CINXE.COM

Orthogonal polynomials - Wikipedia

<!doctype html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <base href="https://en.m.wikipedia.org/wiki/Orthogonal_polynomials"> <meta charset="UTF-8"> <title>Orthogonal polynomials - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"1a8e95a9-39dd-4a4f-8ed6-5cb13a0461c0","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Orthogonal_polynomials","wgTitle":"Orthogonal polynomials","wgCurRevisionId":1253407639,"wgRevisionId":1253407639, "wgArticleId":32811718,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Orthogonal_polynomials","wgRelevantArticleId":32811718,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true, "wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir": "ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym": "বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{ "lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir": "ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"}, {"lang":"he","autonym":"עברית","dir":"rtl"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული", "dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"ko","autonym":"한국어","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми", "dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"} ,{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym": "閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam", "autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pt","autonym":"português","dir":"ltr"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym": "ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr", "autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{ "lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"tr","autonym":"Türkçe","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir": "ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga", "din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn", "so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q619458","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true, "talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.8"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Orthogonal polynomials - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Orthogonal_polynomials&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Orthogonal_polynomials"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.8V4PcxhU1a4.O/am=BgM/d=1/rs=AN8SPfo0VoM3UTZpRIHgwecwZ4ajlNtrdg/m=corsproxy" data-sourceurl="https://en.m.wikipedia.org/wiki/Orthogonal_polynomials"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.8V4PcxhU1a4.O/am=BgM/d=1/exm=corsproxy/ed=1/rs=AN8SPfo0VoM3UTZpRIHgwecwZ4ajlNtrdg/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://en.m.wikipedia.org/wiki/Orthogonal_polynomials"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Orthogonal_polynomials rootpage-Orthogonal_polynomials stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.8V4PcxhU1a4.O/am=BgM/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfo0VoM3UTZpRIHgwecwZ4ajlNtrdg/m=navigationui" data-environment="prod" data-proxy-url="https://en-m-wikipedia-org.translate.goog" data-proxy-full-url="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-source-url="https://en.m.wikipedia.org/wiki/Orthogonal_polynomials" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="en" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.m.wikipedia.org/wiki/Orthogonal_polynomials&amp;anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Random?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Nearby?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&amp;returnto=Orthogonal+polynomials&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:MobileOptions&amp;returnto=Orthogonal+polynomials&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://donate.wikimedia.org/?wmf_source%3Ddonate%26wmf_medium%3Dsidebar%26wmf_campaign%3Den.wikipedia.org%26uselang%3Den%26wmf_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Special:Search"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Orthogonal polynomials</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" rel="" data-event-name="tabs.subject">Article</a></li> <li class="minerva__tab "><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Talk:Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" rel="discussion" data-event-name="tabs.talk">Talk</a></li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&amp;returnto=Orthogonal+polynomials&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <p>In <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Mathematics">mathematics</a>, an <b>orthogonal polynomial sequence</b> is a family of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Polynomial?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Polynomial">polynomials</a> such that any two different polynomials in the sequence are <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonality?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Orthogonality">orthogonal</a> to each other under some <a href="https://en-m-wikipedia-org.translate.goog/wiki/Inner_product?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Inner product">inner product</a>.</p> <p>The most widely used orthogonal polynomials are the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Classical_orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Classical orthogonal polynomials">classical orthogonal polynomials</a>, consisting of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hermite_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Hermite polynomials">Hermite polynomials</a>, the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Laguerre_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Laguerre polynomials">Laguerre polynomials</a> and the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Jacobi_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Jacobi polynomials">Jacobi polynomials</a>. The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Gegenbauer_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gegenbauer polynomials">Gegenbauer polynomials</a> form the most important class of Jacobi polynomials; they include the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Chebyshev_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Chebyshev polynomials">Chebyshev polynomials</a>, and the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Legendre_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Legendre polynomials">Legendre polynomials</a> as special cases.</p> <p>The field of orthogonal polynomials developed in the late 19th century from a study of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Continued_fraction?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Continued fraction">continued fractions</a> by <a href="https://en-m-wikipedia-org.translate.goog/wiki/Pafnuty_Chebyshev?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Pafnuty Chebyshev">P. L. Chebyshev</a> and was pursued by <a href="https://en-m-wikipedia-org.translate.goog/wiki/Andrey_Markov?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Andrey Markov">A. A. Markov</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Thomas_Joannes_Stieltjes?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Thomas Joannes Stieltjes">T. J. Stieltjes</a>. They appear in a wide variety of fields: <a href="https://en-m-wikipedia-org.translate.goog/wiki/Numerical_analysis?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Numerical analysis">numerical analysis</a> (<a href="https://en-m-wikipedia-org.translate.goog/wiki/Gaussian_quadrature?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gaussian quadrature">quadrature rules</a>), <a href="https://en-m-wikipedia-org.translate.goog/wiki/Probability_theory?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Probability theory">probability theory</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Representation_theory?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Representation theory">representation theory</a> (of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Lie_group?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Lie group">Lie groups</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantum_group?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Quantum group">quantum groups</a>, and related objects), <a href="https://en-m-wikipedia-org.translate.goog/wiki/Enumerative_combinatorics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Enumerative combinatorics">enumerative combinatorics</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Algebraic_combinatorics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Algebraic combinatorics">algebraic combinatorics</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematical_physics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Mathematical physics">mathematical physics</a> (the theory of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Random_matrix?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Random matrix">random matrices</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Integrable_system?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Integrable system">integrable systems</a>, etc.), and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Number_theory?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Number theory">number theory</a>. Some of the mathematicians who have worked on orthogonal polynomials include <a href="https://en-m-wikipedia-org.translate.goog/wiki/G%C3%A1bor_Szeg%C5%91?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gábor Szegő">Gábor Szegő</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sergei_Natanovich_Bernstein?