CINXE.COM

Search results for: aerospace industry

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aerospace industry</title> <meta name="description" content="Search results for: aerospace industry"> <meta name="keywords" content="aerospace industry"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aerospace industry" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aerospace industry"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5564</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aerospace industry</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5564</span> Software Obsolescence Drivers in Aerospace: An Industry Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%BAl%20Gonz%C3%A1lez%20Mu%C3%B1oz">Raúl González Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20Shehab"> Essam Shehab</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Weinitzke"> Martin Weinitzke</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Fowler"> Chris Fowler</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Baguley"> Paul Baguley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software applications have become crucial for the aerospace industry, providing a wide range of functionalities and capabilities. However, due to the considerable time difference between aircraft and software life cycles, obsolescence has turned into a major challenge for industry in last decades. This paper aims to provide a view on the different causes of software obsolescence within aerospace industry, as well as a perception on the importance of each of them. The key research question addressed is what drives software obsolescence in the aerospace industry, managing large software application portfolios. This question has been addressed by conducting firstly an in depth review of current literature and secondly by arranging an industry workshop with professionals from aerospace and consulting companies. The result is a set of drivers of software obsolescence, distributed among three different environments and several domains. By incorporating monitoring methodologies to assess those software obsolescence drivers, benefits in maintenance efforts and operations disruption avoidance are expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace%20industry" title="aerospace industry">aerospace industry</a>, <a href="https://publications.waset.org/abstracts/search?q=obsolescence%20drivers" title=" obsolescence drivers"> obsolescence drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20lifecycle" title=" software lifecycle"> software lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20obsolescence" title=" software obsolescence"> software obsolescence</a> </p> <a href="https://publications.waset.org/abstracts/72049/software-obsolescence-drivers-in-aerospace-an-industry-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5563</span> Analysis of Six Sigma in the Aerospace Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masimuddin%20Mohd%20Khaled">Masimuddin Mohd Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper subsidizes to the discussion of Six Sigma in the Aerospace Industry. The main aim of this report is to study the literature review of Six Sigma emphasizing on the aerospace industry. The implementation of Six Sigma stages are studied and how the improvement cycle ‘Define, Measure, Analyze, Improve, and Control cycle’ (DMAIC) and the design process is ‘Define, Measure, Analyze, Design, and Verify Cycle’ (DMADV) is used. The focus is also done by studying how the implementation of Six Sigma on an aerospace company has brought a positive effect to the company. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=six%20sigma" title="six sigma">six sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=DMAIC" title=" DMAIC"> DMAIC</a>, <a href="https://publications.waset.org/abstracts/search?q=DMADV" title=" DMADV"> DMADV</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a> </p> <a href="https://publications.waset.org/abstracts/3177/analysis-of-six-sigma-in-the-aerospace-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5562</span> Aviation versus Aerospace: A Differential Analysis of Workforce Jobs via Text Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Werner">Sarah Werner</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Pritchard"> Michael J. Pritchard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From pilots to engineers, the skills development within the aerospace industry is exceptionally broad. Employers often struggle with finding the right mixture of qualified skills to fill their organizational demands. This effort to find qualified talent is further complicated by the industrial delineation between two key areas: aviation and aerospace. In a broad sense, the aerospace industry overlaps with the aviation industry. In turn, the aviation industry is a smaller sector segment within the context of the broader definition of the aerospace industry. Furthermore, it could be conceptually argued that -in practice- there is little distinction between these two sectors (i.e., aviation and aerospace). However, through our unstructured text analysis of over 6,000 job listings captured, our team found a clear delineation between aviation-related jobs and aerospace-related jobs. Using techniques in natural language processing, our research identifies an integrated workforce skill pattern that clearly breaks between these two sectors. While the aviation sector has largely maintained its need for pilots, mechanics, and associated support personnel, the staffing needs of the aerospace industry are being progressively driven by integrative engineering needs. Increasingly, this is leading many aerospace-based organizations towards the acquisition of 'system level' staffing requirements. This research helps to better align higher educational institutions with the current industrial staffing complexities within the broader aerospace sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace%20industry" title="aerospace industry">aerospace industry</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20demand" title=" job demand"> job demand</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=workforce%20development" title=" workforce development"> workforce development</a> </p> <a href="https://publications.waset.org/abstracts/136196/aviation-versus-aerospace-a-differential-analysis-of-workforce-jobs-via-text-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5561</span> Operational Software Maturity: An Aerospace Industry Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%BAl%20Gonz%C3%A1lez%20Mu%C3%B1oz">Raúl González Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20Shehab"> Essam Shehab</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Weinitzke"> Martin Weinitzke</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Fowler"> Chris Fowler</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Baguley"> Paul Baguley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software applications have become crucial to the aerospace industry, providing a wide range of functionalities and capabilities used during the design, manufacturing and support of aircraft. However, as this criticality increases, so too does the risk for business operations when facing a software failure. Hence, there is a need for new methodologies to be developed to support aerospace companies in effectively managing their software portfolios, avoiding the hazards of business disruption and additional costs. This paper aims to provide a definition of operational software maturity, and how this can be used to assess software operational behaviour, as well as a view on the different aspects that drive software maturity within the aerospace industry. The key research question addressed is, how can operational software maturity monitoring assist the aerospace industry in effectively managing large software portfolios? This question has been addressed by conducting an in depth review of current literature, by working closely with aerospace professionals and by running an industry case study within a major aircraft manufacturer. The results are a software maturity