CINXE.COM

Search results for: insulation performance

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: insulation performance</title> <meta name="description" content="Search results for: insulation performance"> <meta name="keywords" content="insulation performance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="insulation performance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="insulation performance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13063</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: insulation performance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13063</span> Insulation Properties of Rod-Plane Electrode Covered with ATH/SIR Nano-Composite in Dry-Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Yong%20Sim">Jae-Yong Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Hun%20Kwon"> Jung-Hun Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Sung%20Park"> Ji-Sung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Joe%20Lim"> Kee-Joe Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the latest trends for insulation systems to improve the insulation performance is the use of eco-friendly hybrid insulation using compressed dry-air. Despite the excellent insulation performance of sulphurhexafluoride (SF6) gas, its use has been restricted due to the problems with significant global warming potential (GWP). Accordingly, lightning impulse performance of the hybrid insulation system covered with an aluminum trihydrate/silicone rubber (ATH/SIR) nanocomposite was examined in air at atmospheric pressure and in compressed air at pressures between 0.2 and 0.6 MPa. In the experiments, the most common breakdown path took place along the surface of the covered rod. The insulation reliability after several discharges should be guaranteed in hybrid insulation. On the other hand, the surface of the covered rod was carbonized after several discharges. Therefore, nanoscale ATH can be used as a reinforcement of covered dielectrics to inhibit carbonization on the surface of a covered rod. The results were analyzed in terms of the surface resistivity of the cover dielectrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20insulation" title=" hybrid insulation"> hybrid insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ATH" title=" ATH"> ATH</a>, <a href="https://publications.waset.org/abstracts/search?q=dry-air" title=" dry-air"> dry-air</a> </p> <a href="https://publications.waset.org/abstracts/14050/insulation-properties-of-rod-plane-electrode-covered-with-athsir-nano-composite-in-dry-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13062</span> Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Na%20Hwang">Ju-Na Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Hae%20Park"> Min-Hae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Joe%20Lim"> Kee-Joe Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, High Voltage Direct Current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of Liquid Silicone Rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to Nano-Aluminum Trihydrate (ATH) was confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nano-filler dispersion state. The LSR nano-composite was prepared by compounding LSR filled nano-sized ATH filler. The DC insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20silicone%20rubber" title="liquid silicone rubber">liquid silicone rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-composite" title=" nano-composite"> nano-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC%20insulation" title=" HVDC insulation"> HVDC insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cable%20joints" title=" cable joints"> cable joints</a> </p> <a href="https://publications.waset.org/abstracts/6214/influence-of-nano-ath-on-electrical-performance-of-lsr-for-hvdc-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13061</span> The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bonsoo%20Koo">Bonsoo Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Shin%20Hong"> Seong Shin Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwon%20Lee"> Byung Kwon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floor%20impact%20sound" title="floor impact sound">floor impact sound</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20poly%20urethane" title=" thermoplastic poly urethane"> thermoplastic poly urethane</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20vinyl%20acetate" title=" ethylene vinyl acetate"> ethylene vinyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=heavyweight%20impact%20sound" title=" heavyweight impact sound"> heavyweight impact sound</a> </p> <a href="https://publications.waset.org/abstracts/84146/the-effect-of-floor-impact-sound-insulation-performance-using-scrambled-thermoplastic-poly-urethane-and-ethylene-vinyl-acetate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13060</span> Thermal Insulation, Sound Insulation, and Tensile Properties of Epoxy-Silica Aerogel and Epoxy-Polystyrene Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ucar">Mehmet Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuray%20Ucar"> Nuray Ucar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both thermal insulation and sound insulation play a key role in energy saving and the quality of life. In this study, the effects of different fillers, such as silica aerogel and polystyrene, on the tensile strength, thermal insulation, and sound insulation of epoxy composites have been analyzed. Results from the experimental studies show that both tensile strength and insulation properties (sound and thermal insulation) of the epoxy composite increased by the use of silica aerogel additive. Polystyrene additive significantly increases the sound absorption coefficient of the epoxy composite. Such composites offer great potential for many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20composite" title="epoxy composite">epoxy composite</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20aerogel" title=" silica aerogel"> silica aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20insulation" title=" sound insulation"> sound insulation</a> </p> <a href="https://publications.waset.org/abstracts/192633/thermal-insulation-sound-insulation-and-tensile-properties-of-epoxy-silica-aerogel-and-epoxy-polystyrene-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13059</span> [Keynote Talk]: Thermal Performance of Common Building Insulation Materials: Operating Temperature and Moisture Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maatouk%20Khoukhi">Maatouk Khoukhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An accurate prediction of the heat transfer through the envelope components of building is required to achieve an accurate cooling/heating load calculation which leads to precise sizing of the hvac equipment. This also depends on the accuracy of the thermal conductivity of the building insulation material. The proper use of thermal insulation in buildings (k-value) contribute significantly to reducing the HVAC size and consequently the annual energy cost. The first part of this paper presents an overview