CINXE.COM
Search results for: hygrothermal simulation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hygrothermal simulation</title> <meta name="description" content="Search results for: hygrothermal simulation"> <meta name="keywords" content="hygrothermal simulation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hygrothermal simulation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hygrothermal simulation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5006</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hygrothermal simulation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5006</span> Hygrothermal Assessment of Internally Insulated Prefabricated Concrete Wall in Polish Climatic Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Kaczorek">D. Kaczorek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internal insulation of external walls is often problematic due to increased moisture content in the wall and interstitial or surface condensation risk. In this paper, the hygrothermal performance of prefabricated, concrete, large panel, external wall typical for WK70 system, commonly used in Poland in the 70’s, with inside, additional insulation was investigated. Thermal insulation board made out of hygroscopic, natural materials with moisture buffer capacity and extruded polystyrene (EPS) board was used as interior insulation. Experience with this natural insulation is rare in Poland. The analysis was performed using WUFI software. First of all, the impact of various standard boundary conditions on the behavior of the different wall assemblies was tested. The comparison of results showed that the moisture class according to the EN ISO 13788 leads to too high values of total moisture content in the wall since the boundary condition according to the EN 15026 should be usually applied. Then, hygrothermal 1D-simulations were conducted by WUFI Pro for analysis of internally added insulation, and the weak point like the joint of the wall with the concrete ceiling was verified using 2D simulations. Results showed that, in the Warsaw climate and the indoor conditions adopted in accordance with EN 15026, in the tested wall assemblies, regardless of the type of interior insulation, there would not be any problems with moisture - inside the structure and on the interior surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20large%20panel%20wall" title="concrete large panel wall">concrete large panel wall</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation" title=" hygrothermal simulation"> hygrothermal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20insulation" title=" internal insulation"> internal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20related%20issues" title=" moisture related issues"> moisture related issues</a> </p> <a href="https://publications.waset.org/abstracts/80225/hygrothermal-assessment-of-internally-insulated-prefabricated-concrete-wall-in-polish-climatic-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5005</span> Numerical Investigation of Hygrothermal Behavior on Porous Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faiza%20Mnasri">Faiza Mnasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamilia%20Abahri"> Kamilia Abahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20El%20Ganaoui"> Mohammed El Ganaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Slimane%20Gabsi"> Slimane Gabsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20diffusion" title=" moisture diffusion"> moisture diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a> </p> <a href="https://publications.waset.org/abstracts/44862/numerical-investigation-of-hygrothermal-behavior-on-porous-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5004</span> Experimental and Theoretical Study on Hygrothermal Aging Effect on Mechanical Behavior of Fiber Reinforced Plastic Laminates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Larbi">S. Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bensaada"> R. Bensaada</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Djebali"> S. Djebali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bilek"> A. Bilek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The manufacture of composite parts is a major issue in many industrial domains. Polymer composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. However, exposition to extreme environment conditions (temperature, humidity) affects mechanical properties of organic composite materials and lead to an undesirable degradation. Aging mechanisms in organic matrix are very diverse and vary according to the polymer and the aging conditions such as temperature, humidity etc. This paper studies the hygrothermal aging effect on the mechanical properties of fiber reinforced plastics laminates at 40 °C in different environment exposure. Two composite materials are used to conduct the study (carbon fiber/epoxy and glass fiber/vinyl ester with two stratifications for both the materials [904/04] and [454/04]). The experimental procedure includes a mechanical characterization of the materials in a virgin state and exposition of specimens to two environments (seawater and demineralized water). Absorption kinetics for the two materials and both the stratifications are determined. Three-point bending test is performed on the aged materials in order to determine the hygrothermal effect on the mechanical properties of the materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FRP%20laminates" title="FRP laminates">FRP laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20aging" title=" hygrothermal aging"> hygrothermal aging</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20laminates" title=" theory of laminates"> theory of laminates</a> </p> <a href="https://publications.waset.org/abstracts/49969/experimental-and-theoretical-study-on-hygrothermal-aging-effect-on-mechanical-behavior-of-fiber-reinforced-plastic-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5003</span> A Review on the Use of Salt in Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Pungercar">Vesna Pungercar</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Musso"> Florian Musso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt" title="salt">salt</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20material" title=" building material"> building material</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20properties" title=" hygrothermal properties"> hygrothermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/131197/a-review-on-the-use-of-salt-in-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5002</span> Assessing the Risk of Condensation and Moisture Accumulation in Solid Walls: Comparing Different Internal Wall Insulation