CINXE.COM

Gram–Schmidt process - Wikipedia

<!doctype html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <base href="https://en.m.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process"> <meta charset="UTF-8"> <title>Gram–Schmidt process - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"47556a52-3ac5-474e-9857-c5add9b4474a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Gram–Schmidt_process","wgTitle":"Gram–Schmidt process","wgCurRevisionId":1259728901,"wgRevisionId":1259728901, "wgArticleId":82361,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Gram–Schmidt_process","wgRelevantArticleId":82361,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true, "wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ar","autonym":"العربية","dir":"rtl"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir" :"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym": "বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"dag","autonym": "dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym": "furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym": "हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ" ,"dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir": "ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir": "ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang": "nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym": "Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr" },{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym":"slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym": "ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tig","autonym":"ትግሬ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang": "tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{ "lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij", "lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tig","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"], "wgWikibaseItemId":"Q475239","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","ext.pygments":"ready","skins.minerva.styles":"ready", "skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.pygments.view","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints", "ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.pygments%2CwikimediaBadges%7Cext.relatedArticles.styles%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.12"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/97/Gram%E2%80%93Schmidt_process.svg/1200px-Gram%E2%80%93Schmidt_process.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="617"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/97/Gram%E2%80%93Schmidt_process.svg/800px-Gram%E2%80%93Schmidt_process.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="411"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/97/Gram%E2%80%93Schmidt_process.svg/640px-Gram%E2%80%93Schmidt_process.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="329"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Gram–Schmidt process - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.20k2T9bCXYg.O/am=BgM/d=1/rs=AN8SPfrBTbfinOztiAdztux_N6C7bXZBHg/m=corsproxy" data-sourceurl="https://en.m.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.20k2T9bCXYg.O/am=BgM/d=1/exm=corsproxy/ed=1/rs=AN8SPfrBTbfinOztiAdztux_N6C7bXZBHg/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://en.m.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Gram–Schmidt_process rootpage-Gram–Schmidt_process stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.20k2T9bCXYg.O/am=BgM/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfrBTbfinOztiAdztux_N6C7bXZBHg/m=navigationui" data-environment="prod" data-proxy-url="https://en-m-wikipedia-org.translate.goog" data-proxy-full-url="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-source-url="https://en.m.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="om" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.m.wikipedia.org/wiki/Gram%25E2%2580%2593Schmidt_process&amp;anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Random?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Nearby?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&amp;returnto=Gram%E2%80%93Schmidt+process&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:MobileOptions&amp;returnto=Gram%E2%80%93Schmidt+process&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://donate.wikimedia.org/?wmf_source%3Ddonate%26wmf_medium%3Dsidebar%26wmf_campaign%3Den.wikipedia.org%26uselang%3Den%26wmf_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Special:Search"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Gram–Schmidt process</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" rel="" data-event-name="tabs.subject">Article</a></li> <li class="minerva__tab "><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Talk:Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" rel="discussion" data-event-name="tabs.talk">Talk</a></li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&amp;returnto=Gram%E2%80%93Schmidt+process&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <p>In <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Mathematics">mathematics</a>, particularly <a href="https://en-m-wikipedia-org.translate.goog/wiki/Linear_algebra?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Linear algebra">linear algebra</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Numerical_analysis?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Numerical analysis">numerical analysis</a>, the <b>Gram–Schmidt process</b> or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.</p> <figure class="mw-halign-right" typeof="mw:File/Frame"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Gram%E2%80%93Schmidt_process.svg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Gram%E2%80%93Schmidt_process.svg/350px-Gram%E2%80%93Schmidt_process.svg.png" decoding="async" width="350" height="180" class="mw-file-element" srcset="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://upload.wikimedia.org/wikipedia/commons/thumb/9/97/Gram%25E2%2580%2593Schmidt_process.svg/525px-Gram%25E2%2580%2593Schmidt_process.svg.png 1.5x,https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://upload.wikimedia.org/wikipedia/commons/thumb/9/97/Gram%25E2%2580%2593Schmidt_process.svg/700px-Gram%25E2%2580%2593Schmidt_process.svg.png 2x" data-file-width="350" data-file-height="180"></a> <figcaption> The first two steps of the Gram–Schmidt process </figcaption> </figure> <p>By technical definition, it is a method of constructing an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthonormal_basis?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Orthonormal basis">orthonormal basis</a> from a set of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Vector_(geometry)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Vector (geometry)">vectors</a> in an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Inner_product_space?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Inner product space">inner product space</a>, most commonly the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Euclidean_space?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Euclidean space">Euclidean space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbb {R} ^{n}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> equipped with the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Standard_inner_product?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Standard inner product">standard inner product</a>. The Gram–Schmidt process takes a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Finite_set?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Finite set">finite</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Linearly_independent?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Linearly independent">linearly independent</a> set of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\{\mathbf {v} _{1},\ldots ,\mathbf {v} _{k}\}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> <mo> = </mo> <mo fence="false" stretchy="false"> { </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo fence="false" stretchy="false"> } </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S=\{\mathbf {v} _{1},\ldots ,\mathbf {v} _{k}\}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a05cfe141bb15684e26bb802a9582f2648d32c5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.066ex; height:2.843ex;" alt="{\displaystyle S=\{\mathbf {v} _{1},\ldots ,\mathbf {v} _{k}\}}"></span> for <span class="texhtml"><i>k</i> ≤ <i>n</i></span> and generates an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_set?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Orthogonal set">orthogonal set</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S'=\{\mathbf {u} _{1},\ldots ,\mathbf {u} _{k}\}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> S </mi> <mo> ′ </mo> </msup> <mo> = </mo> <mo fence="false" stretchy="false"> { </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo fence="false" stretchy="false"> } </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S'=\{\mathbf {u} _{1},\ldots ,\mathbf {u} _{k}\}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6de4b1d1088fe7f22c9135d7224530345c32b47d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.922ex; height:3.009ex;" alt="{\displaystyle S'=\{\mathbf {u} _{1},\ldots ,\mathbf {u} _{k}\}}"></span> that spans the same <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-dimensional subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbb {R} ^{n}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>.</p> <p>The method is named after <a href="https://en-m-wikipedia-org.translate.goog/wiki/J%C3%B8rgen_Pedersen_Gram?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Jørgen Pedersen Gram">Jørgen Pedersen Gram</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Erhard_Schmidt?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Erhard Schmidt">Erhard Schmidt</a>, but <a href="https://en-m-wikipedia-org.translate.goog/wiki/Pierre-Simon_Laplace?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a> had been familiar with it before Gram and Schmidt.<sup id="cite_ref-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> In the theory of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Lie_group_decompositions?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Lie group decompositions">Lie group decompositions</a>, it is generalized by the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Iwasawa_decomposition?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Iwasawa decomposition">Iwasawa decomposition</a>.</p> <p>The application of the Gram–Schmidt process to the column vectors of a full column <a href="https://en-m-wikipedia-org.translate.goog/wiki/Rank_(linear_algebra)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Rank (linear algebra)">rank</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Matrix_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Matrix (mathematics)">matrix</a> yields the <a href="https://en-m-wikipedia-org.translate.goog/wiki/QR_decomposition?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="QR decomposition">QR decomposition</a> (it is decomposed into an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_matrix?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Orthogonal matrix">orthogonal</a> and a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangular_matrix?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Triangular matrix">triangular matrix</a>).</p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="en" dir="ltr"> <h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#The_Gram%E2%80%93Schmidt_process"><span class="tocnumber">1</span> <span class="toctext">The Gram–Schmidt process</span></a></li> <li class="toclevel-1 tocsection-2"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Example"><span class="tocnumber">2</span> <span class="toctext">Example</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Euclidean_space"><span class="tocnumber">2.1</span> <span class="toctext">Euclidean space</span></a></li> </ul></li> <li class="toclevel-1 tocsection-4"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Properties"><span class="tocnumber">3</span> <span class="toctext">Properties</span></a></li> <li class="toclevel-1 tocsection-5"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Numerical_stability"><span class="tocnumber">4</span> <span class="toctext">Numerical stability</span></a></li> <li class="toclevel-1 tocsection-6"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Algorithm"><span class="tocnumber">5</span> <span class="toctext">Algorithm</span></a></li> <li class="toclevel-1 tocsection-7"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Via_Gaussian_elimination"><span class="tocnumber">6</span> <span class="toctext">Via Gaussian elimination</span></a></li> <li class="toclevel-1 tocsection-8"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Determinant_formula"><span class="tocnumber">7</span> <span class="toctext">Determinant formula</span></a></li> <li class="toclevel-1 tocsection-9"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Expressed_using_geometric_algebra"><span class="tocnumber">8</span> <span class="toctext">Expressed using geometric algebra</span></a></li> <li class="toclevel-1 tocsection-10"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Alternatives"><span class="tocnumber">9</span> <span class="toctext">Alternatives</span></a></li> <li class="toclevel-1 tocsection-11"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Run-time_complexity"><span class="tocnumber">10</span> <span class="toctext">Run-time complexity</span></a></li> <li class="toclevel-1 tocsection-12"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#See_also"><span class="tocnumber">11</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-13"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#References"><span class="tocnumber">12</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-14"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Notes"><span class="tocnumber">13</span> <span class="toctext">Notes</span></a></li> <li class="toclevel-1 tocsection-15"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Sources"><span class="tocnumber">14</span> <span class="toctext">Sources</span></a></li> <li class="toclevel-1 tocsection-16"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#External_links"><span class="tocnumber">15</span> <span class="toctext">External links</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="The_Gram–Schmidt_process"><span id="The_Gram.E2.80.93Schmidt_process"></span>The Gram–Schmidt process</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: The Gram–Schmidt process" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <figure typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Gram-Schmidt_orthonormalization_process.gif?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Gram-Schmidt_orthonormalization_process.gif/400px-Gram-Schmidt_orthonormalization_process.gif" decoding="async" width="400" height="300" class="mw-file-element" data-file-width="440" data-file-height="330"> </noscript><span class="lazy-image-placeholder" style="width: 400px;height: 300px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Gram-Schmidt_orthonormalization_process.gif/400px-Gram-Schmidt_orthonormalization_process.gif" data-width="400" data-height="300" data-srcset="//upload.wikimedia.org/wikipedia/commons/e/ee/Gram-Schmidt_orthonormalization_process.gif 1.5x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> The modified Gram-Schmidt process being executed on three linearly independent, non-orthogonal vectors of a basis for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbb {R} ^{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.732ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" data-alt="{\displaystyle \mathbb {R} ^{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Click on image for details. Modification is explained in the Numerical Stability section of this article. </figcaption> </figure> <p>The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Vector_projection?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Vector projection">vector projection</a> of a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" data-alt="{\displaystyle \mathbf {v} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> on a nonzero vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" data-alt="{\displaystyle \mathbf {u} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is defined as<sup id="cite_ref-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-2"><span class="cite-bracket">[</span>note 1<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )={\frac {\langle \mathbf {v} ,\mathbf {u} \rangle }{\langle \mathbf {u} ,\mathbf {u} \rangle }}\,\mathbf {u} ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mrow> <mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )={\frac {\langle \mathbf {v} ,\mathbf {u} \rangle }{\langle \mathbf {u} ,\mathbf {u} \rangle }}\,\mathbf {u} ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea472b7ba11e1fd1749afaaf007ef44519eb2f8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.849ex; height:6.509ex;" alt="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )={\frac {\langle \mathbf {v} ,\mathbf {u} \rangle }{\langle \mathbf {u} ,\mathbf {u} \rangle }}\,\mathbf {u} ,}"> </noscript><span class="lazy-image-placeholder" style="width: 20.849ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea472b7ba11e1fd1749afaaf007ef44519eb2f8" data-alt="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )={\frac {\langle \mathbf {v} ,\mathbf {u} \rangle }{\langle \mathbf {u} ,\mathbf {u} \rangle }}\,\mathbf {u} ,}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {v} ,\mathbf {u} \rangle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \langle \mathbf {v} ,\mathbf {u} \rangle } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/121be2362b7f59581dc4779932a8e3c71240f9e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.74ex; height:2.843ex;" alt="{\displaystyle \langle \mathbf {v} ,\mathbf {u} \rangle }"> </noscript><span class="lazy-image-placeholder" style="width: 5.74ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/121be2362b7f59581dc4779932a8e3c71240f9e3" data-alt="{\displaystyle \langle \mathbf {v} ,\mathbf {u} \rangle }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> denotes the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Inner_product?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Inner product">inner product</a> of the vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" data-alt="{\displaystyle \mathbf {u} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" data-alt="{\displaystyle \mathbf {v} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. This means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5f6b492f8f5213ce706a9aaf7a608548b6af115" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.581ex; height:2.843ex;" alt="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )}"> </noscript><span class="lazy-image-placeholder" style="width: 8.581ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5f6b492f8f5213ce706a9aaf7a608548b6af115" data-alt="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonal_projection?