CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 91 results for author: <span class="mathjax">Cai, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Cai%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cai, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cai%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cai, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Cai%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Cai%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cai%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09518">arXiv:2411.09518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09518">pdf</a>, <a href="https://arxiv.org/format/2411.09518">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> All-optical magnetic imaging with spin defects in van der Waals materials at Angstrom-scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lei%2C+C">Chao Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09518v1-abstract-short" style="display: inline;"> Magnetic imaging with ultra-high spatial resolution is crucial to exploring the magnetic textures of emerging quantum materials. We propose a novel magnetic imaging protocol that achieves Angstrom-scale resolution by combining spin defects in van der Waals materials and terahertz scattering scanning near-field optical microscopy (THz s-SNOM). Spin defects in the atomic monolayer enable the probe-t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09518v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09518v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09518v1-abstract-full" style="display: none;"> Magnetic imaging with ultra-high spatial resolution is crucial to exploring the magnetic textures of emerging quantum materials. We propose a novel magnetic imaging protocol that achieves Angstrom-scale resolution by combining spin defects in van der Waals materials and terahertz scattering scanning near-field optical microscopy (THz s-SNOM). Spin defects in the atomic monolayer enable the probe-to-sample distance diving into the Angstrom range where the exchange interactions between the probe and sample spins become predominant. This exchange interaction leads to energy splitting of the probe spin in the order of millielectronvolts, corresponding to THz frequencies. With THz optics and the spin-dependent fluorescence of the probe spin, the interaction energy can be resolved entirely through optical methods. Our proposed all-optical magnetic imaging protocol holds significant promise for investigating magnetic textures in condensed matter physics due to its excellent compatibility and high spatial resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09518v1-abstract-full').style.display = 'none'; document.getElementById('2411.09518v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22378">arXiv:2410.22378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22378">pdf</a>, <a href="https://arxiv.org/format/2410.22378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Theory of vibrational Stark effect for adsorbates and diatomic molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+S">Sang Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jun Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yanxia Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22378v1-abstract-short" style="display: inline;"> Nowadays the vibrational Stark effect (VSE) of adsorbates at the electrochemical interfaces is generally investigated using the Lambert theory, in which the strong electric field across the interfaces can be treated as some kind of perturbation. Lambert found that the VSE arises mainly from the classical effect, and the quantum effect is negligible. This idea is accepted by almost all current firs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22378v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22378v1-abstract-full" style="display: none;"> Nowadays the vibrational Stark effect (VSE) of adsorbates at the electrochemical interfaces is generally investigated using the Lambert theory, in which the strong electric field across the interfaces can be treated as some kind of perturbation. Lambert found that the VSE arises mainly from the classical effect, and the quantum effect is negligible. This idea is accepted by almost all current first-principle calculations for this issue. Here we revisit this problem by addressing the fundamental question that to what extent the quantum effect is important for VSE, and if it is observable, then which physical quantity determines this effect. We use the Morse, Lennard-Jones and Dunham potentials as basic potentials to explore this problem using quantum perturbation theory. We define the relative difference between quantum and classical VSE slopes to define the quantum effect, $畏$, and show that for CO, $畏\sim $ 2 - 3\%, while for adsorbed hydrogen on Pt electrode, $畏\sim$ 8 - 10\%, using the experimental data. We find that $畏$ is determined by the anharmonic coefficient $蠂_e$. Without results we present a new understanding of the VSE as a function of electric field and potential in electrochemical experiments, showing that the nonlinear slope of VSE as a function of potential should arise from the nonlinear relation between electric field and potential across the interfaces, which may resolve the long-standing controversial in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22378v1-abstract-full').style.display = 'none'; document.getElementById('2410.22378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages and 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09783">arXiv:2408.09783</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09783">pdf</a>, <a href="https://arxiv.org/format/2408.09783">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum metrological capability as a probe for quantum phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiangbei Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shaoliang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09783v3-abstract-short" style="display: inline;"> The comprehension of quantum phase transitions (QPTs) is considered as a critical foothold in the field of many-body physics. Developing protocols to effectively identify and understand QPTs thus represents a key but challenging task for present quantum simulation experiments. Here, we establish a dynamical quench-interferometric framework to probe a zero-temperature QPT, which utilizes the evolve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09783v3-abstract-full').style.display = 'inline'; document.getElementById('2408.09783v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09783v3-abstract-full" style="display: none;"> The comprehension of quantum phase transitions (QPTs) is considered as a critical foothold in the field of many-body physics. Developing protocols to effectively identify and understand QPTs thus represents a key but challenging task for present quantum simulation experiments. Here, we establish a dynamical quench-interferometric framework to probe a zero-temperature QPT, which utilizes the evolved state by quenching the QPT Hamiltonian as input of a unitary interferometer. The metrological capability quantified by the quantum Fisher information captivatingly shows an unique peak in the vicinity of the quantum critical point, allowing us to probe the QPT without cooling the system to its ground state. We show that the probing can be implemented by extracting quantum fluctuations of the interferometric generator as well as parameter estimation uncertainty of the interferometric phase, and subsequently allows identifying the boundary of the phase diagram. Our results establish an important link between QPTs and quantum metrology, and enrich the toolbox of studying non-equilibrium many-body physics in current quantum simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09783v3-abstract-full').style.display = 'none'; document.getElementById('2408.09783v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20056">arXiv:2407.20056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20056">pdf</a>, <a href="https://arxiv.org/format/2407.20056">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.22.024032">10.1103/PhysRevApplied.22.024032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong coherent ion-electron coupling using a wire data bus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+B">Baiyi Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20056v1-abstract-short" style="display: inline;"> Ion-ion coupling over long distances represents a highly useful resource for quantum technologies, for example, to sympathetically cool or interconnect qubits in ion-based quantum-computing architectures. In this respect, the recently demonstrated wire-mediated ion-ion coupling stands due to the simplification of its trap layout and its prospects for deterministic entanglement. However, the streng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20056v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20056v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20056v1-abstract-full" style="display: none;"> Ion-ion coupling over long distances represents a highly useful resource for quantum technologies, for example, to sympathetically cool or interconnect qubits in ion-based quantum-computing architectures. In this respect, the recently demonstrated wire-mediated ion-ion coupling stands due to the simplification of its trap layout and its prospects for deterministic entanglement. However, the strength of such coherent ion-wire-ion coupling is typically weak, hindering its practical utilization. Here, we propose a wire-mediated scheme for coherent ion-electron coupling. The scheme not only enables the sympathetic cooling of electrons via advanced ion-cooling techniques, but also allows to promote the effective ion-ion coupling strength by orders of magnitudes via electron mediation. Our work thus paves a way toward quantum information processing in ion-electron hybrid quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20056v1-abstract-full').style.display = 'none'; document.getElementById('2407.20056v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Appl. 22, 024032 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10973">arXiv:2404.10973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10973">pdf</a>, <a href="https://arxiv.org/format/2404.10973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.110201">10.1103/PhysRevLett.133.110201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum delocalization on correlation landscape: The key to exponentially fast multipartite entanglement generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiangbei Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10973v2-abstract-short" style="display: inline;"> Entanglement, a hallmark of quantum mechanics, is a vital resource for quantum technologies. Generating highly entangled multipartite states is a key goal in current quantum experiments. We unveil a novel framework for understanding entanglement generation dynamics in Hamiltonian systems by quantum delocalization of an effective operator wavefunction on a correlation landscape. Our framework estab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10973v2-abstract-full').style.display = 'inline'; document.getElementById('2404.10973v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10973v2-abstract-full" style="display: none;"> Entanglement, a hallmark of quantum mechanics, is a vital resource for quantum technologies. Generating highly entangled multipartite states is a key goal in current quantum experiments. We unveil a novel framework for understanding entanglement generation dynamics in Hamiltonian systems by quantum delocalization of an effective operator wavefunction on a correlation landscape. Our framework establishes a profound connection between the exponentially fast generation of multipartite entanglement, witnessed by the quantum Fisher information, and the linearly increasing asymptotics of hopping amplitudes governing the delocalization dynamics in Krylov space. We illustrate this connection using the paradigmatic Lipkin-Meshkov-Glick model and highlight potential signatures in chaotic Feingold-Peres tops. Our results provide a transformative tool for understanding and harnessing rapid entanglement production in complex quantum systems, providing a pathway for quantum enhanced technologies by large-scale entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10973v2-abstract-full').style.display = 'none'; document.getElementById('2404.10973v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 133, 110201 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08218">arXiv:2403.08218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08218">pdf</a>, <a href="https://arxiv.org/format/2403.08218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian sensing in the absence of exceptional points </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+L">Lei Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Q">Quan Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+H">Haiqing Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+W">Wei Yi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+P">Peng Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08218v1-abstract-short" style="display: inline;"> Open systems possess unique potentials in high-precision sensing, yet the majority of previous studies rely on the spectral singularities known as exceptional points. Here we theoretically propose and experimentally demonstrate universal non-Hermitian sensing in the absence of exceptional points. The scheme makes use of the intrinsic sensitivity of a non-Hermitian probe to weak external fields, wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08218v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08218v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08218v1-abstract-full" style="display: none;"> Open systems possess unique potentials in high-precision sensing, yet the majority of previous studies rely on the spectral singularities known as exceptional points. Here we theoretically propose and experimentally demonstrate universal non-Hermitian sensing in the absence of exceptional points. The scheme makes use of the intrinsic sensitivity of a non-Hermitian probe to weak external fields, which can be understood as the direct consequence of non-Hermiticity. We confirm the basic mechanism by simulating the sensor-field dynamics using photon interferometry, and, as a concrete example, demonstrate the enhanced sensing of signals encoded in the setting angle of a wave plate. While the sensitivity of the probe is ultimately limited by the measurement noise, we find the non-Hermitian sensor showing superior performance under background noises that cannot be suppressed through repetitive measurements. Our experiment opens the avenue of enhanced sensing without exceptional points, complementing existing efforts aimed at harnessing the unique features of open systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08218v1-abstract-full').style.display = 'none'; document.getElementById('2403.08218v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17323">arXiv:2401.17323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17323">pdf</a>, <a href="https://arxiv.org/format/2401.17323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.042220">10.1103/PhysRevA.110.042220 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identifying possible mechanism for quantum needle in chemical magnetoreception </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xiaoyu Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Haibin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17323v1-abstract-short" style="display: inline;"> The radical pair mechanism is an important model that may provide a basis for biological magnetoreception. To account for the high orientation precision of the real avian compass, P. J. Hore et al. proposed an intriguing phenomenon called quantum needle [Proc. Natl. Acad. Sci. 113, 4634 (2016)], where a spike-like feature emerges in the fractional yield signal. However, it is believed that quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17323v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17323v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17323v1-abstract-full" style="display: none;"> The radical pair mechanism is an important model that may provide a basis for biological magnetoreception. To account for the high orientation precision of the real avian compass, P. J. Hore et al. proposed an intriguing phenomenon called quantum needle [Proc. Natl. Acad. Sci. 113, 4634 (2016)], where a spike-like feature emerges in the fractional yield signal. However, it is believed that quantum needle requires the radical pair lifetime to be longer than a few microseconds and thus poses stern challenges in realistic biological systems. Here, we exploit the optimization techniques and find a novel class of model system, which sustains much more prominent features of quantum needle and significantly relaxes the requirement for radical pair lifetime. Even more surprisingly, we find that the characteristics of quantum needle retain a narrow functional window around the geomagnetic field, which is absent in the previous model systems. Therefore, our work provides essential evidence for identifying the possible physical mechanism for quantum needle in chemical magnetoreception. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17323v1-abstract-full').style.display = 'none'; document.getElementById('2401.17323v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 042220 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02267">arXiv:2312.02267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02267">pdf</a>, <a href="https://arxiv.org/format/2312.02267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Protecting Quantum Information via Destructive Interference of Correlated Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Salhov%2C+A">Alon Salhov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Q">Qingyun Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Retzker%2C+A">Alex Retzker</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jelezko%2C+F">Fedor Jelezko</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Genov%2C+G">Genko Genov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02267v1-abstract-short" style="display: inline;"> Decoherence and imperfect control are crucial challenges for quantum technologies. Common protection strategies rely on noise temporal autocorrelation, which is not optimal if other correlations are present. We develop and demonstrate experimentally a strategy that utilizes the cross-correlation of two noise sources. We achieve a tenfold coherence time extension by destructive interference of cros&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02267v1-abstract-full').style.display = 'inline'; document.getElementById('2312.02267v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02267v1-abstract-full" style="display: none;"> Decoherence and imperfect control are crucial challenges for quantum technologies. Common protection strategies rely on noise temporal autocorrelation, which is not optimal if other correlations are present. We develop and demonstrate experimentally a strategy that utilizes the cross-correlation of two noise sources. We achieve a tenfold coherence time extension by destructive interference of cross-correlated noise, improve control fidelity, and surpass the state-of-the-art sensitivity for high frequency quantum sensing, significantly expanding the applicability of noise protection strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02267v1-abstract-full').style.display = 'none'; document.getElementById('2312.02267v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 5 pages, 5 figures; SM: 16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.00762">arXiv:2310.00762</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.00762">pdf</a>, <a href="https://arxiv.org/ps/2310.00762">ps</a>, <a href="https://arxiv.org/format/2310.00762">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Operator Algebras">math.OA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A note on the stabilizer formalism via noncommutative graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Araiza%2C+R">Roy Araiza</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jihong Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yushan Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Holtermann%2C+A">Abraham Holtermann</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hsu%2C+C">Chieh Hsu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mohan%2C+T">Tushar Mohan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+P">Peixue Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+Z">Zeyuan Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.00762v2-abstract-short" style="display: inline;"> In this short note we formulate a stabilizer formalism in the language of noncommutative graphs. The classes of noncommutative graphs we consider are obtained via unitary representations of compact groups, and suitably chosen operators on finite-dimensional Hilbert spaces. Furthermore, in this framework, we generalize previous results in this area for determining when such noncommutative graphs ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00762v2-abstract-full').style.display = 'inline'; document.getElementById('2310.00762v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.00762v2-abstract-full" style="display: none;"> In this short note we formulate a stabilizer formalism in the language of noncommutative graphs. The classes of noncommutative graphs we consider are obtained via unitary representations of compact groups, and suitably chosen operators on finite-dimensional Hilbert spaces. Furthermore, in this framework, we generalize previous results in this area for determining when such noncommutative graphs have anticliques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00762v2-abstract-full').style.display = 'none'; document.getElementById('2310.00762v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version. To appear in &#34;Quantum Information Processing&#39;&#39;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01675">arXiv:2307.01675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01675">pdf</a>, <a href="https://arxiv.org/format/2307.01675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.032626">10.1103/PhysRevA.109.032626 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-photon-transition superadiabatic passage in an nitrogen-vacancy center in diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Musang Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Min Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Q">Qingyun Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Giannelli%2C+L">Luigi Giannelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01675v1-abstract-short" style="display: inline;"> Reaching a given target quantum state with high fidelity and fast operation speed close to the quantum limit represents an important goal in quantum information science. Here, we experimentally demonstrate superadiabatic quantum driving to achieve population transfer in a three-level solid-state spin system. Starting from traditional stimulated Raman adiabatic passage (STIRAP), our approach implem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01675v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01675v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01675v1-abstract-full" style="display: none;"> Reaching a given target quantum state with high fidelity and fast operation speed close to the quantum limit represents an important goal in quantum information science. Here, we experimentally demonstrate superadiabatic quantum driving to achieve population transfer in a three-level solid-state spin system. Starting from traditional stimulated Raman adiabatic passage (STIRAP), our approach implements superadiabatic corrections to the STIRAP Hamiltonians with several paradigmatic pulse shapes. It requires no need of intense microwave pulses or long transfer times and shows enhanced robustness over pulse imperfections. These results might provide a useful tool for quantum information processing and coherent manipulations of quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01675v1-abstract-full').style.display = 'none'; document.getElementById('2307.01675v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 109, 032626 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10072">arXiv:2306.10072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.10072">pdf</a>, <a href="https://arxiv.org/ps/2306.10072">ps</a>, <a href="https://arxiv.org/format/2306.10072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Discrete Mathematics">cs.DM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11432-023-3961-3">10.1007/s11432-023-3961-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shor&#39;s Algorithm Does Not Factor Large Integers in the Presence of Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jin-Yi Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10072v1-abstract-short" style="display: inline;"> We consider Shor&#39;s quantum factoring algorithm in the setting of noisy quantum gates. Under a generic model of random noise for (controlled) rotation gates, we prove that the algorithm does not factor integers of the form $pq$ when the noise exceeds a vanishingly small level in terms of $n$ -- the number of bits of the integer to be factored, where $p$ and $q$ are from a well-defined set of primes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10072v1-abstract-full').style.display = 'inline'; document.getElementById('2306.10072v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10072v1-abstract-full" style="display: none;"> We consider Shor&#39;s quantum factoring algorithm in the setting of noisy quantum gates. Under a generic model of random noise for (controlled) rotation gates, we prove that the algorithm does not factor integers of the form $pq$ when the noise exceeds a vanishingly small level in terms of $n$ -- the number of bits of the integer to be factored, where $p$ and $q$ are from a well-defined set of primes of positive density. We further prove that with probability $1 - o(1)$ over random prime pairs $(p,q)$, Shor&#39;s factoring algorithm does not factor numbers of the form $pq$, with the same level of random noise present. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10072v1-abstract-full').style.display = 'none'; document.getElementById('2306.10072v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.0; E.3 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Information Sciences 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10735">arXiv:2304.10735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10735">pdf</a>, <a href="https://arxiv.org/format/2304.10735">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.073202">10.1103/PhysRevLett.132.073202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Engineering artificial atomic systems of giant electric dipole moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+B">Baiyi Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shaoliang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10735v1-abstract-short" style="display: inline;"> The electric dipole moment (EDM) plays a crucial role in determining the interaction strength of an atom with electric fields, making it paramount to quantum technologies based on coherent atomic control. We propose a scheme for engineering the potential in a Paul trap to realize a two-level quantum system with a giant EDM formed by the motional states of a trapped electron. We show that, under re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10735v1-abstract-full').style.display = 'inline'; document.getElementById('2304.10735v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10735v1-abstract-full" style="display: none;"> The electric dipole moment (EDM) plays a crucial role in determining the interaction strength of an atom with electric fields, making it paramount to quantum technologies based on coherent atomic control. We propose a scheme for engineering the potential in a Paul trap to realize a two-level quantum system with a giant EDM formed by the motional states of a trapped electron. We show that, under realistic experimental conditions, the EDM can significantly exceed the ones attainable with Rydberg atoms. Furthermore, we show that such artificial atomic dipoles can be efficiently initialized, readout, and coherently controlled, thereby providing a potential platform for quantum technologies such as ultrahigh-sensitivity electric-field sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10735v1-abstract-full').style.display = 'none'; document.getElementById('2304.10735v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 5 figures + 26 pages Supplemental Material. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 073202 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10672">arXiv:2304.10672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10672">pdf</a>, <a href="https://arxiv.org/format/2304.10672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.L040602">10.1103/PhysRevA.107.L040602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accelerated quantum control in a three-level system by jumping along the geodesics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Musang Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Min Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10672v1-abstract-short" style="display: inline;"> In a solid-state spin system, we experimentally demonstrate a protocol for quantum-state population transfer with an improved efficiency compared to traditional stimulated Raman adiabatic passage (STIRAP). Using the ground-state triplet of the nitrogen-vacancy center in diamond, we show that the required evolution time for high-fidelity state transfer can be reduced by almost one order of magnitud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10672v1-abstract-full').style.display = 'inline'; document.getElementById('2304.10672v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10672v1-abstract-full" style="display: none;"> In a solid-state spin system, we experimentally demonstrate a protocol for quantum-state population transfer with an improved efficiency compared to traditional stimulated Raman adiabatic passage (STIRAP). Using the ground-state triplet of the nitrogen-vacancy center in diamond, we show that the required evolution time for high-fidelity state transfer can be reduced by almost one order of magnitude. Furthermore, we establish an improved robustness against frequency detuning caused by magnetic noise as compared to STIRAP. These results provide a powerful tool for coherent spin manipulation in the context of quantum sensing and quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10672v1-abstract-full').style.display = 'none'; document.getElementById('2304.10672v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.08410">arXiv:2302.08410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.08410">pdf</a>, <a href="https://arxiv.org/format/2302.08410">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/s23063244">10.3390/s23063244 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bayesian-based hybrid method for rapid optimization of NV center sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+J">Jiazhao Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Said%2C+R+S">Ressa