface (CQI) that integrates the converter and qubit coupling into a s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13158v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13158v1-abstract-full" style="display: none;"> Quantum frequency converters that enable the interface between the itinerant photons and qubits are indispensable for realizing long-distance quantum network. However, the cascaded connection between converters and qubits usually brings additional insertion loss and intermediate noises. Here, we propose a cooperative quantum interface (CQI) that integrates the converter and qubit coupling into a single device for efficient long-distance entanglement generation. Compared to traditional cascaded systems, our scheme offers several advantages, including compactness, reduced insertion loss, and suppression of noise from intermediate modes. We prove the excellent performance over the separated devices by about two orders of magnitude for the entangled infidelity of two remote nodes. Moreover, we discuss an extended scheme for multiple remote nodes, revealing an exponential advantage in performance as the number of nodes increases. The cooperative effect is universal that can be further applied to multifunctional integrated quantum devices. This work opens up novel prospects for quantum networks, distributed quantum computing, and sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13158v1-abstract-full').style.display = 'none'; document.getElementById('2411.13158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10487">arXiv:2411.10487</a> <span> [<a href="https://arxiv.org/pdf/2411.10487">pdf</a>, <a href="https://arxiv.org/format/2411.10487">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Architectural Patterns for Designing Quantum Artificial Intelligence Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Klymenko%2C+M">Mykhailo Klymenko</a>, <a href="/search/quant-ph?searchtype=author&query=Hoang%2C+T">Thong Hoang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiwei Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Xing%2C+Z">Zhenchang Xing</a>, <a href="/search/quant-ph?searchtype=author&query=Usman%2C+M">Muhammad Usman</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Q">Qinghua Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+L">Liming Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10487v3-abstract-short" style="display: inline;"> Utilising quantum computing technology to enhance artificial intelligence systems is expected to improve training and inference times, increase robustness against noise and adversarial attacks, and reduce the number of parameters without compromising accuracy. However, moving beyond proof-of-concept or simulations to develop practical applications of these systems while ensuring high software qual… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10487v3-abstract-full').style.display = 'inline'; document.getElementById('2411.10487v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10487v3-abstract-full" style="display: none;"> Utilising quantum computing technology to enhance artificial intelligence systems is expected to improve training and inference times, increase robustness against noise and adversarial attacks, and reduce the number of parameters without compromising accuracy. However, moving beyond proof-of-concept or simulations to develop practical applications of these systems while ensuring high software quality faces significant challenges due to the limitations of quantum hardware and the underdeveloped knowledge base in software engineering for such systems. In this work, we have conducted a systematic mapping study to identify the challenges and solutions associated with the software architecture of quantum-enhanced artificial intelligence systems. The results of the systematic mapping study reveal several architectural patterns that describe how quantum components can be integrated into inference engines, as well as middleware patterns that facilitate communication between classical and quantum components. Each pattern realises a trade-off between various software quality attributes, such as efficiency, scalability, trainability, simplicity, portability, and deployability. The outcomes of this work have been compiled into a catalogue of architectural patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10487v3-abstract-full').style.display = 'none'; document.getElementById('2411.10487v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> D.2.11; D.2.m; I.2.m </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span> [<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+C">Chu Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06759">arXiv:2411.06759</a> <span> [<a href="https://arxiv.org/pdf/2411.06759">pdf</a>, <a href="https://arxiv.org/format/2411.06759">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Homotopy Analysis Method with Secondary Linearization for Nonlinear Partial Differential Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xue%2C+C">Cheng Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Fan Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhuang%2C+X">Xi-Ning Zhuang</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+T">Tai-Ping Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Tan%2C+M">Ming-Yang Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Ye%2C+C">Chuang-Chao Ye</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+H">Huan-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06759v1-abstract-short" style="display: inline;"> Nonlinear partial differential equations (PDEs) are crucial for modeling complex fluid dynamics and are foundational to many computational fluid dynamics (CFD) applications. However, solving these nonlinear PDEs is challenging due to the vast computational resources they demand, highlighting the pressing need for more efficient computational methods. Quantum computing offers a promising but techni… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06759v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06759v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06759v1-abstract-full" style="display: none;"> Nonlinear partial differential equations (PDEs) are crucial for modeling complex fluid dynamics and are foundational to many computational fluid dynamics (CFD) applications. However, solving these nonlinear PDEs is challenging due to the vast computational resources they demand, highlighting the pressing need for more efficient computational methods. Quantum computing offers a promising but technically challenging approach to solving nonlinear PDEs. Recently, Liao proposed a framework that leverages quantum computing to accelerate the solution of nonlinear PDEs based on the homotopy analysis method (HAM), a semi-analytical technique that transforms nonlinear PDEs into a series of linear PDEs. However, the no-cloning theorem in quantum computing poses a major limitation, where directly applying quantum simulation to each HAM step results in exponential complexity growth with the HAM truncation order. This study introduces a "secondary linearization" approach that maps the whole HAM process into a system of linear PDEs, allowing for a one-time solution using established quantum PDE solvers. Our method preserves the exponential speedup of quantum linear PDE solvers while ensuring that computational complexity increases only polynomially with the HAM truncation order. We demonstrate the efficacy of our approach by applying it to the Burgers' equation and the Korteweg-de Vries (KdV) equation. Our approach provides a novel pathway for transforming nonlinear PDEs into linear PDEs, with potential applications to fluid dynamics. This work thus lays the foundation for developing quantum algorithms capable of solving the Navier-Stokes equations, ultimately offering a promising route to accelerate their solutions using quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06759v1-abstract-full').style.display = 'none'; document.getElementById('2411.06759v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05501">arXiv:2411.05501</a> <span> [<a href="https://arxiv.org/pdf/2411.05501">pdf</a>, <a href="https://arxiv.org/format/2411.05501">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Multifunctional metalens for trapping and characterizing single atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+G">Guang-Jie Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+D">Dong Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z">Zhu-Bo Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Ziqin Li</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J">Ji-Zhe Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+L">Liang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yan-Lei Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xin-Biao Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+A">Ai-Ping Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Dong%2C+C">Chun-Hua Dong</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+K">Kun Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+C">Chang-Ling Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05501v1-abstract-short" style="display: inline;"> Precise control and manipulation of neutral atoms are essential for quantum technologies but largely dependent on conventional bulky optical setups. Here, we demonstrate a multifunctional metalens that integrates an achromatic lens with large numerical aperture, a quarter-wave plate, and a polarizer for trapping and characterizing single Rubidium atoms. The metalens simultaneously focuses a trappi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05501v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05501v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05501v1-abstract-full" style="display: none;"> Precise control and manipulation of neutral atoms are essential for quantum technologies but largely dependent on conventional bulky optical setups. Here, we demonstrate a multifunctional metalens that integrates an achromatic lens with large numerical aperture, a quarter-wave plate, and a polarizer for trapping and characterizing single Rubidium atoms. The metalens simultaneously focuses a trapping beam at 852\,nm and collects single-photon fluorescence at 780\,nm. We observe a strong dependence of the trapping lifetime on an external bias magnetic field, suggests a complex interplay between the circularly polarized trapping light and the atom's internal states. Our work showcases the potential of metasurfaces in realizing compact and integrated quantum systems based on cold atoms, opening up new possibilities for studying quantum control and manipulation at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05501v1-abstract-full').style.display = 'none'; document.getElementById('2411.05501v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03640">arXiv:2411.03640</a> <span> [<a href="https://arxiv.org/pdf/2411.03640">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adl4871">10.1126/sciadv.adl4871 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient learning of mixed-state tomography for photonic quantum walk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Q">Qin-Qin Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Dong%2C+S">Shaojun Dong</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+X">Xiao-Wei Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Ye Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Chao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+S">Shuai Han</a>, <a href="/search/quant-ph?searchtype=author&query=Yung%2C+M">Man-Hong Yung</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+Y">Yong-Jian Han</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03640v1-abstract-short" style="display: inline;"> Noise-enhanced applications in open quantum walk (QW) have recently seen a surge due to their ability to improve performance. However, verifying the success of open QW is challenging, as mixed-state tomography is a resource-intensive process, and implementing all required measurements is almost impossible due to various physical constraints. To address this challenge, we present a neural-network-b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03640v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03640v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03640v1-abstract-full" style="display: none;"> Noise-enhanced applications in open quantum walk (QW) have recently seen a surge due to their ability to improve performance. However, verifying the success of open QW is challenging, as mixed-state tomography is a resource-intensive process, and implementing all required measurements is almost impossible due to various physical constraints. To address this challenge, we present a neural-network-based method for reconstructing mixed states with a high fidelity (~97.5%) while costing only 50% of the number of measurements typically required for open discrete-time QW in one dimension. Our method uses a neural density operator that models the system and environment, followed by a generalized natural gradient descent procedure that significantly speeds up the training process. Moreover, we