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Sergei Natanovich Bernstein">Sergei Bernstein</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Naum_Akhiezer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Naum Akhiezer">Naum Akhiezer</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Arthur_Erd%C3%A9lyi?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Arthur Erdélyi">Arthur Erdélyi</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Yakov_Geronimus?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Yakov Geronimus">Yakov Geronimus</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Wolfgang_Hahn?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Wolfgang Hahn">Wolfgang Hahn</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Theodore_Seio_Chihara?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Theodore Seio Chihara">Theodore Seio Chihara</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mourad_Ismail?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Mourad Ismail">Mourad Ismail</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Waleed_Al-Salam?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Waleed Al-Salam">Waleed Al-Salam</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Richard_Askey?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Richard Askey">Richard Askey</a>, and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Rehuel_Lobatto?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Rehuel Lobatto">Rehuel Lobatto</a>.</p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="en" dir="ltr"> <h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Definition_for_1-variable_case_for_a_real_measure"><span class="tocnumber">1</span> <span class="toctext">Definition for 1-variable case for a real measure</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Absolutely_continuous_case"><span class="tocnumber">1.1</span> <span class="toctext">Absolutely continuous case</span></a></li> </ul></li> <li class="toclevel-1 tocsection-3"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Examples_of_orthogonal_polynomials"><span class="tocnumber">2</span> <span class="toctext">Examples of orthogonal polynomials</span></a></li> <li class="toclevel-1 tocsection-4"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Properties"><span class="tocnumber">3</span> <span class="toctext">Properties</span></a> <ul> <li class="toclevel-2 tocsection-5"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Relation_to_moments"><span class="tocnumber">3.1</span> <span class="toctext">Relation to moments</span></a></li> <li class="toclevel-2 tocsection-6"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Recurrence_relation"><span class="tocnumber">3.2</span> <span class="toctext">Recurrence relation</span></a></li> <li class="toclevel-2 tocsection-7"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Christoffel%E2%80%93Darboux_formula"><span class="tocnumber">3.3</span> <span class="toctext">Christoffel–Darboux formula</span></a></li> <li class="toclevel-2 tocsection-8"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Zeros"><span class="tocnumber">3.4</span> <span class="toctext">Zeros</span></a></li> <li class="toclevel-2 tocsection-9"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Combinatorial_interpretation"><span class="tocnumber">3.5</span> <span class="toctext">Combinatorial interpretation</span></a></li> </ul></li> <li class="toclevel-1 tocsection-10"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Other_types_of_orthogonal_polynomials"><span class="tocnumber">4</span> <span class="toctext">Other types of orthogonal polynomials</span></a> <ul> <li class="toclevel-2 tocsection-11"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Multivariate_orthogonal_polynomials"><span class="tocnumber">4.1</span> <span class="toctext">Multivariate orthogonal polynomials</span></a></li> <li class="toclevel-2 tocsection-12"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Multiple_orthogonal_polynomials"><span class="tocnumber">4.2</span> <span class="toctext">Multiple orthogonal polynomials</span></a></li> <li class="toclevel-2 tocsection-13"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Sobolev_orthogonal_polynomials"><span class="tocnumber">4.3</span> <span class="toctext">Sobolev orthogonal polynomials</span></a></li> <li class="toclevel-2 tocsection-14"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Orthogonal_polynomials_with_matrices"><span class="tocnumber">4.4</span> <span class="toctext">Orthogonal polynomials with matrices</span></a></li> <li class="toclevel-2 tocsection-15"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Quantum_polynomials"><span class="tocnumber">4.5</span> <span class="toctext">Quantum polynomials</span></a></li> </ul></li> <li class="toclevel-1 tocsection-16"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#See_also"><span class="tocnumber">5</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-17"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#References"><span class="tocnumber">6</span> <span class="toctext">References</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Definition_for_1-variable_case_for_a_real_measure">Definition for 1-variable case for a real measure</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Definition for 1-variable case for a real measure" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>Given any non-decreasing function <span class="texhtml"><i>α</i></span> on the real numbers, we can define the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Lebesgue%E2%80%93Stieltjes_integral?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Lebesgue–Stieltjes integral">Lebesgue–Stieltjes integral</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int f(x)\,d\alpha (x)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> ∫<!-- ∫ --> </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mi> d </mi> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \int f(x)\,d\alpha (x)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c70e3fc7c8d85248957ff62d6f5a70111fe0a240" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.228ex; height:5.676ex;" alt="{\displaystyle \int f(x)\,d\alpha (x)}"> </noscript><span class="lazy-image-placeholder" style="width: 13.228ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c70e3fc7c8d85248957ff62d6f5a70111fe0a240" data-alt="{\displaystyle \int f(x)\,d\alpha (x)}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> of a function <i>f</i>. If this integral is finite for all polynomials <i>f</i>, we can define an inner product on pairs of polynomials <i>f</i> and <i>g</i> by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int f(x)g(x)\,d\alpha (x).}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mi> f </mi> <mo> , </mo> <mi> g </mi> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <mo> = </mo> <mo> ∫<!-- ∫ --> </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> g </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mi> d </mi> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \langle f,g\rangle =\int f(x)g(x)\,d\alpha (x).} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d44033208c277eebcbbddee709632530ce878f3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.466ex; height:5.676ex;" alt="{\displaystyle \langle f,g\rangle =\int f(x)g(x)\,d\alpha (x).}"> </noscript><span class="lazy-image-placeholder" style="width: 26.466ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d44033208c277eebcbbddee709632530ce878f3" data-alt="{\displaystyle \langle f,g\rangle =\int f(x)g(x)\,d\alpha (x).}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>This operation is a positive semidefinite <a href="https://en-m-wikipedia-org.translate.goog/wiki/Inner_product_space?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Inner product space">inner product</a> on the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Vector_space?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Vector space">vector space</a> of all polynomials, and is positive definite if the function α has an infinite number of points of growth. It induces a notion of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonality?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Orthogonality">orthogonality</a> in the usual way, namely that two polynomials are orthogonal if their inner product is zero.</p> <p>Then the sequence <span class="texhtml">(<i>P</i><sub><i>n</i></sub>)<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">∞</sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i>=0</sub></span></span></span> of orthogonal polynomials is defined by the relations <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \deg P_{n}=n~,\quad \langle P_{m},\,P_{n}\rangle =0\quad {\text{for}}\quad m\neq n~.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> deg </mi> <mo> ⁡<!-- ⁡ --> </mo> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo> = </mo> <mi> n </mi> <mtext> &nbsp; </mtext> <mo> , </mo> <mspace width="1em"></mspace> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </msub> <mo> , </mo> <mspace width="thinmathspace"></mspace> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <mo> = </mo> <mn> 0 </mn> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> for </mtext> </mrow> <mspace width="1em"></mspace> <mi> m </mi> <mo> ≠<!-- ≠ --> </mo> <mi> n </mi> <mtext> &nbsp; </mtext> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \deg P_{n}=n~,\quad \langle P_{m},\,P_{n}\rangle =0\quad {\text{for}}\quad m\neq n~.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa49eb6d6cc7301bf9d20f2648c89521ff1aca13" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.577ex; height:2.843ex;" alt="{\displaystyle \deg P_{n}=n~,\quad \langle P_{m},\,P_{n}\rangle =0\quad {\text{for}}\quad m\neq n~.