model composed of a set of drivers and a prototype tool used for the testing and validation of the research findings. By utilising these methodologies to assess the operational maturity of software applications in aerospace, benefits in maintenance activities and operations disruption avoidance have been observed, supporting business cases for system improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace" title="aerospace">aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20lifecycle" title=" software lifecycle"> software lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20maintenance" title=" software maintenance"> software maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20maturity" title=" software maturity"> software maturity</a> </p> <a href="https://publications.waset.org/abstracts/62835/operational-software-maturity-an-aerospace-industry-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5560</span> Analysis of Total Quality Management (TQM) and Six Sigma in the Aerospace Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masimuddin%20Mohd%20Khaled">Masimuddin Mohd Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the past couple of years, focus has been done on the quality management theories and has been pertained to various firms. The core quality management theories are Total Quality Management (TQM) and Six Sigma where a number of documents have already been presented regarding these theories. The purpose of this paper is to study in detail about these theories and how the theories are applied in the aerospace industry. A methodical literature review, comparison of TQM and Six Sigma as well as a case study of each has been carried out in this paper thus providing a clear understanding of the theories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20quality%20management" title="total quality management">total quality management</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20sigma" title=" six sigma"> six sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=research" title=" research"> research</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a> </p> <a href="https://publications.waset.org/abstracts/2134/analysis-of-total-quality-management-tqm-and-six-sigma-in-the-aerospace-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5559</span> Hawaii, Colorado, and Netherlands: A Comparative Analysis of the Respective Space Sectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mclee%20Kerolle">Mclee Kerolle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For more than 50 years, the state of Hawaii has had the beginnings of a burgeoning commercial aerospace presence statewide. While Hawaii provides the aerospace industry with unique assets concerning geographic location, lack of range safety issues and other factors critical to aerospace development, Hawaii’s strategy and commitment for aerospace have been unclear. For this reason, this paper presents a comparative analysis of Hawaii’s space sector with two of the world’s leading space sectors, Colorado and the Netherlands, in order to provide a strategic plan that establishes a firm position going forward to support Hawaii’s aerospace development statewide. This plan will include financial and other economic incentives legislatively supported by the State to help grow and diversify Hawaii’s aerospace sector. The first part of this paper will examine the business model adopted by the Colorado Space Coalition (CSC), a group of industry stakeholders working to make Colorado a center of excellence for aerospace, as blueprint for growth in Hawaii’s space sector. The second section of this paper will examine the business model adopted by the Netherlands Space Business Incubation Centre (NSBIC), a European Space Agency (ESA) affiliated program that offers business support for entrepreneurs to turn space-connected business ideas into commercial companies. This will serve as blueprint to incentivize space businesses to launch and develop in Hawaii. The third section of this paper will analyze the current policies both CSC, and NSBIC implores to promote industry expansion and legislative advocacy. The final section takes the findings from both space sectors and applies their most adaptable features to a Hawaii specific space business model that takes into consideration the unique advantage and disadvantages found in developing Hawaii’s space sector. The findings of this analysis will show that the development of a strategic plan based on a comparative analysis that creates high technology jobs and new pathways for a trained workforce in the space sector, as well as elicit state support and direction, will achieve the goal of establishing Hawaii as a center of space excellence. This analysis will also serve as a signal to the federal, private sector and international community that Hawaii is indeed serious about developing its’ aerospace industry. Ultimately this analysis and subsequent aerospace development plan will serve as a blueprint for the benefit of all space-faring nations seeking to develop their space sectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Colorado" title="Colorado">Colorado</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawaii" title=" Hawaii"> Hawaii</a>, <a href="https://publications.waset.org/abstracts/search?q=Netherlands" title=" Netherlands"> Netherlands</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20policy" title=" space policy"> space policy</a> </p> <a href="https://publications.waset.org/abstracts/75687/hawaii-colorado-and-netherlands-a-comparative-analysis-of-the-respective-space-sectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5558</span> The Harmonious Blend of Digitalization and 3D Printing: Advancing Aerospace Jet Pump Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Sarkar">Subrata Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aerospace industry is experiencing a profound product development transformation driven by the powerful integration of digitalization and 3D printing technologies. This paper delves into the significant impact of this convergence on aerospace innovation, specifically focusing on developing jet pumps for fuel systems. This case study is a compelling example of the immense potential of these technologies. In response to the industry's increasing demand for lighter, more efficient, and customized components, the combined capabilities of digitalization and 3D printing are reshaping how we envision, design, and manufacture critical aircraft parts, offering a distinct paradigm in aerospace engineering. Consider the development of a jet pump for a fuel system, a task that presents unique and complex challenges. Despite its seemingly simple design, the jet pump's development is hindered by many demanding operating conditions. The qualification process for these pumps involves many analyses and tests, leading to substantial delays and increased costs in fuel system development. However, by harnessing the power of automated simulations and integrating legacy design, manufacturing, and test data through digitalization, we can optimize the jet pump's design and performance, thereby revolutionizing product development. Furthermore, 3D printing's ability to create intricate structures using various materials, from lightweight polymers to high-strength alloys, holds the promise of highly efficient and durable jet pumps. The combined impact of digitalization and 3D printing extends beyond design, as it also reduces material waste and advances sustainability goals, aligning with the industry's increasing commitment to environmental responsibility. In conclusion, the convergence of digitalization and 3D printing is not just a technological advancement but a gateway to a new era in aerospace product development, particularly in the design of jet pumps. This revolution promises to redefine how we create aerospace components, making them safer, more efficient, and environmentally responsible. As we stand at the forefront of this technological revolution, aerospace companies must embrace these technologies as a choice and a strategic imperative for those striving to lead in innovation and sustainability in the 21st century. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20pump" title="jet pump">jet pump</a>, <a href="https://publications.waset.org/abstracts/search?q=digitalization" title=" digitalization"> digitalization</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20fuel%20system." title=" aircraft fuel system."> aircraft fuel system.</a> </p> <a href="https://publications.waset.org/abstracts/184449/the-harmonious-blend-of-digitalization-and-3d-printing-advancing-aerospace-jet-pump-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5557</span> Improvement of Realization Quality of Aerospace Products Using Augmented Reality Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuran%20Bahar">Nuran Bahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20A.%20Akcayol"> Mehmet A. Akcayol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the aviation industry, many faults may occur frequently during the maintenance processes and assembly operations of complex structured aircrafts because of their high dependencies of components. These faults affect the quality of aircraft parts or developed modules adversely. Technical employee requires long time and high labor force while checking the correctness of each component. In addition, the person must be trained regularly because of the ever-growing and changing technology. Generally, the cost of this training is very high. Augmented Reality (AR) technology reduces the cost of training radically and improves the effectiveness of the training. In this study, the usage of AR technology in the aviation industry has been investigated and the effectiveness of AR with heads-up display glasses has been examined. An application has been developed for comparison of production process with AR and manual one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace" title="aerospace">aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20quality" title=" assembly quality"> assembly quality</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=heads-up%20display" title=" heads-up display"> heads-up display</a> </p> <a href="https://publications.waset.org/abstracts/39735/improvement-of-realization-quality-of-aerospace-products-using-augmented-reality-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5556</span> Investigating the Key Success Factors of Supplier Collaboration Governance in the Aerospace Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Jose%20Granero%20Paris">Maria Jose Granero Paris</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Isabel%20Jimenez%20Zarco"> Ana Isabel Jimenez Zarco</a>, <a href="https://publications.waset.org/abstracts/search?q=Agustin%20Pablo%20Alvarez%20Herranz"> Agustin Pablo Alvarez Herranz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the industrial sector collaboration with suppliers is key to the development of innovations in the field of processes. Access to resources and expertise that are not available in the business, obtaining a cost advantage, or the reduction of the time needed to carry out innovation are some of the benefits associated with the process. However, the success of this collaborative process is compromised, when from the beginning not clearly rules have been established that govern the relationship. Abundant studies developed in the field of innovation emphasize the strategic importance of the concept of “Governance”. Despite this, there have been few papers that have analyzed how the governance process of the relationship must be designed and managed to ensure the success of the collaboration process. The lack of literature in this area responds to the wide diversity of contexts where collaborative processes to innovate take place. Thus, in sectors such as the car industry there is a strong collaborative tradition between manufacturers and suppliers being part of the value chain. In this case, it is common to establish mechanisms and procedures that fix formal and clear objectives to regulate the relationship, and establishes the rights and obligations of each of the parties involved. By contrast, in other sectors, collaborative relationships to innovate are not a common way of working, particularly when their aim is the development of process improvements. It is in this case, it is when the lack of mechanisms to establish and regulate the behavior of those involved, can give rise to conflicts, and the failure of the cooperative relationship. Because of this the present paper analyzes the similarities and differences in the processes of governance in collaboration with suppliers in the European aerospace industry With these ideas in mind, we present research is twofold: Understand the importance of governance as a key element of the success of the collaboration in the development of product and process innovations, Establish the mechanisms and procedures to ensure the proper management of the processes of collaboration. Following the methodology of the case study, we analyze the way in which manufacturers and suppliers cooperate in the development of new products and processes in two industries with different levels of technological intensity and collaborative tradition: the automotive and aerospace. The identification of those elements playing a key role to establish a successful governance and relationship management and the compression of the mechanisms of regulation and control in place at the automotive sector can be use to propose solutions to some of the conflicts that currently arise in aerospace industry. The paper concludes by analyzing the strategic implications for the aerospace industry entails the adoption of some of the practices traditionally used in other industrial sectors. Finally, it is important to highlight that in this paper are presented the first results of a research project currently in progress describing a model of governance that explains the way to manage outsourced services to suppliers in the European aerospace industry, through the analysis of companies in the sector located in Germany, France and Spain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplier%20collaboration" title="supplier collaboration">supplier collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=supplier%20relationship%20governance" title=" supplier relationship governance"> supplier relationship governance</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20management" title=" innovation management"> innovation management</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20innovation" title=" product innovation"> product innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20innovation" title=" process innovation"> process innovation</a> </p> <a href="https://publications.waset.org/abstracts/20973/investigating-the-key-success-factors-of-supplier-collaboration-governance-in-the-aerospace-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5555</span> An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Fette">M. Fette</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Wulfsberg"> J. P. Wulfsberg</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Herrmann"> A. Herrmann</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20H.