introduce a compact interferometric measurement device, improving the scalability of our photonic QW setup that enables experimental learning of mixed states. Our results demonstrate that highly expressive neural networks can serve as powerful alternatives to traditional state tomography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03640v1-abstract-full').style.display = 'none'; document.getElementById('2411.03640v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv. 10, eadl4871 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11541">arXiv:2410.11541</a> <span> [<a href="https://arxiv.org/pdf/2410.11541">pdf</a>, <a href="https://arxiv.org/format/2410.11541">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0226167">10.1063/5.0226167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+C">Chu Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+R">Ruofan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11541v1-abstract-short" style="display: inline;"> Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman-Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator techniq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11541v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11541v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11541v1-abstract-full" style="display: none;"> Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman-Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method, have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction of the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly-correlated quantum matter with dynamical mean-field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11541v1-abstract-full').style.display = 'none'; document.getElementById('2410.11541v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 161, 151001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17559">arXiv:2409.17559</a> <span> [<a href="https://arxiv.org/pdf/2409.17559">pdf</a>, <a href="https://arxiv.org/format/2409.17559">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Zak Phase Induced Topological Nonreciprocity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+X">Xiao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jiefei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Mao%2C+R">Ruosong Mao</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+H">Huizhu Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+S">Shi-Yao Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xingqi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+H">Han Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+D">Da-Wei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17559v1-abstract-short" style="display: inline;"> Topological physics provides novel insights for designing functional photonic devices, such as magnetic-free optical diodes, which are important in optical engineering and quantum information processing. Past efforts mostly focus on the topological edge modes in two-dimensional (2D) photonic Chern lattices, which, however, require delicate fabrication and temporal modulation. In particular, the 1D… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17559v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17559v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17559v1-abstract-full" style="display: none;"> Topological physics provides novel insights for designing functional photonic devices, such as magnetic-free optical diodes, which are important in optical engineering and quantum information processing. Past efforts mostly focus on the topological edge modes in two-dimensional (2D) photonic Chern lattices, which, however, require delicate fabrication and temporal modulation. In particular, the 1D nonreciprocal edge mode needs to be embedded in a 2D lattice, contradicting with the compactness of integrated photonics. To address these challenges, we investigate the optical nonreciprocity of the 1D Su-Schrieffer-Heeger (SSH) superradiance lattices in room-temperature atoms. The probe fields propagating in two opposite directions perceive two different SSH topological phases, which have different absorption spectra due to the interplay between the Zak phase and the thermal motion of atoms, resulting in optical nonreciprocity. Our findings reveal the relationship between 1D topological matter and optical nonreciprocity, simplifying the design of topologically resilient nonreciprocal devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17559v1-abstract-full').style.display = 'none'; document.getElementById('2409.17559v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05770">arXiv:2409.05770</a> <span> [<a href="https://arxiv.org/pdf/2409.05770">pdf</a>, <a href="https://arxiv.org/format/2409.05770">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Consensus-based Distributed Quantum Kernel Learning for Speech Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+K">Kuan-Cheng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+W">Wenxuan Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiaotian Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05770v1-abstract-short" style="display: inline;"> This paper presents a Consensus-based Distributed Quantum Kernel Learning (CDQKL) framework aimed at improving speech recognition through distributed quantum computing.CDQKL addresses the challenges of scalability and data privacy in centralized quantum kernel learning. It does this by distributing computational tasks across quantum terminals, which are connected through classical channels. This a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05770v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05770v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05770v1-abstract-full" style="display: none;"> This paper presents a Consensus-based Distributed Quantum Kernel Learning (CDQKL) framework aimed at improving speech recognition through distributed quantum computing.CDQKL addresses the challenges of scalability and data privacy in centralized quantum kernel learning. It does this by distributing computational tasks across quantum terminals, which are connected through classical channels. This approach enables the exchange of model parameters without sharing local training data, thereby maintaining data privacy and enhancing computational efficiency. Experimental evaluations on benchmark speech emotion recognition datasets demonstrate that CDQKL achieves competitive classification accuracy and scalability compared to centralized and local quantum kernel learning models. The distributed nature of CDQKL offers advantages in privacy preservation and computational efficiency, making it suitable for data-sensitive fields such as telecommunications, automotive, and finance. The findings suggest that CDQKL can effectively leverage distributed quantum computing for large-scale machine-learning tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05770v1-abstract-full').style.display = 'none'; document.getElementById('2409.05770v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11311">arXiv:2408.11311</a> <span> [<a href="https://arxiv.org/pdf/2408.11311">pdf</a>, <a href="https://arxiv.org/format/2408.11311">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> HiMA: Hierarchical Quantum Microarchitecture for Qubit-Scaling and Quantum Process-Level Parallelism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Q">Qi Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Mei%2C+Z">Zi-Hao Mei</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+H">Han-Qing Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+L">Liang-Liang Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+X">Xiao-Yan Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Fan Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+C">Cheng Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Kong%2C+W">Wei-Cheng Kong</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jun-Chao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11311v1-abstract-short" style="display: inline;"> Quantum computing holds immense potential for addressing a myriad of intricate challenges, which is significantly amplified when scaled to thousands of qubits. However, a major challenge lies in developing an efficient and scalable quantum control system. To address this, we propose a novel Hierarchical MicroArchitecture (HiMA) designed to facilitate qubit scaling and exploit quantum process-level… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11311v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11311v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11311v1-abstract-full" style="display: none;"> Quantum computing holds immense potential for addressing a myriad of intricate challenges, which is significantly amplified when scaled to thousands of qubits. However, a major challenge lies in developing an efficient and scalable quantum control system. To address this, we propose a novel Hierarchical MicroArchitecture (HiMA) designed to facilitate qubit scaling and exploit quantum process-level parallelism. This microarchitecture is based on three core elements: (i) discrete qubit-level drive and readout, (ii) a process-based hierarchical trigger mechanism, and (iii) multiprocessing with a staggered triggering technique to enable efficient quantum process-level parallelism. We implement HiMA as a control system for a 72-qubit tunable superconducting quantum processing unit, serving a public quantum cloud computing platform, which is capable of expanding to 6144 qubits through three-layer cascading. In our benchmarking tests, HiMA achieves up to a 4.89x speedup under a 5-process parallel configuration. Consequently, to the best of our knowledge, we have achieved the highest CLOPS (Circuit Layer Operations Per Second), reaching up to 43,680, across all publicly available platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11311v1-abstract-full').style.display = 'none'; document.getElementById('2408.11311v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17325">arXiv:2407.17325</a> <span> [<a href="https://arxiv.org/pdf/2407.17325">pdf</a>, <a href="https://arxiv.org/format/2407.17325">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Noise-Aware Distributed Quantum Approximate Optimization Algorithm on Near-term Quantum Hardware </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+K">Kuan-Cheng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiatian Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Burt%2C+F">Felix Burt</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+C">Chen-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Shang Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Leung%2C+K+K">Kin K Leung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17325v2-abstract-short" style="display: inline;"> This paper introduces a noise-aware distributed Quantum Approximate Optimization Algorithm (QAOA) tailored for execution on near-term quantum hardware. Leveraging a distributed framework, we address the limitations of current Noisy Intermediate-Scale Quantum (NISQ) devices, which are hindered by limited qubit counts and high error rates. Our approach decomposes large QAOA problems into smaller sub… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17325v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17325v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17325v2-abstract-full" style="display: none;"> This paper introduces a noise-aware distributed Quantum Approximate Optimization Algorithm (QAOA) tailored for execution on near-term quantum hardware. Leveraging a distributed framework, we address the limitations of current Noisy Intermediate-Scale Quantum (NISQ) devices, which are hindered by limited qubit counts and high error rates. Our approach decomposes large QAOA problems into smaller subproblems, distributing them across multiple Quantum Processing Units (QPUs) to enhance scalability and performance. The noise-aware strategy incorporates error mitigation techniques to optimize qubit fidelity and gate operations, ensuring reliable quantum computations. We evaluate the efficacy of our framework using the HamilToniQ Benchmarking Toolkit, which quantifies the performance across various quantum hardware configurations. The results demonstrate that our distributed QAOA framework achieves significant improvements in computational speed and accuracy, showcasing its potential to solve complex optimization problems efficiently in the NISQ era. This work sets the stage for advanced algorithmic strategies and practical quantum system enhancements, contributing to the broader goal of achieving quantum advantage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17325v2-abstract-full').style.display = 'none'; document.getElementById('2407.17325v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11339">arXiv:2407.11339</a> <span> [<a href="https://arxiv.org/pdf/2407.11339">pdf</a>, <a href="https://arxiv.org/ps/2407.11339">ps</a>, <a href="https://arxiv.org/format/2407.11339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nonreciprocal Single-Photon Band Structure in a Coupled-Spinning-Resonator chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+J">Jing