CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 156 results for author: <span class="mathjax">Shen, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Shen%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Shen, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Shen%2C+X&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Shen, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Shen%2C+X&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Shen%2C+X&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Shen%2C+X&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Shen%2C+X&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Shen%2C+X&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16798">arXiv:2502.16798</a> <span> [<a href="https://arxiv.org/pdf/2502.16798">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A Monitoring Method for the Ice Shape and the Freeze-Thaw Process of Ice Accretion on Transmission Lines Based on Circular FBG Plane Principal Strain Sensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qin%2C+Z">Zhuoke Qin</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+B">Bin Jia</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiahui Shen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Lizhen Zhang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+H">Honggang Lu</a>, <a href="/search/physics?searchtype=author&query=Du%2C+C">Chao Du</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+L">Liqin Cui</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Li Zhang</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+X">Xiao Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16798v1-abstract-short" style="display: inline;"> As a key infrastructure for China's "West-to-East Power Transmission" project, transmission lines (TL) face the threat of ice accretion under complex microclimatic conditions. This study proposes a plane principal strain sensing method based on a fiber Bragg grating circular array, achieving synchronous monitoring of 6 strains (ranging from -2000 to 2000 渭蔚) across the TL cross-section. Through fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16798v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16798v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16798v1-abstract-full" style="display: none;"> As a key infrastructure for China's "West-to-East Power Transmission" project, transmission lines (TL) face the threat of ice accretion under complex microclimatic conditions. This study proposes a plane principal strain sensing method based on a fiber Bragg grating circular array, achieving synchronous monitoring of 6 strains (ranging from -2000 to 2000 渭蔚) across the TL cross-section. Through finite element simulation experiments, a mapping relationship between the bending of TL and the plane principal strain has been established. After completing the sensor calibration, an experimental platform for the freeze-thaw process of ice accretion on the TL was built. The relationships between ice mass and bending strain, as well as the ice shape on the TL cross-section (C-shaped and circular ice) and plane principal strain, were studied. Furthermore, a BP neural network model was developed to determine the 4 states of the icing process (no ice/freeze/stable/thaw), achieving an accuracy of 91.23%. This study provides effective monitoring of the freeze-thaw process of ice accretion on the TL, offering important technical support for the prevention and control of ice accretion in power grid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16798v1-abstract-full').style.display = 'none'; document.getElementById('2502.16798v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13956">arXiv:2502.13956</a> <span> [<a href="https://arxiv.org/pdf/2502.13956">pdf</a>, <a href="https://arxiv.org/format/2502.13956">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Imaging the Photochemistry of Cyclobutanone using Ultrafast Electron Diffraction: Experimental Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Green%2C+A+E">A. E. Green</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Allum%2C+F">F. Allum</a>, <a href="/search/physics?searchtype=author&query=Gra%C3%9Fl%2C+M">M. Gra脽l</a>, <a href="/search/physics?searchtype=author&query=Lenzen%2C+P">P. Lenzen</a>, <a href="/search/physics?searchtype=author&query=Ashfold%2C+M+N+R">M. N. R. Ashfold</a>, <a href="/search/physics?searchtype=author&query=Bhattacharyya%2C+S">S. Bhattacharyya</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">X. Cheng</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">M. Centurion</a>, <a href="/search/physics?searchtype=author&query=Crane%2C+S+W">S. W. Crane</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R+G">R. G. Forbes</a>, <a href="/search/physics?searchtype=author&query=Goff%2C+N+A">N. A. Goff</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">L. Huang</a>, <a href="/search/physics?searchtype=author&query=Kaufman%2C+B">B. Kaufman</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Kramer%2C+P+L">P. L. Kramer</a>, <a href="/search/physics?searchtype=author&query=Lam%2C+H+V+S">H. V. S. Lam</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">K. A. Larsen</a>, <a href="/search/physics?searchtype=author&query=Lemons%2C+R">R. Lemons</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M+-">M. -F. Lin</a>, <a href="/search/physics?searchtype=author&query=Orr-Ewing%2C+A+J">A. J. Orr-Ewing</a>, <a href="/search/physics?searchtype=author&query=Rolles%2C+D">D. Rolles</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+A">A. Rudenko</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">S. K. Saha</a>, <a href="/search/physics?searchtype=author&query=Searles%2C+J">J. Searles</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13956v1-abstract-short" style="display: inline;"> We investigated the ultrafast structural dynamics of cyclobutanone following photoexcitation at $位=200$ nm using gas-phase megaelectronvolt ultrafast electron diffraction. Our investigation complements the simulation studies of the same process within this special issue. It provides information about both electronic state population and structural dynamics through well-separable inelastic and elas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13956v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13956v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13956v1-abstract-full" style="display: none;"> We investigated the ultrafast structural dynamics of cyclobutanone following photoexcitation at $位=200$ nm using gas-phase megaelectronvolt ultrafast electron diffraction. Our investigation complements the simulation studies of the same process within this special issue. It provides information about both electronic state population and structural dynamics through well-separable inelastic and elastic electron scattering signatures. We observe the depopulation of the photoexcited S$_2$ state of cyclobutanone with n3s Rydberg character through its inelastic electron scattering signature with a time constant of $(0.29 \pm 0.2)$ ps towards the S$_1$ state. The S$_1$ state population undergoes ring-opening via a Norrish Type-I reaction, likely while passing through a conical intersection with S$_0$. The corresponding structural changes can be tracked by elastic electron scattering signatures. These changes appear with a delay of $(0.14 \pm 0.05)$ ps with respect the initial photoexcitation, which is less than the S$_2$ depopulation time constant. This behavior provides evidence for the ballistic nature of the ring-opening once the S$_1$ state is reached. The resulting biradical species react further within $(1.2 \pm 0.2)$ ps via two rival fragmentation channels yielding ketene and ethylene, or propene and carbon monoxide. Our study showcases both the value of gas-phase ultrafast diffraction studies as an experimental benchmark for nonadiabatic dynamics simulation methods and the limits in the interpretation of such experimental data without comparison to such simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13956v1-abstract-full').style.display = 'none'; document.getElementById('2502.13956v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11769">arXiv:2502.11769</a> <span> [<a href="https://arxiv.org/pdf/2502.11769">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quasi-perfect spatiotemporal optical vortex with suppressed mode degradation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+S">Shunlin Huang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiong Shen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Renjing Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11769v1-abstract-short" style="display: inline;"> Spatiotemporal optical vortex (STOV) carrying transverse orbital angular momentum (OAM) enriches the family of vortex beams and exhibit unique properties. Typically, a high-order STOV with an intensity null degrades into multiple first-order STOVs embedded within a single wave packet during propagation, a phenomenon known as time diffraction or mode degradation. However, this degradation limits th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11769v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11769v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11769v1-abstract-full" style="display: none;"> Spatiotemporal optical vortex (STOV) carrying transverse orbital angular momentum (OAM) enriches the family of vortex beams and exhibit unique properties. Typically, a high-order STOV with an intensity null degrades into multiple first-order STOVs embedded within a single wave packet during propagation, a phenomenon known as time diffraction or mode degradation. However, this degradation limits the applicability of STOVs in specialized fields. Therefore, the generation of mode degradation-suppressed STOVs (MDS-STOVs) is of significant for both practical applications and theoretical studies. Herein, we theoretically analyze the generation of MDS-STOVs by utilizing a conical phase to localize the energy of the STOV into a ring-shaped structure. For MDS-STOVs with large topological charges (TCs), the ring-shaped profile can be well-maintained, and the rapid expansion of the beam size with increasing TC is significantly suppressed compared to conventional STOVs. As a result, these MDS-STOVs can be regarded as quasi-perfect STOVs (QPSTOVs). Furthermore, QPSTOVs exhibit strong resistance to group delay dispersion (GDD), eliminating the need for precise dispersion control and facilitating their generation and application. This work advances our understanding of the physical properties of light carrying transverse OAM and opens up exciting avenues for the application of STOVs in diverse fields, such as optical communication and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11769v1-abstract-full').style.display = 'none'; document.getElementById('2502.11769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.19299">arXiv:2501.19299</a> <span> [<a href="https://arxiv.org/pdf/2501.19299">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Ultra-fast Real-time Target Recognition Using a Shift, Scale, and Rotation Invariant Hybrid Opto-electronic Joint Transform Correlator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xi Shen</a>, <a href="/search/physics?searchtype=author&query=Gamboa%2C+J">Julian Gamboa</a>, <a href="/search/physics?searchtype=author&query=Hamidfar%2C+T">Tabassom Hamidfar</a>, <a href="/search/physics?searchtype=author&query=Mitu%2C+S+A">Shamima A. Mitu</a>, <a href="/search/physics?searchtype=author&query=Shahriar%2C+S+M">Selim M. Shahriar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.19299v1-abstract-short" style="display: inline;"> Hybrid Opto-electronic correlators (HOC) overcome many limitations of all-optical correlators (AOC) while maintaining high-speed operation. However, neither the OEC nor the AOC in their conventional configurations can detect targets that have been rotated or scaled relative to a reference. This can be addressed by using a polar Mellin transform (PMT) pre-processing step to convert input images int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19299v1-abstract-full').style.display = 'inline'; document.getElementById('2501.19299v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.19299v1-abstract-full" style="display: none;"> Hybrid Opto-electronic correlators (HOC) overcome many limitations of all-optical correlators (AOC) while maintaining high-speed operation. However, neither the OEC nor the AOC in their conventional configurations can detect targets that have been rotated or scaled relative to a reference. This can be addressed by using a polar Mellin transform (PMT) pre-processing step to convert input images into signatures that contain most of the relevant information, albeit represented in a shift, scale, and rotation invariant (SSRI) manner. The PMT requires the use of optics to perform the Fourier transform and electronics for a log-polar remapping step. Recently, we demonstrated a pipelined architecture that can perform the PMT at a speed of 720 frames per second (fps), enabling the construction of an efficient opto-electronic PMT pre-processor. Here, we present an experimental demonstration of a complete HOC that implements this technique to achieve real-time and ultra-fast SSRI target recognition for space situational awareness. For this demonstration, we make use of a modified version of the HOC that makes use of Joint Transform Correlation , thus rendering the system simpler and more compact. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19299v1-abstract-full').style.display = 'none'; document.getElementById('2501.19299v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09742">arXiv:2501.09742</a> <span> [<a href="https://arxiv.org/pdf/2501.09742">pdf</a>, <a href="https://arxiv.org/format/2501.09742">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Exact Parent Hamiltonians for All Landau Level States in a Half-flux Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xin Shen</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+G">Guangyue Ji</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jinjie Zhang</a>, <a href="/search/physics?searchtype=author&query=Palomino%2C+D+E">David E. Palomino</a>, <a href="/search/physics?searchtype=author&query=Mera%2C+B">Bruno Mera</a>, <a href="/search/physics?searchtype=author&query=Ozawa%2C+T">Tomoki Ozawa</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jie Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09742v1-abstract-short" style="display: inline;"> Realizing topological flat bands with tailored single-particle Hilbert spaces is a critical step toward exploring many-body phases, such as those featuring anyonic excitations. One prominent example is the Kapit-Mueller model, a variant of the Harper-Hofstadter model that stabilizes lattice analogs of the lowest Landau level states. The Kapit-Mueller model is constructed based on the Poisson summa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09742v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09742v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09742v1-abstract-full" style="display: none;"> Realizing topological flat bands with tailored single-particle Hilbert spaces is a critical step toward exploring many-body phases, such as those featuring anyonic excitations. One prominent example is the Kapit-Mueller model, a variant of the Harper-Hofstadter model that stabilizes lattice analogs of the lowest Landau level states. The Kapit-Mueller model is constructed based on the Poisson summation rule, an exact lattice sum rule for coherent states. In this work, we consider higher Landau-level generalizations of the Poisson summation rule, from which we derive families of parent Hamiltonians on a half-flux lattice which have exact flat bands whose flatband wavefunctions are lattice version of higher Landau level states. Focusing on generic Bravais lattices with only translation and inversion symmetries, we discuss how these symmetries enforced gaplessness and singular points for odd Landau level series, and how to achieve fully gapped parent Hamiltonians by mixing even and odd series. Our model points to a large class of tight-binding models with suitable energetic and quantum geometries that are potentially useful for realizing non-Abelian fractionalized states when interactions are included. The model exhibits fast decay hopping amplitudes, making it potentially realizable with neutral atoms in optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09742v1-abstract-full').style.display = 'none'; document.getElementById('2501.09742v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09701">arXiv:2501.09701</a> <span> [<a href="https://arxiv.org/pdf/2501.09701">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4MH00795F">10.1039/D4MH00795F <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mixed anion control of enhanced negative thermal expansion in the oxysulfide of PbTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pan%2C+Z">Zhao Pan</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Z">Zhengli Liang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao Wang</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Y">Yue-Wen Fang</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+X">Xubin Ye</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhehong Liu</a>, <a href="/search/physics?searchtype=author&query=Nishikubo%2C+T">Takumi Nishikubo</a>, <a href="/search/physics?searchtype=author&query=Sakai%2C+Y">Yuki Sakai</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xi Shen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qiumin Liu</a>, <a href="/search/physics?searchtype=author&query=Kawaguchi%2C+S">Shogo Kawaguchi</a>, <a href="/search/physics?searchtype=author&query=Zhan%2C+F">Fei Zhan</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+L">Longlong Fan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yong-Yang Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+C">Chen-Yan Ma</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xingxing Jiang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Z">Zheshuai Lin</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+R">Richeng Yu</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+X">Xianran Xing</a>, <a