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Orthogonal projection">orthogonal projection</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" data-alt="{\displaystyle \mathbf {v} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> onto the line spanned by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" data-alt="{\displaystyle \mathbf {u} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" data-alt="{\displaystyle \mathbf {u} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is the zero vector, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5f6b492f8f5213ce706a9aaf7a608548b6af115" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.581ex; height:2.843ex;" alt="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )}"> </noscript><span class="lazy-image-placeholder" style="width: 8.581ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5f6b492f8f5213ce706a9aaf7a608548b6af115" data-alt="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is defined as the zero vector.</p> <p>Given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/916a7303fbee0f437f7214458a0dd6de886fb53a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.143ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.143ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/916a7303fbee0f437f7214458a0dd6de886fb53a" data-alt="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> the Gram–Schmidt process defines the vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bbb786f13046e085458c34a87f3951f1808b8ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.292ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.292ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bbb786f13046e085458c34a87f3951f1808b8ca" data-alt="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {u} _{1}&amp;=\mathbf {v} _{1},&amp;\!\mathbf {e} _{1}&amp;={\frac {\mathbf {u} _{1}}{\|\mathbf {u} _{1}\|}}\\\mathbf {u} _{2}&amp;=\mathbf {v} _{2}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{2}),&amp;\!\mathbf {e} _{2}&amp;={\frac {\mathbf {u} _{2}}{\|\mathbf {u} _{2}\|}}\\\mathbf {u} _{3}&amp;=\mathbf {v} _{3}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{3})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{3}),&amp;\!\mathbf {e} _{3}&amp;={\frac {\mathbf {u} _{3}}{\|\mathbf {u} _{3}\|}}\\\mathbf {u} _{4}&amp;=\mathbf {v} _{4}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{4})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{4})-\operatorname {proj} _{\mathbf {u} _{3}}(\mathbf {v} _{4}),&amp;\!\mathbf {e} _{4}&amp;={\mathbf {u} _{4} \over \|\mathbf {u} _{4}\|}\\&amp;{}\ \ \vdots &amp;&amp;{}\ \ \vdots \\\mathbf {u} _{k}&amp;=\mathbf {v} _{k}-\sum _{j=1}^{k-1}\operatorname {proj} _{\mathbf {u} _{j}}(\mathbf {v} _{k}),&amp;\!\mathbf {e} _{k}&amp;={\frac {\mathbf {u} _{k}}{\|\mathbf {u} _{k}\|}}.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msub> <mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mtext> &nbsp; </mtext> <mtext> &nbsp; </mtext> <mo> ⋮<!-- ⋮ --> </mo> </mtd> <mtd></mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mtext> &nbsp; </mtext> <mtext> &nbsp; </mtext> <mo> ⋮<!-- ⋮ --> </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mrow> </mfrac> </mrow> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\mathbf {u} _{1}&amp;=\mathbf {v} _{1},&amp;\!\mathbf {e} _{1}&amp;={\frac {\mathbf {u} _{1}}{\|\mathbf {u} _{1}\|}}\\\mathbf {u} _{2}&amp;=\mathbf {v} _{2}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{2}),&amp;\!\mathbf {e} _{2}&amp;={\frac {\mathbf {u} _{2}}{\|\mathbf {u} _{2}\|}}\\\mathbf {u} _{3}&amp;=\mathbf {v} _{3}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{3})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{3}),&amp;\!\mathbf {e} _{3}&amp;={\frac {\mathbf {u} _{3}}{\|\mathbf {u} _{3}\|}}\\\mathbf {u} _{4}&amp;=\mathbf {v} _{4}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{4})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{4})-\operatorname {proj} _{\mathbf {u} _{3}}(\mathbf {v} _{4}),&amp;\!\mathbf {e} _{4}&amp;={\mathbf {u} _{4} \over \|\mathbf {u} _{4}\|}\\&amp;{}\ \ \vdots &amp;&amp;{}\ \ \vdots \\\mathbf {u} _{k}&amp;=\mathbf {v} _{k}-\sum _{j=1}^{k-1}\operatorname {proj} _{\mathbf {u} _{j}}(\mathbf {v} _{k}),&amp;\!\mathbf {e} _{k}&amp;={\frac {\mathbf {u} _{k}}{\|\mathbf {u} _{k}\|}}.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ad89bad7c5fb0df82786c5b6938dce503af2dd0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -16.671ex; width:65.511ex; height:34.509ex;" alt="{\displaystyle {\begin{aligned}\mathbf {u} _{1}&amp;=\mathbf {v} _{1},&amp;\!\mathbf {e} _{1}&amp;={\frac {\mathbf {u} _{1}}{\|\mathbf {u} _{1}\|}}\\\mathbf {u} _{2}&amp;=\mathbf {v} _{2}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{2}),&amp;\!\mathbf {e} _{2}&amp;={\frac {\mathbf {u} _{2}}{\|\mathbf {u} _{2}\|}}\\\mathbf {u} _{3}&amp;=\mathbf {v} _{3}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{3})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{3}),&amp;\!\mathbf {e} _{3}&amp;={\frac {\mathbf {u} _{3}}{\|\mathbf {u} _{3}\|}}\\\mathbf {u} _{4}&amp;=\mathbf {v} _{4}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{4})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{4})-\operatorname {proj} _{\mathbf {u} _{3}}(\mathbf {v} _{4}),&amp;\!\mathbf {e} _{4}&amp;={\mathbf {u} _{4} \over \|\mathbf {u} _{4}\|}\\&amp;{}\ \ \vdots &amp;&amp;{}\ \ \vdots \\\mathbf {u} _{k}&amp;=\mathbf {v} _{k}-\sum _{j=1}^{k-1}\operatorname {proj} _{\mathbf {u} _{j}}(\mathbf {v} _{k}),&amp;\!\mathbf {e} _{k}&amp;={\frac {\mathbf {u} _{k}}{\|\mathbf {u} _{k}\|}}.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 65.511ex;height: 34.509ex;vertical-align: -16.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ad89bad7c5fb0df82786c5b6938dce503af2dd0" data-alt="{\displaystyle {\begin{aligned}\mathbf {u} _{1}&amp;=\mathbf {v} _{1},&amp;\!\mathbf {e} _{1}&amp;={\frac {\mathbf {u} _{1}}{\|\mathbf {u} _{1}\|}}\\\mathbf {u} _{2}&amp;=\mathbf {v} _{2}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{2}),&amp;\!\mathbf {e} _{2}&amp;={\frac {\mathbf {u} _{2}}{\|\mathbf {u} _{2}\|}}\\\mathbf {u} _{3}&amp;=\mathbf {v} _{3}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{3})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{3}),&amp;\!\mathbf {e} _{3}&amp;={\frac {\mathbf {u} _{3}}{\|\mathbf {u} _{3}\|}}\\\mathbf {u} _{4}&amp;=\mathbf {v} _{4}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{4})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{4})-\operatorname {proj} _{\mathbf {u} _{3}}(\mathbf {v} _{4}),&amp;\!\mathbf {e} _{4}&amp;={\mathbf {u} _{4} \over \|\mathbf {u} _{4}\|}\\&amp;{}\ \ \vdots &amp;&amp;{}\ \ \vdots \\\mathbf {u} _{k}&amp;=\mathbf {v} _{k}-\sum _{j=1}^{k-1}\operatorname {proj} _{\mathbf {u} _{j}}(\mathbf {v} _{k}),&amp;\!\mathbf {e} _{k}&amp;={\frac {\mathbf {u} _{k}}{\|\mathbf {u} _{k}\|}}.\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>The sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bbb786f13046e085458c34a87f3951f1808b8ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.292ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.292ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bbb786f13046e085458c34a87f3951f1808b8ca" data-alt="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is the required system of orthogonal vectors, and the normalized vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{1},\ldots ,\mathbf {e} _{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {e} _{1},\ldots ,\mathbf {e} _{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c5774fb599a7237f1e74e1f953e93c157bff95c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.772ex; height:2.009ex;" alt="{\displaystyle \mathbf {e} _{1},\ldots ,\mathbf {e} _{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 9.772ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c5774fb599a7237f1e74e1f953e93c157bff95c" data-alt="{\displaystyle \mathbf {e} _{1},\ldots ,\mathbf {e} _{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> form an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthonormal_set?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Orthonormal set">orthonormal set</a>. The calculation of the sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bbb786f13046e085458c34a87f3951f1808b8ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.292ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.292ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bbb786f13046e085458c34a87f3951f1808b8ca" data-alt="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is known as <i>Gram–Schmidt <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonalization?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Orthogonalization">orthogonalization</a></i>, and the calculation of the sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{1},\ldots ,\mathbf {e} _{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {e} _{1},\ldots ,\mathbf {e} _{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c5774fb599a7237f1e74e1f953e93c157bff95c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.772ex; height:2.009ex;" alt="{\displaystyle \mathbf {e} _{1},\ldots ,\mathbf {e} _{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 9.772ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c5774fb599a7237f1e74e1f953e93c157bff95c" data-alt="{\displaystyle \mathbf {e} _{1},\ldots ,\mathbf {e} _{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is known as <i>Gram–Schmidt <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthonormalization?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Orthonormalization">orthonormalization</a></i>.</p> <p>To check that these formulas yield an orthogonal sequence, first compute <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{2}\rangle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{2}\rangle } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba0654d7f642b264c333ac18df0cff72db6615d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.922ex; height:2.843ex;" alt="{\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{2}\rangle }"> </noscript><span class="lazy-image-placeholder" style="width: 7.922ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba0654d7f642b264c333ac18df0cff72db6615d" data-alt="{\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{2}\rangle }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> by substituting the above formula for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/636f3f24b87f95f1c772c4ac0b579c9ee7b43899" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.54ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.54ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/636f3f24b87f95f1c772c4ac0b579c9ee7b43899" data-alt="{\displaystyle \mathbf {u} _{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>: we get zero. Then use this to compute <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{3}\rangle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{3}\rangle } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64ed9cf376aff4fc7573e494b33fa2f4cc71efc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.922ex; height:2.843ex;" alt="{\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{3}\rangle }"> </noscript><span class="lazy-image-placeholder" style="width: 7.922ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64ed9cf376aff4fc7573e494b33fa2f4cc71efc9" data-alt="{\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{3}\rangle }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> again by substituting the formula for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b8d2b326bb13caf8a0025fe53f4386793657eff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.54ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.54ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b8d2b326bb13caf8a0025fe53f4386793657eff" data-alt="{\displaystyle \mathbf {u} _{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>: we get zero. For arbitrary <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> the proof is accomplished by <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematical_induction?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Mathematical induction">mathematical induction</a>.</p> <p>Geometrically, this method proceeds as follows: to compute <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99336b5d39198e16034613b2c3cc54d898c3d24c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.285ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.285ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99336b5d39198e16034613b2c3cc54d898c3d24c" data-alt="{\displaystyle \mathbf {u} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, it projects <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.211ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" data-alt="{\displaystyle \mathbf {v} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> orthogonally onto the subspace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> U </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle U} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"> </noscript><span class="lazy-image-placeholder" style="width: 1.783ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" data-alt="{\displaystyle U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> generated by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{i-1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{i-1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6f5b835f50eab6d45267d33e5d3a5a21ea5114f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.103ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{i-1}}"> </noscript><span class="lazy-image-placeholder" style="width: 12.103ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6f5b835f50eab6d45267d33e5d3a5a21ea5114f" data-alt="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{i-1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, which is the same as the subspace generated by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{i-1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{i-1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e13956a30f2b41cec722e4a8f64208955d07bb11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.955ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{i-1}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.955ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e13956a30f2b41cec722e4a8f64208955d07bb11" data-alt="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{i-1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. The vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99336b5d39198e16034613b2c3cc54d898c3d24c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.285ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.285ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99336b5d39198e16034613b2c3cc54d898c3d24c" data-alt="{\displaystyle \mathbf {u} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is then defined to be the difference between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.211ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" data-alt="{\displaystyle \mathbf {v} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and this projection, guaranteed to be orthogonal to all of the vectors in the subspace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> U </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle U} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"> </noscript><span class="lazy-image-placeholder" style="width: 1.783ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" data-alt="{\displaystyle U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>The Gram–Schmidt process also applies to a linearly independent <a href="https://en-m-wikipedia-org.translate.goog/wiki/Countably_infinite?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Countably infinite">countably infinite</a> sequence <span class="texhtml">{<b>v</b><sub><i>i</i></sub>}<sub><i>i</i></sub></span>. The result is an orthogonal (or orthonormal) sequence <span class="texhtml">{<b>u</b><sub><i>i</i></sub>}<sub><i>i</i></sub></span> such that for natural number <span class="texhtml mvar" style="font-style:italic;">n</span>: the algebraic span of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{n}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{n}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ae3cee159c711789d27ca7ee7653de05c45eb5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.273ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{n}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.273ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ae3cee159c711789d27ca7ee7653de05c45eb5a" data-alt="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is the same as that of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{n}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{n}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be69eacc0a24636857d567f9d32069dc0e488139" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.422ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{n}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.422ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be69eacc0a24636857d567f9d32069dc0e488139" data-alt="{\displaystyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>If the Gram–Schmidt process is applied to a linearly dependent sequence, it outputs the <span class="texhtml"><b>0</b></span> vector on the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"> </noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>th step, assuming that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.211ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" data-alt="{\displaystyle \mathbf {v} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is a linear combination of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{i-1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{i-1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e13956a30f2b41cec722e4a8f64208955d07bb11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.955ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{i-1}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.955ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e13956a30f2b41cec722e4a8f64208955d07bb11" data-alt="{\displaystyle \mathbf {v} _{1},\ldots ,\mathbf {v} _{i-1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. If an orthonormal basis is to be produced, then the algorithm should test for zero vectors in the output and discard them because no multiple of a zero vector can have a length of 1. The number of vectors output by the algorithm will then be the dimension of the space spanned by the original inputs.</p> <p>A variant of the Gram–Schmidt process using <a href="https://en-m-wikipedia-org.translate.goog/wiki/Transfinite_recursion?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Transfinite recursion">transfinite recursion</a> applied to a (possibly uncountably) infinite sequence of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (v_{\alpha })_{\alpha <\lambda }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> </mrow> </msub> <msub> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> <mo> &lt; </mo> <mi> λ<!-- λ --> </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (v_{\alpha })_{\alpha &lt;\lambda }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb44bc2105d877ca44d2a4c75e35fe5b71acceb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.742ex; height:2.843ex;" alt="{\displaystyle (v_{\alpha })_{\alpha <\lambda }}"> </noscript><span class="lazy-image-placeholder" style="width: 7.742ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb44bc2105d877ca44d2a4c75e35fe5b71acceb" data-alt="{\displaystyle (v_{\alpha })_{\alpha <\lambda }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> yields a set of orthonormal vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u_{\alpha })_{\alpha <\kappa }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> </mrow> </msub> <msub> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> <mo> &lt; </mo> <mi> κ<!