Li</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y">Ya Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X+W">Xun Wei Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+J">Jing Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+L">Lan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11339v1-abstract-short" style="display: inline;"> We analyze the single-photon band structure and the transport of a single photon in a one-dimensional coupled-spinning-resonator chain. The time-reversal symmetry of the resonators chain is broken by the spinning of the resonators, instead of external or synthetic magnetic field. Two nonreciprocal single-photon band gaps can be obtained in the coupled-spinning-resonator chain, whose width depends… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11339v1-abstract-full" style="display: none;"> We analyze the single-photon band structure and the transport of a single photon in a one-dimensional coupled-spinning-resonator chain. The time-reversal symmetry of the resonators chain is broken by the spinning of the resonators, instead of external or synthetic magnetic field. Two nonreciprocal single-photon band gaps can be obtained in the coupled-spinning-resonator chain, whose width depends on the angular velocity of the spinning resonator. Based on the nonreciprocal band gaps, we can implement a single photon circulator at multiple frequency windows, and the direction of photon cycling is opposite for different band gaps. In addition, reciprocal single-photon band structures can also be realized in the coupled-spinning-resonator chain when all resonators rotate in the same direction with equal angular velocity. Our work open a new route to achieve, manipulate, and switch nonreciprocal or reciprocal single-photon band structures, and provides new opportunities to realize novel single-photon devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11339v1-abstract-full').style.display = 'none'; document.getElementById('2407.11339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08318">arXiv:2407.08318</a> <span> [<a href="https://arxiv.org/pdf/2407.08318">pdf</a>, <a href="https://arxiv.org/format/2407.08318">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Modeling and Suppressing Unwanted Parasitic Interactions in Superconducting Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xuexin Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08318v1-abstract-short" style="display: inline;"> Superconducting qubits are among the most promising candidates for building quantum computers. Despite significant improvements in qubit coherence, achieving a fault-tolerant quantum computer remains a major challenge, largely due to imperfect gate fidelity. A key source of this infidelity is the parasitic interaction between coupled qubits, which this thesis addresses in two- and three-qubit circ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08318v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08318v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08318v1-abstract-full" style="display: none;"> Superconducting qubits are among the most promising candidates for building quantum computers. Despite significant improvements in qubit coherence, achieving a fault-tolerant quantum computer remains a major challenge, largely due to imperfect gate fidelity. A key source of this infidelity is the parasitic interaction between coupled qubits, which this thesis addresses in two- and three-qubit circuits. This parasitic interaction causes a bending between computational and non-computational levels, leading to a parasitic ZZ interaction. The thesis first investigates the possibility of zeroing the ZZ interaction in two qubit combinations: a pair of interacting transmons, and a hybrid pair of a transmon coupled to a capacitively shunted flux qubit (CSFQ). The theory developed is used to accurately simulate experimental results from our collaborators, who measured a CSFQ-transmon pair with and without a cross-resonance (CR) gate. The strong agreement between theory and experiment motivated further study of a CR gate that achieves 99.9% fidelity in the absence of static ZZ interaction. Since the CR pulse adds an additional ZZ component to the static part, a new strategy called dynamical ZZ freedom is proposed to zero the total ZZ interaction. This strategy can be applied in all-transmon circuits to enable perfect entanglement. Based on these findings, a new two-qubit gate, the parasitic-free (PF) gate, is proposed. Additionally, the thesis explores how to utilize the ZZ interaction to enhance the performance of a controlled-Z gate. Lastly, the impact of a third qubit on two-qubit gate performance is examined, with several examples illustrating the properties of two-body ZZ and three-body ZZZ interactions in circuits with more than two qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08318v1-abstract-full').style.display = 'none'; document.getElementById('2407.08318v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07960">arXiv:2407.07960</a> <span> [<a href="https://arxiv.org/pdf/2407.07960">pdf</a>, <a href="https://arxiv.org/format/2407.07960">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Purity benchmarking study of error coherence in a single Xmon qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+A">Auda Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=B%C3%A9janin%2C+J+H">J茅r茅my H. B茅janin</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xicheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Mariantoni%2C+M">Matteo Mariantoni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07960v1-abstract-short" style="display: inline;"> In this study, we employ purity benchmarking (PB) to explore the dynamics of gate noise in a superconducting qubit system. Over 1110 hours of observations on an Xmon qubit, we simultaneously measure the coherence noise budget across two different operational frequencies. We find that incoherent errors, which predominate in overall error rates, exhibit minimal frequency dependence, suggesting they… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07960v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07960v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07960v1-abstract-full" style="display: none;"> In this study, we employ purity benchmarking (PB) to explore the dynamics of gate noise in a superconducting qubit system. Over 1110 hours of observations on an Xmon qubit, we simultaneously measure the coherence noise budget across two different operational frequencies. We find that incoherent errors, which predominate in overall error rates, exhibit minimal frequency dependence, suggesting they are primarily due to wide-band, diffusive incoherent error sources. In contrast, coherent errors, although less prevalent, show significant sensitivity to operational frequency variations and telegraphic noise. We speculate that this sensitivity is due to interactions with a single strongly coupled environmental defect -- modeled as a two-level system -- which influences qubit control parameters and causes coherent calibration errors. Our results also demonstrate that PB offers improved sensitivity, capturing additional dynamics that conventional relaxation time measurements cannot detect, thus presenting a more comprehensive method for capturing dynamic interactions within quantum systems. The intricate nature of these coherence dynamics underscores the need for further research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07960v1-abstract-full').style.display = 'none'; document.getElementById('2407.07960v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02207">arXiv:2407.02207</a> <span> [<a href="https://arxiv.org/pdf/2407.02207">pdf</a>, <a href="https://arxiv.org/format/2407.02207">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.22.054011">10.1103/PhysRevApplied.22.054011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Global calibration of large-scale photonic integrated circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+J">Jin-Hao Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Q">Qin-Qin Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Feng%2C+L">Lan-Tian Feng</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+Y">Yu-Yang Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Ye Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+X">Xi-Feng Ren</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02207v3-abstract-short" style="display: inline;"> The growing maturity of photonic integrated circuit (PIC) fabrication technology enables the high integration of an increasing number of optical components onto a single chip. With the incremental circuit complexity, the calibration of active phase shifters in a large-scale PIC becomes a crucially important issue. The traditional one-by-one calibration techniques encounter significant hurdles with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02207v3-abstract-full').style.display = 'inline'; document.getElementById('2407.02207v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02207v3-abstract-full" style="display: none;"> The growing maturity of photonic integrated circuit (PIC) fabrication technology enables the high integration of an increasing number of optical components onto a single chip. With the incremental circuit complexity, the calibration of active phase shifters in a large-scale PIC becomes a crucially important issue. The traditional one-by-one calibration techniques encounter significant hurdles with the propagation of calibration errors, and achieving the decoupling of all phase shifters for independent calibration is not straightforward. To address this issue, we propose a global calibration approach for large-scale PIC. Our method utilizes a custom network to simultaneously learn the nonlinear phase-current relations for all thermo-optic phase shifters on the PIC by minimizing the negative likelihood of the measurement datasets. Moreover, the reflectivities of all static beam splitter components can also be synchronizedly extracted using this calibration method. As an example, a quantum walk PIC with a circuit depth of 12 is calibrated, and a programmable discrete-time quantum walk is experimentally demonstrated. These results will greatly benefit the applications of large-scale PICs in photonic quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02207v3-abstract-full').style.display = 'none'; document.getElementById('2407.02207v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 22, 054011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19212">arXiv:2406.19212</a> <span> [<a href="https://arxiv.org/pdf/2406.19212">pdf</a>, <a href="https://arxiv.org/format/2406.19212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> JuliVQC: an Efficient Variational Quantum Circuit Simulator for Near-Term Quantum Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liao%2C+W">Wei-You Liao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xiang Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Yue Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+C">Chen Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+S">Shuo Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+H">He-Liang Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+C">Chu Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19212v1-abstract-short" style="display: inline;"> We introduce JuliVQC: a light-weight, yet extremely efficient variational quantum circuit simulator. JuliVQC is part of an effort for classical simulation of the \textit{Zuchongzhi} quantum processors, where it is extensively used to characterize the circuit noises, as a building block in the Schr$\ddot{\text{o}}$dinger-Feynman algorithm for classical verification and performance benchmarking, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19212v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19212v1-abstract-full" style="display: none;"> We introduce JuliVQC: a light-weight, yet extremely efficient variational quantum circuit simulator. JuliVQC is part of an effort for classical simulation of the \textit{Zuchongzhi} quantum processors, where it is extensively used to characterize the circuit noises, as a building block in the Schr$\ddot{\text{o}}$dinger-Feynman algorithm for classical verification and performance benchmarking, and for variational optimization of the Fsim gate parameters. The design principle of JuliVQC is three-fold: (1) Transparent implementation of its core algorithms, realized by using the high-performance script language Julia; (2) Efficiency is the focus, with a cache-friendly implementation of each elementary operations and support for shared-memory parallelization; (3) Native support of automatic differentiation for both the noiseless and noisy quantum circuits. We perform extensive numerical experiments on JuliVQC in different application scenarios, including quantum circuits, variational quantum circuits and their noisy counterparts, which show that its performance is among the top of the popular alternatives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19212v1-abstract-full').style.display = 