href="/search/physics?searchtype=author&query=Azuma%2C+M">Masaki Azuma</a>, <a href="/search/physics?searchtype=author&query=Long%2C+Y">Youwen Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09701v1-abstract-short" style="display: inline;"> The rare physical property of negative thermal expansion (NTE) is intriguing because materials with large NTE over a wide temperature range can serve as high-performance thermal expansion compensators. However, applications of NTE are hindered by the fact that most of the available NTE materials show small magnitudes of NTE, and/or NTE occurs only in a narrow temperature range. Herein, for the fir… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09701v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09701v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09701v1-abstract-full" style="display: none;"> The rare physical property of negative thermal expansion (NTE) is intriguing because materials with large NTE over a wide temperature range can serve as high-performance thermal expansion compensators. However, applications of NTE are hindered by the fact that most of the available NTE materials show small magnitudes of NTE, and/or NTE occurs only in a narrow temperature range. Herein, for the first time, we investigated the effect of anion substitution instead of general Pb/Ti-site substitutions on the thermal expansion properties of a typical ferroelectric NTE material, PbTiO3. Intriguingly, the substitution of S for O in PbTiO3 further increases the tetragonality of PbTiO3. Consequently, an unusually enhanced NTE with an average volumetric coefficient of thermal expansion $\bar伪_V$ = -2.50 $\times$ 10$^{-5}$/K was achieved over a wide temperature range (300 -- 790 K), which is contrasted to that of pristine PbTiO3 ($\bar伪_V$ = -1.99 $\times$ 10$^{-5}$/K RT -- 763 K). The intensified NTE is attributed to the enhanced hybridization between Pb/Ti and O/S atoms by the substitution of S, as evidenced by our theoretical investigations. We therefore demonstrate a new technique for introducing mixed anions to achieve large NTE over a wide temperature range in PbTiO3-based ferroelectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09701v1-abstract-full').style.display = 'none'; document.getElementById('2501.09701v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Horizons, 11, 5394-5401, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17466">arXiv:2411.17466</a> <span> [<a href="https://arxiv.org/pdf/2411.17466">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Magnetic polaronic exciton in A-type 2D van der Waals bulk material CrSBr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaodong Shen</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+J">Jiajun Cao</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+W">Weizheng Liang</a>, <a href="/search/physics?searchtype=author&query=Cong%2C+B">Borong Cong</a>, <a href="/search/physics?searchtype=author&query=Ke%2C+B">Bao Ke</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">Jialong Zhao</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+B">Bingsuo Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17466v1-abstract-short" style="display: inline;"> 2D magnetic semiconductor CrSBr exhibits unique magneto-optical properties, yet its electronic structure and photophysical mechanisms remain unclear at high magnetic field and low temperature. Through comprehensive spectroscopic investigations, its charge-transfer band edge is identified at 500 nm. Below this band-edge, local excitonic magnetic polaronic states from Cr3+ ions out of FM aggregates… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17466v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17466v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17466v1-abstract-full" style="display: none;"> 2D magnetic semiconductor CrSBr exhibits unique magneto-optical properties, yet its electronic structure and photophysical mechanisms remain unclear at high magnetic field and low temperature. Through comprehensive spectroscopic investigations, its charge-transfer band edge is identified at 500 nm. Below this band-edge, local excitonic magnetic polaronic states from Cr3+ ions out of FM aggregates in layer and bilayer could be seen due to phonon-spin-exciton coupling, in which magnetic polaronic PL1 emission occurs at 720 nm from single Cr3+ d-d transition, a dark-state pair exciton occurs at 850 nm in 10 K magnetic field, and double-peak PL2 emission at 920 nm out of Cr3+ FM trimer in monolayer is seen; besides, the magnetic bi-polaronic PL3 at 990 nm can be assigned to Cr3+ tetramers between FM adjacent layers. In magnetic field perpendicular to the layer, direct competition between PL1and dark-state excitons and PL2 and PL3 excitonic states persist in different temperatures. This study sheds light on the complicated magneto-exciton interactions in the multi-body effect of CrSBr, beneficial for quantum modulation in layered magnetic semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17466v1-abstract-full').style.display = 'none'; document.getElementById('2411.17466v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17208">arXiv:2411.17208</a> <span> [<a href="https://arxiv.org/pdf/2411.17208">pdf</a>, <a href="https://arxiv.org/format/2411.17208">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Manipulation of topology by electric field in breathing kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xie%2C+Y">Yu Xie</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+K">Ke Ji</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jun He</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaofan Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dinghui Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junting Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17208v1-abstract-short" style="display: inline;"> Magnetic kagome lattices have attracted much attention recently due to the interplay of band topology with magnetism and electronic correlations, which give rise to a variety of exotic quantum states. A common structural distortion of the kagome lattice is the breathing mode, which can significantly influence the magnetism and band characteristics. However, the modulation of breathing mode and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17208v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17208v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17208v1-abstract-full" style="display: none;"> Magnetic kagome lattices have attracted much attention recently due to the interplay of band topology with magnetism and electronic correlations, which give rise to a variety of exotic quantum states. A common structural distortion of the kagome lattice is the breathing mode, which can significantly influence the magnetism and band characteristics. However, the modulation of breathing mode and the associated topological phenomena remain rarely explored. Here, we demonstrate that the coupling of breathing modes with ferroelectricity, magnetism, and band topology in the M3X8 monolayer system enables electric field manipulation of topological spin structure and electronic states. The breathing mode mainly occurs in materials containing early 4d/5d transition metal elements and can be reversed or even suppressed via ferroelectric switching in low-barrier materials. Importantly, electric field-induced switching of the breathing mode can alter the chirality of the topological spin structure, or trigger a transition from a topological trivial insulator to a Chern insulator. This work paves the way for exploring novel physical phenomena driven by breathing modes in kagome materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17208v1-abstract-full').style.display = 'none'; document.getElementById('2411.17208v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13297">arXiv:2411.13297</a> <span> [<a href="https://arxiv.org/pdf/2411.13297">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.540272">10.1364/OL.540272 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Degenerate merging BICs in resonant metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gao%2C+Y">Yixiao Gao</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+J">Junyang Ge</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+Z">Zhaofeng Gu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+L">Lei Xu</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiang Shen</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Lujun Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13297v1-abstract-short" style="display: inline;"> Resonant metasurfaces driven by bound states in the continuum (BIC) offer an intriguing approach to engineer high-Q resonances. Merging multiple BICs in the momentum space could further enhance the Q-factor as well as its robustness to fabrication imperfections. Here, we report doubly-degenerate guided mode resonances (GMR) in a resonant metasurface, whose radiation losses could be totally suppres… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13297v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13297v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13297v1-abstract-full" style="display: none;"> Resonant metasurfaces driven by bound states in the continuum (BIC) offer an intriguing approach to engineer high-Q resonances. Merging multiple BICs in the momentum space could further enhance the Q-factor as well as its robustness to fabrication imperfections. Here, we report doubly-degenerate guided mode resonances (GMR) in a resonant metasurface, whose radiation losses could be totally suppressed due to merging BICs. We show that the GMRs and their associated accidental BICs can be evolved into degenerate merging BICs by parametric tuning of the metasurface. Significantly, these two GMRs share the same critical parameter (i.e. lattice constants or thickness) that the merging BICs occur. Interestingly, thanks to the degenerate property of two GMRs, a larger (smaller) period will split one of merging BICs into eight accidental BICs at off-螕 point, but annihilate the other. Such exotic phenomenon can be well explained from the interaction of GMRs and background Fabry-Perot resonances. Our result provides new strategies to engineering high-Q resonances in resonant metasurfaces for light-matter interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13297v1-abstract-full').style.display = 'none'; document.getElementById('2411.13297v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13906">arXiv:2410.13906</a> <span> [<a href="https://arxiv.org/pdf/2410.13906">pdf</a>, <a href="https://arxiv.org/format/2410.13906">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Research on the identification of the two-phase flow pattern of gas-liquid in a vertical rising tube based on BP neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaojun Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shijiao Liu</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+J">Jiayue Qian</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xingpeng Shen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianlong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13906v1-abstract-short" style="display: inline;"> Research on the identification of the two-phase flow pattern of gas-liquid in a vertical rising pipe is of great significance for improving the production capacity and production efficiency of the petrochemical industry. In order to address the problem of the accuracy of the identification of the two-phase flow pattern of gas-liquid, this paper proposes a method for identifying the two-phase flow… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13906v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13906v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13906v1-abstract-full" style="display: none;"> Research on the identification of the two-phase flow pattern of gas-liquid in a vertical rising pipe is of great significance for improving the production capacity and production efficiency of the petrochemical industry. In order to address the problem of the accuracy of the identification of the two-phase flow pattern of gas-liquid, this paper proposes a method for identifying the two-phase flow pattern of gas-liquid in a vertical rising pipe based on BP neural networks. In the study, the Fluent software was used to numerically simulate different two-phase flow velocities. The pipes were all constructed as vertical rising pipes with an inner diameter of 20 mm and a length of 2000 mm. Three flow pattern cloud diagrams and their related data were obtained for bubble flow, elastic flow, and annular flow. The gas content of the three flow types was used to collect data to form a database. The BP neural network was used to classify and identify the three flow patterns, but the result was only 90.73%. We again used the Adam algorithm to optimise the BP neural network and regularise it, and the flow pattern recognition result reached 96.68%, which was a better recognition <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13906v1-abstract-full').style.display = 'none'; document.getElementById('2410.13906v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15464">arXiv:2408.15464</a> <span> [<a href="https://arxiv.org/pdf/2408.15464">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast symmetry control in photoexcited quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guzelturk%2C+B">Burak Guzelturk</a>, <a href="/search/physics?searchtype=author&query=Portner%2C+J">Joshua Portner</a>, <a href="/search/physics?searchtype=author&query=Ondry%2C+J">Justin Ondry</a>, <a href="/search/physics?searchtype=author&query=Ghanbarzadeh%2C+S">Samira Ghanbarzadeh</a>, <a href="/search/physics?searchtype=author&query=Tarantola%2C+M">Mia Tarantola</a>, <a href="/search/physics?searchtype=author&query=Jeong%2C+A">Ahhyun Jeong</a>, <a href="/search/physics?searchtype=author&query=Field%2C+T">Thomas Field</a>, <a href="/search/physics?searchtype=author&query=Chandler%2C+A+M">Alicia M. Chandler</a>, <a href="/search/physics?searchtype=author&query=Wieman%2C+E">Eliza Wieman</a>, <a href="/search/physics?searchtype=author&query=Hopper%2C+T+R">Thomas R. Hopper</a>, <a href="/search/physics?searchtype=author&query=Watkins%2C+N+E">Nicolas E. Watkins</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+J">Jin Yue</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&query=Kramer%2C+P+L">Patrick L. Kramer</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/physics?searchtype=author&query=Borkiewicz%2C+O">Olaf Borkiewicz</a>, <a href="/search/physics?searchtype=author&query=Ruett%2C+U">Uta Ruett</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaoyi Zhang</a>, <a href="/search/physics?searchtype=author&query=Lindenberg%2C+A+M">Aaron M. Lindenberg</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">Jihong Ma</a>, <a href="/search/physics?searchtype=author&query=Schaller%2C+R">Richard Schaller</a>, <a href="/search/physics?searchtype=author&query=Talapin%2C+D+V">Dmitri V. Talapin</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15464v1-abstract-short" style="display: inline;"> Symmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, we unveil reversible symmetry change… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15464v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15464v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15464v1-abstract-full" style="display: none;"> Symmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, we unveil reversible symmetry changes in colloidal lead chalcogenide quantum dots on picosecond timescales. Using a combination of ultrafast electron diffraction and total X-ray scattering, in conjunction with atomic-scale structural modeling and first-principles calculations, we reveal that symmetry-broken lead sulfide quantum dots restore to a centrosymmetric phase upon photoexcitation. The symmetry restoration is driven by photoexcited electronic carriers, which suppress lead off-centering for about 100 ps. Furthermore, the change in symmetry is closely correlated with the electronic properties as shown by transient optical measurements. Overall, this study elucidates reversible symmetry changes in colloidal quantum dots, and more broadly defines a new methodology to optically control symmetry in nanoscale systems on ultrafast timescales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15464v1-abstract-full').style.display = 'none'; document.getElementById('2408.15464v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span> [<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05493">arXiv:2406.05493</a> <span> [<a href="https://arxiv.org/pdf/2406.05493">pdf</a>, <a href="https://arxiv.org/format/2406.05493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Highly Polarized Energetic Electrons via Intense Laser-Irradiated Tailored Targets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaofei Shen</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Zheng Gong</a>, <a href="/search/physics?searchtype=author&query=Hatsagortsyan%2C+K+Z">Karen Z. Hatsagortsyan</a>, <a href="/search/physics?searchtype=author&query=Keitel%2C+C+H">Christoph H. Keitel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05493v1-abstract-short" style="display: inline;"> A method for the generation of ultrarelativistic electron beams with high spin polarization is put forward, where a tightly-focused linearly-polarized ultraintense laser pulse interacts with a nonprepolarized transverse-size-tailored solid target. The radiative spin polarization and angular separation is facilitated by the standing wave formed via the incident and reflected laser pulses at the ove… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05493v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05493v1-abstract-full" style="display: none;"> A method for the generation of ultrarelativistic electron beams with high spin polarization is put forward, where a tightly-focused linearly-polarized ultraintense laser pulse interacts with a nonprepolarized transverse-size-tailored solid target. The radiative spin polarization and angular separation is facilitated by the standing wave formed via the incident and reflected laser pulses at the overdense plasma surface. Strong electron heating caused by transverse instability enhances photon emission in the density spikes injected into the standing wave near the surface. Two groups of electrons with opposite transverse polarization emerge, anti-aligned to the magnetic field, which are angularly separated in the standing wave due to the phase-matched oscillation of the magnetic field and the vector potential. The polarized electrons propelled into the plasma slab, are focused at the exit by the self-generated quasistatic fields. Our particle-in-cell simulations demonstrate the feasibility of highly polarized electrons with a single 10 PW laser beam, e.g. with polarization of 60% and charge of 8 pC selected at energy of 200 MeV within 15 mrad angle and 10% energy spread. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05493v1-abstract-full').style.display = 'none'; document.getElementById('2406.05493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12483">arXiv:2405.12483</a> <span> [<a href="https://arxiv.org/pdf/2405.12483">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Molecule-induced surface second-order nonlinearity in an inversion symmetric microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+R">Ru Wang</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+Y">Yue Dai</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J">Jinsong Cheng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R">Ruoyu Wang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaoqin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12483v1-abstract-short" style="display: inline;"> Inversion symmetry eliminates the second-order nonlinear responses in materials commonly used in silicon photonics with electric-dipole approximation. The lack of effective methods to induce the second-order nonlinearity in silicon photonic materials prevents their applications in second-order nonlinear integrated photonics. Here, we experimentally demonstrate a surface second-order nonlinear opti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12483v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12483v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12483v1-abstract-full" style="display: none;"> Inversion symmetry eliminates the second-order nonlinear responses in materials commonly used in silicon photonics with electric-dipole approximation. The lack of effective methods to induce the second-order nonlinearity in silicon photonic materials prevents their applications in second-order nonlinear integrated photonics. Here, we experimentally demonstrate a surface second-order nonlinear optics approach for boosting the second harmonic (SH) generation process in a silica microcavity. By leveraging the molecule-induced surface second-order nonlinearity, a record high SH efficiency of about 6.7% W-1 is achieved in a silica microcavity functionalized with a surface asymmetrically-aligned molecular monolayer, which is enhanced of two to four orders of magnitude compared to that before molecule-functionalization. Furthermore, we derive the equations that govern the surface second-order nonlinear process in inversion symmetric microcavities. Our method not only enables high efficiency second-order nonlinear frequency conversions in silica photonics, but also can apply to other inversion symmetric material platforms for integrated photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12483v1-abstract-full').style.display = 'none'; document.getElementById('2405.12483v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02268">arXiv:2404.02268</a> <span> [<a href="https://arxiv.org/pdf/2404.02268">pdf</a>, <a href="https://arxiv.org/format/2404.02268">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48923-9">10.1038/s41467-024-48923-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-Objective Bayesian Active Learning for MeV-ultrafast electron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ji%2C+F">Fuhao Ji</a>, <a href="/search/physics?searchtype=author&query=Edelen%2C+A">Auralee Edelen</a>, <a href="/search/physics?searchtype=author&query=Roussel%2C+R">Ryan Roussel</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Miskovich%2C+S">Sara Miskovich</a>, <a href="/search/physics?searchtype=author&query=Weathersby%2C+S">Stephen Weathersby</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&query=Mo%2C+M">Mianzhen Mo</a>, <a href="/search/physics?searchtype=author&query=Kramer%2C+P">Patrick Kramer</a>, <a href="/search/physics?searchtype=author&query=Mayes%2C+C">Christopher Mayes</a>, <a href="/search/physics?searchtype=author&query=Othman%2C+M+A+K">Mohamed A. K. Othman</a>, <a href="/search/physics?searchtype=author&query=Nanni%2C+E">Emilio Nanni</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Reid%2C+A">Alexander Reid</a>, <a href="/search/physics?searchtype=author&query=Minitti%2C+M">Michael Minitti</a>, <a href="/search/physics?searchtype=author&query=England%2C+R+J">Robert Joel England</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02268v2-abstract-short" style="display: inline;"> Ultrafast electron diffraction using MeV energy beams(MeV-UED) has enabled unprecedented scientific opportunities in the study of ultrafast structural dynamics in a variety of gas, liquid and solid state systems. Broad scientific applications usually pose different requirements for electron probe properties. Due to the complex, nonlinear and correlated nature of accelerator systems, electron beam… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02268v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02268v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02268v2-abstract-full" style="display: none;"> Ultrafast electron diffraction using MeV energy beams(MeV-UED) has enabled unprecedented scientific opportunities in the study of ultrafast structural dynamics in a variety of gas, liquid and solid state systems. Broad scientific applications usually pose different requirements for electron probe properties. Due to the complex, nonlinear and correlated nature of accelerator systems, electron beam property optimization is a time-taking process and often relies on extensive hand-tuning by experienced human operators. Algorithm based efficient online tuning strategies are highly desired. Here, we demonstrate multi-objective Bayesian active learning for speeding up online beam tuning at the SLAC MeV-UED facility. The multi-objective Bayesian optimization algorithm was used for efficiently searching the parameter space and mapping out the Pareto Fronts which give the trade-offs between key beam properties. Such scheme enables an unprecedented overview of the global behavior of the experimental system and takes a significantly smaller number of measurements compared with traditional methods such as a grid scan. This methodology can be applied in other experimental scenarios that require simultaneously optimizing multiple objectives by explorations in high dimensional, nonlinear and correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02268v2-abstract-full').style.display = 'none'; document.getElementById('2404.02268v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 4726 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01266">arXiv:2402.01266</a> <span> [<a href="https://arxiv.org/pdf/2402.01266">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Decoupled few-femtosecond phase transitions in vanadium dioxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brahms%2C+C">Christian Brahms</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Lin Zhang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiao Shen</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Recasens%2C+M">Maria Recasens</a>, <a href="/search/physics?searchtype=author&query=Osmond%2C+J">Johann Osmond</a>, <a href="/search/physics?searchtype=author&query=Grass%2C+T">Tobias Grass</a>, <a href="/search/physics?searchtype=author&query=Chhajlany%2C+R+W">Ravindra W. Chhajlany</a>, <a href="/search/physics?searchtype=author&query=Hallman%2C+K+A">Kent A. Hallman</a>, <a href="/search/physics?searchtype=author&query=Haglund%2C+R+F">Richard F. Haglund</a>, <a href="/search/physics?searchtype=author&query=Pantelides%2C+S+T">Sokrates T. Pantelides</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Travers%2C+J+C">John C. Travers</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+A+S">Allan S. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01266v2-abstract-short" style="display: inline;"> The nature of the insulator-to-metal phase transition in vanadium dioxide (VO2) is one of the longest-standing problems in condensed-matter physics. Ultrafast spectroscopy has long promised to determine whether the transition is primarily driven by the electronic or structural degree of freedom, but measurements to date have been stymied by their sensitivity to only one of these components and/or… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01266v2-abstract-full').style.display = 'inline'; document.getElementById('2402.01266v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01266v2-abstract-full" style="display: none;"> The nature of the insulator-to-metal phase transition in vanadium dioxide (VO2) is one of the longest-standing problems in condensed-matter physics. Ultrafast spectroscopy has long promised to determine whether the transition is primarily driven by the electronic or structural degree of freedom, but measurements to date have been stymied by their sensitivity to only one of these components and/or their limited temporal resolution. Here we use ultra-broadband few-femtosecond pump-probe spectroscopy to resolve the electronic and structural phase transitions in VO2 at their fundamental time scales. We find that the system transforms into a bad-metallic phase within 10 fs after photoexcitation, but requires another 100 fs to complete the transition, during which we observe electronic oscillations and a partial re-opening of the bandgap, signalling a transient semi-metallic state. Comparisons with tensor-network simulations and density-functional theory calculations show these features originate from oscillations around the equilibrium high-symmetry atomic positions during an unprecedentedly fast structural transition, in which the vanadium dimers separate and untwist with two different timescales. Our results resolve the complete structural and electronic nature of the light-induced phase transition in VO2 and establish ultra-broadband few-femtosecond spectroscopy as a powerful new tool for studying quantum materials out of equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01266v2-abstract-full').style.display = 'none'; document.getElementById('2402.01266v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15908">arXiv:2401.15908</a> <span> [<a href="https://arxiv.org/pdf/2401.15908">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Energy Localization in Spherical Non-Hermitian Topolectrical Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xizhou Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiumei Wang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+H">Haotian Guo</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xingping Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15908v2-abstract-short" style="display: inline;"> This work delves into the energy localization in non-Hermitian systems, particularly focusing on the effects of topological defects in spherical models. We analyze the mode distribution changes in non-Hermitian Su-Schrieffer-Heeger (SSH) chains impacted by defects, utilizing the Maximum Skin Corner Weight (MaxWSC). By introducing an innovative spherical model, conceptualized through bisecting sphe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15908v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15908v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15908v2-abstract-full" style="display: none;"> This work delves into the energy localization in non-Hermitian systems, particularly focusing on the effects of topological defects in spherical models. We analyze the mode distribution changes in non-Hermitian Su-Schrieffer-Heeger (SSH) chains impacted by defects, utilizing the Maximum Skin Corner Weight (MaxWSC). By introducing an innovative spherical model, conceptualized through bisecting spheres into one-dimensional chain structures, we investigate the non-Hermitian skin effect (NHSE) in a new dimensional context, venturing into the realm of non-Euclidean geometry. Our experimental validations on Printed Circuit Boards (PCBs) confirm the theoretical findings. Collectively, these results not only validate our theoretical framework but also demonstrate the potential of engineered circuit systems to emulate complex non-Hermitian phenomena, showcasing the applicability of non-Euclidean geometries in studying NHSE and topological phenomena in non-Hermitian systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15908v2-abstract-full').style.display = 'none'; document.getElementById('2401.15908v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06864">arXiv:2312.06864</a> <span> [<a href="https://arxiv.org/pdf/2312.06864">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-speed Opto-electronic Pre-processing of Polar Mellin Transform for Shift, Scale and Rotation Invariant Image Recognition at Record-Breaking Speeds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gamboa%2C+J">Julian Gamboa</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xi Shen</a>, <a href="/search/physics?searchtype=author&query=Hamidfar%2C+T">Tabassom Hamidfar</a>, <a href="/search/physics?searchtype=author&query=Shahriar%2C+S+M">Selim M. Shahriar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06864v1-abstract-short" style="display: inline;"> Space situational awareness demands efficient monitoring of terrestrial sites and celestial bodies, necessitating advanced target recognition systems. Current target recognition systems exhibit limited operational speed due to challenges in handling substantial image data. While machine learning has improved this scenario, highresolution images remain a concern. Optical correlators, relying on ana… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06864v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06864v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06864v1-abstract-full" style="display: none;"> Space situational awareness demands efficient monitoring of terrestrial sites and celestial bodies, necessitating advanced target recognition systems. Current target recognition systems exhibit limited operational speed due to challenges in handling substantial image data. While machine learning has improved this scenario, highresolution images remain a concern. Optical correlators, relying on analog processes, provide a potential alternative but are hindered by material limitations. Recent advancements in hybrid opto-electronic correlators (HOC) have addressed such limitations, additionally achieving shift, scale, and rotation invariant (SSRI) target recognition through use of the polar Mellin transform (PMT). However, there are currently no techniques for obtaining the PMT at speeds fast enough to take advantage of the inherent speed of the HOC. To that end, we demonstrate an optoelectronic PMT pre-processor that can operate at record-breaking millisecond frame rates using commercially available components for use in an automated SSRI HOC image recognition system for space situational awareness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06864v1-abstract-full').style.display = 'none'; document.getElementById('2312.06864v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12482">arXiv:2311.12482</a> <span> [<a href="https://arxiv.org/pdf/2311.12482">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.3c13046">10.1021/jacs.3c13046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monitoring the evolution of relative product populations at early times during a photochemical reaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nunes%2C+J+P+F">Joao Pedro Figueira Nunes</a>, <a href="/search/physics?searchtype=author&query=Ibele%2C+L+M">Lea Maria Ibele</a>, <a href="/search/physics?searchtype=author&query=Pathak%2C+S">Shashank Pathak</a>, <a href="/search/physics?searchtype=author&query=Attar%2C+A+R">Andrew R. Attar</a>, <a href="/search/physics?searchtype=author&query=Bhattacharyya%2C+S">Surjendu Bhattacharyya</a>, <a href="/search/physics?searchtype=author&query=Boll%2C+R">Rebecca Boll</a>, <a href="/search/physics?searchtype=author&query=Borne%2C+K">Kurtis Borne</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">Martin Centurion</a>, <a href="/search/physics?searchtype=author&query=Erk%2C+B">Benjamin Erk</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R+J+G">Ruaridh J. G. Forbes</a>, <a href="/search/physics?searchtype=author&query=Goff%2C+N">Nate Goff</a>, <a href="/search/physics?searchtype=author&query=Hansen%2C+C+S">Christopher S. Hansen</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M">Matthias Hoffmann</a>, <a href="/search/physics?searchtype=author&query=Holland%2C+D+M+P">David M. P. Holland</a>, <a href="/search/physics?searchtype=author&query=Ingle%2C+R+A">Rebecca A. Ingle</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&query=Muvva%2C+S+B">Sri Bhavya Muvva</a>, <a href="/search/physics?searchtype=author&query=Reid%2C+A">Alex Reid</a>, <a href="/search/physics?searchtype=author&query=Rouz%C3%A9e%2C+A">Arnaud Rouz茅e</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+A">Artem Rudenko</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">Sajib Kumar Saha</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Venkatachalam%2C+A+S">Anbu Selvam Venkatachalam</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12482v1-abstract-short" style="display: inline;"> Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps towards understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species amongst the emerging re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12482v1-abstract-full').style.display = 'inline'; document.getElementById('2311.12482v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12482v1-abstract-full" style="display: none;"> Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps towards understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species amongst