-- κ --> </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (u_{\alpha })_{\alpha &lt;\kappa }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9f7ba81b2efe577fa80b011abed68f41b7de827" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.933ex; height:2.843ex;" alt="{\displaystyle (u_{\alpha })_{\alpha <\kappa }}"> </noscript><span class="lazy-image-placeholder" style="width: 7.933ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9f7ba81b2efe577fa80b011abed68f41b7de827" data-alt="{\displaystyle (u_{\alpha })_{\alpha <\kappa }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa \leq \lambda }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> κ<!-- κ --> </mi> <mo> ≤<!-- ≤ --> </mo> <mi> λ<!-- λ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \kappa \leq \lambda } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4905ac5ab29e59a511710130ca5712f1b910639" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.793ex; height:2.343ex;" alt="{\displaystyle \kappa \leq \lambda }"> </noscript><span class="lazy-image-placeholder" style="width: 5.793ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4905ac5ab29e59a511710130ca5712f1b910639" data-alt="{\displaystyle \kappa \leq \lambda }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> such that for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \leq \lambda }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> α<!-- α --> </mi> <mo> ≤<!-- ≤ --> </mo> <mi> λ<!-- λ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha \leq \lambda } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/815e1e30344b5cd134c8aeb1d0568880a436ab9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.941ex; height:2.343ex;" alt="{\displaystyle \alpha \leq \lambda }"> </noscript><span class="lazy-image-placeholder" style="width: 5.941ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/815e1e30344b5cd134c8aeb1d0568880a436ab9b" data-alt="{\displaystyle \alpha \leq \lambda }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Complete_space?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Completion" class="mw-redirect" title="Complete space">completion</a> of the span of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{u_{\beta }:\beta <\min(\alpha ,\kappa )\}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> β<!-- β --> </mi> </mrow> </msub> <mo> : </mo> <mi> β<!-- β --> </mi> <mo> &lt; </mo> <mo movablelimits="true" form="prefix"> min </mo> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo> , </mo> <mi> κ<!-- κ --> </mi> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{u_{\beta }:\beta &lt;\min(\alpha ,\kappa )\}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/206741efc3d54608f5926a065af41b9d67a3f8dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.741ex; height:3.009ex;" alt="{\displaystyle \{u_{\beta }:\beta <\min(\alpha ,\kappa )\}}"> </noscript><span class="lazy-image-placeholder" style="width: 20.741ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/206741efc3d54608f5926a065af41b9d67a3f8dc" data-alt="{\displaystyle \{u_{\beta }:\beta <\min(\alpha ,\kappa )\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is the same as that of <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{v_{\beta }:\beta <\alpha \}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> β<!-- β --> </mi> </mrow> </msub> <mo> : </mo> <mi> β<!-- β --> </mi> <mo> &lt; </mo> <mi> α<!-- α --> </mi> <mo fence="false" stretchy="false"> } </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{v_{\beta }:\beta &lt;\alpha \}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85620dd5bcdfce16367ccc0338386b93642ea21c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.482ex; height:3.009ex;" alt="{\displaystyle \{v_{\beta }:\beta <\alpha \}}"> </noscript><span class="lazy-image-placeholder" style="width: 12.482ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85620dd5bcdfce16367ccc0338386b93642ea21c" data-alt="{\displaystyle \{v_{\beta }:\beta <\alpha \}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</span> In particular, when applied to a (algebraic) basis of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hilbert_space?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Hilbert space">Hilbert space</a> (or, more generally, a basis of any dense subspace), it yields a (functional-analytic) orthonormal basis. Note that in the general case often the strict inequality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa <\lambda }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> κ<!-- κ --> </mi> <mo> &lt; </mo> <mi> λ<!-- λ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \kappa &lt;\lambda } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d97903fcd3076d6ae543501c10d80a37497892e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.793ex; height:2.176ex;" alt="{\displaystyle \kappa <\lambda }"> </noscript><span class="lazy-image-placeholder" style="width: 5.793ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d97903fcd3076d6ae543501c10d80a37497892e6" data-alt="{\displaystyle \kappa <\lambda }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> holds, even if the starting set was linearly independent, and the span of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u_{\alpha })_{\alpha <\kappa }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> </mrow> </msub> <msub> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> <mo> &lt; </mo> <mi> κ<!-- κ --> </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (u_{\alpha })_{\alpha &lt;\kappa }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9f7ba81b2efe577fa80b011abed68f41b7de827" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.933ex; height:2.843ex;" alt="{\displaystyle (u_{\alpha })_{\alpha <\kappa }}"> </noscript><span class="lazy-image-placeholder" style="width: 7.933ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9f7ba81b2efe577fa80b011abed68f41b7de827" data-alt="{\displaystyle (u_{\alpha })_{\alpha <\kappa }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> need not be a subspace of the span of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (v_{\alpha })_{\alpha <\lambda }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> </mrow> </msub> <msub> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> <mo> &lt; </mo> <mi> λ<!-- λ --> </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (v_{\alpha })_{\alpha &lt;\lambda }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb44bc2105d877ca44d2a4c75e35fe5b71acceb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.742ex; height:2.843ex;" alt="{\displaystyle (v_{\alpha })_{\alpha <\lambda }}"> </noscript><span class="lazy-image-placeholder" style="width: 7.742ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb44bc2105d877ca44d2a4c75e35fe5b71acceb" data-alt="{\displaystyle (v_{\alpha })_{\alpha <\lambda }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> (rather, it's a subspace of its completion).</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Example">Example</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=2&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Example" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <div class="mw-heading mw-heading3"> <h3 id="Euclidean_space">Euclidean space</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=3&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Euclidean space" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Consider the following set of vectors in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbb {R} ^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.732ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" data-alt="{\displaystyle \mathbb {R} ^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> (with the conventional <a href="https://en-m-wikipedia-org.translate.goog/wiki/Inner_product_space?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Euclidean_vector_space" title="Inner product space">inner product</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\left\{\mathbf {v} _{1}={\begin{bmatrix}3\\1\end{bmatrix}},\mathbf {v} _{2}={\begin{bmatrix}2\\2\end{bmatrix}}\right\}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> <mo> = </mo> <mrow> <mo> { </mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 3 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 1 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 2 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 2 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S=\left\{\mathbf {v} _{1}={\begin{bmatrix}3\\1\end{bmatrix}},\mathbf {v} _{2}={\begin{bmatrix}2\\2\end{bmatrix}}\right\}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2603636bc33e0dc49d512a31d93cee6df06251b9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.017ex; height:6.176ex;" alt="{\displaystyle S=\left\{\mathbf {v} _{1}={\begin{bmatrix}3\\1\end{bmatrix}},\mathbf {v} _{2}={\begin{bmatrix}2\\2\end{bmatrix}}\right\}.}"> </noscript><span class="lazy-image-placeholder" style="width: 30.017ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2603636bc33e0dc49d512a31d93cee6df06251b9" data-alt="{\displaystyle S=\left\{\mathbf {v} _{1}={\begin{bmatrix}3\\1\end{bmatrix}},\mathbf {v} _{2}={\begin{bmatrix}2\\2\end{bmatrix}}\right\}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>Now, perform Gram–Schmidt, to obtain an orthogonal set of vectors: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1}=\mathbf {v} _{1}={\begin{bmatrix}3\\1\end{bmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 3 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 1 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1}=\mathbf {v} _{1}={\begin{bmatrix}3\\1\end{bmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1ea071c47dc8e591ea9e271ac27e1eac8ed2e0d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.571ex; height:6.176ex;" alt="{\displaystyle \mathbf {u} _{1}=\mathbf {v} _{1}={\begin{bmatrix}3\\1\end{bmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 15.571ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1ea071c47dc8e591ea9e271ac27e1eac8ed2e0d" data-alt="{\displaystyle \mathbf {u} _{1}=\mathbf {v} _{1}={\begin{bmatrix}3\\1\end{bmatrix}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{2}=\mathbf {v} _{2}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{2})={\begin{bmatrix}2\\2\end{bmatrix}}-\operatorname {proj} _{\left[{\begin{smallmatrix}3\\1\end{smallmatrix}}\right]}{\begin{bmatrix}2\\2\end{bmatrix}}={\begin{bmatrix}2\\2\end{bmatrix}}-{\frac {8}{10}}{\begin{bmatrix}3\\1\end{bmatrix}}={\begin{bmatrix}-2/5\\6/5\end{bmatrix}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 2 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 2 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mn> 3 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 1 </mn> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo> ] </mo> </mrow> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 2 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 2 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 2 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 2 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 8 </mn> <mn> 10 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 3 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 1 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 5 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 6 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 5 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{2}=\mathbf {v} _{2}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{2})={\begin{bmatrix}2\\2\end{bmatrix}}-\operatorname {proj} _{\left[{\begin{smallmatrix}3\\1\end{smallmatrix}}\right]}{\begin{bmatrix}2\\2\end{bmatrix}}={\begin{bmatrix}2\\2\end{bmatrix}}-{\frac {8}{10}}{\begin{bmatrix}3\\1\end{bmatrix}}={\begin{bmatrix}-2/5\\6/5\end{bmatrix}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d583d79b8ab535ab1b2bd0c5bd7960f02f743f41" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:73.996ex; height:6.176ex;" alt="{\displaystyle \mathbf {u} _{2}=\mathbf {v} _{2}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{2})={\begin{bmatrix}2\\2\end{bmatrix}}-\operatorname {proj} _{\left[{\begin{smallmatrix}3\\1\end{smallmatrix}}\right]}{\begin{bmatrix}2\\2\end{bmatrix}}={\begin{bmatrix}2\\2\end{bmatrix}}-{\frac {8}{10}}{\begin{bmatrix}3\\1\end{bmatrix}}={\begin{bmatrix}-2/5\\6/5\end{bmatrix}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 73.996ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d583d79b8ab535ab1b2bd0c5bd7960f02f743f41" data-alt="{\displaystyle \mathbf {u} _{2}=\mathbf {v} _{2}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{2})={\begin{bmatrix}2\\2\end{bmatrix}}-\operatorname {proj} _{\left[{\begin{smallmatrix}3\\1\end{smallmatrix}}\right]}{\begin{bmatrix}2\\2\end{bmatrix}}={\begin{bmatrix}2\\2\end{bmatrix}}-{\frac {8}{10}}{\begin{bmatrix}3\\1\end{bmatrix}}={\begin{bmatrix}-2/5\\6/5\end{bmatrix}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>We check that the vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb86457c0ac456302419c967bda92a5910ff004c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.54ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.54ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb86457c0ac456302419c967bda92a5910ff004c" data-alt="{\displaystyle \mathbf {u} _{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/636f3f24b87f95f1c772c4ac0b579c9ee7b43899" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.54ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.54ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/636f3f24b87f95f1c772c4ac0b579c9ee7b43899" data-alt="{\displaystyle \mathbf {u} _{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> are indeed orthogonal: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{2}\rangle =\left\langle {\begin{bmatrix}3\\1\end{bmatrix}},{\begin{bmatrix}-2/5\\6/5\end{bmatrix}}\right\rangle =-{\frac {6}{5}}+{\frac {6}{5}}=0,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <mo> = </mo> <mrow> <mo> ⟨ </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 3 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 1 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 5 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 6 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 5 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mrow> <mo> ⟩ </mo> </mrow> <mo> = </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 6 </mn> <mn> 5 </mn> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 6 </mn> <mn> 5 </mn> </mfrac> </mrow> <mo> = </mo> <mn> 0 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{2}\rangle =\left\langle {\begin{bmatrix}3\\1\end{bmatrix}},{\begin{bmatrix}-2/5\\6/5\end{bmatrix}}\right\rangle =-{\frac {6}{5}}+{\frac {6}{5}}=0,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4583cbf73f2fc900aaf8917009315a1f9617ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.064ex; height:6.176ex;" alt="{\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{2}\rangle =\left\langle {\begin{bmatrix}3\\1\end{bmatrix}},{\begin{bmatrix}-2/5\\6/5\end{bmatrix}}\right\rangle =-{\frac {6}{5}}+{\frac {6}{5}}=0,}"> </noscript><span class="lazy-image-placeholder" style="width: 45.064ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4583cbf73f2fc900aaf8917009315a1f9617ff" data-alt="{\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{2}\rangle =\left\langle {\begin{bmatrix}3\\1\end{bmatrix}},{\begin{bmatrix}-2/5\\6/5\end{bmatrix}}\right\rangle =-{\frac {6}{5}}+{\frac {6}{5}}=0,}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> noting that if the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Dot_product?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Dot product">dot product</a> of two vectors is 0 then they are orthogonal.</p> <p>For non-zero vectors, we can then normalize the vectors by dividing out their sizes as shown above: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{1}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}3\\1\end{bmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <mn> 10 </mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 3 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 1 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {e} _{1}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}3\\1\end{bmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6b378b40503fe198b4591f55b0e3ae32ed2b993" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:14.844ex; height:6.509ex;" alt="{\displaystyle \mathbf {e} _{1}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}3\\1\end{bmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 14.844ex;height: 6.509ex;vertical-align: -2.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6b378b40503fe198b4591f55b0e3ae32ed2b993" data-alt="{\displaystyle \mathbf {e} _{1}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}3\\1\end{bmatrix}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{2}={\frac {1}{\sqrt {40 \over 25}}}{\begin{bmatrix}-2/5\\6/5\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}-1\\3\end{bmatrix}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <mfrac> <mn> 40 </mn> <mn> 25 </mn> </mfrac> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 5 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 6 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 5 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <mn> 10 </mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 3 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {e} _{2}={\frac {1}{\sqrt {40 \over 25}}}{\begin{bmatrix}-2/5\\6/5\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}-1\\3\end{bmatrix}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43be2370ce8ac1fa33165e613116ba269317ac4a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:34.539ex; height:8.343ex;" alt="{\displaystyle \mathbf {e} _{2}={\frac {1}{\sqrt {40 \over 25}}}{\begin{bmatrix}-2/5\\6/5\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}-1\\3\end{bmatrix}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 34.539ex;height: 8.343ex;vertical-align: -4.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43be2370ce8ac1fa33165e613116ba269317ac4a" data-alt="{\displaystyle \mathbf {e} _{2}={\frac {1}{\sqrt {40 \over 25}}}{\begin{bmatrix}-2/5\\6/5\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}-1\\3\end{bmatrix}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Properties">Properties</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=4&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Properties" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>Denote by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> GS </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32352a2d0e05a4a22f8796672311bc79b67c09ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.069ex; height:2.843ex;" alt="{\displaystyle \operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})}"> </noscript><span class="lazy-image-placeholder" style="width: 15.069ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32352a2d0e05a4a22f8796672311bc79b67c09ff" data-alt="{\displaystyle \operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> the result of applying the Gram–Schmidt process to a collection of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1},\dots ,\mathbf {v} _{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{1},\dots ,\mathbf {v} _{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94fad4acc15e19543d874b8141475083d18229f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.143ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{1},\dots ,\mathbf {v} _{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.143ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94fad4acc15e19543d874b8141475083d18229f4" data-alt="{\displaystyle \mathbf {v} _{1},\dots ,\mathbf {v} _{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. This yields a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {GS} \colon (\mathbb {R} ^{n})^{k}\to (\mathbb {R} ^{n})^{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> GS </mi> <mo> :<!