'none'; document.getElementById('2406.19212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17248">arXiv:2406.17248</a> <span> [<a href="https://arxiv.org/pdf/2406.17248">pdf</a>, <a href="https://arxiv.org/format/2406.17248">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> MindSpore Quantum: A User-Friendly, High-Performance, and AI-Compatible Quantum Computing Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xusheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+J">Jiangyu Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+Z">Zidong Cui</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+R">Runhong He</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Q">Qingyu Li</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+X">Xiaowei Li</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+Y">Yanling Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jiale Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+W">Wuxin Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+J">Jiale Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+M">Maolin Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Lyu%2C+C">Chufan Lyu</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+S">Shijie Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Pavel%2C+M">Mosharev Pavel</a>, <a href="/search/quant-ph?searchtype=author&query=Shu%2C+R">Runqiu Shu</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+J">Jialiang Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+R">Ruoqian Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+S">Shu Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+K">Kang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+F">Fan Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Zeng%2C+Q">Qingguo Zeng</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+H">Haiying Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Q">Qiang Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+J">Junyuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+X">Xu Zhou</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17248v3-abstract-short" style="display: inline;"> We introduce MindSpore Quantum, a pioneering hybrid quantum-classical framework with a primary focus on the design and implementation of noisy intermediate-scale quantum (NISQ) algorithms. Leveraging the robust support of MindSpore, an advanced open-source deep learning training/inference framework, MindSpore Quantum exhibits exceptional efficiency in the design and training of variational quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17248v3-abstract-full').style.display = 'inline'; document.getElementById('2406.17248v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17248v3-abstract-full" style="display: none;"> We introduce MindSpore Quantum, a pioneering hybrid quantum-classical framework with a primary focus on the design and implementation of noisy intermediate-scale quantum (NISQ) algorithms. Leveraging the robust support of MindSpore, an advanced open-source deep learning training/inference framework, MindSpore Quantum exhibits exceptional efficiency in the design and training of variational quantum algorithms on both CPU and GPU platforms, delivering remarkable performance. Furthermore, this framework places a strong emphasis on enhancing the operational efficiency of quantum algorithms when executed on real quantum hardware. This encompasses the development of algorithms for quantum circuit compilation and qubit mapping, crucial components for achieving optimal performance on quantum processors. In addition to the core framework, we introduce QuPack, a meticulously crafted quantum computing acceleration engine. QuPack significantly accelerates the simulation speed of MindSpore Quantum, particularly in variational quantum eigensolver (VQE), quantum approximate optimization algorithm (QAOA), and tensor network simulations, providing astonishing speed. This combination of cutting-edge technologies empowers researchers and practitioners to explore the frontiers of quantum computing with unprecedented efficiency and performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17248v3-abstract-full').style.display = 'none'; document.getElementById('2406.17248v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06063">arXiv:2406.06063</a> <span> [<a href="https://arxiv.org/pdf/2406.06063">pdf</a>, <a href="https://arxiv.org/format/2406.06063">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enabling Large-Scale and High-Precision Fluid Simulations on Near-Term Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+T">Teng-Yang Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Ye%2C+C">Chuang-Chao Ye</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+L">Liang Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Tan%2C+M">Ming-Yang Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhuang%2C+X">Xi-Ning Zhuang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Fan Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+T">Tai-Ping Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Du%2C+L">Lei Du</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+L">Liang-Liang Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+H">Hai-Feng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Tao%2C+H">Hao-Ran Tao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tian-Le Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+X">Xiao-Yan Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Z">Ze-An Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+P">Peng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+R">Ren-Ze Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Jia%2C+Z">Zhi-Long Jia</a>, <a href="/search/quant-ph?searchtype=author&query=Kong%2C+W">Wei-Cheng Kong</a>, <a href="/search/quant-ph?searchtype=author&query=Dou%2C+M">Meng-Han Dou</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jun-Chao Wang</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06063v3-abstract-short" style="display: inline;"> Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD) by leveraging quantum algorithms for higher efficiency. This paper introduces a comprehensive QCFD method, including an iterative method "Iterative-QLS" that suppresses error in quantum linear solver, and a subspace method to scale the solution to a larger size. We implement o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06063v3-abstract-full').style.display = 'inline'; document.getElementById('2406.06063v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06063v3-abstract-full" style="display: none;"> Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD) by leveraging quantum algorithms for higher efficiency. This paper introduces a comprehensive QCFD method, including an iterative method "Iterative-QLS" that suppresses error in quantum linear solver, and a subspace method to scale the solution to a larger size. We implement our method on a superconducting quantum computer, demonstrating successful simulations of steady Poiseuille flow and unsteady acoustic wave propagation. The Poiseuille flow simulation achieved a relative error of less than $0.2\%$, and the unsteady acoustic wave simulation solved a 5043-dimensional matrix. We emphasize the utilization of the quantum-classical hybrid approach in applications of near-term quantum computers. By adapting to quantum hardware constraints and offering scalable solutions for large-scale CFD problems, our method paves the way for practical applications of near-term quantum computers in computational science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06063v3-abstract-full').style.display = 'none'; document.getElementById('2406.06063v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05334">arXiv:2406.05334</a> <span> [<a href="https://arxiv.org/pdf/2406.05334">pdf</a>, <a href="https://arxiv.org/format/2406.05334">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.043716">10.1103/PhysRevA.110.043716 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Purely Quantum Nonreciprocity by Spatially Separated Transmission Scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zhi-Hao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+G">Guang-Yu Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05334v1-abstract-short" style="display: inline;"> Nonreciprocal photon blockade is of particular interest due to its potential applications in chiral quantum technologies and topological photonics. In the regular cases, nonreciprocal transmission (classical nonreciprocity) and nonreciprocal photon blockade (quantum nonreciprocity) often appear simultaneously. Nevertheless, how to achieve purely quantum nonreciprocity (no classical nonreciprocity)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05334v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05334v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05334v1-abstract-full" style="display: none;"> Nonreciprocal photon blockade is of particular interest due to its potential applications in chiral quantum technologies and topological photonics. In the regular cases, nonreciprocal transmission (classical nonreciprocity) and nonreciprocal photon blockade (quantum nonreciprocity) often appear simultaneously. Nevertheless, how to achieve purely quantum nonreciprocity (no classical nonreciprocity) remains largely unexplored. Here, we propose a spatially separated transmission scheme, that the photons transport in different directions take different paths, in an optical system consisting of two spinning cavities coupled indirectly by two common drop-filter waveguides. Based on the spatially separated transmission scheme, we demonstrate a purely quantum nonreciprocity (nonreciprocal photon blockade) by considering the Kerr nonlinear interaction in one of the paths. Interestingly, we find that the nonreciprocal photon blockade is enhanced nonreciprocally, i.e., the nonreciprocal photon blockade is enhanced when the photons transport in one direction but suppressed in the reverse direction. We identify that the nonreciprocal enhancement of nonreciprocal photon blockade is induced by the destructive or constructive interference between two paths for two photons passing through the whole system. The spatially separated transmission scheme proposed in the work provides a novel approach to observe purely quantum nonreciprocal effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05334v1-abstract-full').style.display = 'none'; document.getElementById('2406.05334v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 043716 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04973">arXiv:2406.04973</a> <span> [<a href="https://arxiv.org/pdf/2406.04973">pdf</a>, <a href="https://arxiv.org/format/2406.04973">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.033602">10.1103/PhysRevLett.133.033602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing Biphoton Spatial Wave Function Dynamics with Quantum Wavefront Sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zhao-Di Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Miao%2C+R">Rui-Heng Miao</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+J">Jin-Ming Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+M">Mu Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Ye Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04973v2-abstract-short" style="display: inline;"> With an extremely high dimensionality, the spatial degree of freedom of entangled photons is a key tool for quantum foundation and applied quantum techniques. To fully utilize the feature, the essential task is to experimentally characterize the multiphoton spatial wave function including the entangled amplitude and phase information at different evolutionary stages. However, there is no effective… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04973v2-abstract-full').style.display = 'inline'; document.getElementById('2406.04973v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04973v2-abstract-full" style="display: none;"> With an extremely high dimensionality, the spatial degree of freedom of entangled photons is a key tool for quantum foundation and applied quantum techniques. To fully utilize the feature, the essential task is to experimentally characterize the multiphoton spatial wave function including the entangled amplitude and phase information at different evolutionary stages. However, there is no effective method to measure it. Quantum state tomography is costly, and quantum holography requires additional references. Here we introduce quantum Shack-Hartmann wavefront sensing to perform efficient and reference-free measurement of the biphoton spatial wave function. The joint probability distribution of photon pairs at the back focal plane of a microlens array is measured and used for amplitude extraction and phase reconstruction. In the experiment, we observe that the biphoton amplitude correlation becomes weak while phase correlation shows up during free-space propagation. Our work is a crucial step in quantum physical and adaptive optics and paves the way for characterizing quantum optical fields with high-order correlations or topological patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04973v2-abstract-full').style.display = 