the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (~50%) yield of an episulfide isomer containing a strained 3-membered ring within ~1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12482v1-abstract-full').style.display = 'none'; document.getElementById('2311.12482v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Am. Chem. Soc. 2024, 146, 6, 4134-4143 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07539">arXiv:2309.07539</a> <span> [<a href="https://arxiv.org/pdf/2309.07539">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2023GL103519">10.1029/2023GL103519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron Precipitation Observed by ELFIN Using Proton Precipitation as a Proxy for Electromagnetic Ion Cyclotron (EMIC) Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Capannolo%2C+L">Luisa Capannolo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wen Li</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Q">Qianli Ma</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+M">Murong Qin</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiao-Chen Shen</a>, <a href="/search/physics?searchtype=author&query=Angelopoulos%2C+V">Vassilis Angelopoulos</a>, <a href="/search/physics?searchtype=author&query=Artemyev%2C+A">Anton Artemyev</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiao-Jia Zhang</a>, <a href="/search/physics?searchtype=author&query=Hanzelka%2C+M">Mirek Hanzelka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07539v1-abstract-short" style="display: inline;"> Electromagnetic Ion Cyclotron (EMIC) waves can drive radiation belt depletion and Low-Earth Orbit (LEO) satellites can detect the resulting electron and proton precipitation. The ELFIN (Electron Losses and Fields InvestigatioN) CubeSats provide an excellent opportunity to study the properties of EMIC-driven electron precipitation with much higher energy and pitch-angle resolution than previously a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07539v1-abstract-full').style.display = 'inline'; document.getElementById('2309.07539v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07539v1-abstract-full" style="display: none;"> Electromagnetic Ion Cyclotron (EMIC) waves can drive radiation belt depletion and Low-Earth Orbit (LEO) satellites can detect the resulting electron and proton precipitation. The ELFIN (Electron Losses and Fields InvestigatioN) CubeSats provide an excellent opportunity to study the properties of EMIC-driven electron precipitation with much higher energy and pitch-angle resolution than previously allowed. We collect EMIC-driven electron precipitation events from ELFIN observations and use POES (Polar Orbiting Environmental Satellites) to search for 10s-100s keV proton precipitation nearby as a proxy of EMIC wave activity. Electron precipitation mainly occurs on localized radial scales (0.3 L), over 15-24 MLT and 5-8 L shells, stronger at MeV energies and weaker down to 100-200 keV. Additionally, the observed loss cone pitch-angle distribution agrees with quasilinear predictions at >250 keV (more filled loss cone with increasing energy), while additional mechanisms are needed to explain the observed low-energy precipitation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07539v1-abstract-full').style.display = 'none'; document.getElementById('2309.07539v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This manuscript has been accepted by Geophysical Research Letters in June 2023, currently pending publication. The version here is the accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.06271">arXiv:2309.06271</a> <span> [<a href="https://arxiv.org/pdf/2309.06271">pdf</a>, <a href="https://arxiv.org/format/2309.06271">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ad30c0">10.1088/1361-6587/ad30c0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-polarized ${}^3$He shock waves from a solid-gas composite target at high laser intensities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Reichwein%2C+L">Lars Reichwein</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaofei Shen</a>, <a href="/search/physics?searchtype=author&query=Pukhov%2C+A">Alexander Pukhov</a>, <a href="/search/physics?searchtype=author&query=B%C3%BCscher%2C+M">Markus B眉scher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.06271v2-abstract-short" style="display: inline;"> We investigate Collisionless Shock Acceleration of spin-polarized ${}^3$He for laser pulses with normalized vector potentials in the range $a_0 = 100-200$. The setup utilized in the 2D-PIC simulations consists of a solid Carbon foil that is placed in front of the main Helium target. The foil is heated by the laser pulse and shields the Helium from the highly oscillating fields. In turn, a shock wa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06271v2-abstract-full').style.display = 'inline'; document.getElementById('2309.06271v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.06271v2-abstract-full" style="display: none;"> We investigate Collisionless Shock Acceleration of spin-polarized ${}^3$He for laser pulses with normalized vector potentials in the range $a_0 = 100-200$. The setup utilized in the 2D-PIC simulations consists of a solid Carbon foil that is placed in front of the main Helium target. The foil is heated by the laser pulse and shields the Helium from the highly oscillating fields. In turn, a shock wave with more homogeneous fields is induced, leading to highly polarized ion beams. We observe that the inclusion of radiation reaction into our simulations leads to a higher beam charge without affecting the polarization degree to a significant extent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06271v2-abstract-full').style.display = 'none'; document.getElementById('2309.06271v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03996">arXiv:2308.03996</a> <span> [<a href="https://arxiv.org/pdf/2308.03996">pdf</a>, <a href="https://arxiv.org/format/2308.03996">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Investigating dissociation pathways of nitrobenzene via mega-electron-volt ultrafast electron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J">James Cryan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Renkai Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Moore%2C+B">Brian Moore</a>, <a href="/search/physics?searchtype=author&query=Nunes%2C+P">Pedro Nunes</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Weathersby%2C+S">Stephen Weathersby</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Wolf%2C+T">Thomas Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03996v1-abstract-short" style="display: inline;"> As the simplest nitroaromatic compound, nitrobenzene is an interesting model system to explore the rich photochemistry of nitroaromatic compounds. Previous measurements of nitrobenzene's photochemical dynamics have probed structural and electronic properties, which, at times, paint a convoluted and sometimes contradictory description of the photochemical landscape. A sub-picosecond structural prob… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03996v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03996v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03996v1-abstract-full" style="display: none;"> As the simplest nitroaromatic compound, nitrobenzene is an interesting model system to explore the rich photochemistry of nitroaromatic compounds. Previous measurements of nitrobenzene's photochemical dynamics have probed structural and electronic properties, which, at times, paint a convoluted and sometimes contradictory description of the photochemical landscape. A sub-picosecond structural probe can complement previous electronic measurements and aid in determining the photochemical dynamics with less ambiguity. We investigate the ultrafast dynamics of nitrobenzene triggered by photoexcitation at 267 nm employing megaelectronvolt ultrafast electron diffraction with femtosecond time resolution. We measure the first 5 ps of dynamics and, by comparing our measured results to simulation, we unambiguously distinguish the lowest singlet and triplet electronic states. We observe ground state recovery within 160 +/- 60 fs through internal conversions and without signal corresponding to photofragmentation. Our lack of dissociation signal within the first 5 ps indicates that previously observed photofragmenation reactions take place in the vibrationally "hot" ground state on timescales considerably beyond 5 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03996v1-abstract-full').style.display = 'none'; document.getElementById('2308.03996v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14577">arXiv:2307.14577</a> <span> [<a href="https://arxiv.org/pdf/2307.14577">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.3c06300">10.1021/acsami.3c06300 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrophobic Silica Microcavities with Sustainable Nonlinear Photonic Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xie%2C+J">Jiadu Xie</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yang Wang</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+H">Hui Kang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J">Jinsong Cheng</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaoqin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14577v2-abstract-short" style="display: inline;"> Ultrahigh quality factor (Q) microcavities have been emerging as an appealing compact photonic platform for various applications. The Q factor plays a critical role in determining the nonlinear optical performance of a microcavity. However, a silica microcavity suffers from severe degradation of its Q value over time during storage or use in air due to the accumulating surface absorption loss, whi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14577v2-abstract-full').style.display = 'inline'; document.getElementById('2307.14577v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14577v2-abstract-full" style="display: none;"> Ultrahigh quality factor (Q) microcavities have been emerging as an appealing compact photonic platform for various applications. The Q factor plays a critical role in determining the nonlinear optical performance of a microcavity. However, a silica microcavity suffers from severe degradation of its Q value over time during storage or use in air due to the accumulating surface absorption loss, which would deteriorate their nonlinear photonic performance. Here, we report a new type of ultrahigh Q silica microcavity that effectively prevents the Q degradation over time. The Q values of the devices remain unchanged over time under storage in air. Optical frequency combs are generated with sustainable ultralow threshold performance in the course of time from the devices in open air. This approach would greatly facilitate ultrahigh Q silica-based photonic devices for next generation photonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14577v2-abstract-full').style.display = 'none'; document.getElementById('2307.14577v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02942">arXiv:2307.02942</a> <span> [<a href="https://arxiv.org/pdf/2307.02942">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-024-00513-4">10.1038/s43246-024-00513-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable magnetism and electron correlation in Titanium-based Kagome metals RETi3Bi4 (RE = Yb, Pr, and Nd) by rare-earth engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+L">Long Chen</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Ying Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">He Zhang</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+X">Xuecong Ji</a>, <a href="/search/physics?searchtype=author&query=Liao%2C+K">Ke Liao</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+Y">Yu Ji</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Ying Li</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhongnan Guo</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xi Shen</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+R">Richeng Yu</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+X">Xiaohui Yu</a>, <a href="/search/physics?searchtype=author&query=Weng%2C+H">Hongming Weng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">Gang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02942v1-abstract-short" style="display: inline;"> Rare-earth engineering is an effective way to introduce and tune the magnetism in topological Kagome magnets, which has been acting as a fertile platform to investigate the quantum interactions between geometry, topology, spin, and correlation. Here we report the structure and properties of three newly discovered Titanium-based Kagome metals RETi3Bi4 (RE = Yb, Pr, and Nd) with various magnetic sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02942v1-abstract-full').style.display = 'inline'; document.getElementById('2307.02942v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02942v1-abstract-full" style="display: none;"> Rare-earth engineering is an effective way to introduce and tune the magnetism in topological Kagome magnets, which has been acting as a fertile platform to investigate the quantum interactions between geometry, topology, spin, and correlation. Here we report the structure and properties of three newly discovered Titanium-based Kagome metals RETi3Bi4 (RE = Yb, Pr, and Nd) with various magnetic states. They crystalize in the orthogonal space group Fmmm (No.69), where slightly distorted Ti Kagome lattice, RE triangular lattice, Bi honeycomb and triangular lattices stack along the a axis. By changing the rare earth atoms on RE zag-zig chains, the magnetism can be tuned from nonmagnetic YbTi3Bi4 to short-range ordered PrTi3Bi4 (Tanomaly ~ 8.2 K), and finally to ferromagnetic NdTi3Bi4 (Tc ~ 8.5 K). The measurements of resistivity and specific heat capacity demonstrate an evolution of electron correlation and density of states near the Fermi level with different rare earth atoms. In-situ resistance measurements of NdTi3Bi4 under high pressure further reveal a potential relationship between the electron correlation and ferromagnetic ordering temperature. These results highlight RETi3Bi4 as another family of topological Kagome magnets to explore nontrivial band topology and exotic phases in Kagome materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02942v1-abstract-full').style.display = 'none'; document.getElementById('2307.02942v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript:17 pages, 5 figures; Supporting information:11 pages, 11 tables and 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Mater 5, 73 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02293">arXiv:2307.02293</a> <span> [<a href="https://arxiv.org/pdf/2307.02293">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0142548">10.1063/5.0142548 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improvement of image-type very-low-energy-electron-diffraction spin polarimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zha%2C+H">Heming Zha</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wenjing Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Deyang Wang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+B">Bo Zhao</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">XiaoPing Shen</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+M">Mao Ye</a>, <a href="/search/physics?searchtype=author&query=Qiao%2C+S">Shan Qiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02293v1-abstract-short" style="display: inline;"> Spin- and angle-resolved photoemission spectroscopy (SARPES) with high efficiency and resolution plays a crucial role in exploring the fine spin-resolved band structures of quantum materials. Here we report the performance of SARPES instrument with a second-generation home-made multichannel very-low-energy-electron-diffraction (VLEED) spin polarimeter. Its energy and angular resolutions achieve 7.