Options</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Glew">David Glew</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Thomas"> Felix Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Brooke-Peat"> Matthew Brooke-Peat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the thermal performance of homes is seen as an essential step in achieving climate change, fuel security, fuel poverty targets. One of the most effective thermal retrofits is to insulate solid walls. However, it has been observed that applying insulation to the internal face of solid walls reduces the surface temperature of the inner wall leaf, which may introduce condensation risk and may interrupt seasonal moisture accumulation and dissipation. This research quantifies the extent to which the risk of condensation and moisture accumulation in the wall increases (which can increase the risk of timber rot) following the installation of six different types of internal wall insulation. In so doing, it compares how risk is affected by both the thermal resistance, thickness, and breathability of the insulation. Thermal bridging, surface temperatures, condensation risk, and moisture accumulation are evaluated using hygrothermal simulation software before and after the thermal upgrades. The research finds that installing internal wall insulation will always introduce some risk of condensation and moisture. However, it identifies that risks were present prior to insulation and that breathable materials and insulation with lower resistance have lower risks than alternative insulation options. The implications of this may be that building standards that encourage the enhanced thermal performance of solid walls may be introducing moisture risks into homes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation%20risk" title="condensation risk">condensation risk</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation" title=" hygrothermal simulation"> hygrothermal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20wall%20insulation" title=" internal wall insulation"> internal wall insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20bridging" title=" thermal bridging"> thermal bridging</a> </p> <a href="https://publications.waset.org/abstracts/127908/assessing-the-risk-of-condensation-and-moisture-accumulation-in-solid-walls-comparing-different-internal-wall-insulation-options" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5001</span> Hygrothermal Performance of Sheep Wool in Cold and Humid Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuchen%20Chen">Yuchen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehong%20Li"> Dehong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Li"> Bin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Rodrigue"> Denis Rodrigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20%28Alice%29%20Wang"> Xiaodong (Alice) Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sheep%20wool" title="sheep wool">sheep wool</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20performance" title=" hygrothermal performance"> hygrothermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=mould%20growth%20risk" title=" mould growth risk"> mould growth risk</a> </p> <a href="https://publications.waset.org/abstracts/164606/hygrothermal-performance-of-sheep-wool-in-cold-and-humid-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5000</span> Stress Analysis of Tubular Bonded Joints under Torsion and Hygrothermal Effects Using DQM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Mohieddin%20Ghomshei">Mansour Mohieddin Ghomshei</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Shahi"> Reza Shahi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laminated composite tubes with adhesively bonded joints are widely used in aerospace and automotive industries as well as oil and gas industries. In this research, adhesively tubular single lap joints subjected to torsional and hygrothermal loadings are studied using the differential quadrature method (DQM). The analysis is based on the classical shell theory. At first, an approximate closed form solution is developed by omitting the lateral deflections in the connecting tubes. Using the analytical model, the circumferential displacements in tubes and the shear stresses in the interfacing adhesive layer are determined. Then, a numerical formulation is presented using DQM in which the lateral deflections are taken into account. By using the DQM formulation, the circumferential and radial displacements in tubes as well as shear and peel stresses in the adhesive layer are calculated. Results obtained from the proposed DQM solutions are compared well with those of the approximate analytical model and those of some published references. Finally using the DQM model, parametric studies are carried out to investigate the influence of various parameters such as adhesive layer thickness, torsional loading, overlap length, tubes radii, relative humidity, and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesively%20bonded%20joint" title="adhesively bonded joint">adhesively bonded joint</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20quadrature%20method%20%28DQM%29" title=" differential quadrature method (DQM)"> differential quadrature method (DQM)</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal" title=" hygrothermal"> hygrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20composite%20tube" title=" laminated composite tube"> laminated composite tube</a> </p> <a href="https://publications.waset.org/abstracts/33196/stress-analysis-of-tubular-bonded-joints-under-torsion-and-hygrothermal-effects-using-dqm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4999</span> Hygrothermal Properties of Raw Earth Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ichrak%20Hamrouni">Ichrak Hamrouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ouahbi"> Tariq Ouahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalija%20Lhuissier"> Natalija Lhuissier</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C3%AFd%20Taibi"> Saïd Taibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrez%20Jemai"> Mehrez Jemai</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Crumeyrolle"> Olivier Crumeyrolle</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Zenzri"> Hatem Zenzri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw earth is the oldest building technique used for over 11 centuries, thanks to its various benefits. The most known raw earth construction technics are compressed earth blocks, rammed earth, raw earth concrete, and daub. The raw earth can be stabilized with hydraulic binders, mixed by fibers, or hyper-compacted in order to improve its mechanical behaviour. Moreover, raw earth is characterized by a low thermal conductivity what make it a good thermal