S. Said</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jelezko%2C+F">Fedor Jelezko</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+L">Liantuan Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.08410v1-abstract-short" style="display: inline;"> NV center is one of the most promising platforms in the field of quantum sensing. Magnetometry based on NV center, especially, has achieved a concrete development in regions of biomedicine and medical diagnostics. Improving the sensitivity of NV center sensor under wide inhomogeneous broadening and filed amplitude drift is one crucial issue of continuous concern, which relies on the coherent contr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08410v1-abstract-full').style.display = 'inline'; document.getElementById('2302.08410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.08410v1-abstract-full" style="display: none;"> NV center is one of the most promising platforms in the field of quantum sensing. Magnetometry based on NV center, especially, has achieved a concrete development in regions of biomedicine and medical diagnostics. Improving the sensitivity of NV center sensor under wide inhomogeneous broadening and filed amplitude drift is one crucial issue of continuous concern, which relies on the coherent control of NV center with higher average fidelity. Quantum optimal control (QOC) methods provide access to this target, nevertheless the high time consumption of current methods due to the large number of needful sample points as well as the complexity of the parameter space has hindered their usability. In this paper we propose the Bayesian estimation phase-modulated (B-PM) method to tackle this problem. In the case of state transforming of NV center ensemble, the B-PM method reduces the time consumption by more than $90\%$ compared to the conventional standard Fourier base (SFB) method while increasing the average fidelity from $0.894$ to $0.905$. In AC magnetometry scenery, the optimized control pulse given by B-PM method achieves a eight-fold extension of the coherence time $T_2$ compared to rectangular $蟺$ pulse. Similar application can be made in other sensing situations. As a general algorithm, the B-PM method can be further extended to open- and closed-loop optimization of complex systems based on a variety of quantum platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08410v1-abstract-full').style.display = 'none'; document.getElementById('2302.08410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sensors 23, 3244 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.08236">arXiv:2302.08236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.08236">pdf</a>, <a href="https://arxiv.org/format/2302.08236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.18.024040">10.1103/PhysRevApplied.18.024040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-time adaptive sensing of nuclear spins by a single-spin quantum sensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jingcheng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+D">Dongxiao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.08236v1-abstract-short" style="display: inline;"> Quantum sensing is considered to be one of the most promising subfields of quantum information to deliver practical quantum advantages in real-world applications. However, its impressive capabilities, including high sensitivity, are often hindered by the limited quantum resources available. Here, we incorporate the expected information gain (EIG) and techniques such as accelerated computation into&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08236v1-abstract-full').style.display = 'inline'; document.getElementById('2302.08236v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.08236v1-abstract-full" style="display: none;"> Quantum sensing is considered to be one of the most promising subfields of quantum information to deliver practical quantum advantages in real-world applications. However, its impressive capabilities, including high sensitivity, are often hindered by the limited quantum resources available. Here, we incorporate the expected information gain (EIG) and techniques such as accelerated computation into Bayesian experimental design (BED) in order to use quantum resources more efficiently. A simulated nitrogen-vacancy center in diamond is used to demonstrate real-time operation of the BED. Instead of heuristics, the EIG is used to choose optimal control parameters in real-time. Moreover, combining the BED with accelerated computation and asynchronous operations, we find that up to a tenfold speed-up in absolute time cost can be achieved in sensing multiple surrounding C13 nuclear spins. Our work explores the possibilities of applying the EIG to BED-based quantum-sensing tasks and provides techniques useful to integrate BED into more generalized quantum sensing systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08236v1-abstract-full').style.display = 'none'; document.getElementById('2302.08236v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 18, 024040 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07439">arXiv:2302.07439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07439">pdf</a>, <a href="https://arxiv.org/format/2302.07439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.022408">10.1103/PhysRevA.108.022408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robustness of random-control quantum-state tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jingcheng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shaoliang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liao%2C+Z">Zhenyu Liao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Arenz%2C+C">Christian Arenz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07439v2-abstract-short" style="display: inline;"> In a recently demonstrated quantum-state tomography scheme [Phys. Rev. Lett. 124, 010405 (2020)], a random control field is locally applied to a multipartite system to reconstruct the full quantum state of the system through single-observable measurements. Here, we analyze the robustness of such a tomography scheme against measurement errors. We characterize the sensitivity to measurement errors u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07439v2-abstract-full').style.display = 'inline'; document.getElementById('2302.07439v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07439v2-abstract-full" style="display: none;"> In a recently demonstrated quantum-state tomography scheme [Phys. Rev. Lett. 124, 010405 (2020)], a random control field is locally applied to a multipartite system to reconstruct the full quantum state of the system through single-observable measurements. Here, we analyze the robustness of such a tomography scheme against measurement errors. We characterize the sensitivity to measurement errors using the logarithm of the condition number of a linear system that fully describes the tomography process. Using results from random matrix theory we derive the scaling law of the logarithm of this condition number with respect to the system size when Haar-random evolutions are considered. While this expression is independent on how Haar randomness is created, we also perform numerical simulations to investigate the temporal behavior of the robustness for two specific quantum systems that are driven by a single random control field. Interestingly, we find that before the mean value of the logarithm of the condition number as a function of the driving time asymptotically approaches the value predicted for a Haar-random evolution, it reaches a plateau whose length increases with the system size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07439v2-abstract-full').style.display = 'none'; document.getElementById('2302.07439v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 108, 022408 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12113">arXiv:2301.12113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.12113">pdf</a>, <a href="https://arxiv.org/format/2301.12113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.170801">10.1103/PhysRevLett.130.170801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong quantum metrological limit from many-body physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiangbei Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12113v2-abstract-short" style="display: inline;"> Surpassing the standard quantum limit and even reaching the Heisenberg limit using quantum entanglement, represents the Holy Grail of quantum metrology. However, quantum entanglement is a valuable resource that does not come without a price. The exceptional time overhead for the preparation of large-scale entangled states raises disconcerting concerns about whether the Heisenberg limit is fundamen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12113v2-abstract-full').style.display = 'inline'; document.getElementById('2301.12113v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12113v2-abstract-full" style="display: none;"> Surpassing the standard quantum limit and even reaching the Heisenberg limit using quantum entanglement, represents the Holy Grail of quantum metrology. However, quantum entanglement is a valuable resource that does not come without a price. The exceptional time overhead for the preparation of large-scale entangled states raises disconcerting concerns about whether the Heisenberg limit is fundamentally achievable. Here we find a universal speed limit set by the Lieb-Robinson light cone for the quantum Fisher information growth to characterize the metrological potential of quantum resource states during their preparation. Our main result establishes a strong precision limit of quantum metrology accounting for the complexity of many-body quantum resource state preparation and reveals a fundamental constraint for reaching the Heisenberg limit in a generic many-body lattice system with bounded one-site energy. It enables us to identify the essential features of quantum many-body systems that are crucial for achieving the quantum advantage of quantum metrology, and brings an interesting connection between many-body quantum dynamics and quantum metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12113v2-abstract-full').style.display = 'none'; document.getElementById('2301.12113v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures + supplementary information (14 pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 170801 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03335">arXiv:2212.03335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03335">pdf</a>, <a href="https://arxiv.org/ps/2212.03335">ps</a>, <a href="https://arxiv.org/format/2212.03335">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Discrete Mathematics">cs.DM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Planar #CSP Equality Corresponds to Quantum Isomorphism -- A Holant Viewpoint </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jin-Yi Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Young%2C+B">Ben Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03335v3-abstract-short" style="display: inline;"> Recently, Man膷inska and Roberson proved that two graphs $G$ and $G&#39;$ are quantum isomorphic if and only if they admit the same number of homomorphisms from all planar graphs. We extend this result to planar #CSP with any pair of sets $\mathcal{F}$ and $\mathcal{F}&#39;$ of real-valued, arbitrary-arity constraint functions. Graph homomorphism is the special case where each of $\mathcal{F}$ and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03335v3-abstract-full').style.display = 'inline'; document.getElementById('2212.03335v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03335v3-abstract-full" style="display: none;"> Recently, Man膷inska and Roberson proved that two graphs $G$ and $G&#39;$ are quantum isomorphic if and only if they admit the same number of homomorphisms from all planar graphs. We extend this result to planar #CSP with any pair of sets $\mathcal{F}$ and $\mathcal{F}&#39;$ of real-valued, arbitrary-arity constraint functions. Graph homomorphism is the special case where each of $\mathcal{F}$ and $\mathcal{F}&#39;$ contains a single symmetric 0-1-valued binary constraint function. Our treatment uses the framework of planar Holant problems. To prove that quantum isomorphic constraint function sets give the same value on any planar #CSP instance, we apply a novel form of holographic transformation of Valiant, using the quantum permutation matrix $\mathcal{U}$ defining the quantum isomorphism. Due to the noncommutativity of $\mathcal{U}$&#39;s entries, it turns out that this form of holographic transformation is only applicable to planar Holant. To prove the converse, we introduce the quantum automorphism group Qut$(\mathcal{F})$ of a set of constraint functions $\mathcal{F}$, and characterize the intertwiners of Qut$(\mathcal{F})$ as the signature matrices of planar Holant$(\mathcal{F}\,|\,\mathcal{EQ})$ quantum gadgets. Then we define a new notion of (projective) connectivity for constraint functions and reduce arity while preserving the quantum automorphism group. Finally, to address the challenges posed by generalizing from 0-1 valued to real-valued constraint functions, we adapt a technique of Lov谩sz in the classical setting for isomorphisms of real-weighted graphs to the setting of quantum isomorphisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03335v3-abstract-full').style.display = 'none'; document.getElementById('2212.03335v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04717">arXiv:2210.04717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.04717">pdf</a>, <a href="https://arxiv.org/format/2210.04717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum state tomography via non-convex Riemannian gradient descent </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hsu%2C+M">Ming-Chien Hsu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kuo%2C+E">En-Jui Kuo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+W">Wei-Hsuan Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jian-Feng Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hsieh%2C+M">Min-Hsiu Hsieh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04717v1-abstract-short" style="display: inline;"> The recovery of an unknown density matrix of large size requires huge computational resources. The recent Factored Gradient Descent (FGD) algorithm and its variants achieved state-of-the-art performance since they could mitigate the dimensionality barrier by utilizing some of the underlying structures of the density matrix. Despite their theoretical guarantee of a linear convergence rate, the conv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04717v1-abstract-full').style.display = 'inline'; document.getElementById('2210.04717v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04717v1-abstract-full" style="display: none;"> The recovery of an unknown density matrix of large size requires huge computational resources. The recent Factored Gradient Descent (FGD) algorithm and its variants achieved state-of-the-art performance since they could mitigate the dimensionality barrier by utilizing some of the underlying structures of the density matrix. Despite their theoretical guarantee of a linear convergence rate, the convergence in practical scenarios is still slow because the contracting factor of the FGD algorithms depends on the condition number $魏$ of the ground truth state. Consequently, the total number of iterations can be as large as $O(\sqrt魏\ln(\frac{1}{\varepsilon}))$ to achieve the estimation error $\varepsilon$. In this work, we derive a quantum state tomography scheme that improves the dependence on $魏$ to the logarithmic scale; namely, our algorithm could achieve the approximation error $\varepsilon$ in $O(\ln(\frac{1}{魏\varepsilon}))$ steps. The improvement comes from the application of the non-convex Riemannian gradient descent (RGD). The contracting factor in our approach is thus a universal constant that is independent of the given state. Our theoretical results of extremely fast convergence and nearly optimal error bounds are corroborated by numerical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04717v1-abstract-full').style.display = 'none'; document.getElementById('2210.04717v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05167">arXiv:2208.05167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05167">pdf</a>, <a href="https://arxiv.org/format/2208.05167">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Notes on Thermodynamic Principle for Quantum Metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05167v1-abstract-short" style="display: inline;"> Recently, we find a physical limit on energy consumption of quantum metrology, and demonstrate that it essentially arises from the erasure of quantum Fisher information (QFI) which determines the best achievable measurement precision. Here, we provide more details in order to further elaborate the essence of this principle. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05167v1-abstract-full" style="display: none;"> Recently, we find a physical limit on energy consumption of quantum metrology, and demonstrate that it essentially arises from the erasure of quantum Fisher information (QFI) which determines the best achievable measurement precision. Here, we provide more details in order to further elaborate the essence of this principle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05167v1-abstract-full').style.display = 'none'; document.getElementById('2208.05167v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.00546">arXiv:2206.00546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.00546">pdf</a>, <a href="https://arxiv.org/format/2206.00546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwae065">10.1093/nsr/nwae065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of topological bounds in quantum metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Min Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiangbei Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mera%2C+B">Bruno Mera</a>, <a href="/search/quant-ph?searchtype=author&amp;query=%C3%9Cnal%2C+F+N">F. Nur 脺nal</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goldman%2C+N">Nathan Goldman</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.00546v3-abstract-short" style="display: inline;"> Quantum metrology is deeply connected to quantum geometry, through the fundamental notion of quantum Fisher information. Inspired by advances in topological matter, it was recently suggested that the Berry curvature and Chern numbers of band structures can dictate strict lower bounds on metrological properties, hence establishing a strong connection between topology and quantum metrology. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00546v3-abstract-full').style.display = 'inline'; document.getElementById('2206.00546v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.00546v3-abstract-full" style="display: none;"> Quantum metrology is deeply connected to quantum geometry, through the fundamental notion of quantum Fisher information. Inspired by advances in topological matter, it was recently suggested that the Berry curvature and Chern numbers of band structures can dictate strict lower bounds on metrological properties, hence establishing a strong connection between topology and quantum metrology. In this work, we provide a first experimental verification of such topological bounds, by performing optimal quantum multi-parameter estimation and achieving the best possible measurement precision. By emulating the band structure of a Chern insulator, we experimentally determine the metrological potential across a topological phase transition, and demonstrate strong enhancement in the topologically non-trivial regime. Our work opens the door to metrological applications empowered by topology, with potential implications for quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00546v3-abstract-full').style.display = 'none'; document.getElementById('2206.00546v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures + 13 pages (SI), comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review, 11, nwae065 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13984">arXiv:2204.13984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13984">pdf</a>, <a href="https://arxiv.org/format/2204.13984">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.100.012110">10.1103/PhysRevA.100.012110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal quantum optical control of spin in diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+J">Jiazhao Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+T">Tianyi Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Haibin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Fangzhou Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Said%2C+R+S">Ressa S. Said</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13984v1-abstract-short" style="display: inline;"> The nitrogen-vacancy (NV) center spin represents an appealing candidate for quantum information processing. Besides the widely used microwave control, its coherent manipulation may also be achieved using laser as mediated by the excited energy levels. Nevertheless, the multiple levels of the excited state of NV center spin make the coherent transition process become complex and may affect the fide&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13984v1-abstract-full').style.display = 'inline'; document.getElementById('2204.13984v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13984v1-abstract-full" style="display: none;"> The nitrogen-vacancy (NV) center spin represents an appealing candidate for quantum information processing. Besides the widely used microwave control, its coherent manipulation may also be achieved using laser as mediated by the excited energy levels. Nevertheless, the multiple levels of the excited state of NV center spin make the coherent transition process become complex and may affect the fidelity of coherent manipulation. Here, we adopt the strategy of optimal quantum control to accelerate coherent state transfer in the ground state manifold of NV center spin using laser. The results demonstrate improved performance in both the speed and the fidelity of coherent state transfer which will be useful for optical control of NV center spin in diamond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13984v1-abstract-full').style.display = 'none'; document.getElementById('2204.13984v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 100, 012110 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13925">arXiv:2204.13925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13925">pdf</a>, <a href="https://arxiv.org/format/2204.13925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.052606">10.1103/PhysRevA.102.052606 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical decoupling for realization of topological frequency conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Q">Qianqian Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Haibin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Min Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shaoliang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13925v1-abstract-short" style="display: inline;"> The features of topological physics can manifest in a variety of physical systems in distinct ways. Periodically driven systems, with the advantage of high flexibility and controllability, provide a versatile platform to simulate many topological phenomena and may lead to novel phenomena that can not be observed in the absence of driving. Here we investigate the influence of realistic experimental&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13925v1-abstract-full').style.display = 'inline'; document.getElementById('2204.13925v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13925v1-abstract-full" style="display: none;"> The features of topological physics can manifest in a variety of physical systems in distinct ways. Periodically driven systems, with the advantage of high flexibility and controllability, provide a versatile platform to simulate many topological phenomena and may lead to novel phenomena that can not be observed in the absence of driving. Here we investigate the influence of realistic experimental noise on the realization of a two-level system under a two-frequency drive that induces topologically nontrivial band structure in the two-dimensional Floquet space. We propose a dynamical decoupling scheme that sustains the topological phase transition overcoming the influence of dephasing. Therefore, the proposal would facilitate the observation of topological frequency conversion in the solid state spin system, e.g. NV center in diamond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13925v1-abstract-full').style.display = 'none'; document.getElementById('2204.13925v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 052606 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05688">arXiv:2203.05688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05688">pdf</a>, <a href="https://arxiv.org/format/2203.05688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.200501">10.1103/PhysRevLett.128.200501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermodynamic principle for quantum metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05688v1-abstract-short" style="display: inline;"> The heat dissipation in quantum metrology represents not only an unavoidable problem towards practical applications of quantum sensing devices but also a fundamental relationship between thermodynamics and quantum metrology. However, a general thermodynamic principle which governs the rule of energy consumption in quantum metrology, similar to Landauer&#39;s principle for heat dissipation in computati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05688v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05688v1-abstract-full" style="display: none;"> The heat dissipation in quantum metrology represents not only an unavoidable problem towards practical applications of quantum sensing devices but also a fundamental relationship between thermodynamics and quantum metrology. However, a general thermodynamic principle which governs the rule of energy consumption in quantum metrology, similar to Landauer&#39;s principle for heat dissipation in computations, has remained elusive. Here, we establish such a physical principle for energy consumption in order to achieve a certain level of measurement precision in quantum metrology, and show that it is intrinsically determined by the erasure of quantum Fisher information. The principle provides a powerful tool to investigate the advantage of quantum resources, not only in measurement precision but also in energy efficiency. It also serves as a bridge between thermodynamics and various fundamental physical concepts related in quantum physics and quantum information theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05688v1-abstract-full').style.display = 'none'; document.getElementById('2203.05688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett.128.200501 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01155">arXiv:2110.01155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.01155">pdf</a>, <a href="https://arxiv.org/format/2110.01155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.042609">10.1103/PhysRevA.105.042609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating superluminal propagation of Dirac particles using trapped ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Q">Qianqian Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01155v2-abstract-short" style="display: inline;"> Simulating quantum phenomena in extreme spacetimes in the laboratory represents a powerful approach to explore fundamental physics in the interplay of quantum field theory and general relativity. Here we propose to simulate the movement of a Dirac particle propagating with a superluminal velocity caused by the emergent Alcubierre warp drive spacetime using trapped ions. We demonstrate that the pla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01155v2-abstract-full').style.display = 'inline'; document.getElementById('2110.01155v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01155v2-abstract-full" style="display: none;"> Simulating quantum phenomena in extreme spacetimes in the laboratory represents a powerful approach to explore fundamental physics in the interplay of quantum field theory and general relativity. Here we propose to simulate the movement of a Dirac particle propagating with a superluminal velocity caused by the emergent Alcubierre warp drive spacetime using trapped ions. We demonstrate that the platform allows observing the tilted lightcone that manifests as a superluminal velocity, which is in agreement with the prediction of general relativity. Furthermore, the Zitterbewegung effect arising from relativistic quantum mechanics persists with the superluminal propagation and is experimentally measurable. The present scheme can be extended to simulate the Dirac equation in other exotic curved spacetimes, thus provides a versatile tool to gain insights into the fundamental limit of these extreme spacetimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01155v2-abstract-full').style.display = 'none'; document.getElementById('2110.01155v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 105 (2022) 042609 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.14166">arXiv:2109.14166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.14166">pdf</a>, <a href="https://arxiv.org/format/2109.14166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Strong angular momentum optomechanical coupling for macroscopic quantum control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shaoliang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.14166v1-abstract-short" style="display: inline;"> Optomechanical systems offer unique opportunities to explore macroscopic quantum state and related fundamental problems in quantum mechanics. Here, we propose a quantum optomechanical system involving exchange interaction between spin angular momentum of light and a torsional oscillator. We demonstrate that this system allows coherent control of the torsional quantum state of a torsional oscillato&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14166v1-abstract-full').style.display = 'inline'; document.getElementById('2109.14166v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.14166v1-abstract-full" style="display: none;"> Optomechanical systems offer unique opportunities to explore macroscopic quantum state and related fundamental problems in quantum mechanics. Here, we propose a quantum optomechanical system involving exchange interaction between spin angular momentum of light and a torsional oscillator. We demonstrate that this system allows coherent control of the torsional quantum state of a torsional oscillator on the single photon level, which facilitates efficient cooling and squeezing of the torsional oscillator. Furthermore, the torsional oscillator with a macroscopic length scale can be prepared in Schr枚dinger cat-like state. Our work provides a platform to verify the validity of quantum mechanics in macroscopic systems on the micrometer and even centimeter scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14166v1-abstract-full').style.display = 