-- : --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo stretchy="false"> →<!-- → --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {GS} \colon (\mathbb {R} ^{n})^{k}\to (\mathbb {R} ^{n})^{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f551da3793727af52ef93dba678068dbab55e79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.354ex; height:3.176ex;" alt="{\displaystyle \operatorname {GS} \colon (\mathbb {R} ^{n})^{k}\to (\mathbb {R} ^{n})^{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 19.354ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f551da3793727af52ef93dba678068dbab55e79" data-alt="{\displaystyle \operatorname {GS} \colon (\mathbb {R} ^{n})^{k}\to (\mathbb {R} ^{n})^{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>It has the following properties:</p> <ul> <li>It is continuous</li> <li>It is <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orientation_(vector_space)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Orientation (vector space)">orientation</a> preserving in the sense that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {or} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})=\operatorname {or} (\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k}))}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> or </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> or </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mi> GS </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {or} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})=\operatorname {or} (\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k}))} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c02d92df291aaa74c25e02f6d225ab62cf860c64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.078ex; height:2.843ex;" alt="{\displaystyle \operatorname {or} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})=\operatorname {or} (\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k}))}"> </noscript><span class="lazy-image-placeholder" style="width: 36.078ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c02d92df291aaa74c25e02f6d225ab62cf860c64" data-alt="{\displaystyle \operatorname {or} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})=\operatorname {or} (\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k}))}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</li> <li>It commutes with orthogonal maps:</li> </ul> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\colon \mathbb {R} ^{n}\to \mathbb {R} ^{n}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> g </mi> <mo> :<!-- : --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo stretchy="false"> →<!-- → --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle g\colon \mathbb {R} ^{n}\to \mathbb {R} ^{n}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f147e7d7a52fb587d2eb46a4a767351ecfe6c5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.557ex; height:2.676ex;" alt="{\displaystyle g\colon \mathbb {R} ^{n}\to \mathbb {R} ^{n}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.557ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f147e7d7a52fb587d2eb46a4a767351ecfe6c5f" data-alt="{\displaystyle g\colon \mathbb {R} ^{n}\to \mathbb {R} ^{n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> be orthogonal (with respect to the given inner product). Then we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {GS} (g(\mathbf {v} _{1}),\dots ,g(\mathbf {v} _{k}))=\left(g(\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})_{1}),\dots ,g(\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})_{k})\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> GS </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mi> g </mi> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <mi> g </mi> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mi> g </mi> <mo stretchy="false"> ( </mo> <mi> GS </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msub> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <mi> g </mi> <mo stretchy="false"> ( </mo> <mi> GS </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msub> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {GS} (g(\mathbf {v} _{1}),\dots ,g(\mathbf {v} _{k}))=\left(g(\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})_{1}),\dots ,g(\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})_{k})\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b5d13effe8b8311422ae188835c3d44fdb2c3ac" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:69.138ex; height:2.843ex;" alt="{\displaystyle \operatorname {GS} (g(\mathbf {v} _{1}),\dots ,g(\mathbf {v} _{k}))=\left(g(\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})_{1}),\dots ,g(\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})_{k})\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 69.138ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b5d13effe8b8311422ae188835c3d44fdb2c3ac" data-alt="{\displaystyle \operatorname {GS} (g(\mathbf {v} _{1}),\dots ,g(\mathbf {v} _{k}))=\left(g(\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})_{1}),\dots ,g(\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})_{k})\right)}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>Further, a parametrized version of the Gram–Schmidt process yields a (strong) <a href="https://en-m-wikipedia-org.translate.goog/wiki/Retraction_(topology)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Deformation_retract_and_strong_deformation_retract" title="Retraction (topology)">deformation retraction</a> of the general linear group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {GL} (\mathbb {R} ^{n})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> G </mi> <mi mathvariant="normal"> L </mi> </mrow> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathrm {GL} (\mathbb {R} ^{n})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59bb5243e62a46a816dac70e7e5f737c5853a130" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.983ex; height:2.843ex;" alt="{\displaystyle \mathrm {GL} (\mathbb {R} ^{n})}"> </noscript><span class="lazy-image-placeholder" style="width: 7.983ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59bb5243e62a46a816dac70e7e5f737c5853a130" data-alt="{\displaystyle \mathrm {GL} (\mathbb {R} ^{n})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> onto the orthogonal group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(\mathbb {R} ^{n})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> O </mi> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle O(\mathbb {R} ^{n})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f8cb4eeb172b54cd039a318a72e4f5701b2b376" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.479ex; height:2.843ex;" alt="{\displaystyle O(\mathbb {R} ^{n})}"> </noscript><span class="lazy-image-placeholder" style="width: 6.479ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f8cb4eeb172b54cd039a318a72e4f5701b2b376" data-alt="{\displaystyle O(\mathbb {R} ^{n})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Numerical_stability">Numerical stability</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=5&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Numerical stability" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <p>When this process is implemented on a computer, the vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6db1dab97ca1af730a50c30421af8c3fd020c836" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.574ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6db1dab97ca1af730a50c30421af8c3fd020c836" data-alt="{\displaystyle \mathbf {u} _{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> are often not quite orthogonal, due to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Round-off_error?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Round-off error">rounding errors</a>. For the Gram–Schmidt process as described above (sometimes referred to as "classical Gram–Schmidt") this loss of orthogonality is particularly bad; therefore, it is said that the (classical) Gram–Schmidt process is <a href="https://en-m-wikipedia-org.translate.goog/wiki/Numerical_stability?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Numerical stability">numerically unstable</a>.</p> <p>The Gram–Schmidt process can be stabilized by a small modification; this version is sometimes referred to as <b>modified Gram-Schmidt</b> or MGS. This approach gives the same result as the original formula in exact arithmetic and introduces smaller errors in finite-precision arithmetic.</p> <p>Instead of computing the vector <span class="texhtml"><b>u</b><sub><i>k</i></sub></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{k})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{k})-\cdots -\operatorname {proj} _{\mathbf {u} _{k-1}}(\mathbf {v} _{k}),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{k})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{k})-\cdots -\operatorname {proj} _{\mathbf {u} _{k-1}}(\mathbf {v} _{k}),} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cd103ec51b97bfcb55150768b553f57367af588" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:56.142ex; height:3.343ex;" alt="{\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{k})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{k})-\cdots -\operatorname {proj} _{\mathbf {u} _{k-1}}(\mathbf {v} _{k}),}"> </noscript><span class="lazy-image-placeholder" style="width: 56.142ex;height: 3.343ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cd103ec51b97bfcb55150768b553f57367af588" data-alt="{\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{k})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{k})-\cdots -\operatorname {proj} _{\mathbf {u} _{k-1}}(\mathbf {v} _{k}),}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> it is computed as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {u} _{k}^{(1)}&amp;=\mathbf {v} _{k}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{k}),\\\mathbf {u} _{k}^{(2)}&amp;=\mathbf {u} _{k}^{(1)}-\operatorname {proj} _{\mathbf {u} _{2}}\left(\mathbf {u} _{k}^{(1)}\right),\\&amp;\;\;\vdots \\\mathbf {u} _{k}^{(k-2)}&amp;=\mathbf {u} _{k}^{(k-3)}-\operatorname {proj} _{\mathbf {u} _{k-2}}\left(\mathbf {u} _{k}^{(k-3)}\right),\\\mathbf {u} _{k}^{(k-1)}&amp;=\mathbf {u} _{k}^{(k-2)}-\operatorname {proj} _{\mathbf {u} _{k-1}}\left(\mathbf {u} _{k}^{(k-2)}\right),\\\mathbf {e} _{k}&amp;={\frac {\mathbf {u} _{k}^{(k-1)}}{\left\|\mathbf {u} _{k}^{(k-1)}\right\|}}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo> = </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mrow> <mo> ( </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> ) </mo> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mo> ⋮<!-- ⋮ --> </mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo> = </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 3 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mrow> <mo> ( </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 3 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> ) </mo> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo> = </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> −<!-- − --> </mo> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mrow> <mo> ( </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> ) </mo> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mrow> <mo symmetric="true"> ‖ </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo symmetric="true"> ‖ </mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\mathbf {u} _{k}^{(1)}&amp;=\mathbf {v} _{k}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{k}),\\\mathbf {u} _{k}^{(2)}&amp;=\mathbf {u} _{k}^{(1)}-\operatorname {proj} _{\mathbf {u} _{2}}\left(\mathbf {u} _{k}^{(1)}\right),\\&amp;\;\;\vdots \\\mathbf {u} _{k}^{(k-2)}&amp;=\mathbf {u} _{k}^{(k-3)}-\operatorname {proj} _{\mathbf {u} _{k-2}}\left(\mathbf {u} _{k}^{(k-3)}\right),\\\mathbf {u} _{k}^{(k-1)}&amp;=\mathbf {u} _{k}^{(k-2)}-\operatorname {proj} _{\mathbf {u} _{k-1}}\left(\mathbf {u} _{k}^{(k-2)}\right),\\\mathbf {e} _{k}&amp;={\frac {\mathbf {u} _{k}^{(k-1)}}{\left\|\mathbf {u} _{k}^{(k-1)}\right\|}}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e130edad422fde0487a416b42a3dde83693fe1c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.947ex; margin-bottom: -0.224ex; width:35.9ex; height:31.509ex;" alt="{\displaystyle {\begin{aligned}\mathbf {u} _{k}^{(1)}&amp;=\mathbf {v} _{k}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{k}),\\\mathbf {u} _{k}^{(2)}&amp;=\mathbf {u} _{k}^{(1)}-\operatorname {proj} _{\mathbf {u} _{2}}\left(\mathbf {u} _{k}^{(1)}\right),\\&amp;\;\;\vdots \\\mathbf {u} _{k}^{(k-2)}&amp;=\mathbf {u} _{k}^{(k-3)}-\operatorname {proj} _{\mathbf {u} _{k-2}}\left(\mathbf {u} _{k}^{(k-3)}\right),\\\mathbf {u} _{k}^{(k-1)}&amp;=\mathbf {u} _{k}^{(k-2)}-\operatorname {proj} _{\mathbf {u} _{k-1}}\left(\mathbf {u} _{k}^{(k-2)}\right),\\\mathbf {e} _{k}&amp;={\frac {\mathbf {u} _{k}^{(k-1)}}{\left\|\mathbf {u} _{k}^{(k-1)}\right\|}}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 35.9ex;height: 31.509ex;vertical-align: -14.947ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e130edad422fde0487a416b42a3dde83693fe1c" data-alt="{\displaystyle {\begin{aligned}\mathbf {u} _{k}^{(1)}&amp;=\mathbf {v} _{k}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{k}),\\\mathbf {u} _{k}^{(2)}&amp;=\mathbf {u} _{k}^{(1)}-\operatorname {proj} _{\mathbf {u} _{2}}\left(\mathbf {u} _{k}^{(1)}\right),\\&amp;\;\;\vdots \\\mathbf {u} _{k}^{(k-2)}&amp;=\mathbf {u} _{k}^{(k-3)}-\operatorname {proj} _{\mathbf {u} _{k-2}}\left(\mathbf {u} _{k}^{(k-3)}\right),\\\mathbf {u} _{k}^{(k-1)}&amp;=\mathbf {u} _{k}^{(k-2)}-\operatorname {proj} _{\mathbf {u} _{k-1}}\left(\mathbf {u} _{k}^{(k-2)}\right),\\\mathbf {e} _{k}&amp;={\frac {\mathbf {u} _{k}^{(k-1)}}{\left\|\mathbf {u} _{k}^{(k-1)}\right\|}}\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>This method is used in the previous animation, when the intermediate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} '_{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> <mo> ′ </mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} '_{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0942ad4902a2632037eb59a2d3650af22db2115b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.465ex; height:2.843ex;" alt="{\displaystyle \mathbf {v} '_{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.465ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0942ad4902a2632037eb59a2d3650af22db2115b" data-alt="{\displaystyle \mathbf {v} '_{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> vector is used when orthogonalizing the blue vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edbc3fb88d6a27517dc79da85446ab8147801be9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.465ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edbc3fb88d6a27517dc79da85446ab8147801be9" data-alt="{\displaystyle \mathbf {v} _{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Here is another description of the modified algorithm. Given the vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1},\mathbf {v} _{2},\dots ,\mathbf {v} _{n}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{1},\mathbf {v} _{2},\dots ,\mathbf {v} _{n}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/921a06d96c2e9632ae9bb14077091d46c9f7c58f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.772ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{1},\mathbf {v} _{2},\dots ,\mathbf {v} _{n}}"> </noscript><span class="lazy-image-placeholder" style="width: 13.772ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/921a06d96c2e9632ae9bb14077091d46c9f7c58f" data-alt="{\displaystyle \mathbf {v} _{1},\mathbf {v} _{2},\dots ,\mathbf {v} _{n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, in our first step we produce vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1},\mathbf {v} _{2}^{(1)},\dots ,\mathbf {v} _{n}^{(1)}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{1},\mathbf {v} _{2}^{(1)},\dots ,\mathbf {v} _{n}^{(1)}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81c3cae30e175411a7f00653eec218eac5a7f00c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.167ex; height:3.676ex;" alt="{\displaystyle \mathbf {v} _{1},\mathbf {v} _{2}^{(1)},\dots ,\mathbf {v} _{n}^{(1)}}"> </noscript><span class="lazy-image-placeholder" style="width: 16.167ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81c3cae30e175411a7f00653eec218eac5a7f00c" data-alt="{\displaystyle \mathbf {v} _{1},\mathbf {v} _{2}^{(1)},\dots ,\mathbf {v} _{n}^{(1)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>by removing components along the direction of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/282458bb19c231f94697405bddd93af04a34cabe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.465ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/282458bb19c231f94697405bddd93af04a34cabe" data-alt="{\displaystyle \mathbf {v} _{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. In formulas, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{k}^{(1)}:=\mathbf {v} _{k}-{\frac {\langle \mathbf {v} _{k},\mathbf {v} _{1}\rangle }{\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle }}\mathbf {v} _{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> := </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mrow> <mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{k}^{(1)}:=\mathbf {v} _{k}-{\frac {\langle \mathbf {v} _{k},\mathbf {v} _{1}\rangle }{\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle }}\mathbf {v} _{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e099e4386cae481efe912ed95a30200347309b3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.939ex; height:6.509ex;" alt="{\displaystyle \mathbf {v} _{k}^{(1)}:=\mathbf {v} _{k}-{\frac {\langle \mathbf {v} _{k},\mathbf {v} _{1}\rangle }{\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle }}\mathbf {v} _{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 23.939ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e099e4386cae481efe912ed95a30200347309b3c" data-alt="{\displaystyle \mathbf {v} _{k}^{(1)}:=\mathbf {v} _{k}-{\frac {\langle \mathbf {v} _{k},\mathbf {v} _{1}\rangle }{\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle }}\mathbf {v} _{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. After this step we already have two of our desired orthogonal vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25058c5d748ce5cef7fa04c15166242860d6a3fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.422ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.422ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25058c5d748ce5cef7fa04c15166242860d6a3fa" data-alt="{\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, namely <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1}=\mathbf {v} _{1},\mathbf {u} _{2}=\mathbf {v} _{2}^{(1)}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> = </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1}=\mathbf {v} _{1},\mathbf {u} _{2}=\mathbf {v} _{2}^{(1)}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c062225d1a1594bc3732f6318685c0409f720115" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.52ex; height:3.676ex;" alt="{\displaystyle \mathbf {u} _{1}=\mathbf {v} _{1},\mathbf {u} _{2}=\mathbf {v} _{2}^{(1)}}"> </noscript><span class="lazy-image-placeholder" style="width: 18.52ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c062225d1a1594bc3732f6318685c0409f720115" data-alt="{\displaystyle \mathbf {u} _{1}=\mathbf {v} _{1},\mathbf {u} _{2}=\mathbf {v} _{2}^{(1)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, but we also made <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{3}^{(1)},\dots ,\mathbf {v} _{n}^{(1)}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{3}^{(1)},\dots ,\mathbf {v} _{n}^{(1)}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1fceb05a230101b36a4a1b3e936524afafb4fea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.667ex; height:3.676ex;" alt="{\displaystyle \mathbf {v} _{3}^{(1)},\dots ,\mathbf {v} _{n}^{(1)}}"> </noscript><span class="lazy-image-placeholder" style="width: 12.667ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1fceb05a230101b36a4a1b3e936524afafb4fea" data-alt="{\displaystyle \mathbf {v} _{3}^{(1)},\dots ,\mathbf {v} _{n}^{(1)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> already orthogonal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb86457c0ac456302419c967bda92a5910ff004c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.54ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.54ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb86457c0ac456302419c967bda92a5910ff004c" data-alt="{\displaystyle \mathbf {u} _{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Next, we orthogonalize those remaining vectors against <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{2}=\mathbf {v} _{2}^{(1)}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> = </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{2}=\mathbf {v} _{2}^{(1)}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51d3f41916742ed0477de7ffe2d116b951efaec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.383ex; height:3.676ex;" alt="{\displaystyle \mathbf {u} _{2}=\mathbf {v} _{2}^{(1)}}"> </noscript><span class="lazy-image-placeholder" style="width: 9.383ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51d3f41916742ed0477de7ffe2d116b951efaec8" data-alt="{\displaystyle \mathbf {u} _{2}=\mathbf {v} _{2}^{(1)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. This means we compute <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{3}^{(2)},\mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{3}^{(2)},\mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfd076cc965383a35deb8f265bb01182d72eb829" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.446ex; height:3.676ex;" alt="{\displaystyle \mathbf {v} _{3}^{(2)},\mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}}"> </noscript><span class="lazy-image-placeholder" style="width: 17.446ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfd076cc965383a35deb8f265bb01182d72eb829" data-alt="{\displaystyle \mathbf {v} _{3}^{(2)},\mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> by subtraction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{k}^{(2)}:=\mathbf {v} _{k}^{(1)}-{\frac {\langle \mathbf {v} _{k}^{(1)},\mathbf {u} _{2}\rangle }{\langle \mathbf {u} _{2},\mathbf {u} _{2}\rangle }}\mathbf {u} _{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> := </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mrow> <mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{k}^{(2)}:=\mathbf {v} _{k}^{(1)}-{\frac {\langle \mathbf {v} _{k}^{(1)},\mathbf {u} _{2}\rangle }{\langle \mathbf {u} _{2},\mathbf {u} _{2}\rangle }}\mathbf {u} _{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79410284a17e221a87bbb4a3e6cde790339bdd18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.578ex; height:7.343ex;" alt="{\displaystyle \mathbf {v} _{k}^{(2)}:=\mathbf {v} _{k}^{(1)}-{\frac {\langle \mathbf {v} _{k}^{(1)},\mathbf {u} _{2}\rangle }{\langle \mathbf {u} _{2},\mathbf {u} _{2}\rangle }}\mathbf {u} _{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 26.578ex;height: 7.343ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79410284a17e221a87bbb4a3e6cde790339bdd18" data-alt="{\displaystyle \mathbf {v} _{k}^{(2)}:=\mathbf {v} _{k}^{(1)}-{\frac {\langle \mathbf {v} _{k}^{(1)},\mathbf {u} _{2}\rangle }{\langle \mathbf {u} _{2},\mathbf {u} _{2}\rangle }}\mathbf {u} _{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Now we have stored the vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1},\mathbf {v} _{2}^{(1)},\mathbf {v} _{3}^{(2)},\mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{1},\mathbf {v} _{2}^{(1)},\mathbf {v} _{3}^{(2)},\mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1ac750c595d32baee48cf30701ffb8a2f379a1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.724ex; height:3.676ex;" alt="{\displaystyle \mathbf {v} _{1},\mathbf {v} _{2}^{(1)},\mathbf {v} _{3}^{(2)},\mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}}"> </noscript><span class="lazy-image-placeholder" style="width: 25.724ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1ac750c595d32baee48cf30701ffb8a2f379a1e" data-alt="{\displaystyle \mathbf {v} _{1},\mathbf {v} _{2}^{(1)},\mathbf {v} _{3}^{(2)},\mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> where the first three vectors are already <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1},\mathbf {u} _{2},\mathbf {u} _{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1},\mathbf {u} _{2},\mathbf {u} _{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46acf47fb7bf3b2a9e4ab3b386112907373173ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.686ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1},\mathbf {u} _{2},\mathbf {u} _{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 9.686ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46acf47fb7bf3b2a9e4ab3b386112907373173ad" data-alt="{\displaystyle \mathbf {u} _{1},\mathbf {u} _{2},\mathbf {u} _{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the remaining vectors are already orthogonal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1},\mathbf {u} _{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1},\mathbf {u} _{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3248d4f38ea20f4861745767390f05838b6fcfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.113ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1},\mathbf {u} _{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.113ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3248d4f38ea20f4861745767390f05838b6fcfa" data-alt="{\displaystyle \mathbf {u} _{1},\mathbf {u} _{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. As should be clear now, the next step orthogonalizes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e20b9e4f17b9f0b777e928a2c1688b17623cbbbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.667ex; height:3.676ex;" alt="{\displaystyle \mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}}"> </noscript><span class="lazy-image-placeholder" style="width: 12.667ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e20b9e4f17b9f0b777e928a2c1688b17623cbbbe" data-alt="{\displaystyle \mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> against <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{3}=\mathbf {v} _{3}^{(2)}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> = </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{3}=\mathbf {v} _{3}^{(2)}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e351e4f3a9064d4f98641f5911ec336184198c87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.383ex; height:3.676ex;" alt="{\displaystyle \mathbf {u} _{3}=\mathbf {v} _{3}^{(2)}}"> </noscript><span class="lazy-image-placeholder" style="width: 9.383ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e351e4f3a9064d4f98641f5911ec336184198c87" data-alt="{\displaystyle \mathbf {u} _{3}=\mathbf {v} _{3}^{(2)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Proceeding in this manner we find the full set of orthogonal vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25058c5d748ce5cef7fa04c15166242860d6a3fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.422ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.422ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25058c5d748ce5cef7fa04c15166242860d6a3fa" data-alt="{\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. If orthonormal vectors are desired, then we normalize as we go, so that the denominators in the subtraction formulas turn into ones.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Algorithm">Algorithm</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=6&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Algorithm" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <p>The following <a href="https://en-m-wikipedia-org.translate.goog/wiki/MATLAB?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="MATLAB">MATLAB</a> algorithm implements classical Gram–Schmidt orthonormalization. The vectors <span class="texhtml"><b>v</b><sub>1</sub>, ..., <b>v</b><sub><i>k</i></sub></span> (columns of matrix <code>V</code>, so that <code>V(:,j)</code> is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> j </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle j} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"> </noscript><span class="lazy-image-placeholder" style="width: 0.985ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" data-alt="{\displaystyle j}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>th vector) are replaced by orthonormal vectors (columns of <code>U</code>) which span the same subspace.</p> <div class="mw-highlight mw-highlight-lang-matlab mw-content-ltr mw-highlight-lines" dir="ltr"> <pre><span></span><span class="linenos" data-line="1"></span><span class="k">function</span><span class="w"> </span>U<span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nf">gramschmidt</span><span class="p">(</span>V<span class="p">)</span> <span class="linenos" data-line="2"></span><span class="w"> </span><span class="p">[</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">k</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">size</span><span class="p">(</span><span class="n">V</span><span class="p">);</span> <span class="linenos" data-line="3"></span><span class="w"> </span><span class="n">U</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">zeros</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="n">k</span><span class="p">);</span> <span class="linenos" data-line="4"></span><span class="w"> </span><span class="n">U</span><span class="p">(:,</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">V</span><span class="p">(:,</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="nb">norm</span><span class="p">(</span><span class="n">V</span><span class="p">(:,</span><span class="mi">1</span><span class="p">));</span> <span class="linenos" data-line="5"></span><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nb">i</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="mi">2</span><span class="p">:</span><span class="n">k</span> <span class="linenos" data-line="6"></span><span class="w"> </span><span class="n">U</span><span class="p">(:,</span><span class="nb">i</span><span class="p">)</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">V</span><span class="p">(:,</span><span class="nb">i</span><span class="p">);</span> <span class="linenos" data-line="7"></span><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nb">j</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="mi">1</span><span class="p">:</span><span class="nb">i</span><span class="o">-</span><span class="mi">1</span> <span class="linenos" data-line="8"></span><span class="w"> </span><span class="n">U</span><span class="p">(:,</span><span class="nb">i</span><span class="p">)</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">U</span><span class="p">(:,</span><span class="nb">i</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="p">(</span><span class="n">U</span><span class="p">(:,</span><span class="nb">j</span><span class="p">)</span><span class="o">'*</span><span class="n">U</span><span class="p">(:,</span><span class="nb">i</span><span class="p">))</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">U</span><span class="p">(:,</span><span class="nb">j</span><span class="p">);</span> <span class="linenos" data-line="9"></span><span class="w"> </span><span class="k">end</span> <span class="linenos" data-line="10"></span><span class="w"> </span><span class="n">U</span><span class="p">(:,</span><span class="nb">i</span><span class="p">)</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">U</span><span class="p">(:,</span><span class="nb">i</span><span class="p">)</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="nb">norm</span><span class="p">(</span><span class="n">U</span><span class="p">(:,</span><span class="nb">i</span><span class="p">));</span> <span class="linenos" data-line="11"></span><span class="w"> </span><span class="k">end</span> <span class="linenos" data-line="12"></span><span class="k">end</span> </pre> </div> <p>The cost of this algorithm is asymptotically <span class="texhtml">O(<i>nk</i><sup>2</sup>)</span> floating point operations, where <span class="texhtml mvar" style="font-style:italic;">n</span> is the dimensionality of the vectors.<sup id="cite_ref-FOOTNOTEGolubVan_Loan1996§5.2.8_3-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-FOOTNOTEGolubVan_Loan1996%C2%A75.2.8-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Via_Gaussian_elimination">Via Gaussian elimination</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=7&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Via Gaussian elimination" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <p>If the rows <span class="texhtml">{<b>v</b><sub>1</sub>, ..., <b>v</b><sub><i>k</i></sub>}</span> are written as a matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"> </noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, then applying <a href="https://en-m-wikipedia-org.translate.goog/wiki/Gaussian_elimination?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gaussian elimination">Gaussian elimination</a> to the augmented matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[AA^{\mathsf {T}}|A\right]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> [ </mo> <mrow> <mi> A </mi> <msup> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> A </mi> </mrow> <mo> ] </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left[AA^{\mathsf {T}}|A\right]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01fe20a09baca8ac8933fb783fdc7908d083190e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.167ex; height:3.343ex;" alt="{\displaystyle \left[AA^{\mathsf {T}}|A\right]}"> </noscript><span class="lazy-image-placeholder" style="width: 9.167ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01fe20a09baca8ac8933fb783fdc7908d083190e" data-alt="{\displaystyle \left[AA^{\mathsf {T}}|A\right]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> will produce the orthogonalized vectors in place of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"> </noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. However the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AA^{\mathsf {T}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <msup> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle AA^{\mathsf {T}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af621dc24b8fc32577441725e8a8a112508ebcd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.838ex; height:2.676ex;" alt="{\displaystyle AA^{\mathsf {T}}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.838ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af621dc24b8fc32577441725e8a8a112508ebcd6" data-alt="{\displaystyle AA^{\mathsf {T}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> must be brought to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Row_echelon_form?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Row echelon form">row echelon form</a>, using only the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Elementary_matrix?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Elementary matrix">row operation</a> of adding a scalar multiple of one row to another.<sup id="cite_ref-4" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> For example, taking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}={\begin{bmatrix}3&amp;1\end{bmatrix}},\mathbf {v} _{2}={\begin{bmatrix}2&amp;2\end{bmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 3 </mn> </mtd> <mtd> <mn> 1 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 2 </mn> </mtd> <mtd> <mn> 2 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{1}={\begin{bmatrix}3&amp;1\end{bmatrix}},\mathbf {v} _{2}={\begin{bmatrix}2&amp;2\end{bmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/768ad151c5b923ceb2d388004d5de026d0a0e2f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.547ex; height:2.843ex;" alt="{\displaystyle \mathbf {v} _{1}={\begin{bmatrix}3&amp;1\end{bmatrix}},\mathbf {v} _{2}={\begin{bmatrix}2&amp;2\end{bmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 25.547ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/768ad151c5b923ceb2d388004d5de026d0a0e2f5" data-alt="{\displaystyle \mathbf {v} _{1}={\begin{bmatrix}3&amp;1\end{bmatrix}},\mathbf {v} _{2}={\begin{bmatrix}2&amp;2\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> as above, we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[AA^{\mathsf {T}}|A\right]=\left[{\begin{array}{rr|rr}10&amp;8&amp;3&amp;1\\8&amp;8&amp;2&amp;2\end{array}}\right]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> [ </mo> <mrow> <mi> A </mi> <msup> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> A </mi> </mrow> <mo> ] </mo> </mrow> <mo> = </mo> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em" columnlines="none solid none"> <mtr> <mtd> <mn> 10 </mn> </mtd> <mtd> <mn> 8 </mn> </mtd> <mtd> <mn> 3 </mn> </mtd> <mtd> <mn> 1 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 8 </mn> </mtd> <mtd> <mn> 8 </mn> </mtd> <mtd> <mn> 2 </mn> </mtd> <mtd> <mn> 2 </mn> </mtd> </mtr> </mtable> </mrow> <mo> ] </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left[AA^{\mathsf {T}}|A\right]=\left[{\begin{array}{rr|rr}10&amp;8&amp;3&amp;1\\8&amp;8&amp;2&amp;2\end{array}}\right]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25852adcb609d5e10e2c3514816c83d562db6cfe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:30.366ex; height:7.509ex;" alt="{\displaystyle \left[AA^{\mathsf {T}}|A\right]=\left[{\begin{array}{rr|rr}10&amp;8&amp;3&amp;1\\8&amp;8&amp;2&amp;2\end{array}}\right]}"> </noscript><span class="lazy-image-placeholder" style="width: 30.366ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25852adcb609d5e10e2c3514816c83d562db6cfe" data-alt="{\displaystyle \left[AA^{\mathsf {T}}|A\right]=\left[{\begin{array}{rr|rr}10&amp;8&amp;3&amp;1\\8&amp;8&amp;2&amp;2\end{array}}\right]}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>And reducing this to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Row_echelon_form?