of building thermal insulation and their applications. The second part presents some results related to the change of the polystyrene insulation thermal conductivity with the change of the operating temperature and the moisture. Best-fit linear relationship of the k-value in term of the operating temperatures and different percentage of moisture content by weight has been established. The thermal conductivity of the polystyrene insulation material increases with the increase of both operating temperature and humidity content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20insulation%20material" title="building insulation material">building insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20temperature" title=" operating temperature"> operating temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/54803/keynote-talk-thermal-performance-of-common-building-insulation-materials-operating-temperature-and-moisture-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13058</span> Development of Water-Based Thermal Insulation Paints Using Silica Aerogel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Yanru">Lu Yanru</a>, <a href="https://publications.waset.org/abstracts/search?q=Handojo%20Djati%20Utomo"> Handojo Djati Utomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Xi%20Jiang"> Yin Xi Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xiaodong"> Li Xiaodong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation plays a key role in the sustainable building due to the contribution of energy consumption reduction. Without sufficient insulation, a great amount of the energy used to heat or cool a building will be lost to the outdoors. In this study, we developed a highly efficient thermal insulation paint with the incorporation of silica aerogel. Silica aerogel, with a low thermal conductivity of 0.01 W/mK, has been successfully prepared from the solid waste from the incineration plants. It has been added into water-based paints to increase its thermal insulation properties. To investigate the thermal insulation performance of silica aerogel additive, the paint samples were mixed with silica aerogel at different sizes and with various portions. The thermal conductivity, water resistance, thermal stability and adhesion strength of the samples were tested and evaluated. The thermal diffusivity measurements proved that adding silica aerogel additive could improve the thermal insulation properties of the paint significantly. Up to 5 ˚C reductions were observed after applying paints with silica aerogel additive compare to the one without it. The results showed that the developed thermal insulation paints have great potential for an application in green and sustainable building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica%20aerogel" title="silica aerogel">silica aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=water-based%20paints" title=" water-based paints"> water-based paints</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resistant" title=" water resistant"> water resistant</a> </p> <a href="https://publications.waset.org/abstracts/118598/development-of-water-based-thermal-insulation-paints-using-silica-aerogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13057</span> Assessing the Risk of Condensation and Moisture Accumulation in Solid Walls: Comparing Different Internal Wall Insulation Options</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Glew">David Glew</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Thomas"> Felix Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Brooke-Peat"> Matthew Brooke-Peat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the thermal performance of homes is seen as an essential step in achieving climate change, fuel security, fuel poverty targets. One of the most effective thermal retrofits is to insulate solid walls. However, it has been observed that applying insulation to the internal face of solid walls reduces the surface temperature of the inner wall leaf, which may introduce condensation risk and may interrupt seasonal moisture accumulation and dissipation. This research quantifies the extent to which the risk of condensation and moisture accumulation in the wall increases (which can increase the risk of timber rot) following the installation of six different types of internal wall insulation. In so doing, it compares how risk is affected by both the thermal resistance, thickness, and breathability of the insulation. Thermal bridging, surface temperatures, condensation risk, and moisture accumulation are evaluated using hygrothermal simulation software before and after the thermal upgrades. The research finds that installing internal wall insulation will always introduce some risk of condensation and moisture. However, it identifies that risks were present prior to insulation and that breathable materials and insulation with lower resistance have lower risks than alternative insulation options. The implications of this may be that building standards that encourage the enhanced thermal performance of solid walls may be introducing moisture risks into homes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation%20risk" title="condensation risk">condensation risk</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation" title=" hygrothermal simulation"> hygrothermal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20wall%20insulation" title=" internal wall insulation"> internal wall insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20bridging" title=" thermal bridging"> thermal bridging</a> </p> <a href="https://publications.waset.org/abstracts/127908/assessing-the-risk-of-condensation-and-moisture-accumulation-in-solid-walls-comparing-different-internal-wall-insulation-options" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13056</span> Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Yavari">Farzad Yavari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Chegini"> Hamid Chegini</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Lotfi"> Saeed Lotfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VPI" title="VPI">VPI</a>, <a href="https://publications.waset.org/abstracts/search?q=resin%20rich" title=" resin rich"> resin rich</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stator%20bar" title=" stator bar"> stator bar</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation%20factor" title=" dissipation factor"> dissipation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20endurance" title=" voltage endurance"> voltage endurance</a> </p> <a href="https://publications.waset.org/abstracts/104741/influence-of-insulation-system-methods-on-dissipation-factor-and-voltage-endurance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13055</span> Investigation of Long-Term Thermal Insulation Performance of Vacuum Insulation Panels with Various Enveloping Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inseok%20Yeo">Inseok Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Song"> Tae-Ho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To practically apply vacuum insulation panels (VIPs) to buildings