'none'; document.getElementById('2109.14166v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + 14 pages of appendices, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.11742">arXiv:2109.11742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.11742">pdf</a>, <a href="https://arxiv.org/format/2109.11742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202200145">10.1002/qute.202200145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Loss Reduction Below Two-Level System Saturation in Aluminum Superconducting Resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tai%2C+T">Tamin Tai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jingnan Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Anlage%2C+S+M">Steven M. Anlage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.11742v6-abstract-short" style="display: inline;"> Superconducting resonators are widely used in many applications such as qubit readout for quantum computing, and kinetic inductance detectors. These resonators are susceptible to numerous loss and noise mechanisms, especially the dissipation due to two-level systems (TLS) which become the dominant source of loss in the few-photon and low temperature regime. In this study, capacitively-coupled alum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11742v6-abstract-full').style.display = 'inline'; document.getElementById('2109.11742v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.11742v6-abstract-full" style="display: none;"> Superconducting resonators are widely used in many applications such as qubit readout for quantum computing, and kinetic inductance detectors. These resonators are susceptible to numerous loss and noise mechanisms, especially the dissipation due to two-level systems (TLS) which become the dominant source of loss in the few-photon and low temperature regime. In this study, capacitively-coupled aluminum half-wavelength coplanar waveguide resonators are investigated. Surprisingly, the loss of the resonators was observed to decrease with a lowering temperature at low excitation powers and temperatures below the TLS saturation. This behavior is attributed to the reduction of the TLS resonant response bandwidth with decreasing temperature and power to below the detuning between the TLS and the resonant photon frequency in a discrete ensemble of TLS. When response bandwidths of TLS are smaller than their detunings from the resonance, the resonant response and thus the loss is reduced. At higher excitation powers, the loss follows a logarithmic power dependence, consistent with predictions from the generalized tunneling model (GTM). A model combining the discrete TLS ensemble with the GTM is proposed and matches the temperature and power dependence of the measured internal loss of the resonator with reasonable parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11742v6-abstract-full').style.display = 'none'; document.getElementById('2109.11742v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv Quantum Technol. 2023, 2200145 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00519">arXiv:2104.00519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.00519">pdf</a>, <a href="https://arxiv.org/format/2104.00519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.043122">10.1103/PhysRevResearch.3.043122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental estimation of the quantum Fisher information from randomized measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Min Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+D">Dongxiao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jingcheng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Musang Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goldman%2C+N">Nathan Goldman</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00519v1-abstract-short" style="display: inline;"> The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. On the one hand, it quantifies the metrological potential of quantum states in quantum-parameter-estimation measurements. On the other hand, it is intrinsically related to the quantum geometry and multipartite entanglement of many-body systems. Here, we explore how the QFI can be estimated via randomized meas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00519v1-abstract-full').style.display = 'inline'; document.getElementById('2104.00519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00519v1-abstract-full" style="display: none;"> The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. On the one hand, it quantifies the metrological potential of quantum states in quantum-parameter-estimation measurements. On the other hand, it is intrinsically related to the quantum geometry and multipartite entanglement of many-body systems. Here, we explore how the QFI can be estimated via randomized measurements, an approach which has the advantage of being applicable to both pure and mixed quantum states. In the latter case, our method gives access to the sub-quantum Fisher information, which sets a lower bound on the QFI. We experimentally validate this approach using two platforms: a nitrogen-vacancy center spin in diamond and a 4-qubit state provided by a superconducting quantum computer. We further perform a numerical study on a many-body spin system to illustrate the advantage of our randomized-measurement approach in estimating multipartite entanglement, as compared to quantum state tomography. Our results highlight the general applicability of our method to general quantum platforms, including solid-state spin systems, superconducting quantum computers and trapped ions, hence providing a versatile tool to explore the essential role of the QFI in quantum physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00519v1-abstract-full').style.display = 'none'; document.getElementById('2104.00519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 043122 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.00877">arXiv:2103.00877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.00877">pdf</a>, <a href="https://arxiv.org/format/2103.00877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.012421">10.1103/PhysRevA.104.012421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulsed characteristic-function measurement of a thermalizing harmonic oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.00877v2-abstract-short" style="display: inline;"> We present a method for the direct measurement of the Wigner characteristic function of a thermalizing harmonic oscillator that is completely inaccessible for control or measurement. The strategy employs a recently proposed probe-measurement-based scheme [Phys. Rev. Lett. 122, 110406 (2019)] which relies on the pulsed control of a two-level probe. We generalize this scheme to the case of a nonunit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.00877v2-abstract-full').style.display = 'inline'; document.getElementById('2103.00877v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.00877v2-abstract-full" style="display: none;"> We present a method for the direct measurement of the Wigner characteristic function of a thermalizing harmonic oscillator that is completely inaccessible for control or measurement. The strategy employs a recently proposed probe-measurement-based scheme [Phys. Rev. Lett. 122, 110406 (2019)] which relies on the pulsed control of a two-level probe. We generalize this scheme to the case of a nonunitary time evolution of the target harmonic oscillator, describing its thermalization through contact to a finite-temperature environment, given in the form of a Lindblad master equation. This generalization is achieved using a superoperator formalism and yields analytical expressions for the direct measurement of the characteristic function, accounting for the decoherence during the measurement process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.00877v2-abstract-full').style.display = 'none'; document.getElementById('2103.00877v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 012421 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10275">arXiv:2009.10275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10275">pdf</a>, <a href="https://arxiv.org/format/2009.10275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.043707">10.1103/PhysRevA.102.043707 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum optimal control using phase-modulated driving fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+J">Jiazhao Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Haibin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Said%2C+R+S">Ressa S. Said</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jelezko%2C+F">Fedor Jelezko</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10275v1-abstract-short" style="display: inline;"> Quantum optimal control represents a powerful technique to enhance the performance of quantum experiments by engineering the controllable parameters of the Hamiltonian. However, the computational overhead for the necessary optimization of these control parameters drastically increases as their number grows. We devise a novel variant of a gradient-free optimal-control method by introducing the idea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10275v1-abstract-full').style.display = 'inline'; document.getElementById('2009.10275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10275v1-abstract-full" style="display: none;"> Quantum optimal control represents a powerful technique to enhance the performance of quantum experiments by engineering the controllable parameters of the Hamiltonian. However, the computational overhead for the necessary optimization of these control parameters drastically increases as their number grows. We devise a novel variant of a gradient-free optimal-control method by introducing the idea of phase-modulated driving fields, which allows us to find optimal control fields efficiently. We numerically evaluate its performance and demonstrate the advantages over standard Fourier-basis methods in controlling an ensemble of two-level systems showing an inhomogeneous broadening. The control fields optimized with the phase-modulated method provide an increased robustness against such ensemble inhomogeneities as well as control-field fluctuations and environmental noise, with one order of magnitude less of average search time. Robustness enhancement of single quantum gates is also achieved by the phase-modulated method. Under environmental noise, an XY-8 sequence constituted by optimized gates prolongs the coherence time by $50\%$ compared with standard rectangular pulses in our numerical simulations, showing the application potential of our phase-modulated method in improving the precision of signal detection in the field of quantum sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10275v1-abstract-full').style.display = 'none'; document.getElementById('2009.10275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 043707 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05458">arXiv:2009.05458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.05458">pdf</a>, <a href="https://arxiv.org/format/2009.05458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.014031">10.1103/PhysRevApplied.15.014031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precise Spectroscopy of High-Frequency Oscillating Fields with a Single-Qubit Sensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Musang Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Min Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+B">Baiyi Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Plenio%2C+M+B">Martin B. Plenio</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Retzker%2C+A">Alex Retzker</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05458v3-abstract-short" style="display: inline;"> Precise spectroscopy of oscillating fields plays significant roles in many fields. Here, we propose an experimentally feasible scheme to measure the frequency of a fast-oscillating field using a single-qubit sensor. By invoking a stable classical clock, the signal phase correlations between successive measurements enable us to extract the target frequency with extremely high precision. In addition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05458v3-abstract-full').style.display = 'inline'; document.getElementById('2009.05458v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05458v3-abstract-full" style="display: none;"> Precise spectroscopy of oscillating fields plays significant roles in many fields. Here, we propose an experimentally feasible scheme to measure the frequency of a fast-oscillating field using a single-qubit sensor. By invoking a stable classical clock, the signal phase correlations between successive measurements enable us to extract the target frequency with extremely high precision. In addition, we integrate dynamical decoupling technique into the framework to suppress the influence of slow environmental noise. Our framework is feasible with a variety of atomic and single solid-state-spin systems within the state-of-the-art experimental capabilities as a versatile tool for quantum spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05458v3-abstract-full').style.display = 'none'; document.getElementById('2009.05458v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 014031 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11381">arXiv:2008.11381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11381">pdf</a>, <a href="https://arxiv.org/format/2008.11381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.010502">10.1103/PhysRevLett.126.010502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic framework for criticality-enhanced quantum sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shaoliang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+B">Baiyi Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11381v2-abstract-short" style="display: inline;"> Quantum criticality, as a fascinating quantum phenomenon, may provide significant advantages for quantum sensing. Here we propose a dynamic framework for quantum sensing with a family of Hamiltonians that undergo quantum phase transitions (QPT). By giving the formalism of the quantum Fisher information (QFI) for quantum sensing based on critical quantum dynamics, we demonstrate its divergent featu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11381v2-abstract-full').style.display = 'inline'; document.getElementById('2008.11381v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11381v2-abstract-full" style="display: none;"> Quantum criticality, as a fascinating quantum phenomenon, may provide significant advantages for quantum sensing. Here we propose a dynamic framework for quantum sensing with a family of Hamiltonians that undergo quantum phase transitions (QPT). By giving the formalism of the quantum Fisher information (QFI) for quantum sensing based on critical quantum dynamics, we demonstrate its divergent feature when approaching the critical point. We illustrate the basic principle and the details of experimental implementation using quantum Rabi model. The framework is applicable to a variety of examples and does not rely on the stringent requirement for particular state preparation or adiabatic evolution. It is expected to provide a route towards the implementation of criticality-enhanced quantum sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11381v2-abstract-full').style.display = 'none'; document.getElementById('2008.11381v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 010502 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.06787">arXiv:2005.06787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.06787">pdf</a>, <a href="https://arxiv.org/format/2005.06787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Classical Simulation of Quantum