insulator, and it has a very important capacity to condense and evaporate relative humidity. In this context, many researches have been developed. They have shown that the mechanical characteristics of earth materials increase with the hyper-compaction and adding fibers or hydraulic binders. Besides, other researches have been determined the thermal and hygroscopic properties of raw earth. They have shown that this material able to contribute to moisture and heat control in constructions. Its hygrothermal properties are better than fired earth bricks and concrete. The aim of this study is to evaluate the thermal and hygrometric behavior of raw earth material using experimental tests allows to determine the main Hygrothermal properties such as the water Vapour permeability and thermal conductivity and compare the results with those of other building materials such as fired clay bricks and cement concrete is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20earth%20material" title="raw earth material">raw earth material</a>, <a href="https://publications.waset.org/abstracts/search?q=hygro-thermal" title=" hygro-thermal"> hygro-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapour%20permeability" title=" water vapour permeability"> water vapour permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/143371/hygrothermal-properties-of-raw-earth-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4998</span> Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20Bouasria">Manal Bouasria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed-Hichem%20Benzaama"> Mohammed-Hichem Benzaama</a>, <a href="https://publications.waset.org/abstracts/search?q=Val%C3%A9rie%20Pralong"> Valérie Pralong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassine%20El%20Mendili"> Yassine El Mendili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=by%20products" title=" by products"> by products</a> </p> <a href="https://publications.waset.org/abstracts/149574/smart-technology-for-hygrothermal-performance-of-low-carbon-material-using-an-artificial-neural-network-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4997</span> A Hygrothermal Analysis and Structural Performance of Wood-Frame Wall Systems with Low-Permeance Exterior Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marko%20Spasojevic">Marko Spasojevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Hei%20Chui"> Ying Hei Chui</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuxiang%20Chen"> Yuxiang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing the level of exterior insulation in residential buildings is a popular way for improving the thermal characteristic of building enclosure and reducing heat loss. However, the layout and properties of materials composing the wall have a great effect on moisture accumulation within the wall cavity, long-term durability of a wall as well as the structural performance. A one-dimensional hygrothermal modeling has been performed to investigate moisture condensation risks and the drying capacity of standard 2×4 and 2×6 light wood-frame wall assemblies including exterior low-permeance extruded polystyrene (XPS) insulation. The analysis considered two different wall configurations whereby the rigid insulation board was placed either between Oriented Strand Board (OSB) sheathing and the stud or outboard to the structural sheathing. The thickness of the insulation varied between 0 mm and 50 mm and the analysis has been conducted for eight different locations in Canada, covering climate zone 4 through zone 8. Results show that the wall configuration with low-permeance insulation inserted between the stud and OSB sheathing accumulates more moisture within the stud cavity, compared to the assembly with the same insulation placed exterior to the sheathing. On the other hand, OSB moisture contents of the latter configuration were markedly higher. Consequently, the analysis of hygrothermal performance investigated and compared moisture accumulation in both the OSB and stud cavity. To investigate the structural performance of the wall and the effect of soft insulation layer inserted between the sheathing and framing, forty nail connection specimens were tested. Results have shown that both the connection strength and stiffness experience a significant reduction as the insulation thickness increases. These results will be compared with results from a full-scale shear wall tests in order to investigate if the capacity of shear walls with insulated sheathing would experience a similar reduction in structural capacities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20analysis" title="hygrothermal analysis">hygrothermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=insulated%20sheathing" title=" insulated sheathing"> insulated sheathing</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20performance" title=" moisture performance"> moisture performance</a>, <a href="https://publications.waset.org/abstracts/search?q=nail%20joints" title=" nail joints"> nail joints</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20shear%20wall" title=" wood shear wall"> wood shear wall</a> </p> <a href="https://publications.waset.org/abstracts/105975/a-hygrothermal-analysis-and-structural-performance-of-wood-frame-wall-systems-with-low-permeance-exterior-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4996</span> Wood as a Climate Buffer in a Supermarket</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristine%20Nore">Kristine Nore</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Severnisen"> Alexander Severnisen</a>, <a href="https://publications.waset.org/abstracts/search?q=Petter%20Arnestad"> Petter Arnestad</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitris%20Kraniotis"> Dimitris Kraniotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Roy%20Rosseb%C3%B8"> Roy Rossebø</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20buffer" title="climate buffer">climate buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20mass" title=" hygrothermal mass"> hygrothermal mass</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20forecast" title=" weather forecast"> weather forecast</a> </p> <a href="https://publications.waset.org/abstracts/87349/wood-as-a-climate-buffer-in-a-supermarket" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4995</span> Crack Size and Moisture Issues in Thermally Modified vs. Native Norway Spruce Window Frames: A Hygrothermal Simulation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gregor%20Vidmar">Gregor Vidmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ro%C5%BEle%20Repi%C4%8D"> Rožle Repič</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%C5%A1tjan%20Lesar"> Boštjan Lesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Miha%20Humar"> Miha