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Row echelon form">row echelon form</a> produces <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{array}{rr|rr}1&amp;.8&amp;.3&amp;.1\\0&amp;1&amp;-.25&amp;.75\end{array}}\right]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em" columnlines="none solid none"> <mtr> <mtd> <mn> 1 </mn> </mtd> <mtd> <mn> .8 </mn> </mtd> <mtd> <mn> .3 </mn> </mtd> <mtd> <mn> .1 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mn> 1 </mn> </mtd> <mtd> <mo> −<!-- − --> </mo> <mn> .25 </mn> </mtd> <mtd> <mn> .75 </mn> </mtd> </mtr> </mtable> </mrow> <mo> ] </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left[{\begin{array}{rr|rr}1&amp;.8&amp;.3&amp;.1\\0&amp;1&amp;-.25&amp;.75\end{array}}\right]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/713fd6ba7de58764d341f799d9f2c91a3c1ac750" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.011ex; height:7.509ex;" alt="{\displaystyle \left[{\begin{array}{rr|rr}1&amp;.8&amp;.3&amp;.1\\0&amp;1&amp;-.25&amp;.75\end{array}}\right]}"> </noscript><span class="lazy-image-placeholder" style="width: 23.011ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/713fd6ba7de58764d341f799d9f2c91a3c1ac750" data-alt="{\displaystyle \left[{\begin{array}{rr|rr}1&amp;.8&amp;.3&amp;.1\\0&amp;1&amp;-.25&amp;.75\end{array}}\right]}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>The normalized vectors are then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{1}={\frac {1}{\sqrt {.3^{2}+.1^{2}}}}{\begin{bmatrix}.3&amp;.1\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}3&amp;1\end{bmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <msup> <mn> .3 </mn> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mn> .1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> .3 </mn> </mtd> <mtd> <mn> .1 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <mn> 10 </mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 3 </mn> </mtd> <mtd> <mn> 1 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {e} _{1}={\frac {1}{\sqrt {.3^{2}+.1^{2}}}}{\begin{bmatrix}.3&amp;.1\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}3&amp;1\end{bmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30019eb8f368f6ac0e76902fcf9c8deaabf6b8a8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:39.98ex; height:6.509ex;" alt="{\displaystyle \mathbf {e} _{1}={\frac {1}{\sqrt {.3^{2}+.1^{2}}}}{\begin{bmatrix}.3&amp;.1\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}3&amp;1\end{bmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 39.98ex;height: 6.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30019eb8f368f6ac0e76902fcf9c8deaabf6b8a8" data-alt="{\displaystyle \mathbf {e} _{1}={\frac {1}{\sqrt {.3^{2}+.1^{2}}}}{\begin{bmatrix}.3&amp;.1\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}3&amp;1\end{bmatrix}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{2}={\frac {1}{\sqrt {.25^{2}+.75^{2}}}}{\begin{bmatrix}-.25&amp;.75\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}-1&amp;3\end{bmatrix}},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <msup> <mn> .25 </mn> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mn> .75 </mn> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mn> .25 </mn> </mtd> <mtd> <mn> .75 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <mn> 10 </mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mtd> <mtd> <mn> 3 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {e} _{2}={\frac {1}{\sqrt {.25^{2}+.75^{2}}}}{\begin{bmatrix}-.25&amp;.75\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}-1&amp;3\end{bmatrix}},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f686d86250121661936ae156d34d9980dbb84679" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:48.893ex; height:6.509ex;" alt="{\displaystyle \mathbf {e} _{2}={\frac {1}{\sqrt {.25^{2}+.75^{2}}}}{\begin{bmatrix}-.25&amp;.75\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}-1&amp;3\end{bmatrix}},}"> </noscript><span class="lazy-image-placeholder" style="width: 48.893ex;height: 6.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f686d86250121661936ae156d34d9980dbb84679" data-alt="{\displaystyle \mathbf {e} _{2}={\frac {1}{\sqrt {.25^{2}+.75^{2}}}}{\begin{bmatrix}-.25&amp;.75\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}-1&amp;3\end{bmatrix}},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> as in the example above.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Determinant_formula">Determinant formula</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=8&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Determinant formula" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-7 collapsible-block" id="mf-section-7"> <p>The result of the Gram–Schmidt process may be expressed in a non-recursive formula using <a href="https://en-m-wikipedia-org.translate.goog/wiki/Determinant?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Determinant">determinants</a>.</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{j}={\frac {1}{\sqrt {D_{j-1}D_{j}}}}{\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j-1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j-1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j-1}\rangle \\\mathbf {v} _{1}&amp;\mathbf {v} _{2}&amp;\cdots &amp;\mathbf {v} _{j}\end{vmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <msub> <mi> D </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mi> D </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> | </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> </mtr> <mtr> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> <mtd> <mo> ⋱<!-- ⋱ --> </mo> </mtd> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo> | </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {e} _{j}={\frac {1}{\sqrt {D_{j-1}D_{j}}}}{\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j-1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j-1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j-1}\rangle \\\mathbf {v} _{1}&amp;\mathbf {v} _{2}&amp;\cdots &amp;\mathbf {v} _{j}\end{vmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b11867d999f8c1cdd75d9cfea32f9792cd016684" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:57.198ex; height:18.509ex;" alt="{\displaystyle \mathbf {e} _{j}={\frac {1}{\sqrt {D_{j-1}D_{j}}}}{\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j-1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j-1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j-1}\rangle \\\mathbf {v} _{1}&amp;\mathbf {v} _{2}&amp;\cdots &amp;\mathbf {v} _{j}\end{vmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 57.198ex;height: 18.509ex;vertical-align: -8.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b11867d999f8c1cdd75d9cfea32f9792cd016684" data-alt="{\displaystyle \mathbf {e} _{j}={\frac {1}{\sqrt {D_{j-1}D_{j}}}}{\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j-1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j-1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j-1}\rangle \\\mathbf {v} _{1}&amp;\mathbf {v} _{2}&amp;\cdots &amp;\mathbf {v} _{j}\end{vmatrix}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{j}={\frac {1}{D_{j-1}}}{\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j-1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j-1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j-1}\rangle \\\mathbf {v} _{1}&amp;\mathbf {v} _{2}&amp;\cdots &amp;\mathbf {v} _{j}\end{vmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msub> <mi> D </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> | </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> </mtr> <mtr> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> <mtd> <mo> ⋱<!-- ⋱ --> </mo> </mtd> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo> | </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{j}={\frac {1}{D_{j-1}}}{\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j-1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j-1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j-1}\rangle \\\mathbf {v} _{1}&amp;\mathbf {v} _{2}&amp;\cdots &amp;\mathbf {v} _{j}\end{vmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/613d2dfdeb2576c4edfb7ab6c91079c80272ef4a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:52.3ex; height:18.509ex;" alt="{\displaystyle \mathbf {u} _{j}={\frac {1}{D_{j-1}}}{\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j-1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j-1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j-1}\rangle \\\mathbf {v} _{1}&amp;\mathbf {v} _{2}&amp;\cdots &amp;\mathbf {v} _{j}\end{vmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 52.3ex;height: 18.509ex;vertical-align: -8.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/613d2dfdeb2576c4edfb7ab6c91079c80272ef4a" data-alt="{\displaystyle \mathbf {u} _{j}={\frac {1}{D_{j-1}}}{\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j-1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j-1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j-1}\rangle \\\mathbf {v} _{1}&amp;\mathbf {v} _{2}&amp;\cdots &amp;\mathbf {v} _{j}\end{vmatrix}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{0}=1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> D </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> = </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D_{0}=1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7fdc1d6c1abc3149c8b83f61412a3c2c88e46e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.239ex; height:2.509ex;" alt="{\displaystyle D_{0}=1}"> </noscript><span class="lazy-image-placeholder" style="width: 7.239ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7fdc1d6c1abc3149c8b83f61412a3c2c88e46e5" data-alt="{\displaystyle D_{0}=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\geq 1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> j </mi> <mo> ≥<!-- ≥ --> </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle j\geq 1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/620328020a958825ea8d3b814be5e3ed924203e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:5.246ex; height:2.509ex;" alt="{\displaystyle j\geq 1}"> </noscript><span class="lazy-image-placeholder" style="width: 5.246ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/620328020a958825ea8d3b814be5e3ed924203e5" data-alt="{\displaystyle j\geq 1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{j}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> D </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D_{j}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41eafa45dbe60f5e03b0281cfef1c2eca6bdc4d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.834ex; height:2.843ex;" alt="{\displaystyle D_{j}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.834ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41eafa45dbe60f5e03b0281cfef1c2eca6bdc4d2" data-alt="{\displaystyle D_{j}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram_determinant?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Gram determinant">Gram determinant</a></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{j}={\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j}\rangle \end{vmatrix}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> D </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> | </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> </mtr> <mtr> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> <mtd> <mo> ⋱<!-- ⋱ --> </mo> </mtd> <mtd> <mo> ⋮<!-- ⋮ --> </mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> <mtd> <mo> ⋯<!-- ⋯ --> </mo> </mtd> <mtd> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mtd> </mtr> </mtable> <mo> | </mo> </mrow> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D_{j}={\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j}\rangle \end{vmatrix}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6979160bc14eb9126464787d668887646fd034c7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:41.747ex; height:14.843ex;" alt="{\displaystyle D_{j}={\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j}\rangle \end{vmatrix}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 41.747ex;height: 14.843ex;vertical-align: -6.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6979160bc14eb9126464787d668887646fd034c7" data-alt="{\displaystyle D_{j}={\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j}\rangle &amp;\langle \mathbf {v} _{2},\mathbf {v} _{j}\rangle &amp;\cdots &amp;\langle \mathbf {v} _{j},\mathbf {v} _{j}\rangle \end{vmatrix}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>Note that the expression for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6db1dab97ca1af730a50c30421af8c3fd020c836" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.009ex;" alt="{\displaystyle \mathbf {u} _{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.574ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6db1dab97ca1af730a50c30421af8c3fd020c836" data-alt="{\displaystyle \mathbf {u} _{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is a "formal" determinant, i.e. the matrix contains both scalars and vectors; the meaning of this expression is defined to be the result of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Laplace_expansion?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Laplace expansion">cofactor expansion</a> along the row of vectors.</p> <p>The determinant formula for the Gram-Schmidt is computationally (exponentially) slower than the recursive algorithms described above; it is mainly of theoretical interest.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Expressed_using_geometric_algebra">Expressed using geometric algebra</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=9&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Expressed using geometric algebra" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-8 collapsible-block" id="mf-section-8"> <p>Expressed using notation used in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Geometric_algebra?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Geometric algebra">geometric algebra</a>, the unnormalized results of the Gram–Schmidt process can be expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}-\sum _{j=1}^{k-1}(\mathbf {v} _{k}\cdot \mathbf {u} _{j})\mathbf {u} _{j}^{-1}\ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </munderover> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msubsup> <mtext> &nbsp; </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}-\sum _{j=1}^{k-1}(\mathbf {v} _{k}\cdot \mathbf {u} _{j})\mathbf {u} _{j}^{-1}\ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7eac7d77d7e364f6a8a6571c19ef58a22e152bc2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:27.796ex; height:7.676ex;" alt="{\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}-\sum _{j=1}^{k-1}(\mathbf {v} _{k}\cdot \mathbf {u} _{j})\mathbf {u} _{j}^{-1}\ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 27.796ex;height: 7.676ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7eac7d77d7e364f6a8a6571c19ef58a22e152bc2" data-alt="{\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}-\sum _{j=1}^{k-1}(\mathbf {v} _{k}\cdot \mathbf {u} _{j})\mathbf {u} _{j}^{-1}\ ,}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> which is equivalent to the expression using the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {proj} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> proj </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {proj} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b381dfff8bb6455d984951bfa7879450806423ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.078ex; height:2.509ex;" alt="{\displaystyle \operatorname {proj} }"> </noscript><span class="lazy-image-placeholder" style="width: 4.078ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b381dfff8bb6455d984951bfa7879450806423ff" data-alt="{\displaystyle \operatorname {proj} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> operator defined above. The results can equivalently be expressed as<sup id="cite_ref-5" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}\wedge \mathbf {v} _{k-1}\wedge \cdot \cdot \cdot \wedge \mathbf {v} _{1}(\mathbf {v} _{k-1}\wedge \cdot \cdot \cdot \wedge \mathbf {v} _{1})^{-1},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ∧<!-- ∧ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <mo> ∧<!-- ∧ --> </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo> ∧<!-- ∧ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <mo> ∧<!-- ∧ --> </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo> ∧<!-- ∧ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}\wedge \mathbf {v} _{k-1}\wedge \cdot \cdot \cdot \wedge \mathbf {v} _{1}(\mathbf {v} _{k-1}\wedge \cdot \cdot \cdot \wedge \mathbf {v} _{1})^{-1},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0357885e1926f46e807c3f334bf253f31e7d25a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.951ex; height:3.176ex;" alt="{\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}\wedge \mathbf {v} _{k-1}\wedge \cdot \cdot \cdot \wedge \mathbf {v} _{1}(\mathbf {v} _{k-1}\wedge \cdot \cdot \cdot \wedge \mathbf {v} _{1})^{-1},}"> </noscript><span class="lazy-image-placeholder" style="width: 45.951ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0357885e1926f46e807c3f334bf253f31e7d25a" data-alt="{\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}\wedge \mathbf {v} _{k-1}\wedge \cdot \cdot \cdot \wedge \mathbf {v} _{1}(\mathbf {v} _{k-1}\wedge \cdot \cdot \cdot \wedge \mathbf {v} _{1})^{-1},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> which is closely related to the expression using determinants above.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Alternatives">Alternatives</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=10&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Alternatives" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-9 collapsible-block" id="mf-section-9"> <p>Other <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonalization?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Orthogonalization">orthogonalization</a> algorithms use <a href="https://en-m-wikipedia-org.translate.goog/wiki/Householder_transformation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Householder transformation">Householder transformations</a> or <a href="https://en-m-wikipedia-org.translate.goog/wiki/Givens_rotation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Givens rotation">Givens rotations</a>. The algorithms using Householder transformations are more stable than the stabilized Gram–Schmidt process. On the other hand, the Gram–Schmidt process produces the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> j </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle j} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"> </noscript><span class="lazy-image-placeholder" style="width: 0.985ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" data-alt="{\displaystyle j}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>th orthogonalized vector after the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> j </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle j} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"> </noscript><span class="lazy-image-placeholder" style="width: 0.985ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" data-alt="{\displaystyle j}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>th iteration, while orthogonalization using <a href="https://en-m-wikipedia-org.translate.goog/wiki/Householder_reflection?