}"> </noscript><span class="lazy-image-placeholder" style="width: 43.577ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa49eb6d6cc7301bf9d20f2648c89521ff1aca13" data-alt="{\displaystyle \deg P_{n}=n~,\quad \langle P_{m},\,P_{n}\rangle =0\quad {\text{for}}\quad m\neq n~.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>In other words, the sequence is obtained from the sequence of monomials 1, <i>x</i>, <i>x</i><sup>2</sup>, … by the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gram–Schmidt process">Gram–Schmidt process</a> with respect to this inner product.</p> <p>Usually the sequence is required to be <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthonormal?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Orthonormal">orthonormal</a>, namely, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle P_{n},P_{n}\rangle =1,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo> , </mo> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \langle P_{n},P_{n}\rangle =1,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b21492c780ce745bc879e56e73b7b0783ebdd94" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.172ex; height:2.843ex;" alt="{\displaystyle \langle P_{n},P_{n}\rangle =1,}"> </noscript><span class="lazy-image-placeholder" style="width: 13.172ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b21492c780ce745bc879e56e73b7b0783ebdd94" data-alt="{\displaystyle \langle P_{n},P_{n}\rangle =1,}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> however, other normalisations are sometimes used.</p> <div class="mw-heading mw-heading3"> <h3 id="Absolutely_continuous_case">Absolutely continuous case</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=2&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Absolutely continuous case" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Sometimes we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\alpha (x)=W(x)\,dx}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> W </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mi> d </mi> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d\alpha (x)=W(x)\,dx} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ff263f6a7e4c126df386d16dedca9d17a622ec0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.448ex; height:2.843ex;" alt="{\displaystyle d\alpha (x)=W(x)\,dx}"> </noscript><span class="lazy-image-placeholder" style="width: 17.448ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ff263f6a7e4c126df386d16dedca9d17a622ec0" data-alt="{\displaystyle d\alpha (x)=W(x)\,dx}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W:[x_{1},x_{2}]\to \mathbb {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> W </mi> <mo> : </mo> <mo stretchy="false"> [ </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo stretchy="false"> ] </mo> <mo stretchy="false"> →<!-- → --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle W:[x_{1},x_{2}]\to \mathbb {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73394b2ece307feade24cf330229f9a650ed992e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.76ex; height:2.843ex;" alt="{\displaystyle W:[x_{1},x_{2}]\to \mathbb {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 16.76ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73394b2ece307feade24cf330229f9a650ed992e" data-alt="{\displaystyle W:[x_{1},x_{2}]\to \mathbb {R} }" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> is a non-negative function with support on some interval <span class="texhtml">[<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>]</span> in the real line (where <span class="texhtml"><i>x</i><sub>1</sub>&nbsp;=&nbsp;−∞</span> and <span class="texhtml"><i>x</i><sub>2</sub> = ∞</span> are allowed). Such a <span class="texhtml"><i>W</i></span> is called a <b>weight function</b>.<sup id="cite_ref-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Then the inner product is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int _{x_{1}}^{x_{2}}f(x)g(x)W(x)\,dx.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mi> f </mi> <mo> , </mo> <mi> g </mi> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> </msubsup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> g </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> W </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mi> d </mi> <mi> x </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \langle f,g\rangle =\int _{x_{1}}^{x_{2}}f(x)g(x)W(x)\,dx.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c3abf88519d7729c66687f102a8fe69ba2b01ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:31.018ex; height:6.176ex;" alt="{\displaystyle \langle f,g\rangle =\int _{x_{1}}^{x_{2}}f(x)g(x)W(x)\,dx.}"> </noscript><span class="lazy-image-placeholder" style="width: 31.018ex;height: 6.176ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c3abf88519d7729c66687f102a8fe69ba2b01ca" data-alt="{\displaystyle \langle f,g\rangle =\int _{x_{1}}^{x_{2}}f(x)g(x)W(x)\,dx.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> However, there are many examples of orthogonal polynomials where the measure <span class="texhtml"><i>dα</i>(<i>x</i>)</span> has points with non-zero measure where the function <span class="texhtml"><i>α</i></span> is discontinuous, so cannot be given by a weight function <span class="texhtml"><i>W</i></span> as above.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Examples_of_orthogonal_polynomials">Examples of orthogonal polynomials</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=3&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Examples of orthogonal polynomials" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>The most commonly used orthogonal polynomials are orthogonal for a measure with support in a real interval. This includes:</p> <ul> <li>The classical orthogonal polynomials (<a href="https://en-m-wikipedia-org.translate.goog/wiki/Jacobi_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Jacobi polynomials">Jacobi polynomials</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Laguerre_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Laguerre polynomials">Laguerre polynomials</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hermite_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Hermite polynomials">Hermite polynomials</a>, and their special cases <a href="https://en-m-wikipedia-org.translate.goog/wiki/Gegenbauer_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gegenbauer polynomials">Gegenbauer polynomials</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Chebyshev_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Chebyshev polynomials">Chebyshev polynomials</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Legendre_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Legendre polynomials">Legendre polynomials</a>).</li> <li>The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Wilson_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Wilson polynomials">Wilson polynomials</a>, which generalize the Jacobi polynomials. They include many orthogonal polynomials as special cases, such as the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Meixner%E2%80%93Pollaczek_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Meixner–Pollaczek polynomials">Meixner–Pollaczek polynomials</a>, the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Continuous_Hahn_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Continuous Hahn polynomials">continuous Hahn polynomials</a>, the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Continuous_dual_Hahn_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Continuous dual Hahn polynomials">continuous dual Hahn polynomials</a>, and the classical polynomials, described by the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Askey_scheme?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Askey scheme">Askey scheme</a></li> <li>The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Askey%E2%80%93Wilson_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Askey–Wilson polynomials">Askey–Wilson polynomials</a> introduce an extra parameter <i>q</i> into the Wilson polynomials.</li> </ul> <p><a href="https://en-m-wikipedia-org.translate.goog/wiki/Discrete_orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Discrete orthogonal polynomials">Discrete orthogonal polynomials</a> are orthogonal with respect to some discrete measure. Sometimes the measure has finite support, in which case the family of orthogonal polynomials is finite, rather than an infinite sequence. The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Racah_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Racah polynomials">Racah polynomials</a> are examples of discrete orthogonal polynomials, and include as special cases the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hahn_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Hahn polynomials">Hahn polynomials</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Dual_Hahn_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Dual Hahn polynomials">dual Hahn polynomials</a>, which in turn include as special cases the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Meixner_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Meixner polynomials">Meixner polynomials</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Krawtchouk_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Krawtchouk polynomials">Krawtchouk polynomials</a>, and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Charlier_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Charlier polynomials">Charlier polynomials</a>.</p> <p>Meixner classified all the orthogonal <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sheffer_sequence?