'none'; document.getElementById('2406.04973v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 6 pages, 4 figures; Supplemental Material: 13 pages, 11 figures. (c) 2024 American Physical Society</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 033602 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03381">arXiv:2406.03381</a> <span> [<a href="https://arxiv.org/pdf/2406.03381">pdf</a>, <a href="https://arxiv.org/format/2406.03381">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Paths towards time evolution with larger neural-network quantum states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+W">Wenxuan Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xing%2C+B">Bo Xing</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Poletti%2C+D">Dario Poletti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03381v1-abstract-short" style="display: inline;"> In recent years, the neural-network quantum states method has been investigated to study the ground state and the time evolution of many-body quantum systems. Here we expand on the investigation and consider a quantum quench from the paramagnetic to the anti-ferromagnetic phase in the tilted Ising model. We use two types of neural networks, a restricted Boltzmann machine and a feed-forward neural… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03381v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03381v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03381v1-abstract-full" style="display: none;"> In recent years, the neural-network quantum states method has been investigated to study the ground state and the time evolution of many-body quantum systems. Here we expand on the investigation and consider a quantum quench from the paramagnetic to the anti-ferromagnetic phase in the tilted Ising model. We use two types of neural networks, a restricted Boltzmann machine and a feed-forward neural network. We show that for both types of networks, the projected time-dependent variational Monte Carlo (p-tVMC) method performs better than the non-projected approach. We further demonstrate that one can use K-FAC or minSR in conjunction with p-tVMC to reduce the computational complexity of the stochastic reconfiguration approach, thus allowing the use of these techniques for neural networks with more parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03381v1-abstract-full').style.display = 'none'; document.getElementById('2406.03381v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02494">arXiv:2406.02494</a> <span> [<a href="https://arxiv.org/pdf/2406.02494">pdf</a>, <a href="https://arxiv.org/format/2406.02494">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.183403">10.1103/PhysRevLett.133.183403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Velocity Scanning Tomography for Room-Temperature Quantum Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jiefei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Mao%2C+R">Ruosong Mao</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xingqi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Y">Yunzhou Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Dai%2C+J">Jianhao Dai</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+X">Xiao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+G">Gang-Qin Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+D">Dawei Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+H">Huizhu Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+S">Shi-Yao Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+H">Han Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+D">Da-Wei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02494v1-abstract-short" style="display: inline;"> Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02494v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02494v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02494v1-abstract-full" style="display: none;"> Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physical quantities. To overcome this obstacle, we invent and validate a velocity scanning tomography technique to discern the responses of atoms with different velocities, allowing cold-atom spectroscopic resolution within room-temperature SLs. By comparing absorption spectra with and without atoms moving at specific velocities, we can derive the Wannier-Stark ladders of the SL across various effective static electric fields, their strengths being proportional to the atomic velocities. We extract the Zak phase of the SL by monitoring the ladder frequency shift as a function of the atomic velocity, effectively demonstrating the topological winding of the energy bands. Our research signifies the feasibility of room-temperature quantum simulation and facilitates their applications in quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02494v1-abstract-full').style.display = 'none'; document.getElementById('2406.02494v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01335">arXiv:2406.01335</a> <span> [<a href="https://arxiv.org/pdf/2406.01335">pdf</a>, <a href="https://arxiv.org/format/2406.01335">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Finance">q-fin.ST</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Statistics-Informed Parameterized Quantum Circuit via Maximum Entropy Principle for Data Science and Finance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhuang%2C+X">Xi-Ning Zhuang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+C">Cheng Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Fan Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Chao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+H">Huan-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+T">Tai-Ping Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01335v2-abstract-short" style="display: inline;"> Quantum machine learning has demonstrated significant potential in solving practical problems, particularly in statistics-focused areas such as data science and finance. However, challenges remain in preparing and learning statistical models on a quantum processor due to issues with trainability and interpretability. In this letter, we utilize the maximum entropy principle to design a statistics-i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01335v2-abstract-full').style.display = 'inline'; document.getElementById('2406.01335v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01335v2-abstract-full" style="display: none;"> Quantum machine learning has demonstrated significant potential in solving practical problems, particularly in statistics-focused areas such as data science and finance. However, challenges remain in preparing and learning statistical models on a quantum processor due to issues with trainability and interpretability. In this letter, we utilize the maximum entropy principle to design a statistics-informed parameterized quantum circuit (SI-PQC) for efficiently preparing and training of quantum computational statistical models, including arbitrary distributions and their weighted mixtures. The SI-PQC features a static structure with trainable parameters, enabling in-depth optimized circuit compilation, exponential reductions in resource and time consumption, and improved trainability and interpretability for learning quantum states and classical model parameters simultaneously. As an efficient subroutine for preparing and learning in various quantum algorithms, the SI-PQC addresses the input bottleneck and facilitates the injection of prior knowledge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01335v2-abstract-full').style.display = 'none'; document.getElementById('2406.01335v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00745">arXiv:2406.00745</a> <span> [<a href="https://arxiv.org/pdf/2406.00745">pdf</a>, <a href="https://arxiv.org/format/2406.00745">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.524680">10.1364/OE.524680 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral photon blockade in the spinning Kerr resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zuo%2C+Y">Yunlan Zuo</a>, <a href="/search/quant-ph?searchtype=author&query=Jiao%2C+Y">Ya-Feng Jiao</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Miranowicz%2C+A">Adam Miranowicz</a>, <a href="/search/quant-ph?searchtype=author&query=Kuang%2C+L">Le-Man Kuang</a>, <a href="/search/quant-ph?searchtype=author&query=Jing%2C+H">Hui Jing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00745v1-abstract-short" style="display: inline;"> We propose how to achieve chiral photon blockade by spinning a nonlinear optical resonator. We show that by driving such a device at a fixed direction, completely different quantum effects can emerge for the counter-propagating optical modes, due to the spinning-induced breaking of time-reversal symmetry, which otherwise is unattainable for the same device in the static regime. Also, we find that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00745v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00745v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00745v1-abstract-full" style="display: none;"> We propose how to achieve chiral photon blockade by spinning a nonlinear optical resonator. We show that by driving such a device at a fixed direction, completely different quantum effects can emerge for the counter-propagating optical modes, due to the spinning-induced breaking of time-reversal symmetry, which otherwise is unattainable for the same device in the static regime. Also, we find that in comparison with the static case, robust non-classical correlations against random backscattering losses can be achieved for such a quantum chiral system. Our work, extending previous works on the spontaneous breaking of optical chiral symmetry from the classical to purely quantum regimes, can stimulate more efforts towards making and utilizing various chiral quantum effects, including applications for chiral quantum networks or noise-tolerant quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00745v1-abstract-full').style.display = 'none'; document.getElementById('2406.00745v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 32, 22020-22030 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16975">arXiv:2405.16975</a> <span> [<a href="https://arxiv.org/pdf/2405.16975">pdf</a>, <a href="https://arxiv.org/format/2405.16975">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Hydrodynamics and the eigenstate thermalization hypothesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Capizzi%2C+L">Luca Capizzi</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jiaozi Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Mazza%2C+L">Leonardo Mazza</a>, <a href="/search/quant-ph?searchtype=author&query=Poletti%2C+D">Dario Poletti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16975v1-abstract-short" style="display: inline;"> The eigenstate thermalization hypothesis (ETH) describes the properties of diagonal and off-diagonal matrix elements of local operators in the eigenenergy basis. In this work, we propose a relation between (i) the singular behaviour of the off-diagonal part of ETH at small energy differences, and (ii) the smooth profile of the diagonal part of ETH as a function of the energy density. We establish… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16975v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16975v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16975v1-abstract-full" style="display: none;"> The eigenstate thermalization hypothesis (ETH) describes the properties of diagonal and off-diagonal matrix elements of local operators in the eigenenergy basis. In this work, we propose a relation between (i) the singular behaviour of the off-diagonal part of ETH at small energy differences, and (ii) the smooth profile of the diagonal part of ETH as a function of the energy density. We establish this connection from the decay of the autocorrelation functions of local operators, which is constrained by the presence of local conserved quantities whose evolution is described by hydrodynamics. We corroborate our predictions with numerical simulations of two non-integrable spin-1 Ising models, one diffusive and one super-diffusive, which we perform using dynamical quantum typicality up to 18 spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16975v1-abstract-full').style.display = 'none'; document.getElementById('2405.16975v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12625">arXiv:2405.12625</a> <span> [<a href="https://arxiv.org/pdf/2405.12625">pdf</a>, <a href="https://arxiv.org/format/2405.12625">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+F">Furong Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xusheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+P">Pao Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Xin%2C+T">Tao Xin</a>, <a href="/search/quant-ph?searchtype=author&query=Wei%2C+S">ShiJie Wei</a>, <a href="/search/quant-ph?searchtype=author&query=Long%2C+G">Guilu Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12625v1-abstract-short" style="display: inline;"> Quantum computing is a promising candidate for accelerating machine learning tasks. Limited by the control accuracy of current quantum hardware, reducing