or home appliances, VIPs have demanded long-term lifespan with outstanding insulation performance. Service lives of VIPs enveloped with Al-foil and three-layer Al-metallized envelope are calculated. For Al-foil envelope, the service life is longer but edge conduction is too large compared with the Al metallized envelope. To increase service life even more, the proposed double enveloping method and metal-barrier-added enveloping method are further analyzed. The service lives of the VIP to employ two enveloping methods are calculated. Also, pressure increase and thermal insulation performance characteristics are investigated. For the metal- barrier-added enveloping method, effective thermal conductivity increase with time is close to that of Al-foil envelope, especially, for getter-inserted VIPs. For the double enveloping method, if water vapor is perfectly adsorbed, the effect of service life enhancement becomes much greater. From these methods, the VIP can be guaranteed for the service life of more than 20 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation%20panels" title="vacuum insulation panels">vacuum insulation panels</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life" title=" service life"> service life</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20enveloping" title=" double enveloping"> double enveloping</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-barrier-added%20enveloping" title=" metal-barrier-added enveloping"> metal-barrier-added enveloping</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20conduction" title=" edge conduction"> edge conduction</a> </p> <a href="https://publications.waset.org/abstracts/19362/investigation-of-long-term-thermal-insulation-performance-of-vacuum-insulation-panels-with-various-enveloping-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13054</span> Machine Installation and Maintenance Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Benmostefa">Mohammed Benmostefa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the industrial production of large series or even medium series, there are vibration problems. In continuous operations, technical devices result in vibrations in solid bodies and machine components, which generate solid noise and/or airborne noise. This is because vibrations are the mechanical oscillations of an object near its equilibrium point. In response to the problems resulting from these vibrations, a number of remedial acts and solutions have been put forward. These include insulation of machines, insulation of concrete masses, insulation under screeds, insulation of sensitive equipment, point insulation of machines, linear insulation of machines, full surface insulation of machines, and the like. Following this, the researcher sought not only to raise awareness on the possibility of lowering the vibration frequency in industrial machines but also to stress the significance of procedures involving the pre-installation process of machinery, namely, setting appropriate installation and start-up methods of the machine, allocating and updating imprint folders to each machine, and scheduling maintenance of each machine all year round to have reliable equipment, gain cost reduction and maintenance efficiency to eventually ensure the overall economic performance of the company. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maintenance" title="maintenance">maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=machinery" title=" machinery"> machinery</a> </p> <a href="https://publications.waset.org/abstracts/172927/machine-installation-and-maintenance-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13053</span> A Hygrothermal Analysis and Structural Performance of Wood-Frame Wall Systems with Low-Permeance Exterior Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marko%20Spasojevic">Marko Spasojevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Hei%20Chui"> Ying Hei Chui</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuxiang%20Chen"> Yuxiang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing the level of exterior insulation in residential buildings is a popular way for improving the thermal characteristic of building enclosure and reducing heat loss. However, the layout and properties of materials composing the wall have a great effect on moisture accumulation within the wall cavity, long-term durability of a wall as well as the structural performance. A one-dimensional hygrothermal modeling has been performed to investigate moisture condensation risks and the drying capacity of standard 2&times;4 and 2&times;6 light wood-frame wall assemblies including exterior low-permeance extruded polystyrene (XPS) insulation. The analysis considered two different wall configurations whereby the rigid insulation board was placed either between Oriented Strand Board (OSB) sheathing and the stud or outboard to the structural sheathing. The thickness of the insulation varied between 0 mm and 50 mm and the analysis has been conducted for eight different locations in Canada, covering climate zone 4 through zone 8. Results show that the wall configuration with low-permeance insulation inserted between the stud and OSB sheathing accumulates more moisture within the stud cavity, compared to the assembly with the same insulation placed exterior to the sheathing. On the other hand, OSB moisture contents of the latter configuration were markedly higher. Consequently, the analysis of hygrothermal performance investigated and compared moisture accumulation in both the OSB and stud cavity. To investigate the structural performance of the wall and the effect of soft insulation layer inserted between the sheathing and framing, forty nail connection specimens were tested. Results have shown that both the connection strength and stiffness experience a significant reduction as the insulation thickness increases. These results will be compared with results from a full-scale shear wall tests in order to investigate if the capacity of shear walls with insulated sheathing would experience a similar reduction in structural capacities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20analysis" title="hygrothermal analysis">hygrothermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=insulated%20sheathing" title=" insulated sheathing"> insulated sheathing</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20performance" title=" moisture performance"> moisture performance</a>, <a href="https://publications.waset.org/abstracts/search?q=nail%20joints" title=" nail joints"> nail joints</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20shear%20wall" title=" wood shear wall"> wood shear wall</a> </p> <a href="https://publications.waset.org/abstracts/105975/a-hygrothermal-analysis-and-structural-performance-of-wood-frame-wall-systems-with-low-permeance-exterior-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13052</span> Hygrothermal Performance of Sheep Wool in Cold and Humid Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuchen%20Chen">Yuchen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehong%20Li"> Dehong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Li"> Bin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Rodrigue"> Denis Rodrigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20%28Alice%29%20Wang"> Xiaodong (Alice) Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sheep%20wool" title="sheep wool">sheep wool</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20performance" title=" hygrothermal performance"> hygrothermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=mould%20growth%20risk" title=" mould growth risk"> mould growth risk</a> </p> <a href="https://publications.waset.org/abstracts/164606/hygrothermal-performance-of-sheep-wool-in-cold-and-humid-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13051</span> Protection of Transformers Against Surge Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20S.