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sheffer sequence">Sheffer sequences</a>: there are only Hermite, Laguerre, Charlier, Meixner, and Meixner–Pollaczek. In some sense Krawtchouk should be on this list too, but they are a finite sequence. These six families correspond to the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Natural_exponential_family?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#The_six_NEF-QVFs" title="Natural exponential family">NEF-QVFs</a> and are <a href="https://en-m-wikipedia-org.translate.goog/wiki/Martingale_(probability_theory)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Martingale (probability theory)">martingale</a> polynomials for certain <a href="https://en-m-wikipedia-org.translate.goog/wiki/L%C3%A9vy_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Lévy process">Lévy processes</a>.</p> <p><a href="https://en-m-wikipedia-org.translate.goog/wiki/Sieved_orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sieved orthogonal polynomials">Sieved orthogonal polynomials</a>, such as the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sieved_ultraspherical_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sieved ultraspherical polynomials">sieved ultraspherical polynomials</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sieved_Jacobi_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sieved Jacobi polynomials">sieved Jacobi polynomials</a>, and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sieved_Pollaczek_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sieved Pollaczek polynomials">sieved Pollaczek polynomials</a>, have modified recurrence relations.</p> <p>One can also consider orthogonal polynomials for some curve in the complex plane. The most important case (other than real intervals) is when the curve is the unit circle, giving <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials_on_the_unit_circle?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Orthogonal polynomials on the unit circle">orthogonal polynomials on the unit circle</a>, such as the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Rogers%E2%80%93Szeg%C5%91_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Rogers–Szegő polynomials">Rogers–Szegő polynomials</a>.</p> <p>There are some families of orthogonal polynomials that are orthogonal on plane regions such as triangles or disks. They can sometimes be written in terms of Jacobi polynomials. For example, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Zernike_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Zernike polynomials">Zernike polynomials</a> are orthogonal on the unit disk.</p> <p>The advantage of orthogonality between different orders of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hermite_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Hermite polynomials">Hermite polynomials</a> is applied to Generalized frequency division multiplexing (GFDM) structure. More than one symbol can be carried in each grid of time-frequency lattice.<sup id="cite_ref-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Properties">Properties</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=4&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Properties" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>Orthogonal polynomials of one variable defined by a non-negative measure on the real line have the following properties.</p> <div class="mw-heading mw-heading3"> <h3 id="Relation_to_moments">Relation to moments</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=5&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Relation to moments" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The orthogonal polynomials <i>P</i><sub><i>n</i></sub> can be expressed in terms of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Moment_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Moment (mathematics)">moments</a></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{n}=\int x^{n}\,d\alpha (x)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo> = </mo> <mo> ∫<!-- ∫ --> </mo> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mi> d </mi> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{n}=\int x^{n}\,d\alpha (x)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/072cd3d985007fda4caca5df1ee877899409046e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.716ex; height:5.676ex;" alt="{\displaystyle m_{n}=\int x^{n}\,d\alpha (x)}"> </noscript><span class="lazy-image-placeholder" style="width: 17.716ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/072cd3d985007fda4caca5df1ee877899409046e" data-alt="{\displaystyle m_{n}=\int x^{n}\,d\alpha (x)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>as follows:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{n}(x)=c_{n}\,\det {\begin{bmatrix}m_{0}&amp;m_{1}&amp;m_{2}&amp;\cdots &amp;m_{n}\\m_{1}&amp;m_{2}&amp;m_{3}&amp;\cdots &amp;m_{n+1}\\\vdots &amp;\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\m_{n-1}&amp;m_{n}&amp;m_{n+1}&amp;\cdots &amp;m_{2n-1}\\1&amp;x&amp;x^{2}&amp;\cdots &amp;x^{n}\end{bmatrix}}~,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mo movablelimits="true" form="prefix"> det </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> <mtd> <mo> ⋱<!-- ⋱ --> </mo> </mtd> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn> 1 </mn> </mtd> <mtd> <mi> x </mi> </mtd> <mtd> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mtext> &nbsp; </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{n}(x)=c_{n}\,\det {\begin{bmatrix}m_{0}&amp;m_{1}&amp;m_{2}&amp;\cdots &amp;m_{n}\\m_{1}&amp;m_{2}&amp;m_{3}&amp;\cdots &amp;m_{n+1}\\\vdots &amp;\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\m_{n-1}&amp;m_{n}&amp;m_{n+1}&amp;\cdots &amp;m_{2n-1}\\1&amp;x&amp;x^{2}&amp;\cdots &amp;x^{n}\end{bmatrix}}~,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f5dcea1a0736046c1dfd6895e7ef1166d775b0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.171ex; width:53.072ex; height:17.509ex;" alt="{\displaystyle P_{n}(x)=c_{n}\,\det {\begin{bmatrix}m_{0}&amp;m_{1}&amp;m_{2}&amp;\cdots &amp;m_{n}\\m_{1}&amp;m_{2}&amp;m_{3}&amp;\cdots &amp;m_{n+1}\\\vdots &amp;\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\m_{n-1}&amp;m_{n}&amp;m_{n+1}&amp;\cdots &amp;m_{2n-1}\\1&amp;x&amp;x^{2}&amp;\cdots &amp;x^{n}\end{bmatrix}}~,}"> </noscript><span class="lazy-image-placeholder" style="width: 53.072ex;height: 17.509ex;vertical-align: -8.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f5dcea1a0736046c1dfd6895e7ef1166d775b0b" data-alt="{\displaystyle P_{n}(x)=c_{n}\,\det {\begin{bmatrix}m_{0}&amp;m_{1}&amp;m_{2}&amp;\cdots &amp;m_{n}\\m_{1}&amp;m_{2}&amp;m_{3}&amp;\cdots &amp;m_{n+1}\\\vdots &amp;\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\m_{n-1}&amp;m_{n}&amp;m_{n+1}&amp;\cdots &amp;m_{2n-1}\\1&amp;x&amp;x^{2}&amp;\cdots &amp;x^{n}\end{bmatrix}}~,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>where the constants <i>c</i><sub><i>n</i></sub> are arbitrary (depend on the normalization of <i>P</i><sub><i>n</i></sub>).</p> <p>This comes directly from applying the Gram–Schmidt process to the monomials, imposing each polynomial to be orthogonal with respect to the previous ones. For example, orthogonality with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/671bd891701e0d6cfa6da0114a5dd64233b58709" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.547ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/671bd891701e0d6cfa6da0114a5dd64233b58709" data-alt="{\displaystyle P_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> prescribes that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398f438d75434e6fbf48dc232c1ad7228a738568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.547ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398f438d75434e6fbf48dc232c1ad7228a738568" data-alt="{\displaystyle P_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> must have the form<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}(x)=c_{1}\left(x-{\frac {\langle P_{0},x\rangle P_{0}}{\langle P_{0},P_{0}\rangle }}\right)=c_{1}(x-m_{1}),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <mi> x </mi> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mrow> <mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <msub> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{1}(x)=c_{1}\left(x-{\frac {\langle P_{0},x\rangle P_{0}}{\langle P_{0},P_{0}\rangle }}\right)=c_{1}(x-m_{1}),} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1fc399c1120196948f919613854fbbde3620309" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.806ex; height:6.509ex;" alt="{\displaystyle P_{1}(x)=c_{1}\left(x-{\frac {\langle P_{0},x\rangle P_{0}}{\langle P_{0},P_{0}\rangle }}\right)=c_{1}(x-m_{1}),}"> </noscript><span class="lazy-image-placeholder" style="width: 43.806ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1fc399c1120196948f919613854fbbde3620309" data-alt="{\displaystyle P_{1}(x)=c_{1}\left(x-{\frac {\langle P_{0},x\rangle P_{0}}{\langle P_{0},P_{0}\rangle }}\right)=c_{1}(x-m_{1}),}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span>which can be seen to be consistent with the previously given expression with the determinant.</p> <div class="mw-heading mw-heading3"> <h3 id="Recurrence_relation">Recurrence relation</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=6&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Recurrence relation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The polynomials <i>P</i><sub><i>n</i></sub> satisfy a recurrence relation of the form</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{n}(x)=(A_{n}x+B_{n})P_{n-1}(x)+C_{n}P_{n-2}(x)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mo stretchy="false"> ( </mo> <msub> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mi> x </mi> <mo> + </mo> <msub> <mi> B </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <msub> <mi> C </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{n}(x)=(A_{n}x+B_{n})P_{n-1}(x)+C_{n}P_{n-2}(x)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b71ab07cff182175eb811817150cbf3fcf56be5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.493ex; height:2.843ex;" alt="{\displaystyle P_{n}(x)=(A_{n}x+B_{n})P_{n-1}(x)+C_{n}P_{n-2}(x)}"> </noscript><span class="lazy-image-placeholder" style="width: 42.493ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b71ab07cff182175eb811817150cbf3fcf56be5" data-alt="{\displaystyle P_{n}(x)=(A_{n}x+B_{n})P_{n-1}(x)+C_{n}P_{n-2}(x)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>where <i>A<sub>n</sub></i> is not 0. The converse is also true; see <a href="https://en-m-wikipedia-org.translate.goog/wiki/Favard%27s_theorem?