%20Ladstaetter"> R. H. Ladstaetter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present and future lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft and future vehicles will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound (SMC), tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a new hybrid composite technology for aerospace industries, which was developed with the help of a universal innovation and development system. This system supports the management of idea generation, the methodical development of innovative technologies and the achievement of the industrial readiness of these technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development%20system" title="development system">development system</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composite" title=" hybrid composite"> hybrid composite</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20system" title=" innovation system"> innovation system</a>, <a href="https://publications.waset.org/abstracts/search?q=prepreg" title=" prepreg"> prepreg</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20moulding%20compound" title=" sheet moulding compound"> sheet moulding compound</a> </p> <a href="https://publications.waset.org/abstracts/14445/an-innovation-and-development-system-for-a-new-hybrid-composite-technology-in-aerospace-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5554</span> Investigating the Governance of Engineering Services in the Aerospace and Automotive Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Jose%20Granero%20Paris">Maria Jose Granero Paris</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Isabel%20Jimenez%20Zarco"> Ana Isabel Jimenez Zarco</a>, <a href="https://publications.waset.org/abstracts/search?q=Agustin%20Pablo%20Alvarez%20Herranz"> Agustin Pablo Alvarez Herranz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the industrial sector collaboration with suppliers is key to the development of innovations in the field of processes. Access to resources and expertise that are not available in the business, obtaining a cost advantage, or the reduction of the time needed to carry out innovation are some of the benefits associated with the process. However, the success of this collaborative process is compromised, when from the beginning not clearly rules have been established that govern the relationship. Abundant studies developed in the field of innovation emphasize the strategic importance of the concept of “Goverance”. Despite this, there have been few papers that have analyzed how the governance process of the relationship must be designed and managed to ensure the success of the cooperation process. The lack of literature in this area responds to the wide diversity of contexts where collaborative processes to innovate take place. Thus, in sectors such as the car industry there is a strong collaborative tradition between manufacturers and suppliers being part of the value chain. In this case, it is common to establish mechanisms and procedures that fix formal and clear objectives to regulate the relationship, and establishes the rights and obligations of each of the parties involved. By contrast, in other sectors, collaborative relationships to innovate are not a common way of working, particularly when their aim is the development of process improvements. It is in this case, it is when the lack of mechanisms to establish and regulate the behavior of those involved, can give rise to conflicts, and the failure of the cooperative relationship. Because of this the present paper analyzes the similarities and differences in the processes of governance in collaboration with service providers in engineering R & D in the European aerospace industry. With these ideas in mind, we present research is twofold: - Understand the importance of governance as a key element of the success of the cooperation in the development of process innovations, - Establish the mechanisms and procedures to ensure the proper management of the processes of cooperation. Following the methodology of the case study, we analyze the way in which manufacturers and suppliers cooperate in the development of new processes in two industries with different levels of technological intensity and collaborative tradition: the automotive and aerospace. The identification of those elements playing a key role to establish a successful governance and relationship management and the compression of the mechanisms of regulation and control in place at the automotive sector can be use to propose solutions to some of the conflicts that currently arise in aerospace industry. The paper concludes by analyzing the strategic implications for the aerospace industry entails the adoption of some of the practices traditionally used in other industrial sectors. Finally, it is important to highlight that in this paper are presented the first results of a research project currently in progress describing a model of governance that explains the way to manage outsourced engineering services to suppliers in the European aerospace industry, through the analysis of companies in the sector located in Germany, France and Spain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=innovation%20management" title="innovation management">innovation management</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20governance" title=" innovation governance"> innovation governance</a>, <a href="https://publications.waset.org/abstracts/search?q=managing%20collaborative%20innovation" title=" managing collaborative innovation"> managing collaborative innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20innovation" title=" process innovation"> process innovation</a> </p> <a href="https://publications.waset.org/abstracts/21175/investigating-the-governance-of-engineering-services-in-the-aerospace-and-automotive-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5553</span> A Novel Hybrid Lubri-Coolant for Machining Difficult-to-Cut Ti-6Al-4V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jamil">Muhammad Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20He"> Ning He</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhao"> Wei Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is a rough estimation that the aerospace companies received orders of 37000 new aircraft, including the air ambulances, until 2037. And titanium alloys have a 15% contribution in modern aircraft's manufacturing owing to the high strength/weight ratio. Despite their application in the aerospace and medical equipment manufacturing industry, still, their high-speed machining puts a challenge in terms of tool wear, heat generation, and poor surface quality. Among titanium alloys, Ti-6Al-4V is the major contributor to aerospace application. However, its poor thermal conductivity (6.7W/mK) accumulates shear and friction heat at the tool-chip interface zone. To dissipate the heat generation and friction effect, cryogenic cooling, Minimum quantity lubrication (MQL), nanofluids, hybrid cryogenic-MQL, solid lubricants, etc., are applied frequently to underscore their significant effect on improving the machinability of Ti-6Al-4V. Nowadays, hybrid lubri-cooling is getting attention from researchers to explore their effect regarding the hard-to-cut Ti-6Al-4V. Therefore, this study is devoted to exploring the effect of hybrid ethanol-ester oil MQL regarding the cutting temperature, surface integrity, and tool life. As the ethanol provides -OH group and ester oil of long-chain molecules provide a tribo-film on the tool-workpiece interface. This could be a green manufacturing alternative for the manufacturing industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20lubri-cooling" title="hybrid lubri-cooling">hybrid lubri-cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=MQL" title=" MQL"> MQL</a> </p> <a href="https://publications.waset.org/abstracts/143816/a-novel-hybrid-lubri-coolant-for-machining-difficult-to-cut-ti-6al-4v-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5552</span> Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Vyas">J. Vyas</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kazys"> R. Kazys</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sestoke"> J. Sestoke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-coupled%20ultrasonics" title="air-coupled ultrasonics">air-coupled ultrasonics</a>, <a href="https://publications.waset.org/abstracts/search?q=contactless%20measurement" title=" contactless measurement"> contactless measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20interferometry" title=" laser interferometry"> laser interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20guided%20waves" title=" ultrasonic guided waves"> ultrasonic guided waves</a> </p> <a href="https://publications.waset.org/abstracts/87212/air-coupled-ultrasonic-testing-for-non-destructive-evaluation-of-various-aerospace-composite-materials-by-laser-vibrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5551</span> A Hybrid Model of Goal, Integer and Constraint Programming for Single Machine Scheduling Problem with Sequence Dependent Setup Times: A Case Study in