the consumption of quantum resources is the key to achieving quantum advantage. Here, we propose a quantum resonant dimension reduction (QRDR) algorithm based on the quantum resonant transition to reduce the dimension of input data and accelerate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12625v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12625v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12625v1-abstract-full" style="display: none;"> Quantum computing is a promising candidate for accelerating machine learning tasks. Limited by the control accuracy of current quantum hardware, reducing the consumption of quantum resources is the key to achieving quantum advantage. Here, we propose a quantum resonant dimension reduction (QRDR) algorithm based on the quantum resonant transition to reduce the dimension of input data and accelerate the quantum machine learning algorithms. After QRDR, the dimension of input data $N$ can be reduced into desired scale $R$, and the effective information of the original data will be preserved correspondingly, which will reduce the computational complexity of subsequent quantum machine learning algorithms or quantum storage. QRDR operates with polylogarithmic time complexity and reduces the error dependency from the order of $1/蔚^3$ to the order of $1/蔚$, compared to existing algorithms. We demonstrate the performance of our algorithm combining with two types of quantum classifiers, quantum support vector machines and quantum convolutional neural networks, for classifying underwater detection targets and quantum many-body phase respectively. The simulation results indicate that reduced data improved the processing efficiency and accuracy following the application of QRDR. As quantum machine learning continues to advance, our algorithm has the potential to be utilized in a variety of computing fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12625v1-abstract-full').style.display = 'none'; document.getElementById('2405.12625v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09225">arXiv:2405.09225</a> <span> [<a href="https://arxiv.org/pdf/2405.09225">pdf</a>, <a href="https://arxiv.org/format/2405.09225">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00697-5">10.1038/s41535-024-00697-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring Ground States of Fermi-Hubbard Model on Honeycomb Lattices with Counterdiabaticity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tang%2C+J">Jialiang Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+R">Ruoqian Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+Y">Yongcheng Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xusheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ban%2C+Y">Yue Ban</a>, <a href="/search/quant-ph?searchtype=author&query=Yung%2C+M">Manhong Yung</a>, <a href="/search/quant-ph?searchtype=author&query=P%C3%A9rez-Obiol%2C+A">Axel P茅rez-Obiol</a>, <a href="/search/quant-ph?searchtype=author&query=Platero%2C+G">Gloria Platero</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+X">Xi Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09225v1-abstract-short" style="display: inline;"> Exploring the ground state properties of many-body quantum systems conventionally involves adiabatic processes, alongside exact diagonalization, in the context of quantum annealing or adiabatic quantum computation. Shortcuts to adiabaticity by counter-diabatic driving serve to accelerate these processes by suppressing energy excitations. Motivated by this, we develop variational quantum algorithms… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09225v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09225v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09225v1-abstract-full" style="display: none;"> Exploring the ground state properties of many-body quantum systems conventionally involves adiabatic processes, alongside exact diagonalization, in the context of quantum annealing or adiabatic quantum computation. Shortcuts to adiabaticity by counter-diabatic driving serve to accelerate these processes by suppressing energy excitations. Motivated by this, we develop variational quantum algorithms incorporating the auxiliary counterdiabatic interactions, comparing them with digitized adiabatic algorithms. These algorithms are then implemented on gate-based quantum circuits to explore the ground states of the Fermi-Hubbard model on honeycomb lattices, utilizing systems with up to 26 qubits. The comparison reveals that the counter-diabatic inspired ansatz is superior to traditional Hamiltonian variational ansatz. Furthermore, the number and duration of Trotter steps are analyzed to understand and mitigate errors. Given the model's relevance to materials in condensed matter, our study paves the way for using variational quantum algorithms with counterdiabaticity to explore quantum materials in the noisy intermediate-scale quantum era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09225v1-abstract-full').style.display = 'none'; document.getElementById('2405.09225v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9, 87 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06963">arXiv:2405.06963</a> <span> [<a href="https://arxiv.org/pdf/2405.06963">pdf</a>, <a href="https://arxiv.org/format/2405.06963">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Distributed Exact Generalized Grover's Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+X">Xu Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xusheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+S">Shenggen Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+L">Le Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06963v2-abstract-short" style="display: inline;"> Distributed quantum computation has garnered immense attention in the noisy intermediate-scale quantum (NISQ) era, where each computational node necessitates fewer qubits and quantum gates. In this paper, we focus on a generalized search problem involving multiple targets within an unordered database and propose a Distributed Exact Generalized Grover's Algorithm (DEGGA) to address this challenge b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06963v2-abstract-full').style.display = 'inline'; document.getElementById('2405.06963v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06963v2-abstract-full" style="display: none;"> Distributed quantum computation has garnered immense attention in the noisy intermediate-scale quantum (NISQ) era, where each computational node necessitates fewer qubits and quantum gates. In this paper, we focus on a generalized search problem involving multiple targets within an unordered database and propose a Distributed Exact Generalized Grover's Algorithm (DEGGA) to address this challenge by decomposing it into arbitrary $t$ components, where $2 \leq t \leq n$. Specifically, (1) our algorithm ensures accuracy, with a theoretical probability of identifying the target states at $100\%$; (2) if the number of targets is fixed, the pivotal factor influencing the circuit depth of DEGGA is the partitioning strategy, rather than the magnitude of $n$; (3) our method requires a total of $n$ qubits, eliminating the need for auxiliary qubits; (4) we elucidate the resolutions (two-node and three-node) of a particular generalized search issue incorporating two goal strings (000000 and 111111) by applying DEGGA. The feasibility and effectiveness of our suggested approach is further demonstrated by executing the quantum circuits on MindSpore Quantum (a quantum simulation software). Eventually, through the decomposition of multi-qubit gates, DEGGA diminishes the utilization of quantum gates by $90.7\%$ and decreases the circuit depth by $91.3\%$ in comparison to the modified Grover's algorithm by Long. It is increasingly evident that distributed quantum algorithms offer augmented practicality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06963v2-abstract-full').style.display = 'none'; document.getElementById('2405.06963v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05753">arXiv:2405.05753</a> <span> [<a href="https://arxiv.org/pdf/2405.05753">pdf</a>, <a href="https://arxiv.org/format/2405.05753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Manipulating Topological Polaritons in Optomechanical Ladders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wu%2C+J">Jia-Kang Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&query=Kuang%2C+L">Le-Man Kuang</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Liao%2C+J">Jie-Qiao Liao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05753v1-abstract-short" style="display: inline;"> We propose to manipulate topological polaritons in optomechanical ladders consisting of an optical Su-Schrieffer-Heeger (SSH) chain and a mechanical SSH chain connected through optomechanical (interchain) interactions. We show that the topological phase diagrams are divided into six areas by four boundaries and that there are four topological phases characterized by the Berry phases. We find that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05753v1-abstract-full').style.display = 'inline'; document.getElementById('2405.05753v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05753v1-abstract-full" style="display: none;"> We propose to manipulate topological polaritons in optomechanical ladders consisting of an optical Su-Schrieffer-Heeger (SSH) chain and a mechanical SSH chain connected through optomechanical (interchain) interactions. We show that the topological phase diagrams are divided into six areas by four boundaries and that there are four topological phases characterized by the Berry phases. We find that a topologically nontrivial phase of the polaritons is generated by the optomechanical interaction between the optical and mechanical SSH chains even though they are both in the topologically trivial phases. Counter-intuitively, six edge states appear in one of the topological phases with only two topological nontrivial bands, and some edge states are localized near but not at the boundaries of an open-boundary ladder. Moreover, a two-dimensional Chern insulator with higher Chern numbers is simulated by introducing proper periodical adiabatic modulations of the driving amplitude and frequency. Our work not only opens a route towards topological polaritons manipulation by optomachanical interactions, but also will exert a far-reaching influence on designing topologically protected polaritonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05753v1-abstract-full').style.display = 'none'; document.getElementById('2405.05753v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+15 pages, 3+7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05051">arXiv:2405.05051</a> <span> [<a href="https://arxiv.org/pdf/2405.05051">pdf</a>, <a href="https://arxiv.org/format/2405.05051">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Variational simulation of $d$-level systems on qubit-based quantum simulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lyu%2C+C">Chufan Lyu</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+Z">Zuoheng Zou</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xusheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Yung%2C+M">Man-Hong Yung</a>, <a href="/search/quant-ph?searchtype=author&query=Bayat%2C+A">Abolfazl Bayat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05051v2-abstract-short" style="display: inline;"> Current quantum simulators are primarily qubit-based, making them naturally suitable for simulating 2-level quantum systems. However, many systems in nature are inherently $d$-level, including higher spins, bosons, vibrational modes, and itinerant electrons. To simulate $d$-level systems on qubit-based quantum simulators, an encoding method is required to map the $d$-level system onto a qubit basi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05051v2-abstract-full').style.display = 'inline'; document.getElementById('2405.05051v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05051v2-abstract-full" style="display: none;"> Current quantum simulators are primarily qubit-based, making them naturally suitable for simulating 2-level quantum systems. However, many systems in nature are inherently $d$-level, including higher spins, bosons, vibrational modes, and itinerant electrons. To simulate $d$-level systems on qubit-based quantum simulators, an encoding method is required to map the $d$-level system onto a qubit basis. Such mapping may introduce illegitimate states in the Hilbert space which makes the simulation more sophisticated. In this paper, we develop a systematic method to address the illegitimate states. In addition, we compare two different mappings, namely binary and symmetry encoding methods, and compare their performance through variational simulation of the ground state and time evolution of various many-body systems. While binary encoding is very efficient with respect to the number of qubits it cannot easily incorporate the symmetries of the original Hamiltonian in its circuit design. On the other hand, the symmetry encoding facilitates the implementation of symmetries in the circuit design, though it comes with