%20Khopkar">Anil S. Khopkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20N.%20Soni"> Umesh N. Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surge voltage arises in the system either by switching operations of heavy load or by natural lightning. Surge voltages cause significant failure of power system equipment if adequate protection is not provided. A Surge Arrester is a device connected to a power system to protect the equipment against surge voltages. To protect the transformers against surge voltages, metal oxide surge arresters (MOSA) are connected across each terminal. Basic Insulation Level (BIL) has been defined in national and international standards of transformers based on their voltage rating. While designing transformer insulation, the BIL of the transformer, Surge arrester ratings and its operating voltage have to be considered. However, the performance of transformer insulation largely depends on the ratings of the surge arrester connected, the location of the surge arrester, the margin considered in the insulation design, the quantity of surge voltage strike, etc. This paper demonstrates the role of Surge arresters in the protection of transformers against over-voltage, transformer insulation design, optimum location of surge arresters and their connection lead length, Insulation coordination for transformer, protection margin in BIL and methods of protection of transformers against surge voltages, in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge%20voltage" title="surge voltage">surge voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20arresters" title=" surge arresters"> surge arresters</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20coordination" title=" insulation coordination"> insulation coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20margin" title=" protection margin"> protection margin</a> </p> <a href="https://publications.waset.org/abstracts/183790/protection-of-transformers-against-surge-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13050</span> The Performance of Typical Kinds of Coating of Printed Circuit Board under Accelerated Degradation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20Wang">Xiaohui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liwei%20Sun"> Liwei Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilin%20Zhang"> Guilin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Printed circuit board (PCB) is the carrier of electronic components. Its coating is the first barrier for protecting itself. If the coating is damaged, the performance of printed circuit board will decrease rapidly until failure. Therefore, the coating plays an important role in the entire printed circuit board. There are common four kinds of coating of printed circuit board that the material of the coatings are paryleneC, acrylic, polyurethane, silicone. In this paper, we designed an accelerated degradation test of humid and heat for these four kinds of coating. And chose insulation resistance, moisture absorption and surface morphology as its test indexes. By comparing the change of insulation resistance of the coating before and after the test, we estimate failure time of these coatings based on the degradation of insulation resistance. Based on the above, we estimate the service life of the four kinds of PCB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20board" title="printed circuit board">printed circuit board</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20assessment" title=" life assessment"> life assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20resistance" title=" insulation resistance"> insulation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20material" title=" coating material"> coating material</a> </p> <a href="https://publications.waset.org/abstracts/29607/the-performance-of-typical-kinds-of-coating-of-printed-circuit-board-under-accelerated-degradation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13049</span> The Influence of Water on the Properties of Cellulose Fibre Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Lopez%20Hurtado">Pablo Lopez Hurtado</a>, <a href="https://publications.waset.org/abstracts/search?q=Antroine%20Rouilly"> Antroine Rouilly</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginie%20Vandenbossche"> Virginie Vandenbossche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellulose fibre insulation is an eco-friendly building material made from recycled paper fibres, treated with borates for fungal and fire resistance. It is comparable in terms of thermal and acoustic performance to mineral wool insulation and other insulation materials based on non-renewable resources. The main method of application consists in separating and blowing the fibres in attics or closed wall cavities. Another method, known as the “wet spray method” is gaining interest. With this method the fibres are projected with pulverized water, which stick to the wall cavities. The issue with the wet spray technique is that the water dosage could be difficult to control. A high water dosage implies not only a longer drying time, depending on ambient conditions, but also a change in the performance of the material itself. In our work we studied the thermal and mechanical properties of wet spray-cellulose insulation in order to understand how water dosage could affect these properties. The material was first characterized to study the chemical and physical properties of the fibres. Then representative samples of wet sprayed cellulose with varying applied water dosage were subject to thermal conductivity and compression testing in order to better understand how changes in the fibres induced by drying can affect these properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20fibre" title="cellulose fibre">cellulose fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20paper" title=" recycled paper"> recycled paper</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20sorption" title=" moisture sorption"> moisture sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a> </p> <a href="https://publications.waset.org/abstracts/36337/the-influence-of-water-on-the-properties-of-cellulose-fibre-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13048</span> Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khoukhi">M. Khoukhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operating%20temperature" title="operating