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Favard's theorem">Favard's theorem</a>.</p> <div class="mw-heading mw-heading3"> <h3 id="Christoffel–Darboux_formula"><span id="Christoffel.E2.80.93Darboux_formula"></span>Christoffel–Darboux formula</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=7&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Christoffel–Darboux formula" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style> <div role="note" class="hatnote navigation-not-searchable"> Main article: <a href="https://en-m-wikipedia-org.translate.goog/wiki/Christoffel%E2%80%93Darboux_formula?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Christoffel–Darboux formula">Christoffel–Darboux formula</a> </div> <div class="mw-heading mw-heading3"> <h3 id="Zeros">Zeros</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=8&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Zeros" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>If the measure d<i>α</i> is supported on an interval [<i>a</i>,&nbsp;<i>b</i>], all the zeros of <i>P</i><sub><i>n</i></sub> lie in [<i>a</i>,&nbsp;<i>b</i>]. Moreover, the zeros have the following interlacing property: if <i>m</i>&nbsp;&lt;&nbsp;<i>n</i>, there is a zero of <i>P</i><sub><i>n</i></sub> between any two zeros of&nbsp;<i>P</i><sub><i>m</i></sub>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Electrostatic?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Electrostatic">Electrostatic</a> interpretations of the zeros can be given.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:Citation_needed?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2021)">citation needed</span></a></i>]</sup></p> <div class="mw-heading mw-heading3"> <h3 id="Combinatorial_interpretation">Combinatorial interpretation</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=9&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Combinatorial interpretation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>From the 1980s, with the work of X. G. Viennot, J. Labelle, Y.-N. Yeh, D. Foata, and others, combinatorial interpretations were found for all the classical orthogonal polynomials. <sup id="cite_ref-3" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Other_types_of_orthogonal_polynomials">Other types of orthogonal polynomials</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=10&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Other types of orthogonal polynomials" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <div class="mw-heading mw-heading3"> <h3 id="Multivariate_orthogonal_polynomials">Multivariate orthogonal polynomials</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=11&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Multivariate orthogonal polynomials" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Macdonald_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Macdonald polynomials">Macdonald polynomials</a> are orthogonal polynomials in several variables, depending on the choice of an affine root system. They include many other families of multivariable orthogonal polynomials as special cases, including the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Jack_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Jack polynomials">Jack polynomials</a>, the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hall%E2%80%93Littlewood_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Hall–Littlewood polynomials">Hall–Littlewood polynomials</a>, the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Heckman%E2%80%93Opdam_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Heckman–Opdam polynomials">Heckman–Opdam polynomials</a>, and the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Koornwinder_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Koornwinder polynomials">Koornwinder polynomials</a>. The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Askey%E2%80%93Wilson_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Askey–Wilson polynomials">Askey–Wilson polynomials</a> are the special case of Macdonald polynomials for a certain non-reduced root system of rank 1.</p> <div class="mw-heading mw-heading3"> <h3 id="Multiple_orthogonal_polynomials">Multiple orthogonal polynomials</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=12&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Multiple orthogonal polynomials" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"> <div role="note" class="hatnote navigation-not-searchable"> Main article: <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiple_orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Multiple orthogonal polynomials">Multiple orthogonal polynomials</a> </div> <p>Multiple orthogonal polynomials are polynomials in one variable that are orthogonal with respect to a finite family of measures.</p> <div class="mw-heading mw-heading3"> <h3 id="Sobolev_orthogonal_polynomials">Sobolev orthogonal polynomials</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=13&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Sobolev orthogonal polynomials" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"> <div role="note" class="hatnote navigation-not-searchable"> Main article: <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sobolev_orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sobolev orthogonal polynomials">Sobolev orthogonal polynomials</a> </div> <p>These are orthogonal polynomials with respect to a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sobolev_space?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sobolev space">Sobolev</a> inner product, i.e. an inner product with derivatives. Including derivatives has big consequences for the polynomials, in general they no longer share some of the nice features of the classical orthogonal polynomials.</p> <div class="mw-heading mw-heading3"> <h3 id="Orthogonal_polynomials_with_matrices">Orthogonal polynomials with matrices</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=14&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Orthogonal polynomials with matrices" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Orthogonal polynomials with matrices have either coefficients that are matrices or the indeterminate is a matrix.</p> <p>There are two popular examples: either the coefficients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{a_{i}\}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo fence="false" stretchy="false"> } </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{a_{i}\}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/434434a3a4c297856e0eff9f57d2d25053f830b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.354ex; height:2.843ex;" alt="{\displaystyle \{a_{i}\}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.354ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/434434a3a4c297856e0eff9f57d2d25053f830b7" data-alt="{\displaystyle \{a_{i}\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> are matrices or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>:</p> <ul> <li>Variante 1: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x)=A_{n}x^{n}+A_{n-1}x^{n-1}+\cdots +A_{1}x+A_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> P </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo> + </mo> <msub> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo> + </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo> + </mo> <msub> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mi> x </mi> <mo> + </mo> <msub> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P(x)=A_{n}x^{n}+A_{n-1}x^{n-1}+\cdots +A_{1}x+A_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da93feebcc96657ccc34cde6590bc58c40e9e80d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.213ex; height:3.176ex;" alt="{\displaystyle P(x)=A_{n}x^{n}+A_{n-1}x^{n-1}+\cdots +A_{1}x+A_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 44.213ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da93feebcc96657ccc34cde6590bc58c40e9e80d" data-alt="{\displaystyle P(x)=A_{n}x^{n}+A_{n-1}x^{n-1}+\cdots +A_{1}x+A_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{A_{i}\}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo fence="false" stretchy="false"> } </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{A_{i}\}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469990a3aa11e4d16c5a304d675b87ce4b3b80aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.868ex; height:2.843ex;" alt="{\displaystyle \{A_{i}\}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.868ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469990a3aa11e4d16c5a304d675b87ce4b3b80aa" data-alt="{\displaystyle \{A_{i}\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\times p}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> p </mi> <mo> ×<!