an overhead for the number of qubits. Our analysis shows that the symmetry encoding significantly outperforms the binary encoding, despite requiring extra qubits. Their advantage is indicated by requiring fewer two-qubit gates, converging faster, and being far more resilient to Barren plateaus. We have performed variational ground state simulations of spin-1, spin-3/2, and bosonic systems as well as variational time evolution of spin-1 systems. Our proposal can be implemented on existing quantum simulators and its potential is extendable to a broad class of physical models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05051v2-abstract-full').style.display = 'none'; document.getElementById('2405.05051v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01518">arXiv:2405.01518</a> <span> [<a href="https://arxiv.org/pdf/2405.01518">pdf</a>, <a href="https://arxiv.org/format/2405.01518">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.053711">10.1103/PhysRevA.110.053711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Driven Multiphoton Qubit-Resonator Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ayyash%2C+M">Mohammad Ayyash</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xicheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ashhab%2C+S">Sahel Ashhab</a>, <a href="/search/quant-ph?searchtype=author&query=Mariantoni%2C+M">Matteo Mariantoni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01518v4-abstract-short" style="display: inline;"> We develop a general theory for multiphoton qubit-resonator interactions enhanced by a qubit drive. The interactions generate qubit-conditional operations in the resonator when the driving is near $n$-photon cross-resonance, namely, the qubit drive is $n$-times the resonator frequency. We pay special attention to the strong driving regime, where the interactions are conditioned on the qubit dresse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01518v4-abstract-full').style.display = 'inline'; document.getElementById('2405.01518v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01518v4-abstract-full" style="display: none;"> We develop a general theory for multiphoton qubit-resonator interactions enhanced by a qubit drive. The interactions generate qubit-conditional operations in the resonator when the driving is near $n$-photon cross-resonance, namely, the qubit drive is $n$-times the resonator frequency. We pay special attention to the strong driving regime, where the interactions are conditioned on the qubit dressed states. We consider the specific case where $n=2$, which results in qubit-conditional squeezing (QCS). We show that the QCS protocol can be used to generate a superposition of orthogonally squeezed states following a properly chosen qubit measurement. We outline quantum information processing applications for these states, including encoding a qubit in a resonator via the superposition of orthogonally squeezed states. We show how the QCS operation can be used to realize a controlled-squeeze gate and its use in bosonic phase estimation. The QCS protocol can also be utilized to achieve faster unitary operator synthesis on the joint qubit-resonator Hilbert space. Next, we investigate the use of a two-tone drive to engineer an effective $n$-photon Rabi Hamiltonian with widely tunable effective system parameters, which could enable the realization of new regimes that have so far been inaccessible. Finally, we propose a multiphoton circuit QED implementation based on a transmon qubit coupled to a resonator via an asymmetric SQUID. We provide realistic parameter estimates for the two-photon operation regime that can host the aforementioned two-photon protocols. We use numerical simulations to show that even in the presence of spurious terms and decoherence, our analytical predictions are robust. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01518v4-abstract-full').style.display = 'none'; document.getElementById('2405.01518v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 053711 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18523">arXiv:2404.18523</a> <span> [<a href="https://arxiv.org/pdf/2404.18523">pdf</a>, <a href="https://arxiv.org/format/2404.18523">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.023718">10.1103/PhysRevA.110.023718 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical Blockade Optimizing via Particle Swarm Optimization Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+G">Guang-Yu Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zhi-Hao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18523v1-abstract-short" style="display: inline;"> Photon blockade in weak nonlinear regime is an exciting and promising subject that has been extensively studied in the steady state. However, how to achieve dynamic blockade in a single bosonic mode with weak nonlinearity using only pulsed driving field remains unexplored. Here, we propose to optimize the parameters of the pulsed driving field to achieve dynamic blockade in a single bosonic mode w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18523v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18523v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18523v1-abstract-full" style="display: none;"> Photon blockade in weak nonlinear regime is an exciting and promising subject that has been extensively studied in the steady state. However, how to achieve dynamic blockade in a single bosonic mode with weak nonlinearity using only pulsed driving field remains unexplored. Here, we propose to optimize the parameters of the pulsed driving field to achieve dynamic blockade in a single bosonic mode with weak nonlinearity via the particle swarm optimization (PSO) algorithm. We demonstrate that both Gaussian and rectangular pulses can be used to generate dynamic photon blockade in a single bosonic mode with weak nonlinearity. Based on the Fourier series expansions of the pulsed driving field, we identify that there are many paths for two-photon excitation in the bosonic mode, even only driven by pulsed field, and the dynamic blockade in weak nonlinear regime is induced by the destructive interference between them. Our work not only highlights the effectiveness of PSO algorithm in optimizing dynamical blockade, but also opens a way to optimize the parameters for other quantum effects, such as quantum entanglement and quantum squeezing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18523v1-abstract-full').style.display = 'none'; document.getElementById('2404.18523v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 023718 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14173">arXiv:2404.14173</a> <span> [<a href="https://arxiv.org/pdf/2404.14173">pdf</a>, <a href="https://arxiv.org/format/2404.14173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Noiseless linear amplification-based quantum Ziv-Zakai bound for phase estimation and its Heisenberg error limits in noisy scenarios </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ye%2C+W">Wei Ye</a>, <a href="/search/quant-ph?searchtype=author&query=Xiao%2C+P">Peng Xiao</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiaofan Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+X">Xiang Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+Y">Yunbin Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+L">Lu Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+J">Jie Ren</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Y">Yuxuan Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+Y">Ying Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Rao%2C+X">Xuan Rao</a>, <a href="/search/quant-ph?searchtype=author&query=Chang%2C+S">Shoukang Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14173v1-abstract-short" style="display: inline;"> In this work, we address the central problem about how to effectively find the available precision limit of unknown parameters. In the framework of the quantum Ziv-Zakai bound (QZZB), we employ noiseless linear amplification (NLA)techniques to an initial coherent state (CS) as the probe state, and focus on whether the phase estimation performance is improved significantly in noisy scenarios, invol… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14173v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14173v1-abstract-full" style="display: none;"> In this work, we address the central problem about how to effectively find the available precision limit of unknown parameters. In the framework of the quantum Ziv-Zakai bound (QZZB), we employ noiseless linear amplification (NLA)techniques to an initial coherent state (CS) as the probe state, and focus on whether the phase estimation performance is improved significantly in noisy scenarios, involving the photon-loss and phase-diffusion cases. More importantly, we also obtain two kinds of Heisenberg error limits of the QZZB with the NLA-based CS in these noisy scenarios, making comparisons with both the Margolus-Levitin (ML) type bound and the Mandelstam-Tamm (MT) type bound. Our analytical results show that in cases of photon loss and phase diffusion, the phase estimation performance of the QZZB can be improved remarkably by increasing the NLA gain factor. Particularly, the improvement is more pronounced with severe photon losses. Furthermore in minimal photon losses, our Heisenberg error limit shows better compactness than the cases of the ML-type and MT-type bounds. Our findings will provide an useful guidance for accomplishing more complex quantum information processing tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14173v1-abstract-full').style.display = 'none'; document.getElementById('2404.14173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13971">arXiv:2404.13971</a> <span> [<a href="https://arxiv.org/pdf/2404.13971">pdf</a>, <a href="https://arxiv.org/format/2404.13971">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> HamilToniQ: An Open-Source Benchmark Toolkit for Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiaotian Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+K">Kuan-Cheng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Wille%2C+R">Robert Wille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13971v1-abstract-short" style="display: inline;"> In this paper, we introduce HamilToniQ, an open-source, and application-oriented benchmarking toolkit for the comprehensive evaluation of Quantum Processing Units (QPUs). Designed to navigate the complexities of quantum computations, HamilToniQ incorporates a methodological framework assessing QPU types, topologies, and multi-QPU systems. The toolkit facilitates the evaluation of QPUs' performance… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13971v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13971v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13971v1-abstract-full" style="display: none;"> In this paper, we introduce HamilToniQ, an open-source, and application-oriented benchmarking toolkit for the comprehensive evaluation of Quantum Processing Units (QPUs). Designed to navigate the complexities of quantum computations, HamilToniQ incorporates a methodological framework assessing QPU types, topologies, and multi-QPU systems. The toolkit facilitates the evaluation of QPUs' performance through multiple steps including quantum circuit compilation and quantum error mitigation (QEM), integrating strategies that are unique to each stage. HamilToniQ's standardized score, H-Score, quantifies the fidelity and reliability of QPUs, providing a multidimensional perspective of QPU performance. With a focus on the Quantum Approximate Optimization Algorithm (QAOA), the toolkit enables direct, comparable analysis of QPUs, enhancing transparency and equity in benchmarking. Demonstrated in this paper, HamilToniQ has been validated on various IBM QPUs, affirming its effectiveness and robustness. Overall, HamilToniQ significantly contributes to the advancement of the quantum computing field by offering precise and equitable benchmarking metrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13971v1-abstract-full').style.display = 'none'; document.getElementById('2404.13971v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03397">arXiv:2404.03397</a> <span> [<a href="https://arxiv.org/pdf/2404.03397">pdf</a>, <a href="https://arxiv.org/ps/2404.03397">ps</a>, <a href="https://arxiv.org/format/2404.03397">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0217493">10.1063/5.0217493 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controllable non-Hermitian qubit-qubit Coupling in Superconducting quantum Circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Y">Yan-Jun Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03397v3-abstract-short" style="display: inline;"> We propose a theoretical scheme to realize the controllable non-Hermitian qubit-qubit coupling by adding a high-loss resonator in tunable coupling superconducting quantum circuit. By changing the effective qubit-qubit coupling, phase and amplitude of resonator-qubit interaction, and the qubits' quantum states, we can continually tune the energy level attraction, position of EP (exceptional