temperature">operating temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20insulation" title=" polystyrene insulation"> polystyrene insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title=" cooling load"> cooling load</a> </p> <a href="https://publications.waset.org/abstracts/43335/change-of-the-thermal-conductivity-of-polystyrene-insulation-in-term-of-temperature-at-the-mid-thickness-of-the-insulation-material-impact-on-the-cooling-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13047</span> Hygrothermal Assessment of Internally Insulated Prefabricated Concrete Wall in Polish Climatic Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Kaczorek">D. Kaczorek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internal insulation of external walls is often problematic due to increased moisture content in the wall and interstitial or surface condensation risk. In this paper, the hygrothermal performance of prefabricated, concrete, large panel, external wall typical for WK70 system, commonly used in Poland in the 70&rsquo;s, with inside, additional insulation was investigated. Thermal insulation board made out of hygroscopic, natural materials with moisture buffer capacity and extruded polystyrene (EPS) board was used as interior insulation. Experience with this natural insulation is rare in Poland. The analysis was performed using WUFI software. First of all, the impact of various standard boundary conditions on the behavior of the different wall assemblies was tested. The comparison of results showed that the moisture class according to the EN ISO 13788 leads to too high values of total moisture content in the wall since the boundary condition according to the EN 15026 should be usually applied. Then, hygrothermal 1D-simulations were conducted by WUFI Pro for analysis of internally added insulation, and the weak point like the joint of the wall with the concrete ceiling was verified using 2D simulations. Results showed that, in the Warsaw climate and the indoor conditions adopted in accordance with EN 15026, in the tested wall assemblies, regardless of the type of interior insulation, there would not be any problems with moisture - inside the structure and on the interior surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20large%20panel%20wall" title="concrete large panel wall">concrete large panel wall</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation" title=" hygrothermal simulation"> hygrothermal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20insulation" title=" internal insulation"> internal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20related%20issues" title=" moisture related issues"> moisture related issues</a> </p> <a href="https://publications.waset.org/abstracts/80225/hygrothermal-assessment-of-internally-insulated-prefabricated-concrete-wall-in-polish-climatic-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13046</span> Laboratory Evaluation of the Airborne Sound Insulation of Plasterboard Sandwich Panels Filled with Recycled Textile Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Trifonova%20Djambova">Svetlana Trifonova Djambova</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Bobeva%20Ivanova"> Natalia Bobeva Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Roumiana%20Asenova%20Zaharieva"> Roumiana Asenova Zaharieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small size acoustic chamber test method has been applied to experimentally evaluate and compare the airborne sound insulation provided by plasterboard sandwich panels filled with mineral wool and with its alternative from recycled textile material (produced by two different technologies). A sound source room is used as an original small-size acoustic chamber, specially built in a real-size room, utilized as a sound receiving room. The experimental results of one of the recycled textile material specimens have demonstrated sound insulation properties similar to those of the mineral wool specimen and even superior in the 1600-3150 Hz frequency range. This study contributes to the improvement of recycled textile material production, as well as to the synergy of heat insulation and sound insulation performances of building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20sound%20insulation" title="airborne sound insulation">airborne sound insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20insulation%20products" title=" heat insulation products"> heat insulation products</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20wool" title=" mineral wool"> mineral wool</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20textile%20material" title=" recycled textile material"> recycled textile material</a> </p> <a href="https://publications.waset.org/abstracts/165689/laboratory-evaluation-of-the-airborne-sound-insulation-of-plasterboard-sandwich-panels-filled-with-recycled-textile-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13045</span> Upgrading of Old Large Turbo Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shadmand">M. Shadmand</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Enayaty%20Ahangar"> T. Enayaty Ahangar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kazemi"> S. Kazemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation system of electrical machineries is the most critical point for their durability. Depending on generator nominal voltage, its insulation system is designed. In this research, a new stator insulation system is designed by new type of mica tapes which will consequently enables us to decrease the nominal ground-wall insulation thickness for the same voltage level. By keeping constant the slot area, it will be possible to increase the copper value in stator bars which will consequently able us to increase the nominal output current of turbo-generator. This will affect the cooling capability of machinery to some extent. But by considering the thermal conductivity of new insulating system which is improved, it is possible to increase the output power of generator up to 6% more. This research is done practically on a 200 MVA and 15.75 kV turbo-generators which its insulating system is Resin Rich (RR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulation%20system" title="insulation system">insulation system</a>, <a href="https://publications.waset.org/abstracts/search?q=resin%20rich" title=" resin rich"> resin rich</a>, <a href="https://publications.waset.org/abstracts/search?q=VPI" title=" VPI"> VPI</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading" title=" upgrading"> upgrading</a> </p> <a href="https://publications.waset.org/abstracts/35957/upgrading-of-old-large-turbo-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13044</span> Assessment of the Thermal and Mechanical Properties of Bio-based Composite Materials for Thermal Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nega%20Tesfie%20Asfaw">Nega Tesfie Asfaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Absi"> Rafik Absi</a>, <a href="https://publications.waset.org/abstracts/search?q=Labouda%20B.