-- × --> </mo> <mi> p </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle p\times p} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67e6de741a3aa8176f5a487de8e8f602aa75c5e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.269ex; height:2.009ex;" alt="{\displaystyle p\times p}"> </noscript><span class="lazy-image-placeholder" style="width: 5.269ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67e6de741a3aa8176f5a487de8e8f602aa75c5e4" data-alt="{\displaystyle p\times p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> matrices.</li> <li>Variante 2: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X)=a_{n}X^{n}+a_{n-1}X^{n-1}+\cdots +a_{1}X+a_{0}I_{p}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> P </mi> <mo stretchy="false"> ( </mo> <mi> X </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <msup> <mi> X </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo> + </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <msup> <mi> X </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo> + </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo> + </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mi> X </mi> <mo> + </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> p </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P(X)=a_{n}X^{n}+a_{n-1}X^{n-1}+\cdots +a_{1}X+a_{0}I_{p}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f1ce9ec10b029b0e60a277bb5a7d15b2f6462a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.877ex; height:3.343ex;" alt="{\displaystyle P(X)=a_{n}X^{n}+a_{n-1}X^{n-1}+\cdots +a_{1}X+a_{0}I_{p}}"> </noscript><span class="lazy-image-placeholder" style="width: 46.877ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f1ce9ec10b029b0e60a277bb5a7d15b2f6462a3" data-alt="{\displaystyle P(X)=a_{n}X^{n}+a_{n-1}X^{n-1}+\cdots +a_{1}X+a_{0}I_{p}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> X </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle X} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"> </noscript><span class="lazy-image-placeholder" style="width: 1.98ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" data-alt="{\displaystyle X}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\times p}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> p </mi> <mo> ×<!-- × --> </mo> <mi> p </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle p\times p} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67e6de741a3aa8176f5a487de8e8f602aa75c5e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.269ex; height:2.009ex;" alt="{\displaystyle p\times p}"> </noscript><span class="lazy-image-placeholder" style="width: 5.269ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67e6de741a3aa8176f5a487de8e8f602aa75c5e4" data-alt="{\displaystyle p\times p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>-matrix and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{p}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> p </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{p}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3226e9ad60e659391806720213f9c5f6123a70f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.082ex; height:2.843ex;" alt="{\displaystyle I_{p}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.082ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3226e9ad60e659391806720213f9c5f6123a70f8" data-alt="{\displaystyle I_{p}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is the identity matrix.</li> </ul> <div class="mw-heading mw-heading3"> <h3 id="Quantum_polynomials">Quantum polynomials</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=15&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Quantum polynomials" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Quantum polynomials or q-polynomials are the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Q-analog?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Q-analog">q-analogs</a> of orthogonal polynomials.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=16&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <ul> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Appell_sequence?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Appell sequence">Appell sequence</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Askey_scheme?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Askey scheme">Askey scheme</a> of hypergeometric orthogonal polynomials</li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Favard%27s_theorem?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Favard's theorem">Favard's theorem</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Binomial_type?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Binomial type">Polynomial sequences of binomial type</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Biorthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Biorthogonal polynomials">Biorthogonal polynomials</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Generalized_Fourier_series?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Generalized Fourier series">Generalized Fourier series</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Secondary_measure?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Secondary measure">Secondary measure</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Sheffer_sequence?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sheffer sequence">Sheffer sequence</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Sturm%E2%80%93Liouville_theory?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sturm–Liouville theory">Sturm–Liouville theory</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Umbral_calculus?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Umbral calculus">Umbral calculus</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Plancherel%E2%80%93Rotach_asymptotics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Plancherel–Rotach asymptotics">Plancherel–Rotach asymptotics</a></li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=edit&amp;section=17&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style> <div class="reflist"> <div class="mw-references-wrap"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-1">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://demonstrations.wolfram.com/OrthonormalPolynomialsUnderDifferentInnerProductMeasures/">Demo of orthonormal polynomials obtained for different weight functions</a></span></li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCatakDurak-Ata2017" class="citation book cs1">Catak, E.; Durak-Ata, L. (2017). "An efficient transceiver design for superimposed waveforms with orthogonal polynomials". <i>2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)</i>. pp.&nbsp;<span class="nowrap">1–</span>5. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252FBlackSeaCom.2017.8277657">10.1109/BlackSeaCom.2017.8277657</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-1-5090-5049-9?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-1-5090-5049-9"><bdi>978-1-5090-5049-9</bdi></a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://api.semanticscholar.org/CorpusID:22592277">22592277</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=An+efficient+transceiver+design+for+superimposed+waveforms+with+orthogonal+polynomials&amp;rft.btitle=2017+IEEE+International+Black+Sea+Conference+on+Communications+and+Networking+%28BlackSeaCom%29&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E5&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22592277%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FBlackSeaCom.2017.8277657&amp;rft.isbn=978-1-5090-5049-9&amp;rft.aulast=Catak&amp;rft.aufirst=E.&amp;rft.au=Durak-Ata%2C+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></span></li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_polynomials?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-3">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFViennot2017" class="citation web cs1">Viennot, Xavier (2017). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://viennot.org/abjc4-ch5.html">"The Art of Bijective Combinatorics, Part IV, Combinatorial theory of orthogonal polynomials and continued fractions"</a>. Chennai: IMSc.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Art+of+Bijective+Combinatorics%2C+Part+IV%2C+Combinatorial+theory+of+orthogonal+polynomials+and+continued+fractions.&amp;rft.place=Chennai&amp;rft.pub=IMSc&amp;rft.date=2017&amp;rft.aulast=Viennot&amp;rft.aufirst=Xavier&amp;rft_id=https%3A%2F%2Fviennot.org%2Fabjc4-ch5.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></span></li> </ol> </div> </div> <ul> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbramowitzStegun1983" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Milton_Abramowitz?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Milton Abramowitz">Abramowitz, Milton</a>; <a href="https://en-m-wikipedia-org.translate.goog/wiki/Irene_Stegun?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Irene Stegun">Stegun, Irene Ann</a>, eds. (1983) [June 1964]. <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.math.ubc.ca/~cbm/aands/page_773.htm">"Chapter 22"</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Abramowitz_and_Stegun?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Abramowitz and Stegun"><i>Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</i></a>. Applied Mathematics Series. Vol.&nbsp;55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first&nbsp;ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p.&nbsp;773. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-486-61272-0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-486-61272-0"><bdi>978-0-486-61272-0</bdi></a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/LCCN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://lccn.loc.gov/64-60036">64-60036</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D0167642">0167642</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/LCCN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://www.loc.gov/item/65012253">65-12253</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+22&amp;rft.btitle=Handbook+of+Mathematical+Functions+with+Formulas%2C+Graphs%2C+and+Mathematical+Tables&amp;rft.place=Washington+D.C.