Humar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigates the impact of cracks in surface coatings on moisture content (MC) and related fungal growth in window frames made of thermally modified (TM) and native Norway spruce using hygrothermal simulations for Ljubljana, Slovenia. Comprehensive validation against field test data confirmed the numerical model's predictions, demonstrating similar trends in MC changes over the investigated four years. Various established mould growth models (isopleth, VTT, bio hygrothermal) did not appropriately reflect differences between the spruce types because they do not consider material moisture content, leading to the main conclusion that TM spruce is more resistant to moisture-related issues. Wood's MC influences fungal decomposition, typically occurring above 25% - 30% MC, with some fungi growing at lower MC under conducive conditions. Surface coatings cannot wholly prevent water penetration, which becomes significant when the coating is damaged. This study investigates the detrimental effects of surface coating cracks on wood moisture absorption, comparing TM spruce and native spruce window frames. Simulations were conducted for undamaged and damaged coatings (from 1 mm to 9 mm wide cracks) on window profiles as well as for uncoated profiles. Sorption curves were also measured up to 95% of the relative humidity. MC was measured in the frames exposed to actual climatic conditions and compared to simulated data for model validation. The study utilizes a simplified model of the bottom frame part due to convergence issues with simulations of the whole frame. TM spruce showed about 4% lower MC content compared to native spruce. Simulations showed that a 3 mm wide crack in native spruce coatings for the north orientation poses significant moisture risks, while a 9 mm wide crack in TM spruce coatings remains acceptable furthermore in the case of uncoated TM spruce could be acceptable. In addition, it seems that large enough cracks may cause even worse moisture dynamics compared to uncoated native spruce profiles. The absorption curve comes out to be the far most influential parameter, and the next one is density. Existing mould growth models need to be upgraded to reflect wood material differences accurately. Due to the lower sorption curve of TM spruce, in reality, higher RH values are obtained under the same boundary conditions, which implies a more critical situation according to these mould growth models. Still, it does not reflect the difference in materials, especially under external exposure conditions. Even if different substrate categories in the isopleth and bio-hygrothermal model or different sensitivity material classes for standard and TM wood are used, it does not necessarily change the expected trends; thus, models with MC being the inherent part of the models should be introduced. Orientation plays a crucial role in moisture dynamics. Results show that for similar moisture dynamics, for Norway spruce, the crack could be about 2 mm wider on the south than on the north side. In contrast, for TM spruce, orientation isn't as important, compared to other material properties. The study confirms the enhanced suitability of TM spruce for window frames in terms of moisture resistance and crack tolerance in surface coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulations" title="hygrothermal simulations">hygrothermal simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=mould%20growth" title=" mould growth"> mould growth</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20coating" title=" surface coating"> surface coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermally%20modified%20wood" title=" thermally modified wood"> thermally modified wood</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20frame" title=" window frame"> window frame</a> </p> <a href="https://publications.waset.org/abstracts/190342/crack-size-and-moisture-issues-in-thermally-modified-vs-native-norway-spruce-window-frames-a-hygrothermal-simulation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4994</span> Evaluation of Air Movement, Humidity and Temperature Perceptions with the Occupant Satisfaction in Office Buildings in Hot and Humid Climate Regions by Means of Field Surveys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20S.%20Caetano">Diego S. Caetano</a>, <a href="https://publications.waset.org/abstracts/search?q=Doreen%20E.%20Kalz"> Doreen E. Kalz</a>, <a href="https://publications.waset.org/abstracts/search?q=Louise%20L.%20B.%20Lomardo"> Louise L. B. Lomardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Luiz%20P.%20Rosa"> Luiz P. Rosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy consumption in non-residential buildings in Brazil has a great impact on the national infrastructure. The growth of the energy consumption has a special role over the building cooling systems, supported by the increased people's requirements on hygrothermal comfort. This paper presents how the occupants of office buildings notice and evaluate the hygrothermic comfort regarding temperature, humidity, and air movement, considering the cooling systems presented at the buildings studied, analyzed by real occupants in areas of hot and humid climate. The paper presents results collected over a long time from 3 office buildings in the cities of Rio de Janeiro and Niteroi (Brazil) in 2015 and 2016, from daily questionnaires with eight questions answered by 114 people between 3 to 5 weeks per building, twice a day (10 a.m. and 3 p.m.). The paper analyses 6 out of 8 questions, emphasizing on the perception of temperature, humidity, and air movement. Statistics analyses were made crossing participant answers and humidity and temperature data related to time high time resolution time. Analyses were made from regressions comparing: internal and external temperature, and then compared with the answers of the participants. The results were put in graphics combining statistic graphics related to temperature and air humidity with the answers of the real occupants. Analysis related to the perception of the participants to humidity and air movements were also analyzed. The hygrothermal comfort statistic model of the European standard DIN EN 15251 and that from the Brazilian standard NBR 16401 were compared taking into account the perceptions of the hygrothermal comfort of the participants, with emphasis on air humidity, taking basis on prior studies published on this same research. The studies point out a relative tolerance for higher temperatures than the ones determined by the standards, besides a variation on the participants' perception concerning air humidity. The paper presents a group of detailed information that permits to improve the quality of the buildings based on the perception of occupants of the office buildings, contributing to the energy reduction without health damages and demands of necessary hygrothermal comfort, reducing the consumption of electricity on cooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title="thermal comfort">thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20standards" title=" energy standards"> energy standards</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20models" title=" comfort models"> comfort models</a> </p> <a href="https://publications.waset.org/abstracts/83193/evaluation-of-air-movement-humidity-and-temperature-perceptions-with-the-occupant-satisfaction-in-office-buildings-in-hot-and-humid-climate-regions-by-means-of-field-surveys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4993</span> A Review of Test Protocols for Assessing Coating Performance of Water Ballast Tank Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20A.