%20A"> Labouda B. A</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikram%20El%20Abbassi"> Ikram El Abbassi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials have come to the fore a few decades ago because of their superior insulation performances. Recycling natural fiber composites and natural fiber reinforcement of waste materials are other steps for conserving resources and the environment. This paper reviewed the Thermal properties (Thermal conductivity, Effusivity, and Diffusivity) and Mechanical properties (Compressive strength, Flexural strength, and Tensile strength) of bio-composite materials for thermal insulation in the construction industry. For several years, the development of the building materials industry has placed a special emphasis on bio-source materials. According to recent studies, most natural fibers have good thermal insulating qualities and good mechanical properties. To determine the thermal and mechanical performance of bio-composite materials in construction most research used experimental methods. the results of the study show that these natural fibers have allowed us to optimize energy consumption in a building and state that density, porosity, percentage of fiber, the direction of heat flow orientation of the fiber, and the shape of the specimen are the main elements that limit the thermal performance and also showed that density, porosity, Type of Fiber, Fiber length, orientation and weight percentage loading, Fiber-matrix adhesion, Choice of the polymer matrix, Presence of void are the main elements that limit the mechanical performance of the insulation material. Based on the results of this reviewed paper Moss fibers (0.034W/ (m. K)), Wood Fiber (0.043 W/ (m. K)), Wheat straw (0.046 W/ (m. K), and corn husk fibers (0.046 W/ (m. K) are a most promising solution for energy efficiency for construction industry with interesting insulation properties and with good acceptable mechanical properties. Finally, depending on the best fibers used for insulation applications in the construction sector, the thermal performance rate of various fibers reviewed in this article are analyzed. Due to Typha's high porosity, the results indicated that Typha australis fiber had a better thermal performance rate of 89.03% with clay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based%20materials" title="bio-based materials">bio-based materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a> </p> <a href="https://publications.waset.org/abstracts/191041/assessment-of-the-thermal-and-mechanical-properties-of-bio-based-composite-materials-for-thermal-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13043</span> Improvement of GVPI Insulation System Characteristics by Curing Process Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shadmand">M. Shadmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulation%20system" title="insulation system">insulation system</a>, <a href="https://publications.waset.org/abstracts/search?q=GVPI" title=" GVPI"> GVPI</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC" title=" PDC"> PDC</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/79906/improvement-of-gvpi-insulation-system-characteristics-by-curing-process-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13042</span> Development and Sound Absorption and Insulation Performance Evaluation of Nonwoven Fabric Material including Paper Honeycomb Structure for Insulator Covering Shelf Trim</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-Sung%20Lee">In-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Un-Hwan%20Park"> Un-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeok%20Heo"> Jun-Hyeok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Gyu%20Park"> Dae-Gyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulator Covering Shelf Trim is one of the automotive interior parts located in the rear seat of a car, and it is a component that is the most strongly demanded for impact resistance, strength, and heat resistance. Such an Insulator Covering Shelf Trim is composed of a polyethylene terephthalate (PET) nonwoven fabric which is a surface material appearing externally and a substrate layer which exerts shape and mechanical strength. In this paper, we develop a lightweight Insulator Covering Shelf Trim using the nonwoven fabric material with a high strength honeycomb structure and evaluate sound absorption and insulation performance by using acoustic impedance tubes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20and%20insulation" title="sound absorption and insulation">sound absorption and insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator%20covering%20shelf%20trim" title=" insulator covering shelf trim"> insulator covering shelf trim</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20fabric" title=" nonwoven fabric"> nonwoven fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb" title=" honeycomb"> honeycomb</a> </p> <a href="https://publications.waset.org/abstracts/59886/development-and-sound-absorption-and-insulation-performance-evaluation-of-nonwoven-fabric-material-including-paper-honeycomb-structure-for-insulator-covering-shelf-trim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">732</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13041</span> Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Henshall">Paul Henshall</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Eames"> Philip Eames</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Moss"> Roger Moss</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Shire"> Stan Shire</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Arya"> Farid Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Hyde"> Trevor Hyde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum" title="vacuum">vacuum</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=flat-plate%20solar%20collector" title=" flat-plate solar collector"> flat-plate solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a> </p> <a href="https://publications.waset.org/abstracts/48208/experimental-measurements-of-evacuated-enclosure-thermal-insulation-effectiveness-for-vacuum-flat-plate-solar-thermal-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13040</span> A New Perspective: The Use of Low-Cost Phase Change Material in Building Envelope System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20A.%20Chernousov">Andrey A. Chernousov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Y.%20B.%20Chan"> Ben Y. B. Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of the low-cost paraffinic phase change material can be rather effective in smart building envelopes in the South China region. Particular attention has to be paid to the PCM optimization as an exploitation conditions and the envelope insulation changes its thermal characteristics. The studied smart building envelope consists of a reinforced aluminum exterior, polymeric insulation foam, phase change material and reinforced interior gypsum board. A prototype sample was tested to validate the numerical scheme using EnergryPlus software. Three scenarios of insulation thermal resistance loss (ΔR/R = 0%, 25%, 50%) were compared with the different PCM thicknesses (tP=0, 1, 2.5, 5 mm). The comparisons were carried out for a west facing enveloped office building (50 storey). PCM optimization was applied to find the maximum efficiency for the different ΔR/R cases. It was found, during the optimization, that the PCM is an important smart component, lowering the peak energy demand up to 2.7 times. The results are not influenced by the insulation aging in terms of ΔR/R during long-term exploitation. In hot and humid climates like Hong Kong, the insulation core of the smart systems is recommended to be laminated completely. This can be very helpful in achieving an acceptable payback period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20building%20envelope" title="smart building envelope">smart building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20sandwich%20panel" title=" large-scale sandwich panel"> large-scale sandwich panel</a> </p> <a href="https://publications.waset.org/abstracts/29976/a-new-perspective-the-use-of-low-cost-phase-change-material-in-building-envelope-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">730</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13039</span> Printing Thermal Performance: An Experimental Exploration of 3DP Polymers for Facade Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeria%20Piccioni">Valeria Piccioni</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Leschok"> Matthias Leschok</a>, <a href="https://publications.waset.org/abstracts/search?q=Ina%20Cheibas"> Ina Cheibas</a>, <a href="https://publications.waset.org/abstracts/search?q=Illias%20Hischier"> Illias Hischier</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Dillenburger"> Benjamin Dillenburger</a>, <a href="https://publications.waset.org/abstracts/search?q=Arno%20Schlueter"> Arno Schlueter</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Kohler"> Matthias Kohler</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Gramazio"> Fabio Gramazio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decarbonisation of the building sector requires the development of building components that provide energy efficiency while producing minimal environmental impact. Recent advancements in large-scale 3D printing have shown that it is possible to fabricate components with embedded performances that can be tuned for their specific application. We investigate the potential of polymer 3D printing for the fabrication of translucent facade components. In this study, we explore the effect of geometry on thermal insulation of printed cavity structures following a Hot Box test method. The experimental results are used to calibrate a finite-element simulation model which can support the informed design of 3D printed insulation structures. We show that it is possible to fabricate components providing thermal insulation ranging from 1.7 to 0.95 W/m2K only by changing the internal cavity distribution and size. Moreover, we identify design guidelines that can be used to fabricate components for different climatic conditions and thermal insulation requirements. The research conducted provides the first insights into the thermal behaviour of polymer 3DP facades on a large scale. These can be used as design guidelines for further research toward performant and low-embodied energy 3D printed facade components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=facade%20components" title=" facade components"> facade components</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-box%20method" title=" hot-box method"> hot-box method</a> </p> <a href="https://publications.waset.org/abstracts/152216/printing-thermal-performance-an-experimental-exploration-of-3dp-polymers-for-facade-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13038</span> Flashover Voltage of Silicone Insulating Surface Covered by Water Drops under AC Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Aouabed">Fatiha Aouabed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Bayadi"> Abdelhafid Bayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Boudissa"> Rabah Boudissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, silicone rubber insulation materials are widely used in high voltage outdoor insulation systems as they can combat pollution flashover problems. The difference in pollution flashover performance of silicone rubber and other insulating materials is due to the way that water wets their surfaces. It resides as discrete drops on silicone rubber, and the mechanism of flashover is due to the breakdown of the air between the water drops and the distortion of these drops in the direction of the electric field which brings the insulation to degradation and failure. The main objective of this work is to quantify the effect of different types of water drops arrangements, their position and dry bands width on the flashover voltage of the silicone insulating surface with non-uniform electric field systems. The tests were carried out on a rectangular sample under AC voltage. A rod-rod electrode system is used. The findings of this work indicate that the performance of the samples decreases with the presence of water drops on their surfaces. Further, these experimental findings show that there is a limiting number of rows from which the flashover voltage of the insulation is minimal and constant. This minimum is a function of the distance between two successive rows. Finally, it is concluded that the system withstand voltage increases when the row of droplets on the electrode axis is removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=flashover" title=" flashover"> flashover</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20rubber%20insulators" title=" silicone rubber insulators"> silicone rubber insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20droplets" title=" water droplets"> water droplets</a> </p> <a href="https://publications.waset.org/abstracts/13301/flashover-voltage-of-silicone-insulating-surface-covered-by-water-drops-under-ac-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13037</span> Offline High Voltage Diagnostic Test Findings on 15MVA Generator of Basochhu Hydropower Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suprit%20Pradhan">Suprit Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tshering%20Yangzom"> Tshering Yangzom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even with availability of the modern day online insulation diagnostic technologies like partial discharge monitoring, the measurements like Dissipation Factor (tanδ), DC High Voltage Insulation Currents, Polarization Index (PI) and Insulation Resistance Measurements are still widely used as a diagnostic tools to assess the condition of stator insulation in hydro power plants. To evaluate the condition of stator winding insulation in one of the generators that have been operated since 1999, diagnostic tests were performed on the stator bars of 15 MVA generators of Basochhu Hydropower Plant. This paper presents diagnostic study done on the data