%3B+New+York&amp;rft.series=Applied+Mathematics+Series&amp;rft.pages=773&amp;rft.edition=Ninth+reprint+with+additional+corrections+of+tenth+original+printing+with+corrections+%28December+1972%29%3B+first&amp;rft.pub=United+States+Department+of+Commerce%2C+National+Bureau+of+Standards%3B+Dover+Publications&amp;rft.date=1983&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0167642%23id-name%3DMR&amp;rft_id=info%3Alccn%2F64-60036&amp;rft.isbn=978-0-486-61272-0&amp;rft_id=http%3A%2F%2Fwww.math.ubc.ca%2F~cbm%2Faands%2Fpage_773.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChihara1978" class="citation book cs1">Chihara, Theodore Seio (1978). <i>An Introduction to Orthogonal Polynomials</i>. Gordon and Breach, New York. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-677-04150-0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/0-677-04150-0"><bdi>0-677-04150-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Orthogonal+Polynomials&amp;rft.pub=Gordon+and+Breach%2C+New+York&amp;rft.date=1978&amp;rft.isbn=0-677-04150-0&amp;rft.aulast=Chihara&amp;rft.aufirst=Theodore+Seio&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChihara2001" class="citation journal cs1">Chihara, Theodore Seio (2001). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1016%252FS0377-0427%252800%252900632-4">"45 years of orthogonal polynomials: a view from the wings"</a>. Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999). <i>Journal of Computational and Applied Mathematics</i>. <b>133</b> (1): <span class="nowrap">13–</span>21. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Bibcode_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ui.adsabs.harvard.edu/abs/2001JCoAM.133...13C">2001JCoAM.133...13C</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1016%252FS0377-0427%252800%252900632-4">10.1016/S0377-0427(00)00632-4</a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0377-0427">0377-0427</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D1858267">1858267</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Computational+and+Applied+Mathematics&amp;rft.atitle=45+years+of+orthogonal+polynomials%3A+a+view+from+the+wings&amp;rft.volume=133&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E13-%3C%2Fspan%3E21&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1016%2FS0377-0427%2800%2900632-4&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1858267%23id-name%3DMR&amp;rft.issn=0377-0427&amp;rft_id=info%3Abibcode%2F2001JCoAM.133...13C&amp;rft.aulast=Chihara&amp;rft.aufirst=Theodore+Seio&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0377-0427%252800%252900632-4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFoncannonFoncannonPekonen2008" class="citation journal cs1">Foncannon, J. J.; Foncannon, J. J.; Pekonen, Osmo (2008). "Review of <i>Classical and quantum orthogonal polynomials in one variable</i> by Mourad Ismail". <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/The_Mathematical_Intelligencer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="The Mathematical Intelligencer">The Mathematical Intelligencer</a></i>. <b>30</b>. Springer New York: <span class="nowrap">54–</span>60. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1007%252FBF02985757">10.1007/BF02985757</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0343-6993">0343-6993</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://api.semanticscholar.org/CorpusID:118133026">118133026</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Intelligencer&amp;rft.atitle=Review+of+Classical+and+quantum+orthogonal+polynomials+in+one+variable+by+Mourad+Ismail&amp;rft.volume=30&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E54-%3C%2Fspan%3E60&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118133026%23id-name%3DS2CID&amp;rft.issn=0343-6993&amp;rft_id=info%3Adoi%2F10.1007%2FBF02985757&amp;rft.aulast=Foncannon&amp;rft.aufirst=J.+J.&amp;rft.au=Foncannon%2C+J.+J.&amp;rft.au=Pekonen%2C+Osmo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIsmail2005" class="citation book cs1">Ismail, Mourad E. H. (2005). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.cambridge.org/us/catalogue/catalogue.asp?isbn%3D9780521782012"><i>Classical and Quantum Orthogonal Polynomials in One Variable</i></a>. Cambridge: Cambridge Univ. Press. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-521-78201-5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/0-521-78201-5"><bdi>0-521-78201-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Classical+and+Quantum+Orthogonal+Polynomials+in+One+Variable&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+Univ.+Press&amp;rft.date=2005&amp;rft.isbn=0-521-78201-5&amp;rft.aulast=Ismail&amp;rft.aufirst=Mourad+E.+H.&amp;rft_id=http%3A%2F%2Fwww.cambridge.org%2Fus%2Fcatalogue%2Fcatalogue.asp%3Fisbn%3D9780521782012&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJackson2004" class="citation book cs1">Jackson, Dunham (2004) [1941]. <i>Fourier Series and Orthogonal Polynomials</i>. New York: Dover. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-486-43808-2?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/0-486-43808-2"><bdi>0-486-43808-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Series+and+Orthogonal+Polynomials&amp;rft.place=New+York&amp;rft.pub=Dover&amp;rft.date=2004&amp;rft.isbn=0-486-43808-2&amp;rft.aulast=Jackson&amp;rft.aufirst=Dunham&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoornwinderWongKoekoekSwarttouw2010" class="citation cs2">Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://dlmf.nist.gov/18">"Orthogonal Polynomials"</a>, in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Frank_W._J._Olver?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Frank W. J. Olver">Olver, Frank W. J.</a>; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Digital_Library_of_Mathematical_Functions?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Digital Library of Mathematical Functions">NIST Handbook of Mathematical Functions</a></i>, Cambridge University Press, <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-521-19225-5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-521-19225-5"><bdi>978-0-521-19225-5</bdi></a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D2723248">2723248</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Orthogonal+Polynomials&amp;rft.btitle=NIST+Handbook+of+Mathematical+Functions&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-0-521-19225-5&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2723248%23id-name%3DMR&amp;rft.aulast=Koornwinder&amp;rft.aufirst=Tom+H.&amp;rft.au=Wong%2C+Roderick+S.+C.&amp;rft.au=Koekoek%2C+Roelof&amp;rft.au=Swarttouw%2C+Ren%C3%A9+F.&amp;rft_id=http%3A%2F%2Fdlmf.nist.gov%2F18&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span>.</li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://www.encyclopediaofmath.org/index.php?title%3DOrthogonal_polynomials">"Orthogonal polynomials"</a>, <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Encyclopedia_of_Mathematics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/European_Mathematical_Society?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Orthogonal+polynomials&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DOrthogonal_polynomials&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSzegő1939" class="citation book cs1">Szegő, Gábor (1939). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3D3hcW8HBh7gsC"><i>Orthogonal Polynomials</i></a>. Colloquium Publications. Vol.&nbsp;XXIII. American Mathematical Society. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-8218-1023-1?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-8218-1023-1"><bdi>978-0-8218-1023-1</bdi></a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D0372517">0372517</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Orthogonal+Polynomials&amp;rft.series=Colloquium+Publications&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1939&amp;rft.isbn=978-0-8218-1023-1&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0372517%23id-name%3DMR&amp;rft.aulast=Szeg%C5%91&amp;rft.aufirst=G%C3%A1bor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3hcW8HBh7gsC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTotik2005" class="citation journal cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Vilmos_Totik?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Vilmos Totik">Totik, Vilmos</a> (2005). "Orthogonal Polynomials". <i>Surveys in Approximation Theory</i>. <b>1</b>: <span class="nowrap">70–</span>125. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ArXiv_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://arxiv.org/abs/math.CA/0512424">math.CA/0512424</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Surveys+in+Approximation+Theory&amp;rft.atitle=Orthogonal+Polynomials&amp;rft.volume=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E70-%3C%2Fspan%3E125&amp;rft.date=2005&amp;rft_id=info%3Aarxiv%2Fmath.CA%2F0512424&amp;rft.aulast=Totik&amp;rft.aufirst=Vilmos&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+polynomials" class="Z3988"></span></li> <li>C. Chan, A. Mironov, A. Morozov, A. Sleptsov, <a href="https://en-m-wikipedia-org.translate.goog/wiki/ArXiv_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://arxiv.org/abs/1712.03155">1712.03155</a>.</li> <li>Herbert Stahl and Vilmos Totik: General Orthogonal Polynomials, Cambridge Univ. Press, ISBN 978-0-521-41534-7 (1992).</li> <li>G. Sansone: Orthogonal Functions, (Revised English Edition), Dover, ISBN 978-0-486-77730-0 (1991).