%20Oriaifo">Emmanuel A. Oriaifo</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Perera"> Noel Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Guy"> Alan Guy</a>, <a href="https://publications.waset.org/abstracts/search?q=Pak.%20S.%20Leung"> Pak. S. Leung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kian%20T.%20Tan"> Kian T. Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concerns on corrosion and effective coating protection of double hull tankers and bulk carriers in service have been raised especially in water ballast tanks (WBTs). Test protocols/methodologies specifically that which is incorporated in the International Maritime Organisation (IMO), Performance Standard for Protective Coatings for Dedicated Sea Water ballast tanks (PSPC) are being used to assess and evaluate the performance of the coatings for type approval prior to their application in WBTs. However, some of the type approved coatings may be applied as very thick films to less than ideally prepared steel substrates in the WBT. As such films experience hygrothermal cycling from operating and environmental conditions, they become embrittled which may ultimately result in cracking. This embrittlement of the coatings is identified as an undesirable feature in the PSPC but is not mentioned in the test protocols within it. There is therefore renewed industrial research aimed at understanding this issue in order to eliminate cracking and achieve the intended coating lifespan of 15 years in good condition. This paper will critically review test protocols currently used for assessing and evaluating coating performance, particularly the IMO PSPC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20test" title="corrosion test">corrosion test</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20cycling" title=" hygrothermal cycling"> hygrothermal cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20test%20protocols" title=" coating test protocols"> coating test protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks" title=" water ballast tanks"> water ballast tanks</a> </p> <a href="https://publications.waset.org/abstracts/10871/a-review-of-test-protocols-for-assessing-coating-performance-of-water-ballast-tank-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4992</span> Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20N.%20Nackler">J. N. Nackler</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saleh%20Pascha"> K. Saleh Pascha</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Winter"> W. Winter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20insulation" title="internal insulation">internal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20fibre" title=" wood fibre"> wood fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulations" title=" hygrothermal simulations"> hygrothermal simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=condensate" title=" condensate"> condensate</a> </p> <a href="https://publications.waset.org/abstracts/9119/developing-of-ecological-internal-insulation-composite-boards-for-innovative-retrofitting-of-heritage-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4991</span> Indoor Microclimate in a Historic Library: Considerations on the Positive Effect of Historic Books on the Stability of Indoor Relative Humidity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magda%20Posani">Magda Posani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Do%20Rosario%20Veiga"> Maria Do Rosario Veiga</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasco%20Peixoto%20De%20Freitas"> Vasco Peixoto De Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented research considers the hygrothermal data acquired in the municipal library of Porto. The library is housed in an XVIII century convent and, among all the rooms in the construction, one, in particular, was chosen for the monitoring campaign because of the presence of a great number of historic books. Temperature and relative humidity, as well as CO₂ concentration, were measured for six consecutive months, in the period December 24th - June 24th. The indoor environment of the building is controlled with a heating and cooling system that is turned on only during the opening hours of the library. The ventilation rate is low because the windows are kept closed, and there is no forced ventilation. The micro-climate is analyzed in terms of users’ comfort and degradation risks for historic books and valuable building surfaces. Through a comparison between indoor and outdoor measured hygrothermal data, indoor relative humidity appears very stable. The influence of the hygroscopicity of books on the stabilization of indoor relative humidity is therefore investigated in detail. The paper finally discusses the benefits given by the presence of historic books in libraries with intermittent heating and cooling. The possibility of obtaining a comfortable and stable indoor climate with low use of HVAC systems in these conditions, while avoiding degradation risks for books and historic building components, is further debated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=books" title="books">books</a>, <a href="https://publications.waset.org/abstracts/search?q=historic%20buildings" title=" historic buildings"> historic buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=hygroscopicity" title=" hygroscopicity"> hygroscopicity</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a> </p> <a href="https://publications.waset.org/abstracts/110315/indoor-microclimate-in-a-historic-library-considerations-on-the-positive-effect-of-historic-books-on-the-stability-of-indoor-relative-humidity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4990</span> 156vdc to 110vac Sinusoidal Inverter Simulation and Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phinyo%20Mueangmeesap">Phinyo