poi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03397v3-abstract-full').style.display = 'inline'; document.getElementById('2404.03397v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03397v3-abstract-full" style="display: none;"> We propose a theoretical scheme to realize the controllable non-Hermitian qubit-qubit coupling by adding a high-loss resonator in tunable coupling superconducting quantum circuit. By changing the effective qubit-qubit coupling, phase and amplitude of resonator-qubit interaction, and the qubits' quantum states, we can continually tune the energy level attraction, position of EP (exceptional point), and the nonreciprocity in the non-Hermitian superconducting circuit. The EPs and non-reciprocity can affect the quantum states' evolutions and exchange efficiencies for two qubits in the non-Hermitian superconducting circuit. The controllable non-Hermitian and nonreciprocal interactions between two qubits provide a new insights and methods for exploring the unconventional quantum effects in superconducting quantum circuit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03397v3-abstract-full').style.display = 'none'; document.getElementById('2404.03397v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Quantum 1, 046125 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18299">arXiv:2403.18299</a> <span> [<a href="https://arxiv.org/pdf/2403.18299">pdf</a>, <a href="https://arxiv.org/format/2403.18299">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.063705">10.1103/PhysRevA.110.063705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling Enhancement of Photon Blockade in Output Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zhi-Hao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18299v2-abstract-short" style="display: inline;"> Photon blockade enhancement is an exciting and promising subject that has been well studied for photons in cavities. However, whether photon blockade can be enhanced in the output fields remains largely unexplored. We show that photon blockade can be greatly enhanced in the mixing output field of a nonlinear cavity and an auxiliary (linear) cavity, where no direct coupling between the nonlinear an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18299v2-abstract-full').style.display = 'inline'; document.getElementById('2403.18299v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18299v2-abstract-full" style="display: none;"> Photon blockade enhancement is an exciting and promising subject that has been well studied for photons in cavities. However, whether photon blockade can be enhanced in the output fields remains largely unexplored. We show that photon blockade can be greatly enhanced in the mixing output field of a nonlinear cavity and an auxiliary (linear) cavity, where no direct coupling between the nonlinear and auxiliary cavities is needed. We uncover a biquadratic scaling relation between the second-order correlation of the photons in the output field and intracavity nonlinear interaction strength, in contrast to a quadratic scaling relation for the photons in a nonlinear cavity. We identify that this scaling enhancement of photon blockade in the output field is induced by the destructive interference between two of the paths for two photons passing through the two cavities. We then extend the theory to the experimentally feasible Jaynes-Cummings model consisting of a two-level system strongly coupled to one of the two uncoupled cavities and also predict a biquadratic scaling law in the mixing output field. Our proposed scheme is general and can be extended to enhance blockade in other bosonic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18299v2-abstract-full').style.display = 'none'; document.getElementById('2403.18299v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 063705 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05828">arXiv:2403.05828</a> <span> [<a href="https://arxiv.org/pdf/2403.05828">pdf</a>, <a href="https://arxiv.org/format/2403.05828">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+K">Kuan-Cheng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+X">Xiaoren Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiaotian Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yun-Yuan Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+C">Chen-Yu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05828v2-abstract-short" style="display: inline;"> Achieving high-performance computation on quantum systems presents a formidable challenge that necessitates bridging the capabilities between quantum hardware and classical computing resources. This study introduces an innovative distribution-aware Quantum-Classical-Quantum (QCQ) architecture, which integrates cutting-edge quantum software framework works with high-performance classical computing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05828v2-abstract-full').style.display = 'inline'; document.getElementById('2403.05828v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05828v2-abstract-full" style="display: none;"> Achieving high-performance computation on quantum systems presents a formidable challenge that necessitates bridging the capabilities between quantum hardware and classical computing resources. This study introduces an innovative distribution-aware Quantum-Classical-Quantum (QCQ) architecture, which integrates cutting-edge quantum software framework works with high-performance classical computing resources to address challenges in quantum simulation for materials and condensed matter physics. At the heart of this architecture is the seamless integration of VQE algorithms running on QPUs for efficient quantum state preparation, Tensor Network states, and QCNNs for classifying quantum states on classical hardware. For benchmarking quantum simulators, the QCQ architecture utilizes the cuQuantum SDK to leverage multi-GPU acceleration, integrated with PennyLane's Lightning plugin, demonstrating up to tenfold increases in computational speed for complex phase transition classification tasks compared to traditional CPU-based methods. This significant acceleration enables models such as the transverse field Ising and XXZ systems to accurately predict phase transitions with a 99.5% accuracy. The architecture's ability to distribute computation between QPUs and classical resources addresses critical bottlenecks in Quantum-HPC, paving the way for scalable quantum simulation. The QCQ framework embodies a synergistic combination of quantum algorithms, machine learning, and Quantum-HPC capabilities, enhancing its potential to provide transformative insights into the behavior of quantum systems across different scales. As quantum hardware continues to improve, this hybrid distribution-aware framework will play a crucial role in realizing the full potential of quantum computing by seamlessly integrating distributed quantum resources with the state-of-the-art classical computing infrastructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05828v2-abstract-full').style.display = 'none'; document.getElementById('2403.05828v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04284">arXiv:2403.04284</a> <span> [<a href="https://arxiv.org/pdf/2403.04284">pdf</a>, <a href="https://arxiv.org/format/2403.04284">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Highly stable power control for chip-based continuous-variable quantum key distribution system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Bian%2C+Y">Yiming Bian</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xuesong Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+Y">Yan Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+W">Wei Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Song Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+B">Bingjie Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04284v1-abstract-short" style="display: inline;"> Quantum key distribution allows secret key generation with information theoretical security. It can be realized with photonic integrated circuits to benefit the tiny footprints and the large-scale manufacturing capacity. Continuous-variable quantum key distribution is suitable for chip-based integration due to its compatibility with mature optical communication devices. However, the quantum signal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04284v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04284v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04284v1-abstract-full" style="display: none;"> Quantum key distribution allows secret key generation with information theoretical security. It can be realized with photonic integrated circuits to benefit the tiny footprints and the large-scale manufacturing capacity. Continuous-variable quantum key distribution is suitable for chip-based integration due to its compatibility with mature optical communication devices. However, the quantum signal power control compatible with the mature photonic integration process faces difficulties on stability, which limits the system performance and causes the overestimation of secret key rate that opens practical security loopholes. Here, a highly stable chip-based quantum signal power control scheme based on a biased Mach-Zehnder interferometer structure is proposed, theoretically analyzed and experimentally implemented with standard silicon photonic techniques. Simulations and experimental results show that the proposed scheme significantly improves the system stability, where the standard deviation of the secret key rate is suppressed by an order of magnitude compared with the system using traditional designs, showing a promising and practicable way to realize highly stable continuous-variable quantum key distribution system on chip. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04284v1-abstract-full').style.display = 'none'; document.getElementById('2403.04284v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02659">arXiv:2403.02659</a> <span> [<a href="https://arxiv.org/pdf/2403.02659">pdf</a>, <a href="https://arxiv.org/format/2403.02659">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Advantage: A Single Qubit's Experimental Edge in Classical Data Storage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ding%2C+C">Chen Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Lobo%2C+E+P">Edwin Peter Lobo</a>, <a href="/search/quant-ph?searchtype=author&query=Alimuddin%2C+M">Mir Alimuddin</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Yue Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+S">Shuo Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Banik%2C+M">Manik Banik</a>, <a href="/search/quant-ph?searchtype=author&query=Bao%2C+W">Wan-Su Bao</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+H">He-Liang Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02659v2-abstract-short" style="display: inline;"> We implement an experiment on a photonic quantum processor establishing efficacy of the elementary quantum system in classical information storage. The advantage is established by considering a class of simple bipartite games played with the communication resource qubit and classical bit (c-bit), respectively. Conventional wisdom, supported by the no-go theorems of Holevo and Frenkel-Weiner, sugge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02659v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02659v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02659v2-abstract-full" style="display: none;"> We implement an experiment on a photonic quantum processor establishing efficacy of the elementary quantum system in classical information storage. The advantage is established by considering a class of simple bipartite games played with the communication resource qubit and classical bit (c-bit), respectively. Conventional wisdom, supported by the no-go theorems of Holevo and Frenkel-Weiner, suggests that such a quantum advantage is unattainable when the sender and receiver share randomness or classical correlations. However, our results reveal a quantum advantage in a scenario devoid of any shared randomness. Our experiment involves the development of a variational triangular polarimeter, enabling the realization of positive operator value measurements crucial for establishing the targeted quantum advantage. Beyond showcasing a robust communication advantage with a single qubit, our work paves the way for immediate applications in near-term quantum technologies. It provides a semi-device-independent certification scheme for quantum encoding-decoding systems and offers an efficient method for information loading and transmission in quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02659v2-abstract-full').style.display = 'none'; document.getElementById('2403.02659v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Rev. Lett</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xu%2C+X&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xu%2C+X&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+X&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+X&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+X&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+X&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>