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02293v1-abstract-full').style.display = 'inline'; document.getElementById('2307.02293v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02293v1-abstract-full" style="display: none;"> Spin- and angle-resolved photoemission spectroscopy (SARPES) with high efficiency and resolution plays a crucial role in exploring the fine spin-resolved band structures of quantum materials. Here we report the performance of SARPES instrument with a second-generation home-made multichannel very-low-energy-electron-diffraction (VLEED) spin polarimeter. Its energy and angular resolutions achieve 7.2 meV and 0.52掳. We present the results of SARPES measurements of Bi(111) film to demonstrate its performance. Combined with the density functional theory (DFT) calculations, the spin polarization of the bulk states was confirmed from the spin-layer locking caused by the local inversion asymmetry. The surface states at binding energy of 0.77 eV are found with 1.0 {\pm} 0.11 spin polarization. The better resolutions and stability compared with the first-generation one provide a good platform to investigate the spin-polarized electronic states in materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02293v1-abstract-full').style.display = 'none'; document.getElementById('2307.02293v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00876">arXiv:2307.00876</a> <span> [<a href="https://arxiv.org/pdf/2307.00876">pdf</a>, <a href="https://arxiv.org/format/2307.00876">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.225101">10.1103/PhysRevLett.131.225101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron slingshot acceleration in relativistic preturbulent shocks explored via emitted photon polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Zheng Gong</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaofei Shen</a>, <a href="/search/physics?searchtype=author&query=Hatsagortsyan%2C+K+Z">Karen Z. Hatsagortsyan</a>, <a href="/search/physics?searchtype=author&query=Keitel%2C+C+H">Christoph H. Keitel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00876v2-abstract-short" style="display: inline;"> Transient electron dynamics near the interface of counterstreaming plasmas at the onset of a relativistic collisionless shock (RCS) is investigated using particle-in-cell simulations. We identify a slingshot-like injection process induced by the drifting electric field sustained by the flowing focus of backwards-moving electrons, which is distinct from the well-known stochastic acceleration. The f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00876v2-abstract-full').style.display = 'inline'; document.getElementById('2307.00876v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00876v2-abstract-full" style="display: none;"> Transient electron dynamics near the interface of counterstreaming plasmas at the onset of a relativistic collisionless shock (RCS) is investigated using particle-in-cell simulations. We identify a slingshot-like injection process induced by the drifting electric field sustained by the flowing focus of backwards-moving electrons, which is distinct from the well-known stochastic acceleration. The flowing focus signifies the plasma kinetic transition from a preturbulent laminar motion to a chaotic turbulence. We find a characteristic correlation between the electron dynamics in the slingshot acceleration and the photon emission features. In particular, the integrated radiation from the RCS exhibits a counterintuitive non-monotonic dependence of the photon polarization degree on the photon energy, which originates from a polarization degradation of relatively high-energy photons emitted by the slingshot-injected electrons. Our results demonstrate the potential of photon polarization as an essential information source in exploring intricate transient dynamics in RCSs with relevance for earth-based plasma and astrophysical scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00876v2-abstract-full').style.display = 'none'; document.getElementById('2307.00876v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 225101 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12743">arXiv:2306.12743</a> <span> [<a href="https://arxiv.org/pdf/2306.12743">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Self-compression of ultrahigh-peak-power lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+R">Renjing Chen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+W">Wenhai Liang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yilin Xu</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiong Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peng Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12743v2-abstract-short" style="display: inline;"> Pulse self-compression is a simple and economical method for improving the peak power of ultra-intense laser pulses. By solving a modified nonlinear Schrodinger equation considering the fifth-order susceptibility, we found that self-compression appeared even in normally dispersive medium owing to the negative fifth-order susceptibility inducing a mass of negative frequency chirp. Furthermore, nega… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12743v2-abstract-full').style.display = 'inline'; document.getElementById('2306.12743v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12743v2-abstract-full" style="display: none;"> Pulse self-compression is a simple and economical method for improving the peak power of ultra-intense laser pulses. By solving a modified nonlinear Schrodinger equation considering the fifth-order susceptibility, we found that self-compression appeared even in normally dispersive medium owing to the negative fifth-order susceptibility inducing a mass of negative frequency chirp. Furthermore, negatively pre-chirped pulses allow for self-compression at lower intensity, avoiding medium damage. We numerically analyze the optimal choice of pre-chirp, input intensity, and medium length. A proof-of-principle experiment successfully proves the above theoretical findings. It is expected that petawatt or even exawatt laser pulses with 25 fs/15 fs transform limited pulse duration can be self-compressed to about 9.9 fs/7.6 fs in normally dispersive medium, such as fused silica glass plate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12743v2-abstract-full').style.display = 'none'; document.getElementById('2306.12743v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.07150">arXiv:2306.07150</a> <span> [<a href="https://arxiv.org/pdf/2306.07150">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Near-Unity Emitting, Widely Tailorable and Stable Exciton Concentrators Built from Doubly Gradient 2D Semiconductor Nanoplatelets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liang%2C+X">Xiao Liang</a>, <a href="/search/physics?searchtype=author&query=Durmusoglu%2C+E+G">Emek G. Durmusoglu</a>, <a href="/search/physics?searchtype=author&query=Lunina%2C+M">Maria Lunina</a>, <a href="/search/physics?searchtype=author&query=Hernandez-Martinez%2C+P+L">Pedro Ludwig Hernandez-Martinez</a>, <a href="/search/physics?searchtype=author&query=Valuckas%2C+V">Vytautas Valuckas</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+F">Fei Yan</a>, <a href="/search/physics?searchtype=author&query=Lekina%2C+Y">Yulia Lekina</a>, <a href="/search/physics?searchtype=author&query=Sharma%2C+V+K">Vijay Kumar Sharma</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+T">Tingting Yin</a>, <a href="/search/physics?searchtype=author&query=Ha%2C+S+T">Son Tung Ha</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Z+X">Ze Xiang Shen</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">Handong Sun</a>, <a href="/search/physics?searchtype=author&query=Kuznetsov%2C+A">Arseniy Kuznetsov</a>, <a href="/search/physics?searchtype=author&query=Demir%2C+H+V">Hilmi Volkan Demir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.07150v1-abstract-short" style="display: inline;"> The strength of electrostatic interactions (EI) between electrons and holes within semiconductor nanocrystals profoundly impact the performance of their optoelectronic systems, and different optoelectronic devices demand distinct EI strength of the active medium. However, achieving a broad range, fine-tuning of the EI strength for specific optoelectronic applications is a daunting challenge, espec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.07150v1-abstract-full').style.display = 'inline'; document.getElementById('2306.07150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.07150v1-abstract-full" style="display: none;"> The strength of electrostatic interactions (EI) between electrons and holes within semiconductor nanocrystals profoundly impact the performance of their optoelectronic systems, and different optoelectronic devices demand distinct EI strength of the active medium. However, achieving a broad range, fine-tuning of the EI strength for specific optoelectronic applications is a daunting challenge, especially in quasi 2-dimensional core-shell semiconductor nanoplatelets (NPLs), as the epitaxial growth of the inorganic shell along the direction of the thickness that solely contributes to the quantum confined effect significantly undermines the strength of the EI. Herein we propose and demonstrate a novel doubly-gradient (DG) core-shell architecture of semiconductor NPLs for on-demand tailoring of the EI strength by controlling the localized exciton concentration via in-plane architectural modulation, demonstrated by a wide tuning of radiative recombination rate and exciton binding energy. Moreover, these exciton-concentration-engineered DG NPLs also exhibit a near-unity quantum yield, remarkable thermal and photo stability, as well as considerably suppressed self-absorption. As proof-of-concept demonstrations, highly efficient color converters and high-performance light-emitting diodes (external quantum efficiency: 16.9%, maximum luminance: 43,000 cd/m2) have been achieved based on the DG NPLs. This work thus opens up new avenues for developing high-performance colloidal optoelectronic device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.07150v1-abstract-full').style.display = 'none'; document.getElementById('2306.07150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16488">arXiv:2305.16488</a> <span> [<a href="https://arxiv.org/pdf/2305.16488">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Assessing inequities in electrification via heat pumps across the U.S </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Edwards%2C+M+R">Morgan R. Edwards</a>, <a href="/search/physics?searchtype=author&query=Garibay-Rodriguez%2C+J">Jaime Garibay-Rodriguez</a>, <a href="/search/physics?searchtype=author&query=Erickson%2C+J+S">Jacob Shimkus Erickson</a>, <a href="/search/physics?searchtype=author&query=Shayan%2C+M">Muhammad Shayan</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+J+L">Jing Ling Tan</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xingchi Shen</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+Y+L">Yueming Lucy Qiu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+P">Pengfei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16488v3-abstract-short" style="display: inline;"> Heat pumps are an energy-efficient and increasingly cost-effective solution for reducing greenhouse gas emissions in the building sector. However, other clean energy technologies such as rooftop solar are less likely to be adopted in underserved communities, and thus policies incentivizing their adoption may funnel tax dollars to well-resourced communities. Unlike previously-studied technologies,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16488v3-abstract-full').style.display = 'inline'; document.getElementById('2305.16488v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16488v3-abstract-full" style="display: none;"> Heat pumps are an energy-efficient and increasingly cost-effective solution for reducing greenhouse gas emissions in the building sector. However, other clean energy technologies such as rooftop solar are less likely to be adopted in underserved communities, and thus policies incentivizing their adoption may funnel tax dollars to well-resourced communities. Unlike previously-studied technologies, the effects of heat pumps on household energy bills may be positive or negative depending on local climate, fuel availability and costs, and other factors. Here we propose a framework for assessing heat pump inequities across the U.S. We find that households in communities of color and with higher percentages of renters are less likely to use heat pumps across the board. Moreover, communities of color are least likely to use heat pumps in regions where they are most likely to reduce energy bills. Public policies must address these inequities to advance beneficial electrification and energy justice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16488v3-abstract-full').style.display = 'none'; document.getElementById('2305.16488v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Figure 2 modified; included additional variables in Figure 3 (no change in main findings); SI updated with newer data and additional robustness results (no change in main findings); references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03586">arXiv:2303.03586</a> <span> [<a href="https://arxiv.org/pdf/2303.03586">pdf</a>, <a href="https://arxiv.org/format/2303.03586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Femtosecond electronic and hydrogen structural dynamics in ammonia imaged with ultrafast electron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&query=List%2C+N+H">Nanna H. List</a>, <a href="/search/physics?searchtype=author&query=Ware%2C+M">Matthew Ware</a>, <a href="/search/physics?searchtype=author&query=Britton%2C+M">Mathew Britton</a>, <a href="/search/physics?searchtype=author&query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">Martin Centurion</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J+P">James P. Cryan</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R">Ruaridh Forbes</a>, <a href="/search/physics?searchtype=author&query=Gabalski%2C+I">Ian Gabalski</a>, <a href="/search/physics?searchtype=author&query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/physics?searchtype=author&query=Howard%2C+A+J">Andrew J. Howard</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+F">Fuhao Ji</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Nunes%2C+J+P">J. Pedro Nunes</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+T+J">Todd J. Martinez</a>, <a href="/search/physics?searchtype=author&query=Wolf%2C+T+J+A">Thomas J. A. Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03586v1-abstract-short" style="display: inline;"> Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross-sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03586v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03586v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03586v1-abstract-full" style="display: none;"> Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross-sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of the nuclear and corresponding electronic structure changes resulting from the dissociation dynamics in the time-dependent diffraction. Both assignments are confirmed by ab initio simulations of the photochemical dynamics and the resulting diffraction observable. While the temporal resolution of the experiment is insufficient to resolve the dissociation in time, our results represent an important step towards the observation of proton dynamics in real space and time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03586v1-abstract-full').style.display = 'none'; document.getElementById('2303.03586v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.14329">arXiv:2212.14329</a> <span> [<a href="https://arxiv.org/pdf/2212.14329">pdf</a>, <a href="https://arxiv.org/format/2212.14329">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/acb4e6">10.1088/1361-6587/acb4e6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron and ion acceleration from femtosecond laser-plasma peeler scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+X+F">X. F. Shen</a>, <a href="/search/physics?searchtype=author&query=Pukhov%2C+A">A. Pukhov</a>, <a href="/search/physics?searchtype=author&query=Qiao%2C+B">B. Qiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.14329v1-abstract-short" style="display: inline;"> Using three-dimensional particle-in-cell simulations, we further investigate the electron and ion acceleration from femtosecond laser-plasma peeler scheme which was proposed in our recent paper (Shen et al 2021 Phys. Rev. X 11 041002). In addition to the standard setup where a laser pulse impinges on an edge of a single tape target, two new variants of the target, i.e., a parallel tape and a cross… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14329v1-abstract-full').style.display = 'inline'; document.getElementById('2212.14329v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.14329v1-abstract-full" style="display: none;"> Using three-dimensional particle-in-cell simulations, we further investigate the electron and ion acceleration from femtosecond laser-plasma peeler scheme which was proposed in our recent paper (Shen et al 2021 Phys. Rev. X 11 041002). In addition to the standard setup where a laser pulse impinges on an edge of a single tape target, two new variants of the target, i.e., a parallel tape and a cross tape target, were proposed, where strong surface plasma waves can also be efficiently excited at the front edges of the target. By using a tabletop 200 TW-class laser pulse, we observe generation of high-flux, well-collimated, superponderomotive electrons. More importantly, quasimonoenergetic proton beams can always be obtained in all the three setups, while with the single tape case, the obtained proton beam has the highest peak energy and narrowest spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14329v1-abstract-full').style.display = 'none'; document.getElementById('2212.14329v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06851">arXiv:2212.06851</a> <span> [<a href="https://arxiv.org/pdf/2212.06851">pdf</a>, <a href="https://arxiv.org/format/2212.06851">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Novel Conservative Methods for Adaptive Force Softening in Collisionless and Multi-Species N-Body Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hopkins%2C+P+F">Philip F. Hopkins</a>, <a href="/search/physics?searchtype=author&query=Nadler%2C+E+O">Ethan O. Nadler</a>, <a href="/search/physics?searchtype=author&query=Grudic%2C+M+Y">Michael Y. Grudic</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xuejian Shen</a>, <a href="/search/physics?searchtype=author&query=Sands%2C+I">Isabel Sands</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+F">Fangzhou Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06851v2-abstract-short" style="display: inline;"> Modeling self-gravity of collisionless fluids (e.g. ensembles of dark matter, stars, black holes, dust, planetary bodies) in simulations is challenging and requires some force softening. It is often desirable to allow softenings to evolve adaptively, in any high-dynamic range simulation, but this poses unique challenges of consistency, conservation, and accuracy, especially in multi-physics simula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06851v2-abstract-full').style.display = 'inline'; document.getElementById('2212.06851v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06851v2-abstract-full" style="display: none;"> Modeling self-gravity of collisionless fluids (e.g. ensembles of dark matter, stars, black holes, dust, planetary bodies) in simulations is challenging and requires some force softening. It is often desirable to allow softenings to evolve adaptively, in any high-dynamic range simulation, but this poses unique challenges of consistency, conservation, and accuracy, especially in multi-physics simulations where species with different softening laws may interact. We therefore derive a generalized form of the energy-and-momentum conserving gravitational equations of motion, applicable to arbitrary rules used to determine the force softening, together with consistent associated timestep criteria, interaction terms between species with different softening laws, and arbitrary maximum/minimum softenings. We also derive new methods to maintain better accuracy and conservation when symmetrizing forces between particles. We review and extend previously-discussed adaptive softening schemes based on the local neighbor particle density, and present several new schemes for scaling the softening with properties of the gravitational field, i.e. the potential or acceleration or tidal tensor. We show that the tidal softening scheme not only represents a physically-motivated, translation and Galilean invariant and equivalence-principle respecting (and therefore conservative) method, but imposes negligible timestep or other computational penalties, ensures that pairwise two-body scattering is small compared to smooth background forces, and can resolve outstanding challenges in properly capturing tidal disruption of substructures (minimizing artificial destruction) while also avoiding excessive N-body heating. We make all of this public in the GIZMO code. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06851v2-abstract-full').style.display = 'none'; document.getElementById('2212.06851v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 13 figures. Updated to match MNRAS accepted version. Six appendices with additional details and tests expanded</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15653">arXiv:2211.15653</a> <span> [<a href="https://arxiv.org/pdf/2211.15653">pdf</a>, <a href="https://arxiv.org/format/2211.15653">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11214-023-00984-w">10.1007/s11214-023-00984-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energetic electron precipitation driven by electromagnetic ion cyclotron waves from ELFIN's low altitude perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Angelopoulos%2C+V">V. Angelopoulos</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X+-">X. -J. Zhang</a>, <a href="/search/physics?searchtype=author&query=Artemyev%2C+A+V">A. V. Artemyev</a>, <a href="/search/physics?searchtype=author&query=Mourenas%2C+D">D. Mourenas</a>, <a href="/search/physics?searchtype=author&query=Tsai%2C+E">E. Tsai</a>, <a href="/search/physics?searchtype=author&query=Wilkins%2C+C">C. Wilkins</a>, <a href="/search/physics?searchtype=author&query=Runov%2C+A">A. Runov</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">J. Liu</a>, <a href="/search/physics?searchtype=author&query=Turner%2C+D+L">D. L. Turner</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">W. Li</a>, <a href="/search/physics?searchtype=author&query=Khurana%2C+K">K. Khurana</a>, <a href="/search/physics?searchtype=author&query=Wirz%2C+R+E">R. E. Wirz</a>, <a href="/search/physics?searchtype=author&query=Sergeev%2C+V+A">V. A. Sergeev</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+X">X. Meng</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">J. Wu</a>, <a href="/search/physics?searchtype=author&query=Hartinger%2C+M+D">M. D. Hartinger</a>, <a href="/search/physics?searchtype=author&query=Raita%2C+T">T. Raita</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Y">Y. Shen</a>, <a href="/search/physics?searchtype=author&query=An%2C+X">X. An</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+X">X. Shi</a>, <a href="/search/physics?searchtype=author&query=Bashir%2C+M+F">M. F. Bashir</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">X. Shen</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+L">L. Gan</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/physics?searchtype=author&query=Capannolo%2C+L">L. Capannolo</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15653v1-abstract-short" style="display: inline;"> We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data from the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15653v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15653v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15653v1-abstract-full" style="display: none;"> We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data from the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at 0.5 MeV which are abrupt (bursty) with significant substructure (occasionally down to sub-second timescale). Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Using two years of ELFIN data, we assemble a statistical database of 50 events of strong EMIC wave-driven precipitation. Most reside at L=5-7 at dusk, while a smaller subset exists at L=8-12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio's spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of 1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven 1MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to 200-300 keV by much less intense higher frequency EMIC waves. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15653v1-abstract-full').style.display = 'none'; document.getElementById('2211.15653v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12659">arXiv:2211.12659</a> <span> [<a href="https://arxiv.org/pdf/2211.12659">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Q-factor mediated quasi-BIC resonances coupling in asymmetric dimer lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yixiao%2C+G">Gao Yixiao</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+L">Lei Xu</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiang Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12659v1-abstract-short" style="display: inline;"> Resonance coupling in the regime of bound states in the continuum (BICs) provides an efficient method for engineering nanostructure's optical response with various lineshape while maintaining an ultra-narrow linewidth feature, where the quality factor of resonances plays a crucial role. Independent manipulation of the Q factors of BIC resonances enables full control of interaction behavior as well… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12659v1-abstract-full').style.display = 'inline'; document.getElementById('2211.12659v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12659v1-abstract-full" style="display: none;"> Resonance coupling in the regime of bound states in the continuum (BICs) provides an efficient method for engineering nanostructure's optical response with various lineshape while maintaining an ultra-narrow linewidth feature, where the quality factor of resonances plays a crucial role. Independent manipulation of the Q factors of BIC resonances enables full control of interaction behavior as well as both near- and far-field light engineering. In this paper, we harness reflection symmetry (RS) and translational symmetry (TS) protected BIC resonances supported in an asymmetric dimer lattice and investigate Q-factor-mediated resonance coupling behavior under controlled TS and RS perturbations. We focus on in-plane electrical dipole BIC (EDi-BIC) and magnetic dipole BIC (MD-BIC) which are protected by RS, and out-of-plane electrical dipole BIC (EDo-BIC) protected by TS. The coupling between EDi-BIC and EDo-BIC exhibits a resonance crossing behavior where the transmission spectrum at the crossing could be tuned flexibly, showing an electromagnetically induced transparency lineshape or satisfying the lattice Kerker condition with pure phase modulation capability depending on TS and RS perturbed Q factors. While the coupling between MD-BIC and EDo-BIC shows an avoided resonance crossing behavior, where the strongly coupled resonances would lead to the formation of a Friedrich-Wintgen BICs whose spectral position could also be shifted by tuning the Q factors. Our results suggest an intriguing platform to explore BIC resonance interactions with independent Q factor manipulation capability for realizing multi-functional meta-devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12659v1-abstract-full').style.display = 'none'; document.getElementById('2211.12659v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.03881">arXiv:2211.03881</a> <span> [<a href="https://arxiv.org/pdf/2211.03881">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Image Retrieval from a Holographic Memory Disc for High-Speed Operation of a Shift, Scale, and Rotation Invariant Target Recognition System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gamboa%2C+J">Julian Gamboa</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xi Shen</a>, <a href="/search/physics?searchtype=author&query=Hamidfar%2C+T">Tabassom Hamidfar</a>, <a href="/search/physics?searchtype=author&query=Shahriar%2C+S+M">Selim M. Shahriar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.03881v1-abstract-short" style="display: inline;"> The hybrid opto-electronic correlator (HOC) architecture has been shown to be able to detect matches in a shift, scale, and rotation invariant (SSRI) manner by incorporating a polar Mellin transform (PMT) pre-processing step. Here we demonstrate the design and use of a thick holographic memory disc (HMD) for high-speed SSRI correlation employing an HOC. The HMD was written to have 1,320 stored ima… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03881v1-abstract-full').style.display = 'inline'; document.getElementById('2211.03881v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.03881v1-abstract-full" style="display: none;"> The hybrid opto-electronic correlator (HOC) architecture has been shown to be able to detect matches in a shift, scale, and rotation invariant (SSRI) manner by incorporating a polar Mellin transform (PMT) pre-processing step. Here we demonstrate the design and use of a thick holographic memory disc (HMD) for high-speed SSRI correlation employing an HOC. The HMD was written to have 1,320 stored images, including both unprocessed images and their PMTs. We further propose and demonstrate a novel approach whereby the HOC inputs are spatially shifted to produce correlation signals without requiring stabilization of optical phases, yielding results that are in good agreement with the theory. Use of this approach vastly simplifies the design and operation of the HOC, while improving its stability significantly. Finally, a real-time opto-electronic PMT pre-processor utilizing an FPGA is proposed and prototyped, allowing for the automatic conversion of images into their PMTs without additional processing delay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03881v1-abstract-full').style.display = 'none'; document.getElementById('2211.03881v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the Advanced Maui Optical and Space Surveillance Technology Conference. Curran Associates, Inc, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.17038">arXiv:2210.17038</a> <span> [<a href="https://arxiv.org/pdf/2210.17038">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dark modes governed by translational-symmetry-protected bound states in the continuum in symmetric dimer lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gao%2C+Y">Yixiao Gao</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+J">Junyang Ge</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+S">Shengzhi Sun</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiang Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.17038v1-abstract-short" style="display: inline;"> Creating nonradiating dark modes is key to achieving high-Q resonance in dielectric open cavities. The concept of photonic bound states in the continuum (BIC) offers an efficient method to suppress radiative loss through symmetry engineering. Structural reflection symmetry (RS) has been widely utilized to construct BICs in asymmetric metasurfaces. In this paper, we show that the radiation channel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17038v1-abstract-full').style.display = 'inline'; document.getElementById('2210.17038v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.17038v1-abstract-full" style="display: none;"> Creating nonradiating dark modes is key to achieving high-Q resonance in dielectric open cavities. The concept of photonic bound states in the continuum (BIC) offers an efficient method to suppress radiative loss through symmetry engineering. Structural reflection symmetry (RS) has been widely utilized to construct BICs in asymmetric metasurfaces. In this paper, we show that the radiation channel of translational-symmetry (TS) protected BIC in 1D symmetric dimer lattice could be unlocked by dimer spacing perturbation. A semi-analytical coupled mode analysis reveals that the total radiation suppression of the TS-BIC is due to the elimination of the first Fourier harmonic component in the lattice parameters. TS-BIC mechanism could also be applied in a 2D symmetric dimer lattice, and BICs protected by TS are robust to RS breaking, and vice versa, providing a promising way to independently control the quality factor of two interacting BIC resonances. Our results suggest a new degree of freedom to engineer BICs as well as their interactions in dimer lattices tailored by different symmetries, and could provide new insight for realizing practical applications requiring high-Q resonances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17038v1-abstract-full').style.display = 'none'; document.getElementById('2210.17038v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05435">arXiv:2210.05435</a> <span> [<a href="https://arxiv.org/pdf/2210.05435">pdf</a>, <a href="https://arxiv.org/format/2210.05435">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Cross-Filament Stochastic Acceleration of Electrons in Kilojoule Picosecond Laser Interactions with Near Critical Density Plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+X+F">X. F. Shen</a>, <a href="/search/physics?searchtype=author&query=Pukhov%2C+A">A. Pukhov</a>, <a href="/search/physics?searchtype=author&query=Rosmej%2C+O+N">O. N. Rosmej</a>, <a href="/search/physics?searchtype=author&query=Andreev%2C+N+E">N. E. Andreev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05435v1-abstract-short" style="display: inline;"> Understanding the interaction of kilojoule, picosecond laser pulse with long-scale length preplasma or homogeneous near critical density (NCD) plasma is crucial for guiding experiments at national short-pulse laser facilities. Using full three-dimensional particle-in-cell simulations, we demonstrate that in this regime, cross-filament stochastic acceleration is an important mechanism that contribu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05435v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05435v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05435v1-abstract-full" style="display: none;"> Understanding the interaction of kilojoule, picosecond laser pulse with long-scale length preplasma or homogeneous near critical density (NCD) plasma is crucial for guiding experiments at national short-pulse laser facilities. Using full three-dimensional particle-in-cell simulations, we demonstrate that in this regime, cross-filament stochastic acceleration is an important mechanism that contributes to the production of superponderomotive, high-flux electron beams. Since the laser power significantly exceeds the threshold of the relativistic self-focusing, multiple filaments are generated and can propagate independently over a long distance. Electrons jump across the filaments during the acceleration, and their motion becomes stochastic. We find that the effective temperature of electrons increases with the total interaction time following a scaling like $T_{\rm eff}\propto蟿_{i}^{0.65}$. By irradiating a submillimeter thick NCD target, the space charge of electrons with energy above 2.5 MeV reaches tens of $渭$C. Such high-flux electrons with superponderomotive energies significantly facilitate applications in high-energy-density science, nuclear science, secondary sources and diagnostic techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05435v1-abstract-full').style.display = 'none'; document.getElementById('2210.05435v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02639">arXiv:2210.02639</a> <span> [<a href="https://arxiv.org/pdf/2210.02639">pdf</a>, <a href="https://arxiv.org/format/2210.02639">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.075435">10.1103/PhysRevB.107.075435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optomechanical Effects in Nanocavity-enhanced Resonant Raman Scattering of a Single Molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xuan-Ming Shen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shunping Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yao Zhang</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Q">Qiu-Shi Meng</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+G">Guangchao Zheng</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+S">Siyuan Lv</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Luxia Wang</a>, <a href="/search/physics?searchtype=author&query=Boto%2C+R+A">Roberto A. Boto</a>, <a href="/search/physics?searchtype=author&query=Shan%2C+C">Chongxin Shan</a>, <a href="/search/physics?searchtype=author&query=Aizpurua%2C+J">Javier Aizpurua</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02639v1-abstract-short" style="display: inline;"> In this article, we address the optomechanical effects in surface-enhanced resonant Raman scattering (SERRS) from a single molecule in a nano-particle on mirror (NPoM) nanocavity by developing a quantum master equation theory, which combines macroscopic quantum electrodynamics and electron-vibration interaction within the framework of open quantum system theory. We supplement the theory with elect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02639v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02639v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02639v1-abstract-full" style="display: none;"> In this article, we address the optomechanical effects in surface-enhanced resonant Raman scattering (SERRS) from a single molecule in a nano-particle on mirror (NPoM) nanocavity by developing a quantum master equation theory, which combines macroscopic quantum electrodynamics and electron-vibration interaction within the framework of open quantum system theory. We supplement the theory with electromagnetic simulations and time-dependent density functional theory calculations in order to study the SERRS of a methylene blue molecule in a realistic NPoM nanocavity. The simulations allow us not only to identify the conditions to achieve conventional optomechanical effects, such as vibrational pumping, non-linear scaling of Stokes and anti-Stokes scattering, but also to discovery distinct behaviors, such as the saturation of exciton population, the emergence of Mollow triplet side-bands, and higher-order Raman scattering. All in all, our study might guide further investigations of optomechanical effects in resonant Raman scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02639v1-abstract-full').style.display = 'none'; document.getElementById('2210.02639v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages; 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13691">arXiv:2209.13691</a> <span> [<a href="https://arxiv.org/pdf/2209.13691">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38513-6">10.1038/s41467-023-38513-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rehybridization dynamics into the pericyclic minimum of an electrcyclic reaction imaged in real-time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yusong Liu</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+D+M">David M. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Ware%2C+M+R">Matthew R. Ware</a>, <a href="/search/physics?searchtype=author&query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&query=Nunes%2C+J+P+F">J. Pedro F. Nunes</a>, <a href="/search/physics?searchtype=author&query=Attar%2C+A">Andrew Attar</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">Martin Centurion</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J+P">James P. Cryan</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R+G">Ruaridh G. Forbes</a>, <a href="/search/physics?searchtype=author&query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+F">Fuhao Ji</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">Sajib K. Saha</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+T+J">Todd J. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Wolf%2C+T+J+A">Thomas J. A. Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13691v1-abstract-short" style="display: inline;"> Electrocyclic reactions are characterized by the concerted formation and cleavage of both 蟽 and 蟺 bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13691v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13691v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13691v1-abstract-full" style="display: none;"> Electrocyclic reactions are characterized by the concerted formation and cleavage of both 蟽 and 蟺 bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule 伪-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated 蟺 bonds. The 蟽 bond dissociation largely happens after internal conversion from the pericyclic minimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13691v1-abstract-full').style.display = 'none'; document.getElementById('2209.13691v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Combined manuscript and supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06685">arXiv:2209.06685</a> <span> [<a href="https://arxiv.org/pdf/2209.06685">pdf</a>, <a href="https://arxiv.org/format/2209.06685">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Relativistic Topological Waves from Cherenkov and Doppler Resonances in Self-Magnetized Laser Plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaofei Shen</a>, <a href="/search/physics?searchtype=author&query=Reichwein%2C+L">Lars Reichwein</a>, <a href="/search/physics?searchtype=author&query=Pukhov%2C+A">Alexander Pukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06685v1-abstract-short" style="display: inline;"> Strong magnetic fields at plasma-plasma interfaces can be naturally produced in laser-plasma interactions. Using theoretical analysis and fully three-dimensional particle-in-cell simulations, we demonstrate that relativistic topological waves can be generated via Cherenkov and Doppler resonances in the interaction of intense femtosecond laser pulses with near-critical-density plasmas. At the self-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06685v1-abstract-full').style.display = 'inline'; document.getElementById('2209.06685v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06685v1-abstract-full" style="display: none;"> Strong magnetic fields at plasma-plasma interfaces can be naturally produced in laser-plasma interactions. Using theoretical analysis and fully three-dimensional particle-in-cell simulations, we demonstrate that relativistic topological waves can be generated via Cherenkov and Doppler resonances in the interaction of intense femtosecond laser pulses with near-critical-density plasmas. At the self-magnetized plasma-plasma interface, a new slow-wave branch appears. Its phase velocity is much smaller than the group velocity of the laser pulse and the electron beam velocity. Therefore, the Cherenkov resonance condition can be easily satisfied. Furthermore, since electrons undergo betatron oscillations, Doppler resonances may also occur and are responsible for the excitation of several frequency-shifted branches observed in our simulations. After the passage of the laser pulse, we observe a fast remnant mode with relativistic amplitude and frequency close to the local plasma frequency. This mode continues to accelerate electrons further for many tens of laser periods even after the laser pulse has left the plasma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06685v1-abstract-full').style.display = 'none'; document.getElementById('2209.06685v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09600">arXiv:2207.09600</a> <span> [<a href="https://arxiv.org/pdf/2207.09600">pdf</a>, <a href="https://arxiv.org/ps/2207.09600">ps</a>, <a href="https://arxiv.org/format/2207.09600">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01420-9">10.1038/s42005-023-01420-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Applying Bayesian Inference and deterministic anisotropy to retrieve the molecular structure $|唯(\boldsymbol{R})|^2$ distribution from gas-phase diffraction experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&query=Makhija%2C+V">Varun Makhija</a>, <a href="/search/physics?searchtype=author&query=Bucksbaum%2C+P">Phil Bucksbaum</a>, <a href="/search/physics?searchtype=author&query=Corbett%2C+J">Jeff Corbett</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J">James Cryan</a>, <a href="/search/physics?searchtype=author&query=Hartmann%2C+N">Nick Hartmann</a>, <a href="/search/physics?searchtype=author&query=Ilchen%2C+M">Markus Ilchen</a>, <a href="/search/physics?searchtype=author&query=Jobe%2C+K">Keith Jobe</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Renkai Li</a>, <a href="/search/physics?searchtype=author&query=Makasyuk%2C+I">Igor Makasyuk</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Weathersby%2C+S">Stephen Weathersby</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&query=Coffee%2C+R">Ryan Coffee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09600v3-abstract-short" style="display: inline;"> Currently, our general approach to retrieving molecular structures from ultrafast gas-phase diffraction heavily relies on complex ab initio electronic or vibrational excited state simulations to make conclusive interpretations. Without such simulations, inverting this measurement for the structural probability distribution is typically intractable. This creates a so-called inverse problem. In this… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09600v3-abstract-full').style.display = 'inline'; document.getElementById('2207.09600v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09600v3-abstract-full" style="display: none;"> Currently, our general approach to retrieving molecular structures from ultrafast gas-phase diffraction heavily relies on complex ab initio electronic or vibrational excited state simulations to make conclusive interpretations. Without such simulations, inverting this measurement for the structural probability distribution is typically intractable. This creates a so-called inverse problem. In this work, we develop a broadly applicable method that addresses this inverse problem by approximating the molecular frame structure $|唯(\boldsymbol{R}, t)|^2$ distribution independent of these complex simulations. We retrieve the vibronic ground state $|唯(\boldsymbol{R})|^2$ for both simulated stretched NO$_2$ and measured N$_2$O. From measured N$_2$O, we observe 40 mAngstroms coordinate-space resolution from 3.75 inverse Angstroms reciprocal space range and poor signal-to-noise, a 50X improvement over traditional Fourier transform methods. In simulated NO$_2$, typical to high signal-to-noise levels predict 100--1000X resolution improvements, down to 0.1 mAngstroms. By directly measuring the width of $|唯(\boldsymbol{R})|^2$, we open ultrafast gas-phase diffraction capabilities to measurements beyond current analysis approaches. This method has the potential to effectively turn gas-phase ultrafast diffraction into a discovery-oriented technique to probe systems that are prohibitively difficult to simulate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09600v3-abstract-full').style.display = 'none'; document.getElementById('2207.09600v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, 2 tables. Please find the analysis code and templates for new molecules at https://github.com/khegazy/BIGR</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Commun Phys 6, 325 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01145">arXiv:2204.01145</a> <span> [<a href="https://arxiv.org/pdf/2204.01145">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct visualization of ultrafast lattice ordering triggered by an electron-hole plasma in 2D perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wenbin Li</a>, <a href="/search/physics?searchtype=author&query=Essman%2C+J">Joseph Essman</a>, <a href="/search/physics?searchtype=author&query=Quarti%2C+C">Claudio Quarti</a>, <a href="/search/physics?searchtype=author&query=Metcalf%2C+I">Isaac Metcalf</a>, <a href="/search/physics?searchtype=author&query=Chiang%2C+W">Wei-Yi Chiang</a>, <a href="/search/physics?searchtype=author&query=Sidhik%2C+S">Siraj Sidhik</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+J">Jin Hou</a>, <a href="/search/physics?searchtype=author&query=Fehr%2C+A">Austin Fehr</a>, <a href="/search/physics?searchtype=author&query=Attar%2C+A">Andrew Attar</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Britz%2C+A">Alexander Britz</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Link%2C+S">Stephan Link</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Bergmann%2C+U">Uwe Bergmann</a>, <a href="/search/physics?searchtype=author&query=Kanatzidis%2C+M+G">Mercouri G. Kanatzidis</a>, <a href="/search/physics?searchtype=author&query=Katan%2C+C">Claudine Katan</a>, <a href="/search/physics?searchtype=author&query=Even%2C+J">Jacky Even</a>, <a href="/search/physics?searchtype=author&query=Blancon%2C+J">Jean-Christophe Blancon</a>, <a href="/search/physics?searchtype=author&query=Mohite%2C+A+D">Aditya D. Mohite</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01145v1-abstract-short" style="display: inline;"> Direct visualization of ultrafast coupling between charge carriers and lattice degrees of freedom in photo-excited semiconductors has remained a long-standing challenge and is critical for understanding the light-induced physical behavior of materials under extreme non-equilibrium conditions. Here, by monitoring the evolution of the wave-vector resolved ultrafast electron diffraction intensity fol… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01145v1-abstract-full').style.display = 'inline'; document.getElementById('2204.01145v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01145v1-abstract-full" style="display: none;"> Direct visualization of ultrafast coupling between charge carriers and lattice degrees of freedom in photo-excited semiconductors has remained a long-standing challenge and is critical for understanding the light-induced physical behavior of materials under extreme non-equilibrium conditions. Here, by monitoring the evolution of the wave-vector resolved ultrafast electron diffraction intensity following above-bandgap photo-excitation, we obtain a direct visual of the structural dynamics in monocrystalline 2D perovskites. Analysis reveals a surprising, light-induced ultrafast lattice ordering resulting from a strong interaction between hot-carriers and the perovskite lattice, which induces an in-plane octahedra rotation, towards a more symmetric phase. Correlated ultrafast spectroscopy performed at the same carrier density as ultrafast electron diffraction reveals that the creation of a hot and dense electron-hole plasma triggers lattice ordering at short timescales by modulating the crystal cohesive energy. Finally, we show that the interaction between the carrier gas and the lattice can be altered by tailoring the rigidity of the 2D perovskite by choosing the appropriate organic spacer layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01145v1-abstract-full').style.display = 'none'; document.getElementById('2204.01145v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.13368">arXiv:2202.13368</a> <span> [<a href="https://arxiv.org/pdf/2202.13368">pdf</a>, <a href="https://arxiv.org/format/2202.13368">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A nonhydrostatic atmospheric dynamical core on cubed sphere using hybrid multi-moment finite-volume/finite difference methods: formulations and preliminary tests </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+C">Chungang Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xingliang Li</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+F">Feng Xiao</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xueshun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.13368v1-abstract-short" style="display: inline;"> A nonhydrostatic dynamical core has been developed by using the multi-moment finite volume method that ensures the rigorous numerical conservation. To represent the spherical geometry free of polar problems, the cubed-sphere grid is adopted. A fourth-order multi-moment discretization formulation is applied to solve the governing equations cast in the local curvilinear coordinates on each patch of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13368v1-abstract-full').style.display = 'inline'; document.getElementById('2202.13368v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.13368v1-abstract-full" style="display: none;"> A nonhydrostatic dynamical core has been developed by using the multi-moment finite volume method that ensures the rigorous numerical conservation. To represent the spherical geometry free of polar problems, the cubed-sphere grid is adopted. A fourth-order multi-moment discretization formulation is applied to solve the governing equations cast in the local curvilinear coordinates on each patch of cubed sphere through a gnomonic projection. In vertical direction, the height-based terrain-following grid is used to deal with the topography and a conservative finite difference scheme is adopted for the spatial discretization. The dynamical core adopts the nonhydrostatic governing equations. To get around the CFL stability restriction imposed by sound wave propagation and relatively small grid spacing in the vertical direction, the dimensional-splitting time integration algorithm using the HEVI (horizontally-explicit and vertically-implicit) strategy is implemented by applying the IMEX (implicit-explicit) Runge-Kutta method. The proposed model was checked by the widely-used benchmark tests in this study. The numerical results show that the multi-moment model has superior solution quality and great practical potential as a numerical platform for development of the atmospheric general circulation models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13368v1-abstract-full').style.display = 'none'; document.getElementById('2202.13368v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 5 figures. arXiv admin note: text overlap with arXiv:2004.06290</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12474">arXiv:2201.12474</a> <span> [<a href="https://arxiv.org/pdf/2201.12474">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Diffraction properties of lights with transverse orbital angular momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+S">Shunlin Huang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peng Wang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiong Shen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12474v1-abstract-short" style="display: inline;"> Spatiotemporal optical vortex (STOV) is a unique optical vortex with phase singularity in the space-time domain and the photons in a STOV can carry transverse orbital angular momentum (OAM). The STOV shows many fantastic properties which are worth exploring. Here, we theoretically and experimentally study the diffraction property of STOV, which is a fundamental wave phenomenon. The diffraction beh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12474v1-abstract-full').style.display = 'inline'; document.getElementById('2201.12474v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12474v1-abstract-full" style="display: none;"> Spatiotemporal optical vortex (STOV) is a unique optical vortex with phase singularity in the space-time domain and the photons in a STOV can carry transverse orbital angular momentum (OAM). The STOV shows many fantastic properties which are worth exploring. Here, we theoretically and experimentally study the diffraction property of STOV, which is a fundamental wave phenomenon. The diffraction behaviors of STOVs are obviously affected by the transverse OAM. The diffraction patterns of STOV pulses diffracted by a grating show multi-lobe structure with each gap corresponding to 1 topological charge. The diffraction properties of lights with transverse OAM are demonstrated clearly and help us understanding the physical properties of STOV, which will be of special applications, such as the realization of fast detection of STOVs with different topological charges, which may pay the way for STOV based optical communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12474v1-abstract-full').style.display = 'none'; document.getElementById('2201.12474v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09157">arXiv:2201.09157</a> <span> [<a href="https://arxiv.org/pdf/2201.09157">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/hpl.2023.5">10.1017/hpl.2023.5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multistep pulse compressor based on single-pass single-grating-pair main