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Householder reflection">Householder reflections</a> produces all the vectors only at the end. This makes only the Gram–Schmidt process applicable for <a href="https://en-m-wikipedia-org.translate.goog/wiki/Iterative_method?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Iterative method">iterative methods</a> like the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Arnoldi_iteration?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Arnoldi iteration">Arnoldi iteration</a>.</p> <p>Yet another alternative is motivated by the use of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Cholesky_decomposition?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Cholesky decomposition">Cholesky decomposition</a> for <a href="https://en-m-wikipedia-org.translate.goog/wiki/Ordinary_least_squares?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Ordinary least squares">inverting the matrix of the normal equations in linear least squares</a>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"> </noscript><span class="lazy-image-placeholder" style="width: 1.787ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" data-alt="{\displaystyle V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> be a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Full_rank?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Full rank">full column rank</a> matrix, whose columns need to be orthogonalized. The matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V^{*}V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> V </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msup> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle V^{*}V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5cdcfc5927ea0468612f7735cdfce9e9ba05d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.758ex; height:2.343ex;" alt="{\displaystyle V^{*}V}"> </noscript><span class="lazy-image-placeholder" style="width: 4.758ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5cdcfc5927ea0468612f7735cdfce9e9ba05d7" data-alt="{\displaystyle V^{*}V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hermitian_matrix?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Hermitian matrix">Hermitian</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Positive_definite_matrix?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Positive definite matrix">positive definite</a>, so it can be written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V^{*}V=LL^{*},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> V </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msup> <mi> V </mi> <mo> = </mo> <mi> L </mi> <msup> <mi> L </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle V^{*}V=LL^{*},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d7497cc68a2a14ba2320b94c6c2c26441c114a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.724ex; height:2.676ex;" alt="{\displaystyle V^{*}V=LL^{*},}"> </noscript><span class="lazy-image-placeholder" style="width: 12.724ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d7497cc68a2a14ba2320b94c6c2c26441c114a0" data-alt="{\displaystyle V^{*}V=LL^{*},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> using the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Cholesky_decomposition?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Cholesky decomposition">Cholesky decomposition</a>. The lower triangular matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"> </noscript><span class="lazy-image-placeholder" style="width: 1.583ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" data-alt="{\displaystyle L}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> with strictly positive diagonal entries is <a href="https://en-m-wikipedia-org.translate.goog/wiki/Invertible?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Invertible">invertible</a>. Then columns of the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=V\left(L^{-1}\right)^{*}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> U </mi> <mo> = </mo> <mi> V </mi> <msup> <mrow> <mo> ( </mo> <msup> <mi> L </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle U=V\left(L^{-1}\right)^{*}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38e93e425160d3dd418befc5c2c6772d5bd0e81c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.768ex; height:3.509ex;" alt="{\displaystyle U=V\left(L^{-1}\right)^{*}}"> </noscript><span class="lazy-image-placeholder" style="width: 13.768ex;height: 3.509ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38e93e425160d3dd418befc5c2c6772d5bd0e81c" data-alt="{\displaystyle U=V\left(L^{-1}\right)^{*}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> are <a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthonormal?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Orthonormal">orthonormal</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Linear_span?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Linear span">span</a> the same subspace as the columns of the original matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"> </noscript><span class="lazy-image-placeholder" style="width: 1.787ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" data-alt="{\displaystyle V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. The explicit use of the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V^{*}V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> V </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msup> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle V^{*}V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5cdcfc5927ea0468612f7735cdfce9e9ba05d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.758ex; height:2.343ex;" alt="{\displaystyle V^{*}V}"> </noscript><span class="lazy-image-placeholder" style="width: 4.758ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5cdcfc5927ea0468612f7735cdfce9e9ba05d7" data-alt="{\displaystyle V^{*}V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> makes the algorithm unstable, especially if the product's <a href="https://en-m-wikipedia-org.translate.goog/wiki/Condition_number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Condition number">condition number</a> is large. Nevertheless, this algorithm is used in practice and implemented in some software packages because of its high efficiency and simplicity.</p> <p>In <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantum_mechanics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Quantum mechanics">quantum mechanics</a> there are several orthogonalization schemes with characteristics better suited for certain applications than original Gram–Schmidt. Nevertheless, it remains a popular and effective algorithm for even the largest electronic structure calculations.<sup id="cite_ref-6" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(10)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Run-time_complexity">Run-time complexity</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=11&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Run-time complexity" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-10 collapsible-block" id="mf-section-10"> <p>Gram-Schmidt orthogonalization can be done in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Strongly-polynomial_time?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Strongly-polynomial time">strongly-polynomial time</a>. The run-time analysis is similar to that of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Gaussian_elimination?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gaussian elimination">Gaussian elimination</a>.<sup id="cite_ref-:0_7-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:0-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 40">: 40 </span></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(11)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=12&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-11 collapsible-block" id="mf-section-11"> <ul> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Linear_algebra?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Linear algebra">Linear algebra</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Recursion?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Recursion">Recursion</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Orthogonality_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Orthogonality (mathematics)">Orthogonality (mathematics)</a></li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(12)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=13&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-12 collapsible-block" id="mf-section-12"> <div class="mw-references-wrap"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCheneyKincaid2009" class="citation book cs1">Cheney, Ward; Kincaid, David (2009). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3DGg3Uj1GkHK8C%26pg%3DPA544"><i>Linear Algebra: Theory and Applications</i></a>. Sudbury, Ma: Jones and Bartlett. pp.&nbsp;544, 558. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-7637-5020-6?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-7637-5020-6"><bdi>978-0-7637-5020-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+Algebra%3A+Theory+and+Applications&amp;rft.place=Sudbury%2C+Ma&amp;rft.pages=544%2C+558&amp;rft.pub=Jones+and+Bartlett&amp;rft.date=2009&amp;rft.isbn=978-0-7637-5020-6&amp;rft.aulast=Cheney&amp;rft.aufirst=Ward&amp;rft.au=Kincaid%2C+David&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DGg3Uj1GkHK8C%26pg%3DPA544&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGram%E2%80%93Schmidt+process" class="Z3988"></span></span></li> <li id="cite_note-FOOTNOTEGolubVan_Loan1996§5.2.8-3"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-FOOTNOTEGolubVan_Loan1996%C2%A75.2.8_3-0">^</a></b></span> <span class="reference-text"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#CITEREFGolubVan_Loan1996">Golub &amp; Van Loan 1996</a>, §5.2.8.</span></li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-4">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPursellTrimble1991" class="citation journal cs1">Pursell, Lyle; Trimble, S. Y. (1 January 1991). "Gram-Schmidt Orthogonalization by Gauss Elimination". <i>The American Mathematical Monthly</i>. <b>98</b> (6): <span class="nowrap">544–</span>549. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.2307%252F2324877">10.2307/2324877</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/JSTOR_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://www.jstor.org/stable/2324877">2324877</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Gram-Schmidt+Orthogonalization+by+Gauss+Elimination&amp;rft.volume=98&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E544-%3C%2Fspan%3E549&amp;rft.date=1991-01-01&amp;rft_id=info%3Adoi%2F10.2307%2F2324877&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2324877%23id-name%3DJSTOR&amp;rft.aulast=Pursell&amp;rft.aufirst=Lyle&amp;rft.au=Trimble%2C+S.+Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGram%E2%80%93Schmidt+process" class="Z3988"></span></span></li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-5">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoranLasenby2007" class="citation book cs1">Doran, Chris; Lasenby, Anthony (2007). <i>Geometric Algebra for Physicists</i>. Cambridge University Press. p.&nbsp;124. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-521-71595-9?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-521-71595-9"><bdi>978-0-521-71595-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometric+Algebra+for+Physicists&amp;rft.pages=124&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2007&amp;rft.isbn=978-0-521-71595-9&amp;rft.aulast=Doran&amp;rft.aufirst=Chris&amp;rft.au=Lasenby%2C+Anthony&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGram%E2%80%93Schmidt+process" class="Z3988"></span></span></li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-6">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPursell2011" class="citation book cs1">Pursell, Yukihiro; et&nbsp;al. (2011). "First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer". <i>Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis</i>. pp.&nbsp;1:1–1:11. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1145%252F2063384.2063386">10.1145/2063384.2063386</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/9781450307710?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/9781450307710"><bdi>9781450307710</bdi></a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://api.semanticscholar.org/CorpusID:14316074">14316074</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=First-principles+calculations+of+electron+states+of+a+silicon+nanowire+with+100%2C000+atoms+on+the+K+computer&amp;rft.btitle=Proceedings+of+2011+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&amp;rft.pages=1%3A1-1%3A11&amp;rft.date=2011&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14316074%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1145%2F2063384.2063386&amp;rft.isbn=9781450307710&amp;rft.aulast=Pursell&amp;rft.aufirst=Yukihiro&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGram%E2%80%93Schmidt+process" class="Z3988"></span></span></li> <li id="cite_note-:0-7"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:0_7-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrötschelLovászSchrijver1993" class="citation cs2"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Martin_Gr%C3%B6tschel?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Martin Grötschel">Grötschel, Martin</a>; <a href="https://en-m-wikipedia-org.translate.goog/wiki/L%C3%A1szl%C3%B3_Lov%C3%A1sz?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="László Lovász">Lovász, László</a>; <a href="https://en-m-wikipedia-org.translate.goog/wiki/Alexander_Schrijver?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Alexander Schrijver">Schrijver, Alexander</a> (1993), <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3DhWvmCAAAQBAJ%26pg%3DPA281"><i>Geometric algorithms and combinatorial optimization</i></a>, Algorithms and Combinatorics, vol.&nbsp;2 (2nd&nbsp;ed.), Springer-Verlag, Berlin, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1007%252F978-3-642-78240-4">10.1007/978-3-642-78240-4</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-3-642-78242-8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-3-642-78242-8"><bdi>978-3-642-78242-8</bdi></a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D1261419">1261419</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometric+algorithms+and+combinatorial+optimization&amp;rft.series=Algorithms+and+Combinatorics&amp;rft.edition=2nd&amp;rft.pub=Springer-Verlag%2C+Berlin&amp;rft.date=1993&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1261419%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-78240-4&amp;rft.isbn=978-3-642-78242-8&amp;rft.aulast=Gr%C3%B6tschel&amp;rft.aufirst=Martin&amp;rft.au=Lov%C3%A1sz%2C+L%C3%A1szl%C3%B3&amp;rft.au=Schrijver%2C+Alexander&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhWvmCAAAQBAJ%26pg%3DPA281&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGram%E2%80%93Schmidt+process" class="Z3988"></span></span></li> </ol> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(13)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Notes">Notes</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=14&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Notes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-13 collapsible-block" id="mf-section-13"> <div class="mw-references-wrap"> <ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gram%E2%80%93Schmidt_process?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-2">^</a></b></span> <span class="reference-text">In the complex case, this assumes that the inner product is linear in the first argument and conjugate-linear in the second. In physics a more common convention is linearity in the second argument, in which case we define <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )={\frac {\langle \mathbf {u} ,\mathbf {v} \rangle }{\langle \mathbf {u} ,\mathbf {u} \rangle }}\,\mathbf {u} .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> proj </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mrow> <mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )={\frac {\langle \mathbf {u} ,\mathbf {v} \rangle }{\langle \mathbf {u} ,\mathbf {u} \rangle }}\,\mathbf {u} .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8caeff704bea6c5baa95acc31508776cd9543e94" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.849ex; height:6.509ex;" alt="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )={\frac {\langle \mathbf {u} ,\mathbf {v} \rangle }{\langle \mathbf {u} ,\mathbf {u} \rangle }}\,\mathbf {u} .}"> </noscript><span class="lazy-image-placeholder" style="width: 20.849ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8caeff704bea6c5baa95acc31508776cd9543e94" data-alt="{\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )={\frac {\langle \mathbf {u} ,\mathbf {v} \rangle }{\langle \mathbf {u} ,\mathbf {u} \rangle }}\,\mathbf {u} .}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></span></li> </ol> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(14)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Sources">Sources</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=15&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Sources" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-14 collapsible-block" id="mf-section-14"> <ul> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBau_IIITrefethen1997" class="citation cs2">Bau III, David; <a href="https://en-m-wikipedia-org.translate.goog/wiki/Lloyd_N._Trefethen?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Lloyd N. Trefethen">Trefethen, Lloyd N.</a> (1997), <i>Numerical linear algebra</i>, Philadelphia: Society for Industrial and Applied Mathematics, <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-89871-361-9?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-89871-361-9"><bdi>978-0-89871-361-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+linear+algebra&amp;rft.place=Philadelphia&amp;rft.pub=Society+for+Industrial+and+Applied+Mathematics&amp;rft.date=1997&amp;rft.isbn=978-0-89871-361-9&amp;rft.aulast=Bau+III&amp;rft.aufirst=David&amp;rft.au=Trefethen%2C+Lloyd+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGram%E2%80%93Schmidt+process" class="Z3988"></span>.</li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGolubVan_Loan1996" class="citation cs2"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gene_H._Golub?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gene H. Golub">Golub, Gene H.</a>; <a href="https://en-m-wikipedia-org.translate.goog/wiki/Charles_F._Van_Loan?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Charles F. Van Loan">Van Loan, Charles F.</a> (1996), <i>Matrix Computations</i> (3rd&nbsp;ed.), Johns Hopkins, <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-8018-5414-9?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-8018-5414-9"><bdi>978-0-8018-5414-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Matrix+Computations&amp;rft.edition=3rd&amp;rft.pub=Johns+Hopkins&amp;rft.date=1996&amp;rft.isbn=978-0-8018-5414-9&amp;rft.aulast=Golub&amp;rft.aufirst=Gene+H.&amp;rft.au=Van+Loan%2C+Charles+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGram%E2%80%93Schmidt+process" class="Z3988"></span>.