Mueangmeesap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes about pure sinusoidal inverter simulation and implementation from high voltage DC (156 Vdc). This simulation is to study and improve the efficiency of the inverter. By reducing the loss of power from boost converter in current inverter. The simulation is done by using the H-bridge circuit with pulse width modulate (PWM) signal and low-pass filter circuit. To convert the DC into AC. This paper used the PSCad for simulation. The result of simulation can be used to create prototype inverter by converting 156 Vdc to 110Vac. The inverter gives the output signal similar to the output from a simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverter%20simulation" title="inverter simulation">inverter simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM%20signal" title=" PWM signal"> PWM signal</a>, <a href="https://publications.waset.org/abstracts/search?q=single-phase%20inverter" title=" single-phase inverter"> single-phase inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=sinusoidal%20inverter" title=" sinusoidal inverter"> sinusoidal inverter</a> </p> <a href="https://publications.waset.org/abstracts/58872/156vdc-to-110vac-sinusoidal-inverter-simulation-and-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4989</span> Water Diffusivity in Amorphous Epoxy Resins: An Autonomous Basin Climbing-Based Simulation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Betim%20Bahtiri">Betim Bahtiri</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Arash"> B. Arash</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rolfes"> R. Rolfes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxy-based materials are frequently exposed to high-humidity environments in many engineering applications. As a result, their material properties would be degraded by water absorption. A full characterization of the material properties under hygrothermal conditions requires time- and cost-consuming experimental tests. To gain insights into the physics of diffusion mechanisms, atomistic simulations have been shown to be effective tools. Concerning the diffusion of water in polymers, spatial trajectories of water molecules are obtained from molecular dynamics (MD) simulations allowing the interpretation of diffusion pathways at the nanoscale in a polymer network. Conventional MD simulations of water diffusion in amorphous polymers lead to discrepancies at low temperatures due to the short timescales of the simulations. In the proposed model, this issue is solved by using a combined scheme of autonomous basin climbing (ABC) with kinetic Monte Carlo and reactive MD simulations to investigate the diffusivity of water molecules in epoxy resins across a wide range of temperatures. It is shown that the proposed simulation framework estimates kinetic properties of water diffusion in epoxy resins that are consistent with experimental observations and provide a predictive tool for investigating the diffusion of small molecules in other amorphous polymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resins" title="epoxy resins">epoxy resins</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20diffusion" title=" water diffusion"> water diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20basin%20climbing" title=" autonomous basin climbing"> autonomous basin climbing</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20Monte%20Carlo" title=" kinetic Monte Carlo"> kinetic Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20molecular%20dynamics" title=" reactive molecular dynamics"> reactive molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/146647/water-diffusivity-in-amorphous-epoxy-resins-an-autonomous-basin-climbing-based-simulation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4988</span> Influence of Humidity on Environmental Sustainability, Air Quality and Occupant Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Cintura">E. Cintura</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Gomes"> M. I. Gomes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, sustainable development issues have a key role in the planning of the man-made environment. Ensuring this development means limiting the impact of human activity on nature. It is essential to secure healthy places and good living conditions. For these reasons, indoor air quality and building materials play a fundamental role in sustainable architectural projects. These factors significantly affect human health: they can radically change the quality of the internal environment and energy consumption. The use of natural materials such as earth has many beneficial aspects in comfort and indoor air quality. As well as advantages in the environmental impact of the construction, they ensure a low energy consumption. Since they are already present in nature, their production and use do not require a high-energy consumption. Furthermore, they have a high thermo-hygrometric capacity, being able to absorb moisture, contributing positively to indoor conditions. Indoor air quality is closely related to relative humidity. For these reasons, it can be affirmed that the use of earth materials guarantees a sustainable development and at the same time improves the health of the building users. This paper summarizes several researches that demonstrate the importance of indoor air quality for human health and how it strictly depends on the building materials used. Eco-efficient plasters are also considered: earth and ash mortar. The bibliography consulted has the objective of supporting future experimental and laboratory analyzes. It is necessary to carry on with research by the use of simulations and testing to confirm the hygrothermal properties of eco-efficient plasters and therefore their ability to improve indoor air quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hygroscopicity" title="hygroscopicity">hygroscopicity</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20comfort" title=" hygrothermal comfort"> hygrothermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=plaster" title=" plaster"> plaster</a> </p> <a href="https://publications.waset.org/abstracts/117520/influence-of-humidity-on-environmental-sustainability-air-quality-and-occupant-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4987</span> Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20E.%20Amirzadeh">Amir E. Amirzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20K.