Supremacy Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+C">Cupjin Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+F">Fang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Newman%2C+M">Michael Newman</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Junjie Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+X">Xun Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+Z">Zhengxiong Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J">Junyin Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+H">Haihong Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+H">Huanjun Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+B">Bo Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Szegedy%2C+M">Mario Szegedy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yaoyun Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jianxin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.06787v1-abstract-short" style="display: inline;"> It is believed that random quantum circuits are difficult to simulate classically. These have been used to demonstrate quantum supremacy: the execution of a computational task on a quantum computer that is infeasible for any classical computer. The task underlying the assertion of quantum supremacy by Arute et al. (Nature, 574, 505--510 (2019)) was initially estimated to require Summit, the world&#39;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06787v1-abstract-full').style.display = 'inline'; document.getElementById('2005.06787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.06787v1-abstract-full" style="display: none;"> It is believed that random quantum circuits are difficult to simulate classically. These have been used to demonstrate quantum supremacy: the execution of a computational task on a quantum computer that is infeasible for any classical computer. The task underlying the assertion of quantum supremacy by Arute et al. (Nature, 574, 505--510 (2019)) was initially estimated to require Summit, the world&#39;s most powerful supercomputer today, approximately 10,000 years. The same task was performed on the Sycamore quantum processor in only 200 seconds. In this work, we present a tensor network-based classical simulation algorithm. Using a Summit-comparable cluster, we estimate that our simulator can perform this task in less than 20 days. On moderately-sized instances, we reduce the runtime from years to minutes, running several times faster than Sycamore itself. These estimates are based on explicit simulations of parallel subtasks, and leave no room for hidden costs. The simulator&#39;s key ingredient is identifying and optimizing the &#34;stem&#34; of the computation: a sequence of pairwise tensor contractions that dominates the computational cost. This orders-of-magnitude reduction in classical simulation time, together with proposals for further significant improvements, indicates that achieving quantum supremacy may require a period of continuing quantum hardware developments without an unequivocal first demonstration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06787v1-abstract-full').style.display = 'none'; document.getElementById('2005.06787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This manuscript subsumes arXiv:1805.01450 and arXiv:1907.11217, significantly improving on both</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.05706">arXiv:2004.05706</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.05706">pdf</a>, <a href="https://arxiv.org/ps/2004.05706">ps</a>, <a href="https://arxiv.org/format/2004.05706">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Complexity">cs.CC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> From Holant to Quantum Entanglement and Back </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jin-Yi Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fu%2C+Z">Zhiguo Fu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+S">Shuai Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.05706v1-abstract-short" style="display: inline;"> Holant problems are intimately connected with quantum theory as tensor networks. We first use techniques from Holant theory to derive new and improved results for quantum entanglement theory. We discover two particular entangled states $|{唯_6}\rangle$ of 6 qubits and $|{唯_8}\rangle$ of 8 qubits respectively, that have extraordinary and unique closure properties in terms of the Bell property. Then&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.05706v1-abstract-full').style.display = 'inline'; document.getElementById('2004.05706v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.05706v1-abstract-full" style="display: none;"> Holant problems are intimately connected with quantum theory as tensor networks. We first use techniques from Holant theory to derive new and improved results for quantum entanglement theory. We discover two particular entangled states $|{唯_6}\rangle$ of 6 qubits and $|{唯_8}\rangle$ of 8 qubits respectively, that have extraordinary and unique closure properties in terms of the Bell property. Then we use entanglement properties of constraint functions to derive a new complexity dichotomy for all real-valued Holant problems containing an odd-arity signature. The signatures need not be symmetric, and no auxiliary signatures are assumed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.05706v1-abstract-full').style.display = 'none'; document.getElementById('2004.05706v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08373">arXiv:2003.08373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.08373">pdf</a>, <a href="https://arxiv.org/format/2003.08373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-022-00547-x">10.1038/s41534-022-00547-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Fisher information measurement and verification of the quantum Cram茅r-Rao bound in a solid-state qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Min Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Musang Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Q">Qingyun Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shaoliang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Haibin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Heyl%2C+M">Markus Heyl</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ozawa%2C+T">Tomoki Ozawa</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goldman%2C+N">Nathan Goldman</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08373v3-abstract-short" style="display: inline;"> The quantum Cram茅r-Rao bound sets a fundamental limit on the accuracy of unbiased parameter estimation in quantum systems, relating the uncertainty in determining a parameter to the inverse of the quantum Fisher information. We experimentally demonstrate near saturation of the quantum Cram茅r-Rao bound in the phase estimation of a solid-state spin system, provided by a nitrogen-vacancy center in di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08373v3-abstract-full').style.display = 'inline'; document.getElementById('2003.08373v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08373v3-abstract-full" style="display: none;"> The quantum Cram茅r-Rao bound sets a fundamental limit on the accuracy of unbiased parameter estimation in quantum systems, relating the uncertainty in determining a parameter to the inverse of the quantum Fisher information. We experimentally demonstrate near saturation of the quantum Cram茅r-Rao bound in the phase estimation of a solid-state spin system, provided by a nitrogen-vacancy center in diamond. This is achieved by comparing the experimental uncertainty in phase estimation with an independent measurement of the related quantum Fisher information. The latter is independently extracted from coherent dynamical responses of the system under weak parametric modulations, without performing any quantum-state tomography. While optimal parameter estimation has already been observed for quantum devices involving a limited number of degrees of freedom, our method offers a versatile and powerful experimental tool to explore the Cram茅r-Rao bound and the quantum Fisher information in systems of higher complexity, as relevant for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08373v3-abstract-full').style.display = 'none'; document.getElementById('2003.08373v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Inf 8, 56 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.06553">arXiv:1910.06553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.06553">pdf</a>, <a href="https://arxiv.org/format/1910.06553">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.020501">10.1103/PhysRevLett.124.020501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum sensing with a single-qubit pseudo-Hermitian system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yaoming Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Haibin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.06553v1-abstract-short" style="display: inline;"> Quantum sensing exploits fundamental features of quantum system to achieve highly efficient measurement of physical quantities. Here, we propose a strategy to realize a single-qubit pseudo-Hermitian sensor from a dilated two-qubit Hermitian system. The pseudo-Hermitian sensor exhibits divergent susceptibility in dynamical evolution that does not necessarily involve exceptional point. We demonstrat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06553v1-abstract-full').style.display = 'inline'; document.getElementById('1910.06553v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.06553v1-abstract-full" style="display: none;"> Quantum sensing exploits fundamental features of quantum system to achieve highly efficient measurement of physical quantities. Here, we propose a strategy to realize a single-qubit pseudo-Hermitian sensor from a dilated two-qubit Hermitian system. The pseudo-Hermitian sensor exhibits divergent susceptibility in dynamical evolution that does not necessarily involve exceptional point. We demonstrate its potential advantages to overcome noises that cannot be averaged out by repetitive measurements. The proposal is feasible with the state-of-art experimental capability in a variety of qubit systems, and represents a step towards the application of non-Hermitian physics in quantum sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06553v1-abstract-full').style.display = 'none'; document.getElementById('1910.06553v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figure, comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 020501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.09980">arXiv:1909.09980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.09980">pdf</a>, <a href="https://arxiv.org/format/1909.09980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.010405">10.1103/PhysRevLett.124.010405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complete Quantum-State Tomography with a Local Random Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Min Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Arenz%2C+C">Christian Arenz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.09980v2-abstract-short" style="display: inline;"> Single-qubit measurements are typically insufficient for inferring arbitrary quantum states of a multi-qubit system. We show that if the system can be fully controlled by driving a single qubit, then utilizing a local random pulse is almost always sufficient for complete quantum-state tomography. Experimental demonstrations of this principle are presented using a nitrogen-vacancy (NV) center in di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09980v2-abstract-full').style.display = 'inline'; document.getElementById('1909.09980v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.09980v2-abstract-full" style="display: none;"> Single-qubit measurements are typically insufficient for inferring arbitrary quantum states of a multi-qubit system. We show that if the system can be fully controlled by driving a single qubit, then utilizing a local random pulse is almost always sufficient for complete quantum-state tomography. Experimental demonstrations of this principle are presented using a nitrogen-vacancy (NV) center in diamond coupled to a nuclear spin, which is not directly accessible. We report the reconstruction of a highly entangled state between the electron and nuclear spin with fidelity above 95%, by randomly driving and measuring the NV-center electron spin only. Beyond quantum-state tomography, we outline how this principle can be leveraged to characterize and control quantum processes in cases where the system model is not known. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09980v2-abstract-full').style.display = 'none'; document.getElementById('1909.09980v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 010405 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.01726">arXiv:1909.01726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.01726">pdf</a>, <a href="https://arxiv.org/format/1909.01726">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab8e16">10.1088/1367-2630/ab8e16 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanotube Double Quantum Dot Spin Transducer for Scalable Quantum Information Processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+W">Wanlu Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+T">Tianyi Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Haibin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.01726v3-abstract-short" style="display: inline;"> One of the key challenges for the implementation of scalable quantum information processing is the design of scalable architectures that support coherent interaction and entanglement generation between distant quantum systems. We propose a nanotube double quantum dot spin transducer that allows to achieve steady-state entanglement between nitrogen-vacancy center spins in diamond with spatial separ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01726v3-abstract-full').style.display = 'inline'; document.getElementById('1909.01726v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.01726v3-abstract-full" style="display: none;"> One of the key challenges for the implementation of scalable quantum information processing is the design of scalable architectures that support coherent interaction and entanglement generation between distant quantum systems. We propose a nanotube double quantum dot spin transducer that allows to achieve steady-state entanglement between nitrogen-vacancy center spins in diamond with spatial separations over micrometers. The distant spin entanglement further enables us to design a scalable architecture for solid-state quantum information processing based on a hybrid platform consisting of nitrogen-vacancy centers and carbon-nanotube double quantum dots. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01726v3-abstract-full').style.display = 'none'; document.getElementById('1909.01726v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Journal of Physics 22, 063029 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11217">arXiv:1907.11217</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.11217">pdf</a>, <a href="https://arxiv.org/format/1907.11217">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Alibaba Cloud Quantum Development Platform: Large-Scale Classical Simulation of Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+F">Fang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+C">Cupjin Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Newman%2C+M">Michael Newman</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Junjie Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+H">Huanjun Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+Z">Zhengxiong Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+B">Bo Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+H">Haihong Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J">Junyin Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+X">Xun Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jianxin Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Szegedy%2C+M">Mario Szegedy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yaoyun Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11217v3-abstract-short" style="display: inline;"> We report, in a sequence of notes, our work on the Alibaba Cloud Quantum Development Platform(AC-QDP). AC-QDP provides a set of tools for aiding the development of both quantum computing algorithms and quantum processors, and is powered by a large-scale classical simulator deployed on Alibaba Cloud. In this note, we report the computational experiments demonstrating the classical simulation capabi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11217v3-abstract-full').style.display = 'inline'; document.getElementById('1907.11217v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11217v3-abstract-full" style="display: none;"> We report, in a sequence of notes, our work on the Alibaba Cloud Quantum Development Platform(AC-QDP). AC-QDP provides a set of tools for aiding the development of both quantum computing algorithms and quantum processors, and is powered by a large-scale classical simulator deployed on Alibaba Cloud. In this note, we report the computational experiments demonstrating the classical simulation capability of AC-QDP. We use as a benchmark the random quantum circuits designed for Google&#39;s Bristlecone QPU {\cite{GRCS}}. We simulate Bristlecone-70 circuits with depth $1 + 32 + 1$ in $0.43$ second per amplitude, using $1449$ Alibaba Cloud Elastic Computing Service (ECS) instances, each with $88$ Intel Xeon(Skylake) Platinum 8163 vCPU cores @ 2.5 GHz and $160$ gigabytes of memory. By comparison, the previously best reported results for the same tasks are $104$ and $135$ seconds, using NASA&#39;s HPC Pleiades and Electra systems, respectively ({arXiv:1811.09599}). Furthermore, we report simulations of Bristlecone-70 with depth $1+36+1$ and depth $1+40+1$ in $5.6$ and $580.7$ seconds per amplitude, respectively. To the best of our knowledge, these are the first successful simulations of instances at these depths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11217v3-abstract-full').style.display = 'none'; document.getElementById('1907.11217v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure. Comments are welcome. We renamed our platform to avoid confusion with other products with similar name</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.11232">arXiv:1901.11232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.11232">pdf</a>, <a href="https://arxiv.org/ps/1901.11232">ps</a>, <a href="https://arxiv.org/format/1901.11232">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.110406">10.1103/PhysRevLett.122.110406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulsed Quantum-State Reconstruction of Dark Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+J">Jiazhao Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.11232v2-abstract-short" style="display: inline;"> We propose a novel strategy to reconstruct the quantum state of dark systems, i.e., degrees of freedom that are not directly accessible for measurement or control. Our scheme relies on the quantum control of a two-level probe that exerts a state-dependent potential on the dark system. Using a sequence of control pulses applied to the probe makes it possible to tailor the information one can obtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.11232v2-abstract-full').style.display = 'inline'; document.getElementById('1901.11232v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.11232v2-abstract-full" style="display: none;"> We propose a novel strategy to reconstruct the quantum state of dark systems, i.e., degrees of freedom that are not directly accessible for measurement or control. Our scheme relies on the quantum control of a two-level probe that exerts a state-dependent potential on the dark system. Using a sequence of control pulses applied to the probe makes it possible to tailor the information one can obtain and, for example, allows us to reconstruct the density operator of a dark spin as well as the Wigner characteristic function of a harmonic oscillator. Because of the symmetry of the applied pulse sequence, this scheme is robust against slow noise on the probe. The proof-of-principle experiments are readily feasible in solid-state spins and trapped ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.11232v2-abstract-full').style.display = 'none'; document.getElementById('1901.11232v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 110406 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.02610">arXiv:1812.02610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.02610">pdf</a>, <a href="https://arxiv.org/format/1812.02610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Interplay between non-Hermiticity and non-Abelian gauge potential in topological photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jia-Qi Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+Q">Qing-Yun Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+Z">Zheng-Yuan Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+Y">Yong Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.02610v2-abstract-short" style="display: inline;"> Topological phases in spinless non-Hermitian models have been widely studied both theoretically and experimentally in some artificial materials using photonics, phononics and magnon. In this work, we investigate the interplay between non-Hermitian loss and gain and non-Abelian gauge potential realized in a two-component superconducting circuit. In our model, the non-Hermiticity along only gives ri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.02610v2-abstract-full').style.display = 'inline'; document.getElementById('1812.02610v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.02610v2-abstract-full" style="display: none;"> Topological phases in spinless non-Hermitian models have been widely studied both theoretically and experimentally in some artificial materials using photonics, phononics and magnon. In this work, we investigate the interplay between non-Hermitian loss and gain and non-Abelian gauge potential realized in a two-component superconducting circuit. In our model, the non-Hermiticity along only gives rise to trivial gain and loss to the states; while the non-Abelian gauge along gives rise to flying butterfly spectra and associated edge modes, which in photonics can be directly measured by the intensity of photons at the boundaries. These two terms do not commute, and their interplay can give rise to several intriguing non-Hermitian phases, including the fully gapped quantum spin Hall (QSH) phase, gapless QSH phase, trivial gapped phase and gapless metallic phase. The bulk-edge correspondence is absent and we find that during the closing of energy gap in the gapped QSH phase, the system enters the gapless QSH phase regime which still supports two counter-propagating edge modes. We have also unveiled the intriguing role of non-Hermiticity on the chiral symmetry and time-reversal symmetry of the Hermitian models, which can be applied to other physical models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.02610v2-abstract-full').style.display = 'none'; document.getElementById('1812.02610v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 13figures, supplement added, some typos fixed and author list updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.12840">arXiv:1811.12840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.12840">pdf</a>, <a href="https://arxiv.org/format/1811.12840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwz193">10.1093/nsr/nwz193 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental measurement of the quantum geometric tensor using coupled qubits in diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Min Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Musang Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Q">Qingyun Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+Q">Qiuyu Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Haibin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Plenio%2C+M+B">Martin B. Plenio</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jelezko%2C+F">Fedor Jelezko</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ozawa%2C+T">Tomoki Ozawa</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goldman%2C+N">Nathan Goldman</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shaoliang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.12840v2-abstract-short" style="display: inline;"> Geometry and topology are fundamental concepts, which underlie a wide range of fascinating physical phenomena such as topological states of matter and topological defects. In quantum mechanics, the geometry of quantum states is fully captured by the quantum geometric tensor. Using a qubit formed by an NV center in diamond, we perform the first experimental measurement of the complete quantum geome&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.12840v2-abstract-full').style.display = 'inline'; document.getElementById('1811.12840v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.12840v2-abstract-full" style="display: none;"> Geometry and topology are fundamental concepts, which underlie a wide range of fascinating physical phenomena such as topological states of matter and topological defects. In quantum mechanics, the geometry of quantum states is fully captured by the quantum geometric tensor. Using a qubit formed by an NV center in diamond, we perform the first experimental measurement of the complete quantum geometric tensor. Our approach builds on a strong connection between coherent Rabi oscillations upon parametric modulations and the quantum geometry of the underlying states. We then apply our method to a system of two interacting qubits, by exploiting the coupling between the NV center spin and a neighboring $^{13}$C nuclear spin. Our results establish coherent dynamical responses as a versatile probe for quantum geometry, and they pave the way for the detection of novel topological phenomena in solid state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.12840v2-abstract-full').style.display = 'none'; document.getElementById('1811.12840v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review 7: 254-260, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11191">arXiv:1811.11191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.11191">pdf</a>, <a href="https://arxiv.org/format/1811.11191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/andp.201900270">10.1002/andp.201900270 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Out-of-time-order correlators and quantum phase transitions in the Rabi and Dicke model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+Z">Zheng-Hang Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jia-Qi Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+Q">Qi-Cheng Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+Y">Yong Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+H">Heng Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11191v3-abstract-short" style="display: inline;"> The out-of-time-order correlators (OTOCs) is used to study the quantum phase transitions (QPTs) between the normal phase and the superradiant phase in the Rabi and few-body Dicke models with large frequency ratio of theatomic level splitting to the single-mode electromagnetic radiation field frequency. The focus is on the OTOC thermally averaged with infinite temperature, which is an experimentall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11191v3-abstract-full').style.display = 'inline'; document.getElementById('1811.11191v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11191v3-abstract-full" style="display: none;"> The out-of-time-order correlators (OTOCs) is used to study the quantum phase transitions (QPTs) between the normal phase and the superradiant phase in the Rabi and few-body Dicke models with large frequency ratio of theatomic level splitting to the single-mode electromagnetic radiation field frequency. The focus is on the OTOC thermally averaged with infinite temperature, which is an experimentally feasible quantity. It is shown that thecritical points can be identified by long-time averaging of the OTOC via observing its local minimum behavior. More importantly, the scaling laws of the OTOC for QPTs are revealed by studying the experimentally accessible conditions with finite frequency ratio and finite number of atoms in the studied models. The critical exponents extracted from the scaling laws of OTOC indicate that the QPTs in the Rabi and Dicke models belong to the same universality class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11191v3-abstract-full').style.display = 'none'; document.getElementById('1811.11191v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures, v3: published version added; v2: supplemental material added, more results added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sun, Z.,etc, ANNALEN DER PHYSIK 2020, 1900270 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.03253">arXiv:1810.03253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.03253">pdf</a>, <a href="https://arxiv.org/ps/1810.03253">ps</a>, <a href="https://arxiv.org/format/1810.03253">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.165404">10.1103/PhysRevB.98.165404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalable nuclear-spin entanglement mediated by a mechanical oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+P">Puhao Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Betzholz%2C+R">Ralf Betzholz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.03253v1-abstract-short" style="display: inline;"> We propose a solid-state hybrid platform based on an array of implanted nitrogen-vacancy (NV) centers in diamond magnetically coupled to a mechanical oscillator. The mechanical oscillator and the NV electronic spins both act as a quantum bus and allow us to induce an effective long-range interaction between distant nuclear spins, relaxing the requirements on their spatial distance. The coherent nu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.03253v1-abstract-full').style.display = 'inline'; document.getElementById('1810.03253v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.03253v1-abstract-full" style="display: none;"> We propose a solid-state hybrid platform based on an array of implanted nitrogen-vacancy (NV) centers in diamond magnetically coupled to a mechanical oscillator. The mechanical oscillator and the NV electronic spins both act as a quantum bus and allow us to induce an effective long-range interaction between distant nuclear spins, relaxing the requirements on their spatial distance. The coherent nuclear spin-spin interaction, having the form of an Ising model, can be maintained in the presence of mechanical damping and spin dephasing via a pulsed dynamical decoupling of the nuclear spins in addition to the microwave driving field of the electronic spins. The present hybrid platform provides a scalable way to prepare multipartite entanglement among nuclear spins with long coherence times and can be applied to generate graph states that may be used for universal quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.03253v1-abstract-full').style.display = 'none'; document.getElementById('1810.03253v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 165404 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.09576">arXiv:1808.09576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.09576">pdf</a>, <a