compressor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Du%2C+S">Shuman Du</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiong Shen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+W">Wenhai Liang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peng Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09157v1-abstract-short" style="display: inline;"> A multistage smoothing multistep pulse compressor (MPC) based on a single-pass single-grating-pair (SSGP) main compressor is proposed to simplify the entire petawatt (PW) compressor. Only one grating pair with relatively long distance is used to generate the same amount of spectral dispersion in the main compressor compared with a four-grating main compressor. As the SSGP induces the largest spati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09157v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09157v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09157v1-abstract-full" style="display: none;"> A multistage smoothing multistep pulse compressor (MPC) based on a single-pass single-grating-pair (SSGP) main compressor is proposed to simplify the entire petawatt (PW) compressor. Only one grating pair with relatively long distance is used to generate the same amount of spectral dispersion in the main compressor compared with a four-grating main compressor. As the SSGP induces the largest spatial dispersion, it can introduce the best beam-smoothing effect to the laser beam on the last grating. When considering the diffraction loss of only two gratings, the total compression efficiency of the SSGP main compressor is even larger than that of a four-grating main compressor. Furthermore, the spatiotemporal aberration induced by single-grating-pair can be compensated effectively by using deformable mirrors, however it is difficult or complicated to be well compensated in a four-grating compressor. Approximately 50-100 PW laser pulses can be obtained using this SSGP-based multistage smoothing MPC with a single laser beam <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09157v1-abstract-full').style.display = 'none'; document.getElementById('2201.09157v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Vol. 11, e4, </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> High Power Laser Science and Engineering (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03917">arXiv:2201.03917</a> <span> [<a href="https://arxiv.org/pdf/2201.03917">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Multistage smoothing based multistep pulse compressor for ultrahigh peak power lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Du%2C+S">Shuman Du</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiong Shen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+W">Wenhai Liang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peng Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03917v1-abstract-short" style="display: inline;"> Ultrahigh peak power lasers are important scientific tools for frontier laser-physics researches, in which both the peak power improvement and operating safety are very important meanwhile limited by the damage threshold and size of compression gratings currently. Based on a recent reported method "multistep pulse compressor (MPC)", a multistage smoothing based MPC (MS-MPC) is proposed here to fur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03917v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03917v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03917v1-abstract-full" style="display: none;"> Ultrahigh peak power lasers are important scientific tools for frontier laser-physics researches, in which both the peak power improvement and operating safety are very important meanwhile limited by the damage threshold and size of compression gratings currently. Based on a recent reported method "multistep pulse compressor (MPC)", a multistage smoothing based MPC (MS-MPC) is proposed here to further improve the running safety, operating convenience, and simplify the whole setup of the MPC. In this optimized design, the beam smoothing is not simply executed in the pre-compressor or main-compressor, but separated into multistage. Then, it can protect important optics in every stage directly and reduce the executing difficult of typical MPC at the same time. The prism pair based pre-compressor will induce suitable spatial dispersion which is easier to be achieved and enough to protect the first grating directly. At the same time, the asymmetric four-grating compressor (AFGC) will also induce spatial dispersion to further smooth the laser beam which helps to protect the last grating directly. In this way, 10s-100s PW lasers can be compressed by using current available optics with improved operating safety owing to remove random spatial intensity modulations. Furthermore, an additional beam smoothing stage can be added before the main amplifier to protect the biggest amplification crystal away from damage. This MS-MPC optical design can be easily extended to be used in all exist PW laser facilities to improve their potential compressed pulse energy and running safety. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03917v1-abstract-full').style.display = 'none'; document.getElementById('2201.03917v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03855">arXiv:2201.03855</a> <span> [<a href="https://arxiv.org/pdf/2201.03855">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.37188/lam.2022.045">10.37188/lam.2022.045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plug-Play Plasmonic Metafibers for Ultrafast Fiber Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Huiru Zhang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+N">Ni Tang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiren Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fengjiang Liu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+X">Xiaoyu Sun</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hongyan Yu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+X">Xinyu Sun</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+Q">Qiannan Jia</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+B">Boqu Chen</a>, <a href="/search/physics?searchtype=author&query=Cluzel%2C+B">Benoit Cluzel</a>, <a href="/search/physics?searchtype=author&query=Grelu%2C+P">Philippe Grelu</a>, <a href="/search/physics?searchtype=author&query=Coillet%2C+A">Aurelien Coillet</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+F">Feng Qiu</a>, <a href="/search/physics?searchtype=author&query=Ying%2C+L">Lei Ying</a>, <a href="/search/physics?searchtype=author&query=Sha%2C+W">Wei Sha</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xiaofeng Liu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+J">Jianrong Qiu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+D">Ding Zhao</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+W">Wei Yan</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+D">Duanduan Wu</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiang Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jiyong Wang</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+M">Min Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03855v2-abstract-short" style="display: inline;"> Metafibers expand the functionalities of conventional optical fibers to unprecedented nanoscale light manipulations by integrating metasurfaces on the fiber tips, becoming an emerging light-coupling platform for both nanoscience and fiber optics communities. Mostly exploring the isolated bare fibers, current metafibers remain as proof-of-concept demonstrations due to a lack of standard interfaces… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03855v2-abstract-full').style.display = 'inline'; document.getElementById('2201.03855v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03855v2-abstract-full" style="display: none;"> Metafibers expand the functionalities of conventional optical fibers to unprecedented nanoscale light manipulations by integrating metasurfaces on the fiber tips, becoming an emerging light-coupling platform for both nanoscience and fiber optics communities. Mostly exploring the isolated bare fibers, current metafibers remain as proof-of-concept demonstrations due to a lack of standard interfaces with the universal fiber networks. Here, we develop new methodologies to fabricate well-defined plasmonic metasurfaces directly on the end facets of commercial single mode fiber jumpers using standard planar technologies and provide a first demonstration of their practical applications in the nonlinear optics regime. Featuring plug-play connections with fiber circuitry and arbitrary metasurfaces landscapes, the metafibers with tunable plasmonic resonances are implemented into fiber laser cavities, yielding all-fiber sub-picosecond (minimum 513 fs) soliton mode locked lasers at optical wavelengths of 1.5 micrometer and 2 micrometer, demonstrating their unusual polarimetric nonlinear transfer functions and superior saturation absorption responses. Novel insights into the physical mechanisms behind the saturable absorption of plasmonic metasurfaces are provided. The nanofabrication process flow is compatible with existing cleanroom technologies, offering metafibers an avenue to be a regular member of functionalized fiber components. The work paves the way towards next generation of ultrafast fiber lasers, optical frequency combs, optical neural networks and ultracompact "all-in-fibers" optical systems for sensing, imaging, communications, and many others. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03855v2-abstract-full').style.display = 'none'; document.getElementById('2201.03855v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12575">arXiv:2110.12575</a> <span> [<a href="https://arxiv.org/pdf/2110.12575">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/photonics9070445">10.3390/photonics9070445 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beam smoothing based on prism pair for multistep pulse compressor in PW lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Du%2C+S">Shuman Du</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiong Shen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+W">Wenhai Liang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peng Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12575v1-abstract-short" style="display: inline;"> Ultra-short ultra-intense laser provides unprecedented experimental tools and extreme physical conditions to explore frontier secrets of nature. Recently, multistep pulse compressor (MPC) was proposed to break through the limitation of the size and damage threshold of the grating in the compressor during the realization of higher peak power laser. In the MPC methods, beam smoothing in the pre-comp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12575v1-abstract-full').style.display = 'inline'; document.getElementById('2110.12575v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12575v1-abstract-full" style="display: none;"> Ultra-short ultra-intense laser provides unprecedented experimental tools and extreme physical conditions to explore frontier secrets of nature. Recently, multistep pulse compressor (MPC) was proposed to break through the limitation of the size and damage threshold of the grating in the compressor during the realization of higher peak power laser. In the MPC methods, beam smoothing in the pre-compressor is a very important process. Here, beam smoothing based on prism pair were studied technically, in which both the spatial profiles and the spectral dispersive properties were analyzed in detail. The simulation results show clearly that the prism pair can effectively smooth the laser beam. Furthermore, the beam smoothing is much more efficiency with shorter separated distance if two prism pairs are arranged to induce spatial dispersion at one direction or two directions. The results of beam smoothing here will help the optimized optical designs in all PW laser systems to improve their output and running safety. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12575v1-abstract-full').style.display = 'none'; document.getElementById('2110.12575v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12pages,7figures,</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photonics 2022, 9, 445 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07228">arXiv:2110.07228</a> <span> [<a href="https://arxiv.org/pdf/2110.07228">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast photonic rainbow with controllable orbital angular momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+S">Shunlin Huang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peng Wang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiong Shen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07228v1-abstract-short" style="display: inline;"> Increasing any degree of freedom of light beam may open a wide application area of this special light beam. Vortex beam with a dimension of orbital angular momentum (OAM) as a useful light source has been widely applied in many fields. Here, unique multicolor concentric ultrafast vortex beams (MUCU-VBs), which are also named ultrafast photonic rainbow, with controllable orbital angular momentum ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07228v1-abstract-full').style.display = 'inline'; document.getElementById('2110.07228v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07228v1-abstract-full" style="display: none;"> Increasing any degree of freedom of light beam may open a wide application area of this special light beam. Vortex beam with a dimension of orbital angular momentum (OAM) as a useful light source has been widely applied in many fields. Here, unique multicolor concentric ultrafast vortex beams (MUCU-VBs), which are also named ultrafast photonic rainbow, with controllable orbital angular momentum are firstly generated using cascaded four-wave mixing (CFWM) in an yttrium aluminum garnet (YAG) plate. Up to 9 multicolor concentric annular ultrafast vortex sidebands are generated simultaneously. The topological charges of the sidebands, which are controllable by changing the topological charges of the two input pump beams, are measured and in according with the theoretical analysis very well. The novel MUCU-VBs can be manipulated simultaneously in temporal, spatial, spectral domains and OAM state, which open more than one new degree of freedoms of vortex light beam and will be of wide and special applications, such as multicolor pump-probe experiments, simultaneous microparticle manipulation and exploring, and optical communication. Moreover, the special focusing properties of the multicolor ultrafast sidebands, such as multi-focus of different wavelengths, may further extend their application area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07228v1-abstract-full').style.display = 'none'; document.getElementById('2110.07228v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.07976">arXiv:2109.07976</a> <span> [<a href="https://arxiv.org/pdf/2109.07976">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-021-00943-y">10.1038/s41565-021-00943-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cong Wang</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+S">Shi-Jun Liang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chen-Yu Wang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zai-Zheng Yang</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+Y">Yingmeng Ge</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+C">Chen Pan</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xi Shen</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+W">Wei Wei</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yichen Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zaichen Zhang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+B">Bin Cheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+F">Feng Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.07976v1-abstract-short" style="display: inline;"> The growth of connected intelligent devices in the Internet of Things has created a pressing need for real-time processing and understanding of large volumes of analogue data. The difficulty in boosting the computing speed renders digital computing unable to meet the demand for processing analogue information that is intrinsically continuous in magnitude and time. By utilizing a continuous data re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07976v1-abstract-full').style.display = 'inline'; document.getElementById('2109.07976v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.07976v1-abstract-full" style="display: none;"> The growth of connected intelligent devices in the Internet of Things has created a pressing need for real-time processing and understanding of large volumes of analogue data. The difficulty in boosting the computing speed renders digital computing unable to meet the demand for processing analogue information that is intrinsically continuous in magnitude and time. By utilizing a continuous data representation in a nanoscale crossbar array, parallel computing can be implemented for the direct processing of analogue information in real time. Here, we propose a scalable massively parallel computing scheme by exploiting a continuous-time data representation and frequency multiplexing in a nanoscale crossbar array. This computing scheme enables the parallel reading of stored data and the one-shot operation of matrix-matrix multiplications in the crossbar array. Furthermore, we achieve the one-shot recognition of 16 letter images based on two physically interconnected crossbar arrays and demonstrate that the processing and modulation of analogue information can be simultaneously performed in a memristive crossbar array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07976v1-abstract-full').style.display = 'none'; document.getElementById('2109.07976v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Shen%2C+X&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Shen%2C+X&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Shen%2C+X&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Shen%2C+X&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Shen%2C+X&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>