Aerospace Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Didem%20Can">Didem Can</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scheduling problems are one of the most fundamental issues of production systems. Many different approaches and models have been developed according to the production processes of the parts and the main purpose of the problem. In this study, one of the bottleneck stations of a company serving in the aerospace industry is analyzed and considered as a single machine scheduling problem with sequence-dependent setup times. The objective of the problem is assigning a large number of similar parts to the same shift -to reduce chemical waste- while minimizing the number of tardy jobs. The goal programming method will be used to achieve two different objectives simultaneously. The assignment of parts to the shift will be expressed using the integer programming method. Finally, the constraint programming method will be used as it provides a way to find a result in a short time by avoiding worse resulting feasible solutions with the defined variables set. The model to be established will be tested and evaluated with real data in the application part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constraint%20programming" title="constraint programming">constraint programming</a>, <a href="https://publications.waset.org/abstracts/search?q=goal%20programming" title=" goal programming"> goal programming</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20programming" title=" integer programming"> integer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup" title="sequence-dependent setup">sequence-dependent setup</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20machine%20scheduling" title=" single machine scheduling"> single machine scheduling</a> </p> <a href="https://publications.waset.org/abstracts/144504/a-hybrid-model-of-goal-integer-and-constraint-programming-for-single-machine-scheduling-problem-with-sequence-dependent-setup-times-a-case-study-in-aerospace-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5550</span> Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqraq%20Kamal">Iqraq Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmal%20Razif"> Akmal Razif</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivadas%20Chandra%20Sekaran"> Sivadas Chandra Sekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Syazwan%20Hisaburi"> Ahmad Syazwan Hisaburi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace%20manufacturing" title="aerospace manufacturing">aerospace manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=one-shot%20object%20detection" title=" one-shot object detection"> one-shot object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20spray%20painting" title=" automated spray painting"> automated spray painting</a>, <a href="https://publications.waset.org/abstracts/search?q=vision-based%20path%20optimization" title=" vision-based path optimization"> vision-based path optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20arm" title=" robotic arm"> robotic arm</a> </p> <a href="https://publications.waset.org/abstracts/176471/robotic-arm-automated-spray-painting-with-one-shot-object-detection-and-region-based-path-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5549</span> Investigation of Stellram Indexable Milling Cutter XDLT09-D41 Tool Wear for Machining of Ti6Al4V</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Nawaz">Saad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Gang"> Yu Gang</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Haibin"> Miao Haibin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys are attractive materials for aerospace industry due to their exceptional strength to weight ratio that is maintained at elevated temperatures and their good corrosion resistance. Major applications of titanium alloys were military aerospace industry, but since last decade the trend has now shifted towards commercial industry. On the other hand, titanium alloys are notorious for being poor thermal conductor that leads to them being difficult materials for machining. In this experimental study, Stellram Indexable milling cutter XDLT09-D41 is used for rough down milling of Ti6Al4V for small depth of cut under different combinations of parameters and application of high-pressure coolant. The machining performance was evaluated in terms of tool wear, tool life, and thermal crack. The tool wear was mostly observed at the tool tip and at bottom part of tool thermal deformations were observed which propagated with respect to time. Flank wear due to scratching of the cutting chips and diffusion wear because of high thermal stresses were observed specially at the bottom of the cutting tool. It was found that maximum tool life was obtained at the speed of 40m/min, feed rate of 358mm/min and depth of cut of 0.8mm. In the end, it was concluded that machining of Ti6Al4V is a thermally dominant process which leads to high thermal stresses in machining zone that results in increasing tool wear rate and deformation propagation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title="tool wear">tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20speed" title=" cutting speed"> cutting speed</a>, <a href="https://publications.waset.org/abstracts/search?q=flank%20wear" title=" flank wear "> flank wear </a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20life" title=" tool life"> tool life</a> </p> <a href="https://publications.waset.org/abstracts/55620/investigation-of-stellram-indexable-milling-cutter-xdlt09-d41-tool-wear-for-machining-of-ti6al4v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5548</span> Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Hao%20Wang">Peng Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Sterkenburg"> Ronald Sterkenburg</a>, <a href="https://publications.waset.org/abstracts/search?q=Garam%20Kim"> Garam Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuwei%20He"> Yuwei He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen&rsquo;s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype&rsquo;s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printed" title="3D printed">3D printed</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20content" title=" fiber content"> fiber content</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/100895/investigating-the-fiber-content-fiber-length-and-curing-characteristics-of-3d-printed-recycled-carbon-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5547</span> Technology of Thermal Spray Coating Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Petr%C5%AF">Jana Petrů</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Zl%C3%A1mal"> Tomáš Zlámal</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20%C4%8Cep"> Robert Čep</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20%C4%8Cepov%C3%A1"> Lenka Čepová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials -cermets- is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a> </p> <a href="https://publications.waset.org/abstracts/2535/technology-of-thermal-spray-coating-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5546</span> An Empirical Study Comparing Industry Segments as Regards Organisation Management in Open Innovation - Based on a Questionnaire of the Pharmaceutical Industry and IT Component Industry Segment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumihiko%20Isada">Fumihiko Isada</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuriko%20Isada"> Yuriko Isada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to clarify the difference by industry segment or product characteristics as regards organisation management for an open innovation to raise R&D performance. In particular, the trait of the pharmaceutical industry is defined in comparison with IT component industry segment. In considering open innovation, both inter-organisational relation and the management in an organisation are important issues. As methodology, a questionnaire was conducted. In conclusion, suitable organisation management according to the difference in industry segment or product characteristics became