href="https://arxiv.org/format/1808.09576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.12.054025">10.1103/PhysRevApplied.12.054025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale magnetic resonance spectroscopy using a carbon nanotube double quantum dot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+W">Wanlu Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+T">Tianyi Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Haibin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Plenio%2C+M+B">Martin B. Plenio</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.09576v2-abstract-short" style="display: inline;"> Quantum sensing exploits fundamental features of quantum mechanics and quantum control to realise sensing devices with potential applications in a broad range of scientific fields ranging from basic science to applied technology. The ultimate goal are devices that combine unprecedented sensitivity with excellent spatial resolution. Here, we propose a new platform for all-electric nanoscale quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09576v2-abstract-full').style.display = 'inline'; document.getElementById('1808.09576v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.09576v2-abstract-full" style="display: none;"> Quantum sensing exploits fundamental features of quantum mechanics and quantum control to realise sensing devices with potential applications in a broad range of scientific fields ranging from basic science to applied technology. The ultimate goal are devices that combine unprecedented sensitivity with excellent spatial resolution. Here, we propose a new platform for all-electric nanoscale quantum sensing based on a carbon nanotube double quantum dot. Our analysis demonstrates that the platform can achieve sensitivities that allow for the implementation of single-molecule magnetic resonance spectroscopy and therefore opens a promising route towards integrated on-chip quantum sensing devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09576v2-abstract-full').style.display = 'none'; document.getElementById('1808.09576v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 12, 054025 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.11791">arXiv:1805.11791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.11791">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.165147">10.1103/PhysRevB.99.165147 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hopf-chain networks evolved from triple points </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+Y">Yuee Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jin Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kim%2C+J">Jinwoong Kim</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chang%2C+P">Po-Yao Chang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yuanping Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.11791v3-abstract-short" style="display: inline;"> Exotic links and chains attract interests across various disciplines including mathematics, biology, chemistry and physics. Here, we propose that topological Hopf-chain networks, consisting of one-, two- and three-dimensional (3D) Hopf chains, can be found in the momentum space. These networks can be evolved from a 3D triple-points phase by varying symmetries of a four-band model. Moreover, we ide&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11791v3-abstract-full').style.display = 'inline'; document.getElementById('1805.11791v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.11791v3-abstract-full" style="display: none;"> Exotic links and chains attract interests across various disciplines including mathematics, biology, chemistry and physics. Here, we propose that topological Hopf-chain networks, consisting of one-, two- and three-dimensional (3D) Hopf chains, can be found in the momentum space. These networks can be evolved from a 3D triple-points phase by varying symmetries of a four-band model. Moreover, we identify that the Hopf-chain networks exist in a family of crystals Sc3XC (X = Al, Ga, In, Tl). The crystals are 3D triple-points metals, and transit to topological metals with Hopf-chain networks under strains. These novel Hopf networks exhibit unique Landau levels and magneto-transport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11791v3-abstract-full').style.display = 'none'; document.getElementById('1805.11791v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Phys. Rev. B (accepted) (2019)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 165147 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.01099">arXiv:1805.01099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.01099">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C8CP02810A">10.1039/C8CP02810A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nodal-chain network, intersecting nodal rings and triple points coexisting in nonsymmorphic Ba3Si4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jin Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+Y">Yuee Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chang%2C+P">Po-Yao Chang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kim%2C+H">Heung-Sik Kim</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yuanping Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.01099v2-abstract-short" style="display: inline;"> Coexistence of topological elements in a topological metal/semimetal (TM) has gradually attracted attentions. However, the non-topological factors always mess up the Fermi surface and cover interesting topological properties. Here, we find that Ba3Si4 is a &#34;clean&#34; TM in which coexists nodal-chain network, intersecting nodal rings (INRs) and triple points, in the absence of spin-orbit coupling (SOC&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.01099v2-abstract-full').style.display = 'inline'; document.getElementById('1805.01099v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.01099v2-abstract-full" style="display: none;"> Coexistence of topological elements in a topological metal/semimetal (TM) has gradually attracted attentions. However, the non-topological factors always mess up the Fermi surface and cover interesting topological properties. Here, we find that Ba3Si4 is a &#34;clean&#34; TM in which coexists nodal-chain network, intersecting nodal rings (INRs) and triple points, in the absence of spin-orbit coupling (SOC). Moreover, the nodal rings in the topological phase exhibit diverse types: from type-I, type-II to type-III rings according to band dispersions. All the topological elements are generated by crossings of three energy bands, and thus they are correlated rather than mutual independence. When some structural symmetries are eliminated by an external strain, the topological phase evolves into another phase including Hopf link, one-dimensional nodal chain and new INRs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.01099v2-abstract-full').style.display = 'none'; document.getElementById('1805.01099v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.10492">arXiv:1804.10492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.10492">pdf</a>, <a href="https://arxiv.org/format/1804.10492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.210501">10.1103/PhysRevLett.121.210501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Floquet Raman transition in a driven solid-state spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shu%2C+Z">Zijun Shu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Q">Qingyun Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shaoliang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Plenio%2C+M+B">Martin B. Plenio</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jelezko%2C+F">Fedor Jelezko</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.10492v2-abstract-short" style="display: inline;"> We experimentally observe Floquet Raman transitions in the weakly driven solid state spin system of nitrogen-vacancy center in diamond. The periodically driven spin system simulates a two-band Wannier-Stark ladder model, and allows us to observe coherent spin state transfer arising from Raman transition mediated by Floquet synthetic levels. It also leads to the prediction of analog photon-assisted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.10492v2-abstract-full').style.display = 'inline'; document.getElementById('1804.10492v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.10492v2-abstract-full" style="display: none;"> We experimentally observe Floquet Raman transitions in the weakly driven solid state spin system of nitrogen-vacancy center in diamond. The periodically driven spin system simulates a two-band Wannier-Stark ladder model, and allows us to observe coherent spin state transfer arising from Raman transition mediated by Floquet synthetic levels. It also leads to the prediction of analog photon-assisted Floquet Raman transition and dynamical localisation in a driven two-level quantum system. The demonstrated rich Floquet dynamics offers new capabilities to achieve effective Floquet coherent control of a quantum system with potential applications in various types of quantum technologies based on driven quantum dynamics. In particular, the Floquet-Raman system may be used as a quantum simulator for the physics of periodically driven systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.10492v2-abstract-full').style.display = 'none'; document.getElementById('1804.10492v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 210501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.02942">arXiv:1711.02942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.02942">pdf</a>, <a href="https://arxiv.org/format/1711.02942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.051402">10.1103/PhysRevA.96.051402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unambiguous nuclear spin detection using engineered quantum sensing sequence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shu%2C+Z">Zijun Shu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhendong Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Q">Qingyun Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Plenio%2C+M+B">Martin B. Plenio</a>, <a href="/search/quant-ph?searchtype=author&amp;query=M%C3%BCller%2C+C">Christoph M眉ller</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lang%2C+J">Johannes Lang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tomek%2C+N">Nikolas Tomek</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Naydenov%2C+B">Boris Naydenov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=McGuinness%2C+L+P">Liam P. McGuinness</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jelezko%2C+F">Fedor Jelezko</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J">Jianming Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.02942v1-abstract-short" style="display: inline;"> Sensing, localising and identifying individual nuclear spins or frequency components of a signal in the presence of a noisy environments requires the development of robust and selective methods of dynamical decoupling. An important challenge that remains to be addressed in this context are spurious higher order resonances in current dynamical decoupling sequences as they can lead to the misidentif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.02942v1-abstract-full').style.display = 'inline'; document.getElementById('1711.02942v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.02942v1-abstract-full" style="display: none;"> Sensing, localising and identifying individual nuclear spins or frequency components of a signal in the presence of a noisy environments requires the development of robust and selective methods of dynamical decoupling. An important challenge that remains to be addressed in this context are spurious higher order resonances in current dynamical decoupling sequences as they can lead to the misidentification of nuclei or of different frequency components of external signals. Here we overcome this challenge with engineered quantum sensing sequences that achieve both, enhanced robustness and the simultaneous suppression of higher order harmonic resonances. We demonstrate experimentally the principle using a single nitrogen-vacancy center spin sensor which we apply to the unambiguous detection of external protons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.02942v1-abstract-full').style.display = 'none'; document.getElementById('1711.02942v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 051402 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10744">arXiv:1710.10744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.10744">pdf</a>, <a href="https://arxiv.org/format/1710.10744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.024021">10.1103/PhysRevApplied.13.024021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Protecting quantum spin coherence of nanodiamonds in living cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Q+-">Q. -Y. Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+P+-">P. -C. Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M+-">M. -S. Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">M. Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Retzker%2C+A">A. Retzker</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Plenio%2C+M+B">M. B. Plenio</a>, <a href="/search/quant-ph?searchtype=author&amp;query=M%C3%BCller%2C+C">C. M眉ller</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tomek%2C+N">N. Tomek</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Naydenov%2C+B">B. Naydenov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=McGuinness%2C+L+P">L. P. McGuinness</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jelezko%2C+F">F. Jelezko</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+J+-">J. -M. Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10744v3-abstract-short" style="display: inline;"> Due to its superior coherent and optical properties at room temperature, the nitrogen-vacancy (N-V ) center in diamond has become a promising quantum probe for nanoscale quantum sensing. However, the application of N-V containing nanodiamonds to quantum sensing suffers from their relatively poor spin coherence times. Here we demonstrate energy efficient protection of N-V spin coherence in nanodiam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10744v3-abstract-full').style.display = 'inline'; document.getElementById('1710.10744v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10744v3-abstract-full" style="display: none;"> Due to its superior coherent and optical properties at room temperature, the nitrogen-vacancy (N-V ) center in diamond has become a promising quantum probe for nanoscale quantum sensing. However, the application of N-V containing nanodiamonds to quantum sensing suffers from their relatively poor spin coherence times. Here we demonstrate energy efficient protection of N-V spin coherence in nanodiamonds using concatenated continuous dynamical decoupling, which exhibits excellent performance with less stringent microwave power requirement. When applied to nanodiamonds in living cells we are able to extend the spin coherence time by an order of magnitude to the $T_1$-limit of up to $30渭$s. Further analysis demonstrates concomitant improvements of sensing performance which shows that our results provide an important step towards in vivo quantum sensing using N-V centers in nanodiamond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10744v3-abstract-full').style.display = 'none'; document.getElementById('1710.10744v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 024021 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Cai%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Cai%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cai%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10