%20Strand"> Richard K. Strand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20analysis" title="hygrothermal analysis">hygrothermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20enclosure" title=" building enclosure"> building enclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=hospitals" title=" hospitals"> hospitals</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20and%20visualization" title=" optimization and visualization"> optimization and visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20and%20decision%20making" title=" uncertainty and decision making"> uncertainty and decision making</a> </p> <a href="https://publications.waset.org/abstracts/166593/hygrothermal-interactions-and-energy-consumption-in-cold-climate-hospitals-integrating-numerical-analysis-and-case-studies-to-investigate-and-analyze-the-impact-of-air-leakage-and-vapor-retarding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4986</span> Simulation Programs to Education of Crisis Management Members</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Barta">Jiri Barta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a simulation programs and technologies using in the educational process for members of the crisis management. Risk analysis, simulation, preparation and planning are among the main activities of workers of crisis management. Made correctly simulation of emergency defines the extent of the danger. On this basis, it is possible to effectively prepare and plan measures to minimize damage. The paper is focused on simulation programs that are trained at the University of Defence. Implementation of the outputs from simulation programs in decision-making processes of crisis staffs is one of the main tasks of the research project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management" title="crisis management">crisis management</a>, <a href="https://publications.waset.org/abstracts/search?q=continuity" title=" continuity"> continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure" title=" critical infrastructure"> critical infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=dangerous%20substance" title=" dangerous substance"> dangerous substance</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20programs" title=" simulation programs"> simulation programs</a> </p> <a href="https://publications.waset.org/abstracts/18144/simulation-programs-to-education-of-crisis-management-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4985</span> A Saturation Attack Simulation on a Navy Warship Based on Discrete-Event Simulation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yawei%20Liang">Yawei Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Threat from cruise missiles is among the most dangerous considerations to a warship in the modern era: anti-ship cruise missiles are fast, accurate, and extremely destructive. In this paper, the goal was to use an object-orientated environment to program a simulation to model a scenario in which a lone frigate is attacked by a wave of missiles fired at given intervals. The parameters of the simulation are modified to examine the relationships between different variables in the situation, and an analysis is performed on various aspects of the defending ship’s equipment. Finally, the results are presented, along with a brief discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=naval%20resource%20management" title=" naval resource management"> naval resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=weapon-target%20allocation%2Fassignment" title=" weapon-target allocation/assignment"> weapon-target allocation/assignment</a> </p> <a href="https://publications.waset.org/abstracts/159439/a-saturation-attack-simulation-on-a-navy-warship-based-on-discrete-event-simulation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4984</span> Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20T.%20Taher">Mohammed T. Taher</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ghani"> Usman Ghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Khan"> Ahmed S. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students’ learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students’ learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation-based%20teaching" title="simulation-based teaching">simulation-based teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=hands-on%20learning" title=" hands-on learning"> hands-on learning</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback-based%20learning" title=" feedback-based learning"> feedback-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffolding" title=" scaffolding"> scaffolding</a> </p> <a href="https://publications.waset.org/abstracts/41173/simulation-versus-hands-on-learning-methodologies-a-comparative-study-for-engineering-and-technology-curricula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4983</span> Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Patrascioiu">C. Patrascioiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim<sup>®</sup> Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim<sup>®</sup> Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation" title="distillation">distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pump" title=" heat pump"> heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=unisim%20design" title=" unisim design"> unisim design</a> </p> <a href="https://publications.waset.org/abstracts/42425/modelling-and-simulation-of-the-freezing-systems-and-heat-pumps-using-unisim-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4982</span> Distributed Actor System for Traffic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Wang">Han Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuoxian%20Dai"> Zhuoxian Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Zhu"> Zhe Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhang"> Hui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Zeng"> Zhenyu Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actor%20system" title="actor system">actor system</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20system" title=" distributed system"> distributed system</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/128664/distributed-actor-system-for-traffic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4981</span> Optimizing Coal Yard Management Using Discrete Event Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqbal%20Felani">Iqbal Felani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Coal-Fired Power Plant has some integrated facilities to handle coal from three separated coal yards to eight units power plant’s bunker. But nowadays the facilities are not reliable enough for supporting the system. Management planned to invest some facilities to increase the reliability. They also had a plan to make single spesification of coal used all of the units, called Single Quality Coal (SQC). This simulation would compare before and after improvement with two scenarios i.e First In First Out (FIFO) and Last In First Out (LIFO). Some parameters like stay time, reorder point and safety