clear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20study" title="empirical study">empirical study</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%20segment" title=" industry segment"> industry segment</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20innovation" title=" open innovation"> open innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=product-development%20organisation%20pattern" title=" product-development organisation pattern "> product-development organisation pattern </a> </p> <a href="https://publications.waset.org/abstracts/34117/an-empirical-study-comparing-industry-segments-as-regards-organisation-management-in-open-innovation-based-on-a-questionnaire-of-the-pharmaceutical-industry-and-it-component-industry-segment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5545</span> The Roles of Education, Policies and Technologies in the Globalization Processes of Creative Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eureeka%20Haishang%20Wu">Eureeka Haishang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Creative Industry has been recognized as top priority in many nations for decades, as through globalization processes, culture can be economized by creative industry to develop economies. From non-economic perspectives; creative industry supports nation-identity, enhances global exposure, and improve international relation. In order to enable the globalization processes of creative industry, a three-step approach was proposed to align education, policies, and technologies into a transformation platform, and eventually to achieve a common model of global collaboration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creative%20industry" title="creative industry">creative industry</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=policies" title=" policies"> policies</a>, <a href="https://publications.waset.org/abstracts/search?q=technologies" title=" technologies"> technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=collaboration" title=" collaboration"> collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=globalization" title=" globalization"> globalization</a> </p> <a href="https://publications.waset.org/abstracts/48716/the-roles-of-education-policies-and-technologies-in-the-globalization-processes-of-creative-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5544</span> The Relationship between Value-Added and Energy Consumption in Iran’s Industry Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Raei%20Dehaghi">Morteza Raei Dehaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Molaahmadi"> Mojtaba Molaahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Mirhashemi"> Seyed Mohammad Mirhashemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to explore the relationship between energy consumption and value-added in Iran’s industry sector during the time period 1973-2011. Annual data related to energy consumption and value added in the industry sector were used. The results of the study revealed a positive relationship between energy consumption and value-added of the industry sector. Similarly, the results showed that there is one-way causality between energy consumption and value-added in the industry sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title="economic growth">economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=granger%20causality%20test" title=" granger causality test"> granger causality test</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%20sector" title=" industry sector"> industry sector</a> </p> <a href="https://publications.waset.org/abstracts/38575/the-relationship-between-value-added-and-energy-consumption-in-irans-industry-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5543</span> Simulation and Design of an Aerospace Mission Powered by “Candy” Type Fuel Engines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Hern%C3%A1ndez%20Huertas">N. Hernández Huertas</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rojas%20Mora"> F. Rojas Mora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sounding rockets are aerospace vehicles that were developed in the mid-20th century, and since then numerous investigations have been executed with the aim of innovate in this type of technology. However, the costs associated to the production of this type of technology are usually quite high, and therefore the challenge that exists today is to be able to reduce them. In this way, the main objective of this document is to present the design process of a Colombian aerospace mission capable to reach the thermosphere using low-cost &ldquo;Candy&rdquo; type solid fuel engines. This mission is the latest development of the Uniandes Aerospace Project (PUA for its Spanish acronym), which is an undergraduate and postgraduate research group at Universidad de los Andes (Bogot&aacute;, Colombia), dedicated to incurring in this type of technology. In this way, the investigations that have been carried out on Candy-type solid fuel, which is a compound of potassium nitrate and sorbitol, have allowed the production of engines powerful enough to reach space, and which represents a unique technological advance in Latin America and an important development in experimental rocketry. In this way, following the engineering iterative design methodology was possible to design a 2-stage sounding rocket with 1 solid fuel engine in each one, which was then simulated in RockSim V9.0 software and reached an apogee of approximately 150 km above sea level. Similarly, a speed equal to 5 Mach was obtained, which after performing a finite element analysis, it was shown that the rocket is strong enough to be able to withstand such speeds. Under these premises, it was demonstrated that it is possible to build a high-power aerospace mission at low cost, using Candy-type solid fuel engines. For this reason, the feasibility of carrying out similar missions clearly depends on the ability to replicate the engines in the best way, since as mentioned above, the design of the rocket is adequate to reach supersonic speeds and reach space. Consequently, with a team of at least 3 members, the mission can be obtained in less than 3 months. Therefore, when publishing this project, it is intended to be a reference for future research in this field and benefit the industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace%20missions" title="aerospace missions">aerospace missions</a>, <a href="https://publications.waset.org/abstracts/search?q=Candy%20type%20solid%20propellant%20engines" title=" Candy type solid propellant engines"> Candy type solid propellant engines</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20solid%20rockets" title=" design of solid rockets"> design of solid rockets</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20rocketry" title=" experimental rocketry"> experimental rocketry</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20costs%20missions" title=" low costs missions"> low costs missions</a> </p> <a href="https://publications.waset.org/abstracts/126878/simulation-and-design-of-an-aerospace-mission-powered-by-candy-type-fuel-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5542</span> Development of Al Foam by a Low-Cost Salt Replication Method for Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Soni">B. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Biswas"> S. Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal foams of Al find diverse applications in several industrial sectors such as in automotive and sports equipment industry as impact, acoustic and vibration absorbers, the aerospace industry as structural components in turbines and spatial cones, in the naval industry as low frequency vibration absorbers, and in construction industry as sound barriers inside tunnels, as fire proof materials and structure protection systems against explosions and even in heat exchangers, orthopedic components, and decorative items. Here, we report on the development of Al foams by a low cost and convenient technique of salt replication method with efficient control over size, geometry and distribution of the pores. Sodium bicarbonate was used as the foaming agent to form the porous refractory salt pattern. The mixed refractory salt slurry was microwave dried followed by sintering for selected time periods. Molten Al was infiltrated into the salt pattern in an inert atmosphere at a pressure of 2 bars. The final products were obtained by leaching out the refractory salt pattern. Mechanical properties of the derived samples were studied with a universal testing machine. The results were analyzed in correlation with their microstructural features evaluated with a scanning electron microscope (SEM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20foam" title="metal foam">metal foam</a>, <a href="https://publications.waset.org/abstracts/search?q=Al" title=" Al"> Al</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20replication%20method" title=" salt replication method"> salt replication method</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/22450/development-of-al-foam-by-a-low-cost-salt-replication-method-for-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5541</span> Deciphering Information Quality: Unraveling the Impact of Information Distortion in the UK Aerospace Supply Chains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Jin">Jing Jin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incorporation of artificial intelligence (AI) and machine learning (ML) in aircraft manufacturing and aerospace supply chains leads to the generation of a substantial amount of data among various tiers of suppliers and OEMs. Identifying the high-quality information challenges decision-makers. The application of AI/ML models necessitates access to 'high-quality' information to yield desired outputs. However, the process of information sharing introduces complexities, including distortion through various communication channels and biases introduced by both human and AI entities. This phenomenon significantly influences the quality of information, impacting decision-makers engaged in configuring supply chain systems. Traditionally, distorted information is categorized as 'low-quality'; however, this study challenges this perception, positing that distorted information, contributing to stakeholder goals, can be deemed high-quality within supply chains. The main aim of this study is to identify and evaluate the dimensions of information quality crucial to the UK aerospace supply chain. Guided by a central research question, "What information quality dimensions are considered when defining information quality in the UK aerospace supply chain?" the study delves into the intricate dynamics of information quality in the aerospace industry. Additionally, the research explores the nuanced impact of information distortion on stakeholders' decision-making processes, addressing the question, "How does the information distortion phenomenon influence stakeholders’ decisions regarding information quality in the UK aerospace supply chain system?" This study employs deductive methodologies rooted in positivism, utilizing a cross-sectional approach and a mono-quantitative method -a questionnaire survey. Data is systematically collected from diverse tiers of supply chain stakeholders, encompassing end-customers, OEMs, Tier 0.5, Tier 1, and Tier 2 suppliers. Employing robust statistical data analysis methods, including mean values, mode values, standard deviation, one-way analysis of variance (ANOVA), and Pearson’s correlation analysis, the study interprets and extracts meaningful insights from the gathered data. Initial analyses challenge conventional notions, revealing that information distortion positively influences the definition of information quality, disrupting the established perception of distorted information as inherently low-quality. Further exploration through correlation analysis unveils the varied perspectives of different stakeholder tiers on the impact of information distortion on specific information quality dimensions. For instance, Tier 2 suppliers demonstrate strong positive correlations between information distortion and dimensions like access security, accuracy, interpretability, and timeliness. Conversely, Tier 1 suppliers emphasise strong negative influences on the security of accessing information and negligible impact on information timeliness. Tier 0.5 suppliers showcase very strong positive correlations with dimensions like conciseness and completeness, while OEMs exhibit limited interest in considering information distortion within the supply chain. Introducing social network analysis (SNA) provides a structural understanding of the relationships between information distortion and quality dimensions. The moderately high density of ‘information distortion-by-information quality’ underscores the interconnected nature of these factors. In conclusion, this study offers a nuanced exploration of information quality dimensions in the UK aerospace supply chain, highlighting the significance of individual perspectives across different tiers. The positive influence of information distortion challenges prevailing assumptions, fostering a more nuanced understanding of information's role in the Industry 4.0 landscape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20distortion" title="information distortion">information distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20quality" title=" information quality"> information quality</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20configuration" title=" supply chain configuration"> supply chain configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=UK%20aerospace%20industry" title=" UK aerospace industry"> UK aerospace industry</a> </p> <a href="https://publications.waset.org/abstracts/181451/deciphering-information-quality-unraveling-the-impact-of-information-distortion-in-the-uk-aerospace-supply-chains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5540</span> Status Report of the Express Delivery Industry in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Bo%20Xie">Ying Bo Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Hisa%20Yuki%20Kurokawa"> Hisa Yuki Kurokawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the fast development, China's express delivery industry has involved in a dilemma that the service quality are keeping decreasing while the construction rate of delivery network cannot meet the customers’ demand. In order to get out of this dilemma and enjoy a succession development rate, it is necessary to understand the current situation of China's express delivery industry. Firstly, the evolution of China's express delivery industry was systematical presented. Secondly, according to the number of companies and the amount of parcels they has dealt each year, the merits and faults of tow kind of operating pattern was analyzed. Finally, based on the characteristics of these express companies, the problems of China's express delivery industry was divided into several types and the countermeasures were given out respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=China" title="China">China</a>, <a href="https://publications.waset.org/abstracts/search?q=express%20delivery%20industry" title=" express delivery industry"> express delivery industry</a>, <a href="https://publications.waset.org/abstracts/search?q=status" title=" status"> status</a>, <a href="https://publications.waset.org/abstracts/search?q=problem" title=" problem"> problem</a> </p> <a href="https://publications.waset.org/abstracts/31014/status-report-of-the-express-delivery-industry-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5539</span> The Grit in the Glamour: A Qualitative Study of the Well-Being of Fashion Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emily%20Fortune%20Super">Emily Fortune Super</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameerah%20Khadaroo"> Ameerah Khadaroo</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurore%20Bardey"> Aurore Bardey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fashion models are often assumed to have a glamorous job with limited consideration for their well-being. This study aims to assess the well-being of models through semi-structured interviews with six professional fashion models and six industry professionals. Thematic analysis revealed that although models experienced improved self-confidence, they also reported heightened anxiety levels, body image issues, and the negative influence of modelling on their self-esteem. By contrast, industry professionals reported no or minimum concerns about anxious behaviours or the general well-being of fashion models. Being resilient as a model was perceived as an essential attribute to have by both models and industry professionals as they face recurrent rejection in this industry. These results demonstrate a significant gap in the current understanding of the well-being of fashion models between industry professionals and the models themselves. Findings imply that there is an inherent need for change in the modelling industry to promote and enhance their well-being. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20image" title="body image">body image</a>, <a href="https://publications.waset.org/abstracts/search?q=fashion%20industry" title=" fashion industry"> fashion industry</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=well-being" title=" well-being"> well-being</a> </p> <a href="https://publications.waset.org/abstracts/137709/the-grit-in-the-glamour-a-qualitative-study-of-the-well-being-of-fashion-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5538</span> Supply Chain Management Practices in Thailand Palm Oil Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athirat%20Intajorn">Athirat Intajorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the ASEAN free trade areas (AFTA), Thailand has applied the AFTA agreement for reducing tariffs and reflecting changes in business processes. The reflection of changes in agribusiness processes, in particular, has accumulated as production costs for producers. Palm Oil industry has become an important industry to Thailand economic. Thailand currently ranks the 3rd in the world for Crude Palm Oil CPO. Therefore, the scope of this paper presents a research framework to investigate the supply chain management practices in Thailand palm oil industry. This research is limit to literature review. And the proposed framework identifies the criteria of supply chain management for Thailand palm oil industry in order for linkage among entities within logistics management involving plantation, mill, collection port, refinery and cookie from the data utilization. The Supply Chain Management Practices in Thailand Palm Oil Industry framework has a somewhat different view due to the high complexity of agribusiness logistics management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=practice" title=" practice"> practice</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20industry" title=" palm oil industry"> palm oil industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand%20palm%20oil%20industry" title=" Thailand palm oil industry"> Thailand palm oil industry</a> </p> <a href="https://publications.waset.org/abstracts/74374/supply-chain-management-practices-in-thailand-palm-oil-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5537</span> Statistical Analysis of Failure Cases in Aerospace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Lv">J. H. Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20Wang"> W. Z. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.W.%20Liu"> S.W. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major concern in the aviation industry is the flight safety. Although great effort has been put onto the development of material and system reliability, the failure cases of fatal accidents still occur nowadays. Due to the complexity of the aviation system, and the interaction among the failure components, the failure analysis of the related equipment is a little difficult. This study focuses on surveying the failure cases in aviation, which are extracted from failure analysis journals, including Engineering Failure Analysis and Case studies in Engineering Failure Analysis, in order to obtain the failure sensitive factors or failure sensitive parts. The analytical results show that, among the failure cases, fatigue failure is the largest in number of occurrence. The most failed components are the disk, blade, landing gear, bearing, and fastener. The frequently failed materials consist of steel, aluminum alloy, superalloy, and titanium alloy. Therefore, in order to assure the safety in aviation, more attention should be paid to the fatigue failures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace" title="aerospace">aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=disk" title=" disk"> disk</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title=" failure analysis"> failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a> </p> <a href="https://publications.waset.org/abstracts/77819/statistical-analysis-of-failure-cases-in-aerospace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5536</span> Proposal for a Model of Economic Integration for the Development of Industry in Cabinda, Angola</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Bitebe">T. H. Bitebe</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Lima"> T. M. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Charrua-Santos"> F. Charrua-Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Matias%20Oliveira"> C. J. Matias Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to present a proposal for an economic integration model for the development of the manufacturing industry in Cabinda, Angola. It seeks to analyze the degree of economic integration of Cabinda and the dynamics of the manufacturing industry. Therefore, in the same way, to gather information to support the decision-making for public financing programs that will aim at the disengagement of the manufacturing industry in Angola and Cabinda in particular. The Cabinda Province is the 18<sup>th</sup> of Angola, the enclave is located in a privileged area of the African and arable land. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20integration" title="economic integration">economic integration</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20development" title=" industrial development"> industrial development</a>, <a href="https://publications.waset.org/abstracts/search?q=Cabinda%20industry" title=" Cabinda industry"> Cabinda industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Angola" title=" Angola"> Angola</a> </p> <a href="https://publications.waset.org/abstracts/89853/proposal-for-a-model-of-economic-integration-for-the-development-of-industry-in-cabinda-angola" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5535</span> Tourism Industry in Pakistan: Challenges Faced and Future Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misbah%20Shaheen">Misbah Shaheen</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Qureshi"> Anam Qureshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we will discuss the challenges faced by tourism industry in Pakistan. Tourism plays vital role in the socio-economic growth of a country. The countries of world, with less tourism opportunities are lagging behind from other nations of the world. Pakistan is one of those countries which rich in historical places, natural beauty, and uniqueness in handmade items and also of green forests. Present study will discuss the challenges being faced by tourism industry with special focus on hotel industry and law and order situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title="Pakistan">Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism"> tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=handmade%20items" title=" handmade items"> handmade items</a>, <a href="https://publications.waset.org/abstracts/search?q=hotel%20industry" title=" hotel industry"> hotel industry</a> </p> <a href="https://publications.waset.org/abstracts/25780/tourism-industry-in-pakistan-challenges-faced-and-future-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=185">185</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=186">186</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerospace%20industry&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10