</li> </ul> <div class="navbox-styles"> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style> <style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style> <style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style> </div><!-- NewPP limit report Parsed by mw‐web.eqiad.main‐8445b8969b‐wnqzw Cached time: 20241228173036 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.385 seconds Real time usage: 0.634 seconds Preprocessor visited node count: 2078/1000000 Post‐expand include size: 44596/2097152 bytes Template argument size: 3102/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 37684/5000000 bytes Lua time usage: 0.233/10.000 seconds Lua memory usage: 6126644/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 466.792 1 -total 22.39% 104.504 6 Template:Cite_book 21.24% 99.161 1 Template:Authority_control 20.70% 96.634 1 Template:Reflist 14.55% 67.924 1 Template:Short_description 10.62% 49.584 1 Template:Citation_needed 9.49% 44.291 1 Template:Fix 8.75% 40.855 2 Template:Pagetype 7.73% 36.069 3 Template:Main 6.37% 29.752 2 Template:Category_handler --> <!-- Saved in parser cache with key enwiki:pcache:32811718:|#|:idhash:canonical and timestamp 20241228173036 and revision id 1253407639. Rendering was triggered because: page-view --> </section> </div><!-- MobileFormatter took 0.013 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=mobile&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Retrieved from "<a dir="ltr" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/w/index.php?title%3DOrthogonal_polynomials%26oldid%3D1253407639">https://en.wikipedia.org/w/index.php?title=Orthogonal_polynomials&amp;oldid=1253407639</a>" </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Orthogonal_polynomials&amp;action=history&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="133.86.227.82" data-user-gender="unknown" data-timestamp="1729888849"> <span>Last edited on 25 October 2024, at 20:40</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ar.wikipedia.org/wiki/%25D9%2585%25D8%25AA%25D8%25B9%25D8%25AF%25D8%25AF%25D8%25A7%25D8%25AA_%25D8%25A7%25D9%2584%25D8%25AD%25D8%25AF%25D9%2588%25D8%25AF_%25D9%2585%25D8%25AA%25D8%25B9%25D8%25A7%25D9%2585%25D8%25AF%25D8%25A9" title="متعددات الحدود متعامدة – Arabic" lang="ar" hreflang="ar" data-title="متعددات الحدود متعامدة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-az mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://az.wikipedia.org/wiki/Ortoqonal_%25C3%25A7oxh%25C9%2599dlil%25C9%2599r" title="Ortoqonal çoxhədlilər – Azerbaijani" lang="az" hreflang="az" data-title="Ortoqonal çoxhədlilər" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ca.wikipedia.org/wiki/Polinomis_ortogonals" title="Polinomis ortogonals – Catalan" lang="ca" hreflang="ca" data-title="Polinomis ortogonals" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://cs.wikipedia.org/wiki/Ortogon%25C3%25A1ln%25C3%25AD_polynomy" title="Ortogonální polynomy – Czech" lang="cs" hreflang="cs" data-title="Ortogonální polynomy" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://de.wikipedia.org/wiki/Orthogonale_Polynome" title="Orthogonale Polynome – German" lang="de" hreflang="de" data-title="Orthogonale Polynome" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://es.wikipedia.org/wiki/Polinomios_ortogonales" title="Polinomios ortogonales – Spanish" lang="es" hreflang="es" data-title="Polinomios ortogonales" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fa.wikipedia.org/wiki/%25DA%2586%25D9%2586%25D8%25AF%25D8%25AC%25D9%2585%25D9%2584%25D9%2587%25E2%2580%258C%25D8%25A7%25DB%258C%25E2%2580%258C%25D9%2587%25D8%25A7%25DB%258C_%25D9%2585%25D8%25AA%25D8%25B9%25D8%25A7%25D9%2585%25D8%25AF" title="چندجمله‌ای‌های متعامد – Persian" lang="fa" hreflang="fa" data-title="چندجمله‌ای‌های متعامد" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.wikipedia.org/wiki/Suite_de_polyn%25C3%25B4mes_orthogonaux" title="Suite de polynômes orthogonaux – French" lang="fr" hreflang="fr" data-title="Suite de polynômes orthogonaux" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hi.wikipedia.org/wiki/%25E0%25A4%25B2%25E0%25A4%25BE%25E0%25A4%2582%25E0%25A4%25AC%25E0%25A4%25BF%25E0%25A4%2595_%25E0%25A4%25AC%25E0%25A4%25B9%25E0%25A5%2581%25E0%25A4%25AA%25E0%25A4%25A6" title="लांबिक बहुपद – Hindi" lang="hi" hreflang="hi" data-title="लांबिक बहुपद" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://it.wikipedia.org/wiki/Polinomi_ortogonali" title="Polinomi ortogonali – Italian" lang="it" hreflang="it" data-title="Polinomi ortogonali" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://nl.wikipedia.org/wiki/Orthogonale_polynomen" title="Orthogonale polynomen – Dutch" lang="nl" hreflang="nl" data-title="Orthogonale polynomen" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ja.wikipedia.org/wiki/%25E7%259B%25B4%25E4%25BA%25A4%25E5%25A4%259A%25E9%25A0%2585%25E5%25BC%258F" title="直交多項式 – Japanese" lang="ja" hreflang="ja" data-title="直交多項式" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pl.wikipedia.org/wiki/Wielomiany_ortogonalne" title="Wielomiany ortogonalne – Polish" lang="pl" hreflang="pl" data-title="Wielomiany ortogonalne" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ro.wikipedia.org/wiki/Polinoame_ortogonale" title="Polinoame ortogonale – Romanian" lang="ro" hreflang="ro" data-title="Polinoame ortogonale" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ru.wikipedia.org/wiki/%25D0%259E%25D1%2580%25D1%2582%25D0%25BE%25D0%25B3%25D0%25BE%25D0%25BD%25D0%25B0%25D0%25BB%25D1%258C%25D0%25BD%25D1%258B%25D0%25B5_%25D0%25BC%25D0%25BD%25D0%25BE%25D0%25B3%25D0%25BE%25D1%2587%25D0%25BB%25D0%25B5%25D0%25BD%25D1%258B" title="Ортогональные многочлены – Russian" lang="ru" hreflang="ru" data-title="Ортогональные многочлены" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sl.wikipedia.org/wiki/Ortogonalni_polinomi" title="Ortogonalni polinomi – Slovenian" lang="sl" hreflang="sl" data-title="Ortogonalni polinomi" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li> <li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fi.wikipedia.org/wiki/Ortogonaaliset_polynomit" title="Ortogonaaliset polynomit – Finnish" lang="fi" hreflang="fi" data-title="Ortogonaaliset polynomit" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sv.wikipedia.org/wiki/Ortogonala_polynom" title="Ortogonala polynom – Swedish" lang="sv" hreflang="sv" data-title="Ortogonala polynom" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://tg.wikipedia.org/wiki/%25D0%2591%25D0%25B8%25D1%2581%25D1%2591%25D1%2580%25D1%258A%25D1%2583%25D0%25B7%25D0%25B2%25D0%25B0%25D2%25B3%25D0%25BE%25D0%25B8_%25D0%25BE%25D1%2580%25D1%2582%25D0%25BE%25D0%25B3%25D0%25BE%25D0%25BD%25D0%25B0%25D0%25BB%25D3%25A3" title="Бисёръузваҳои ортогоналӣ – Tajik" lang="tg" hreflang="tg" data-title="Бисёръузваҳои ортогоналӣ" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://uk.wikipedia.org/wiki/%25D0%259E%25D1%2580%25D1%2582%25D0%25BE%25D0%25B3%25D0%25BE%25D0%25BD%25D0%25B0%25D0%25BB%25D1%258C%25D0%25BD%25D1%2596_%25D0%25BF%25D0%25BE%25D0%25BB%25D1%2596%25D0%25BD%25D0%25BE%25D0%25BC%25D0%25B8" title="Ортогональні поліноми – Ukrainian" lang="uk" hreflang="uk" data-title="Ортогональні поліноми" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://vec.wikipedia.org/wiki/Po%25C5%2582inomi_ortogona%25C5%2582i" title="Połinomi ortogonałi – Venetian" lang="vec" hreflang="vec" data-title="Połinomi ortogonałi" data-language-autonym="Vèneto" data-language-local-name="Venetian" class="interlanguage-link-target"><span>Vèneto</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh.wikipedia.org/wiki/%25E6%25AD%25A3%25E4%25BA%25A4%25E5%25A4%259A%25E9%25A0%2585%25E5%25BC%258F" title="正交多項式 – Chinese" lang="zh" hreflang="zh" data-title="正交多項式" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">This page was last edited on 25 October 2024, at 20:40<span class="anonymous-show">&nbsp;(UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">Disclaimers</a></li> <li id="footer-places-contact"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://stats.wikimedia.org/%23/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/w/index.php?title%3DOrthogonal_polynomials%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-78d9ddc6fb-hhphl","wgBackendResponseTime":147,"wgPageParseReport":{"limitreport":{"cputime":"0.385","walltime":"0.634","ppvisitednodes":{"value":2078,"limit":1000000},"postexpandincludesize":{"value":44596,"limit":2097152},"templateargumentsize":{"value":3102,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":37684,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 466.792 1 -total"," 22.39% 104.504 6 Template:Cite_book"," 21.24% 99.161 1 Template:Authority_control"," 20.70% 96.634 1 Template:Reflist"," 14.55% 67.924 1 Template:Short_description"," 10.62% 49.584 1 Template:Citation_needed"," 9.49% 44.291 1 Template:Fix"," 8.75% 40.855 2 Template:Pagetype"," 7.73% 36.069 3 Template:Main"," 6.37% 29.752 2 Template:Category_handler"]},"scribunto":{"limitreport-timeusage":{"value":"0.233","limit":"10.000"},"limitreport-memusage":{"value":6126644,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-8445b8969b-wnqzw","timestamp":"20241228173036","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Orthogonal polynomials","url":"https:\/\/en.wikipedia.org\/wiki\/Orthogonal_polynomials","sameAs":"http:\/\/www.wikidata.org\/entity\/Q619458","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q619458","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2011-08-20T18:49:47Z","dateModified":"2024-10-25T20:40:49Z","headline":"set of polynomials where any two are orthogonal to each other"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('en', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&amp;hl=en-GB&amp;client=wt" type="text/javascript"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10