gathered from the measurements which were performed in 2015 and 2016 as part of regular maintenance as since its commissioning no proper aging data were maintained. Measurement results of Dissipation Factor, DC High Potential tests and Polarization Index are discussed with regard to their effectiveness in assessing the ageing condition of the stator insulation. After a brief review of the theoretical background, the strengths of each diagnostic method in detecting symptoms of insulation deterioration are identified. The interesting results observed from Basochhu Hydropower Plant is taken into consideration to conclude that Polarization Index and DC High Voltage Insulation current measurements are best suited for the detection of humidity and contamination problems and Dissipation Factor measurement is a robust indicator of long-term ageing caused by oxidative degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipation%20Factor%20%28tan%CE%B4%29" title="dissipation Factor (tanδ)">dissipation Factor (tanδ)</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20Index%20%28PI%29" title=" polarization Index (PI)"> polarization Index (PI)</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20High%20Voltage%20Insulation%20Current" title=" DC High Voltage Insulation Current"> DC High Voltage Insulation Current</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20resistance%20%28IR%29" title=" insulation resistance (IR)"> insulation resistance (IR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Delta%20Tip-Up" title=" Tan Delta Tip-Up"> Tan Delta Tip-Up</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20absorption%20ratio" title=" dielectric absorption ratio"> dielectric absorption ratio</a> </p> <a href="https://publications.waset.org/abstracts/53740/offline-high-voltage-diagnostic-test-findings-on-15mva-generator-of-basochhu-hydropower-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13036</span> Mineral Thermal Insulation Materials Based on Sodium Liquid Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zin%20Min%20Htet">Zin Min Htet</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikhomirova%20Irina%20Nikolaevna"> Tikhomirova Irina Nikolaevna</a>, <a href="https://publications.waset.org/abstracts/search?q=Karpenko%20Marina%20A."> Karpenko Marina A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, thermal insulation materials based on sodium liquid glass with light fillers as foam glass granules with different sizes and wollastonite - M325 (U.S.A production) were studied. Effective mineral thermal insulation materials are in demand in many industries because of their incombustibility and durability. A method for the preparation of such materials based on mechanically foamed sodium liquid glass and light mineral fillers is proposed. The thermal insulation properties depend on the type, amount of filler and on the foaming factor, which is determined by the concentration of the foaming agent. The water resistance of the material is provided by using an additive to neutralize the glass and transfer it to the silica gel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation%20material" title="thermal insulation material">thermal insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20liquid%20glass" title=" sodium liquid glass"> sodium liquid glass</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20glass%20granules" title=" foam glass granules"> foam glass granules</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agent" title=" foaming agent"> foaming agent</a>, <a href="https://publications.waset.org/abstracts/search?q=hardener" title=" hardener"> hardener</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20density" title=" apparent density"> apparent density</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/92313/mineral-thermal-insulation-materials-based-on-sodium-liquid-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13035</span> Economical Analysis of Optimum Insulation Thickness for HVAC Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Kumar">D. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar"> S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Memon"> A. G. Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Memon"> R. A. Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Harijan"> K. Harijan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A considerable amount of energy is usually lost due to compression of insulation in Heating, ventilation, and air conditioning (HVAC) duct. In this paper, the economic impact of compression of insulation is estimated. Relevant mathematical models were used to estimate the optimal thickness at the points of compression. Furthermore, the payback period is calculated for the optimal thickness at the critical parts of supply air duct (SAD) and return air duct (RAD) considering natural gas (NG) and liquefied petroleum gas (LPG) as fuels for chillier operation. The mathematical model is developed using preliminary data obtained for an HVAC system of a pharmaceutical company. The higher heat gain and cooling loss, due to compression of thermal insulation, is estimated using relevant heat transfer equations. The results reveal that maximum energy savings (ES) in SAD is 34.5 and 40%, while in RAD is 22.9% and 29% for NG and LPG, respectively. Moreover, the minimum payback period (PP) for SAD is 2 and 1.6years, while in RAD is 4.3 and 2.7years for NG and LPG, respectively. The optimum insulation thickness (OIT) corresponding to maximum ES and minimum PP is estimated to be 35 and 42mm for SAD, while 30 and 38mm for RAD in case of NG and LPG, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20insulation%20thickness" title="optimum insulation thickness">optimum insulation thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost%20analysis" title=" life cycle cost analysis"> life cycle cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=payback%20period" title=" payback period"> payback period</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC%20system" title=" HVAC system"> HVAC system</a> </p> <a href="https://publications.waset.org/abstracts/92533/economical-analysis-of-optimum-insulation-thickness-for-hvac-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13034</span> New Insulation Material for Solar Thermal Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabila%20Ihaddadene">Nabila Ihaddadene</a>, <a href="https://publications.waset.org/abstracts/search?q=Razika%20Ihaddadene"> Razika Ihaddadene</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwahaab%20Betka"> Abdelwahaab Betka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20material" title=" insulation material"> insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=straw" title=" straw"> straw</a> </p> <a href="https://publications.waset.org/abstracts/33837/new-insulation-material-for-solar-thermal-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=435">435</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=436">436</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulation%20performance&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10