stock is determined by the simulation. Discrete event simulation based software, Flexsim 5.0, is used to help the simulation. Based on the simulation, Single Quality Coal with FIFO scenario has the shortest staytime with 8.38 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coal%20Yard%20Management" title="Coal Yard Management">Coal Yard Management</a>, <a href="https://publications.waset.org/abstracts/search?q=Discrete%20event%20simulation%20First%20In%20First%20Out" title=" Discrete event simulation First In First Out"> Discrete event simulation First In First Out</a>, <a href="https://publications.waset.org/abstracts/search?q=Last%20In%20First%20Out." title=" Last In First Out. "> Last In First Out. </a> </p> <a href="https://publications.waset.org/abstracts/20725/optimizing-coal-yard-management-using-discrete-event-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4980</span> Object-Oriented Programming for Modeling and Simulation of Systems in Physiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandez%20de%20Canete">J. Fernandez de Canete</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Object-oriented modeling is spreading in the current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper, we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed-loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object-oriented%20modeling" title="object-oriented modeling">object-oriented modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SIMSCAPE%20simulation%20language" title=" SIMSCAPE simulation language"> SIMSCAPE simulation language</a>, <a href="https://publications.waset.org/abstracts/search?q=MODELICA%20simulation%20language" title=" MODELICA simulation language"> MODELICA simulation language</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20system" title=" cardiovascular system"> cardiovascular system</a> </p> <a href="https://publications.waset.org/abstracts/28645/object-oriented-programming-for-modeling-and-simulation-of-systems-in-physiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4979</span> Architecture Design of the Robots Operability Assessment Simulation Testbed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Yeong%20Choi">Sang Yeong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo%20Sung%20Park"> Woo Sung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the architecture design of the robot operability assessment simulation testbed (called "ROAST") for the resolution of robot operability problems occurred during interactions between human operators and robots. The basic idea of the ROAST architecture design is to enable the easy composition of legacy or new simulation models according to its purpose. ROAST architecture is based on IEEE1516 High Level Architecture (HLA) of defense modeling and simulation. The ROAST architecture is expected to provide the foundation framework for the easy construction of a simulation testbed to order to assess the robot operability during the robotic system design. Some of ROAST implementations and its usefulness are demonstrated through a simple illustrative example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic%20system" title="robotic system">robotic system</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20simulation" title=" modeling and simulation"> modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20architecture" title=" simulation architecture"> simulation architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=operability%20assessment" title=" operability assessment"> operability assessment</a> </p> <a href="https://publications.waset.org/abstracts/54046/architecture-design-of-the-robots-operability-assessment-simulation-testbed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4978</span> Role of Discrete Event Simulation in the Assessment and Selection of the Potential Reconfigurable Manufacturing Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Raza">Mohsin Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Arne%20Bilberg"> Arne Bilberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Ditlev%20Brun%C3%B8"> Thomas Ditlev Brunø</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann-Louise%20Andersen"> Ann-Louise Andersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Filip%20SK%C3%A4rin"> Filip SKärin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shifting from a dedicated or flexible manufacturing system to a reconfigurable manufacturing system (RMS) requires a significant amount of time, money, and effort. Therefore, it is vital to verify beforehand that the potential reconfigurable solution will be able to achieve the organizational objectives. Discrete event simulation offers the opportunity of assessing several reconfigurable alternatives against the set objectives. This study signifies the importance of using discrete-event simulation as a tool to verify several reconfiguration options. Two different industrial cases have been presented in the study to elaborate on the role of discrete event simulation in the implementation methodology of RMSs. The study concluded that discrete event simulation is one of the important tools to consider in the RMS implementation methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20manufacturing%20system" title="reconfigurable manufacturing system">reconfigurable manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title=" discrete event simulation"> discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tecnomatix%20plant%20simulation" title=" Tecnomatix plant simulation"> Tecnomatix plant simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=RMS" title=" RMS"> RMS</a> </p> <a href="https://publications.waset.org/abstracts/150254/role-of-discrete-event-simulation-in-the-assessment-and-selection-of-the-potential-reconfigurable-manufacturing-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4977</span> Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama">Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=I%20Made%20Gatot%20Karohika"> I Made Gatot Karohika</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinori%20Sato"> Akinori Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Didik%20Nurhadiyanto"> Didik Nurhadiyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20width" title="contact width">contact width</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20gasket" title=" metal gasket"> metal gasket</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated" title=" corrugated"> corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/42429/development-of-25a-size-three-layer-metal-gasket-by-using-fem-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=166">166</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=167">167</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>