</li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreub1975" class="citation cs2">Greub, Werner (1975), <i>Linear Algebra</i> (4th&nbsp;ed.), Springer</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+Algebra&amp;rft.edition=4th&amp;rft.pub=Springer&amp;rft.date=1975&amp;rft.aulast=Greub&amp;rft.aufirst=Werner&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGram%E2%80%93Schmidt+process" class="Z3988"></span>.</li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSoliverezGagliano1985" class="citation cs2">Soliverez, C. E.; Gagliano, E. (1985), <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://web.archive.org/web/20140307095009/http://rmf.smf.mx/pdf/rmf/31/4/31_4_743.pdf">"Orthonormalization on the plane: a geometric approach"</a> <span class="cs1-format">(PDF)</span>, <i>Mex. J. Phys.</i>, <b>31</b> (4): <span class="nowrap">743–</span>758, archived from <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://rmf.smf.mx/pdf/rmf/31/4/31_4_743.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-03-07<span class="reference-accessdate">, retrieved <span class="nowrap">2013-06-22</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mex.+J.+Phys.&amp;rft.atitle=Orthonormalization+on+the+plane%3A+a+geometric+approach&amp;rft.volume=31&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E743-%3C%2Fspan%3E758&amp;rft.date=1985&amp;rft.aulast=Soliverez&amp;rft.aufirst=C.+E.&amp;rft.au=Gagliano%2C+E.&amp;rft_id=http%3A%2F%2Frmf.smf.mx%2Fpdf%2Frmf%2F31%2F4%2F31_4_743.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGram%E2%80%93Schmidt+process" class="Z3988"></span>.</li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(15)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="External_links">External links</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=edit&amp;section=16&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-15 collapsible-block" id="mf-section-15"> <style data-mw-deduplicate="TemplateStyles:r1266661725">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style> <ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" data-file-width="128" data-file-height="128"> </noscript><span class="lazy-image-placeholder" style="width: 28px;height: 28px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" data-alt="icon" data-width="28" data-height="28" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a></span></span><span class="portalbox-link"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Portal:Mathematics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Portal:Mathematics">Mathematics portal</a></span></li> </ul> <ul> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://www.encyclopediaofmath.org/index.php?title%3DOrthogonalization">"Orthogonalization"</a>, <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Encyclopedia_of_Mathematics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/European_Mathematical_Society?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Orthogonalization&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DOrthogonalization&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGram%E2%80%93Schmidt+process" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://web.archive.org/web/20160402140129/https://www.math.hmc.edu/calculus/tutorials/gramschmidt/gramschmidt.pdf">Harvey Mudd College Math Tutorial on the Gram-Schmidt algorithm</a></li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://jeff560.tripod.com/g.html">Earliest known uses of some of the words of mathematics: G</a> The entry "Gram-Schmidt orthogonalization" has some information and references on the origins of the method.</li> <li>Demos: <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://bigsigma.com/linear-algebra/gram-schmidt-process/%23plain">Gram Schmidt process in plane</a> and <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://bigsigma.com/linear-algebra/gram-schmidt-process/%23space">Gram Schmidt process in space</a></li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://www.math.ucla.edu/~tao/resource/general/115a.3.02f/GramSchmidt.html">Gram-Schmidt orthogonalization applet</a></li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.nag.co.uk/numeric/fl/nagdoc_fl24/html/F05/f05conts.html">NAG Gram–Schmidt orthogonalization of n vectors of order m routine</a></li> <li>Proof: <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://planetmath.org/ProofOfGramSchmidtOrthogonalizationProcedure">Raymond Puzio, Keenan Kidwell. "proof of Gram-Schmidt orthogonalization algorithm" (version 8). PlanetMath.org.</a></li> </ul> <div class="navbox-styles"> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style> <style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style> </div><!-- NewPP limit report Parsed by mw‐web.codfw.main‐66fb676896‐j6xfp Cached time: 20250118072506 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.409 seconds Real time usage: 0.650 seconds Preprocessor visited node count: 2226/1000000 Post‐expand include size: 38822/2097152 bytes Template argument size: 1481/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 48765/5000000 bytes Lua time usage: 0.216/10.000 seconds Lua memory usage: 6418580/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 369.433 1 -total 22.65% 83.678 1 Template:Linear_algebra 22.32% 82.472 3 Template:Cite_book 22.19% 81.983 1 Template:Navbox 22.02% 81.357 1 Template:Short_description 13.89% 51.322 2 Template:Pagetype 6.61% 24.429 1 Template:Sfn 6.05% 22.348 5 Template:Citation 4.72% 17.432 1 Template:Rp 4.12% 15.220 1 Template:Icon --> <!-- Saved in parser cache with key enwiki:pcache:82361:|#|:idhash:canonical and timestamp 20250118072506 and revision id 1259728901. Rendering was triggered because: page-view --> </section> </div><!-- MobileFormatter took 0.049 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=mobile&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Retrieved from "<a dir="ltr" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/w/index.php?title%3DGram%E2%80%93Schmidt_process%26oldid%3D1259728901">https://en.wikipedia.org/w/index.php?title=Gram–Schmidt_process&amp;oldid=1259728901</a>" </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Gram%E2%80%93Schmidt_process&amp;action=history&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="137.122.64.209" data-user-gender="unknown" data-timestamp="1732648069"> <span>Last edited on 26 November 2024, at 19:07</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://bs.wikipedia.org/wiki/Gram%25E2%2580%2593Schmidtov_postupak" title="Gram–Schmidtov postupak – Bosnian" lang="bs" hreflang="bs" data-title="Gram–Schmidtov postupak" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ca.wikipedia.org/wiki/Proc%25C3%25A9s_d%2527ortogonalitzaci%25C3%25B3_de_Gram-Schmidt" title="Procés d'ortogonalització de Gram-Schmidt – Catalan" lang="ca" hreflang="ca" data-title="Procés d'ortogonalització de Gram-Schmidt" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://cs.wikipedia.org/wiki/Gramova%25E2%2580%2593Schmidtova_ortogonalizace" title="Gramova–Schmidtova ortogonalizace – Czech" lang="cs" hreflang="cs" data-title="Gramova–Schmidtova ortogonalizace" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li> <li class="interlanguage-link interwiki-da mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://da.wikipedia.org/wiki/Gram-Schmidt-processen" title="Gram-Schmidt-processen – Danish" lang="da" hreflang="da" data-title="Gram-Schmidt-processen" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://de.wikipedia.org/wiki/Gram-Schmidtsches_Orthogonalisierungsverfahren" title="Gram-Schmidtsches Orthogonalisierungsverfahren – German" lang="de" hreflang="de" data-title="Gram-Schmidtsches Orthogonalisierungsverfahren" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-el mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://el.wikipedia.org/wiki/%25CE%259C%25CE%25AD%25CE%25B8%25CE%25BF%25CE%25B4%25CE%25BF%25CF%2582_%25CE%25BF%25CF%2581%25CE%25B8%25CE%25BF%25CE%25BA%25CE%25B1%25CE%25BD%25CE%25BF%25CE%25BD%25CE%25B9%25CE%25BA%25CE%25BF%25CF%2580%25CE%25BF%25CE%25AF%25CE%25B7%25CF%2583%25CE%25B7%25CF%2582_%25CF%2584%25CF%2589%25CE%25BD_Gram%25E2%2580%2593Schmidt" title="Μέθοδος ορθοκανονικοποίησης των Gram–Schmidt – Greek" lang="el" hreflang="el" data-title="Μέθοδος ορθοκανονικοποίησης των Gram–Schmidt" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://es.wikipedia.org/wiki/Proceso_de_ortogonalizaci%25C3%25B3n_de_Gram-Schmidt" title="Proceso de ortogonalización de Gram-Schmidt – Spanish" lang="es" hreflang="es" data-title="Proceso de ortogonalización de Gram-Schmidt" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fa.wikipedia.org/wiki/%25D8%25A7%25D9%2584%25DA%25AF%25D9%2588%25D8%25B1%25DB%258C%25D8%25AA%25D9%2585_%25DA%25AF%25D8%25B1%25D8%25A7%25D9%2585_%25D8%25A7%25D8%25B4%25D9%2585%25DB%258C%25D8%25AA" title="الگوریتم گرام اشمیت – Persian" lang="fa" hreflang="fa" data-title="الگوریتم گرام اشمیت" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.wikipedia.org/wiki/Algorithme_de_Gram-Schmidt" title="Algorithme de Gram-Schmidt – French" lang="fr" hreflang="fr" data-title="Algorithme de Gram-Schmidt" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ko.wikipedia.org/wiki/%25EA%25B7%25B8%25EB%259E%258C-%25EC%258A%2588%25EB%25AF%25B8%25ED%258A%25B8_%25EA%25B3%25BC%25EC%25A0%2595" title="그람-슈미트 과정 – Korean" lang="ko" hreflang="ko" data-title="그람-슈미트 과정" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li> <li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hr.wikipedia.org/wiki/Gram-Schmidtov_postupak" title="Gram-Schmidtov postupak – Croatian" lang="hr" hreflang="hr" data-title="Gram-Schmidtov postupak" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li> <li class="interlanguage-link interwiki-is mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://is.wikipedia.org/wiki/Gram-Schmidt_reikniriti%25C3%25B0" title="Gram-Schmidt reikniritið – Icelandic" lang="is" hreflang="is" data-title="Gram-Schmidt reikniritið" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://it.wikipedia.org/wiki/Ortogonalizzazione_di_Gram-Schmidt" title="Ortogonalizzazione di Gram-Schmidt – Italian" lang="it" hreflang="it" data-title="Ortogonalizzazione di Gram-Schmidt" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://he.wikipedia.org/wiki/%25D7%25AA%25D7%2594%25D7%259C%25D7%2599%25D7%259A_%25D7%2592%25D7%25A8%25D7%259D-%25D7%25A9%25D7%259E%25D7%2599%25D7%2593%25D7%2598" title="תהליך גרם-שמידט – Hebrew" lang="he" hreflang="he" data-title="תהליך גרם-שמידט" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hu.wikipedia.org/wiki/Gram%25E2%2580%2593Schmidt-elj%25C3%25A1r%25C3%25A1s" title="Gram–Schmidt-eljárás – Hungarian" lang="hu" hreflang="hu" data-title="Gram–Schmidt-eljárás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li> <li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://nl.wikipedia.org/wiki/Gram-schmidtmethode" title="Gram-schmidtmethode – Dutch" lang="nl" hreflang="nl" data-title="Gram-schmidtmethode" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ja.wikipedia.org/wiki/%25E3%2582%25B0%25E3%2583%25A9%25E3%2583%25A0%25E3%2583%25BB%25E3%2582%25B7%25E3%2583%25A5%25E3%2583%259F%25E3%2583%2583%25E3%2583%2588%25E3%2581%25AE%25E6%25AD%25A3%25E8%25A6%258F%25E7%259B%25B4%25E4%25BA%25A4%25E5%258C%2596%25E6%25B3%2595" title="グラム・シュミットの正規直交化法 – Japanese" lang="ja" hreflang="ja" data-title="グラム・シュミットの正規直交化法" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://nn.wikipedia.org/wiki/Gram%25E2%2580%2593Schmidts_ortogonaliseringsprossess" title="Gram–Schmidts ortogonaliseringsprossess – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Gram–Schmidts ortogonaliseringsprossess" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pl.wikipedia.org/wiki/Ortogonalizacja_Grama-Schmidta" title="Ortogonalizacja Grama-Schmidta – Polish" lang="pl" hreflang="pl" data-title="Ortogonalizacja Grama-Schmidta" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pt.wikipedia.org/wiki/Processo_de_Gram-Schmidt" title="Processo de Gram-Schmidt – Portuguese" lang="pt" hreflang="pt" data-title="Processo de Gram-Schmidt" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ro.wikipedia.org/wiki/Procedeul_Gram%25E2%2580%2593Schmidt" title="Procedeul Gram–Schmidt – Romanian" lang="ro" hreflang="ro" data-title="Procedeul Gram–Schmidt" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ru.wikipedia.org/wiki/%25D0%259F%25D1%2580%25D0%25BE%25D1%2586%25D0%25B5%25D1%2581%25D1%2581_%25D0%2593%25D1%2580%25D0%25B0%25D0%25BC%25D0%25B0_%25E2%2580%2595_%25D0%25A8%25D0%25BC%25D0%25B8%25D0%25B4%25D1%2582%25D0%25B0" title="Процесс Грама ― Шмидта – Russian" lang="ru" hreflang="ru" data-title="Процесс Грама ― Шмидта" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sq.wikipedia.org/wiki/Procedura_Gram-Shmit" title="Procedura Gram-Shmit – Albanian" lang="sq" hreflang="sq" data-title="Procedura Gram-Shmit" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li> <li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://simple.wikipedia.org/wiki/Gram-Schmidt_process" title="Gram-Schmidt process – Simple English" lang="en-simple" hreflang="en-simple" data-title="Gram-Schmidt process" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li> <li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sk.wikipedia.org/wiki/Gramov-Schmidtov_ortogonaliza%25C4%258Dn%25C3%25BD_proces" title="Gramov-Schmidtov ortogonalizačný proces – Slovak" lang="sk" hreflang="sk" data-title="Gramov-Schmidtov ortogonalizačný proces" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li> <li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sr.wikipedia.org/wiki/%25D0%2593%25D1%2580%25D0%25B0%25D0%25BC%25E2%2580%2594%25D0%25A8%25D0%25BC%25D0%25B8%25D1%2582%25D0%25BE%25D0%25B2_%25D0%25BF%25D0%25BE%25D1%2581%25D1%2582%25D1%2583%25D0%25BF%25D0%25B0%25D0%25BA_%25D0%25BE%25D1%2580%25D1%2582%25D0%25BE%25D0%25BD%25D0%25BE%25D1%2580%25D0%25BC%25D0%25B0%25D0%25BB%25D0%25B8%25D0%25B7%25D0%25B0%25D1%2586%25D0%25B8%25D1%2598%25D0%25B5" title="Грам—Шмитов поступак ортонормализације – Serbian" lang="sr" hreflang="sr" data-title="Грам—Шмитов поступак ортонормализације" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li> <li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sh.wikipedia.org/wiki/Gram%25E2%2580%2593Schmidtov_postupak" title="Gram–Schmidtov postupak – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Gram–Schmidtov postupak" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li> <li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fi.wikipedia.org/wiki/Gramin%25E2%2580%2593Schmidtin_ortogonalisoimismenetelm%25C3%25A4" title="Gramin–Schmidtin ortogonalisoimismenetelmä – Finnish" lang="fi" hreflang="fi" data-title="Gramin–Schmidtin ortogonalisoimismenetelmä" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sv.wikipedia.org/wiki/Gram%25E2%2580%2593Schmidts_ortogonaliseringsprocess" title="Gram–Schmidts ortogonaliseringsprocess – Swedish" lang="sv" hreflang="sv" data-title="Gram–Schmidts ortogonaliseringsprocess" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://tr.wikipedia.org/wiki/Gram%25E2%2580%2593Schmidt_i%25C5%259Flemi" title="Gram–Schmidt işlemi – Turkish" lang="tr" hreflang="tr" data-title="Gram–Schmidt işlemi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://uk.wikipedia.org/wiki/%25D0%259F%25D1%2580%25D0%25BE%25D1%2586%25D0%25B5%25D1%2581_%25D0%2593%25D1%2580%25D0%25B0%25D0%25BC%25D0%25B0_%25E2%2580%2594_%25D0%25A8%25D0%25BC%25D1%2596%25D0%25B4%25D1%2582%25D0%25B0" title="Процес Грама — Шмідта – Ukrainian" lang="uk" hreflang="uk" data-title="Процес Грама — Шмідта" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ur.wikipedia.org/wiki/%25DA%25AF%25D8%25B1%25D8%25A7%25D9%2585_%25D8%25B4%25D9%2585%25D9%25B9_%25D8%25B9%25D9%2585%25D9%2584" title="گرام شمٹ عمل – Urdu" lang="ur" hreflang="ur" data-title="گرام شمٹ عمل" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li> <li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://vi.wikipedia.org/wiki/Qu%25C3%25A1_tr%25C3%25ACnh_Gram%25E2%2580%2593Schmidt" title="Quá trình Gram–Schmidt – Vietnamese" lang="vi" hreflang="vi" data-title="Quá trình Gram–Schmidt" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> <li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh-yue.wikipedia.org/wiki/Gram-Schmidt_%25E6%25AD%25A3%25E4%25BA%25A4%25E5%258C%2596" title="Gram-Schmidt 正交化 – Cantonese" lang="yue" hreflang="yue" data-title="Gram-Schmidt 正交化" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh.wikipedia.org/wiki/%25E6%25A0%25BC%25E6%258B%2589%25E5%25A7%2586-%25E6%2596%25BD%25E5%25AF%2586%25E7%2589%25B9%25E6%25AD%25A3%25E4%25BA%25A4%25E5%258C%2596" title="格拉姆-施密特正交化 – Chinese" lang="zh" hreflang="zh" data-title="格拉姆-施密特正交化" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">This page was last edited on 26 November 2024, at 19:07<span class="anonymous-show">&nbsp;(UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">Disclaimers</a></li> <li id="footer-places-contact"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://stats.wikimedia.org/%23/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/w/index.php?title%3DGram%25E2%2580%2593Schmidt_process%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-66fb676896-5khc7","wgBackendResponseTime":200,"wgPageParseReport":{"limitreport":{"cputime":"0.409","walltime":"0.650","ppvisitednodes":{"value":2226,"limit":1000000},"postexpandincludesize":{"value":38822,"limit":2097152},"templateargumentsize":{"value":1481,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":48765,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 369.433 1 -total"," 22.65% 83.678 1 Template:Linear_algebra"," 22.32% 82.472 3 Template:Cite_book"," 22.19% 81.983 1 Template:Navbox"," 22.02% 81.357 1 Template:Short_description"," 13.89% 51.322 2 Template:Pagetype"," 6.61% 24.429 1 Template:Sfn"," 6.05% 22.348 5 Template:Citation"," 4.72% 17.432 1 Template:Rp"," 4.12% 15.220 1 Template:Icon"]},"scribunto":{"limitreport-timeusage":{"value":"0.216","limit":"10.000"},"limitreport-memusage":{"value":6418580,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBau_IIITrefethen1997\"] = 1,\n [\"CITEREFCheneyKincaid2009\"] = 1,\n [\"CITEREFDoranLasenby2007\"] = 1,\n [\"CITEREFGolubVan_Loan1996\"] = 1,\n [\"CITEREFGreub1975\"] = 1,\n [\"CITEREFPursell2011\"] = 1,\n [\"CITEREFPursellTrimble1991\"] = 1,\n [\"CITEREFSoliverezGagliano1985\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Citation\"] = 4,\n [\"Cite Geometric Algorithms and Combinatorial Optimization\"] = 1,\n [\"Cite book\"] = 3,\n [\"Cite journal\"] = 1,\n [\"DEFAULTSORT:Gram-Schmidt Process\"] = 1,\n [\"Google books\"] = 1,\n [\"Linear algebra\"] = 1,\n [\"Math\"] = 8,\n [\"Mvar\"] = 2,\n [\"Nowrap\"] = 1,\n [\"Portal\"] = 1,\n [\"Rp\"] = 1,\n [\"Sfn\"] = 1,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-66fb676896-j6xfp","timestamp":"20250118072506","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Gram\u2013Schmidt process","url":"https:\/\/en.wikipedia.org\/wiki\/Gram%E2%80%93Schmidt_process","sameAs":"http:\/\/www.wikidata.org\/entity\/Q475239","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q475239","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-09-08T17:45:10Z","dateModified":"2024-11-26T19:07:49Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/97\/Gram%E2%80%93Schmidt_process.svg","headline":"method for orthonormalising a set of vectors"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('om', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&amp;hl=en-GB&amp;client=wt" type="text/javascript"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10