CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 317 results for author: <span class="mathjax">Jarvis, M J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Jarvis%2C+M+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jarvis, M J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jarvis%2C+M+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jarvis, M J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17311">arXiv:2411.17311</a> <span> [<a href="https://arxiv.org/pdf/2411.17311">pdf</a>, <a href="https://arxiv.org/format/2411.17311">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> MeerKAT discovery of a MIGHTEE Odd Radio Circle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Norris%2C+R+P">Ray P. Norris</a>, <a href="/search/astro-ph?searchtype=author&query=Koribalski%2C+B+S">B盲rbel S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">Catherine L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Macgregor%2C+P+J">Peter J. Macgregor</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+A+R">A. Russell Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17311v1-abstract-short" style="display: inline;"> We present the discovery of a new Odd Radio Circle (ORC J0219--0505) in 1.2~GHz radio continuum data from the MIGHTEE survey taken with the MeerKAT telescope. The radio-bright host is a massive elliptical galaxy, which shows extended stellar structure, possibly tidal tails or shells, suggesting recent interactions or mergers. The radio ring has a diameter of 35", corresponding to 114~kpc at the ho… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17311v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17311v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17311v1-abstract-full" style="display: none;"> We present the discovery of a new Odd Radio Circle (ORC J0219--0505) in 1.2~GHz radio continuum data from the MIGHTEE survey taken with the MeerKAT telescope. The radio-bright host is a massive elliptical galaxy, which shows extended stellar structure, possibly tidal tails or shells, suggesting recent interactions or mergers. The radio ring has a diameter of 35", corresponding to 114~kpc at the host galaxy redshift of $z_{\rm spec} = 0.196$. This MIGHTEE ORC is a factor 3--5 smaller than previous ORCs with central elliptical galaxies. The discovery of this MIGHTEE ORC in a deep but relatively small-area radio survey implies that more ORCs will be found in deeper surveys. While the small numbers currently available are insufficient to estimate the flux density distribution, this is consistent with the simplest hypothesis that ORCs have a flux density distribution similar to that of the general population of extragalactic radio sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17311v1-abstract-full').style.display = 'none'; document.getElementById('2411.17311v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by MNRAS Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14940">arXiv:2411.14940</a> <span> [<a href="https://arxiv.org/pdf/2411.14940">pdf</a>, <a href="https://arxiv.org/format/2411.14940">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: The star-forming properties of HI selected galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Tudorache%2C+M+N">Madalina N. Tudorache</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">A. A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">N. Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">B. S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Baes%2C+M">M. Baes</a>, <a href="/search/astro-ph?searchtype=author&query=Dave%2C+R">R. Dave</a>, <a href="/search/astro-ph?searchtype=author&query=Jung%2C+S+L">S. L. Jung</a>, <a href="/search/astro-ph?searchtype=author&query=Maksymowicz-Maciata%2C+M">M. Maksymowicz-Maciata</a>, <a href="/search/astro-ph?searchtype=author&query=Pan%2C+H">H. Pan</a>, <a href="/search/astro-ph?searchtype=author&query=Spekkens%2C+K">K. Spekkens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14940v1-abstract-short" style="display: inline;"> The interplay between atomic gas, the star-formation history of a galaxy and its environment are intrinsically linked, and we need to decouple these dependencies to understand their role in galaxy formation and evolution. In this paper, we analyse the star formation histories (SFHs) of 187 galaxies from the MIGHTEE-HI Survey Early Science Release data, focusing on the relationships between HI prop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14940v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14940v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14940v1-abstract-full" style="display: none;"> The interplay between atomic gas, the star-formation history of a galaxy and its environment are intrinsically linked, and we need to decouple these dependencies to understand their role in galaxy formation and evolution. In this paper, we analyse the star formation histories (SFHs) of 187 galaxies from the MIGHTEE-HI Survey Early Science Release data, focusing on the relationships between HI properties and star formation. A strong correlation emerges between a galaxy's HI-to-stellar mass ratio and the time of formation, alongside an inverse correlation between stellar mass and time of formation, regardless of the inferred SFH. Additionally, galaxies with lower stellar masses and higher HI-to-stellar mass ratios exhibit longer gas depletion times compared to more massive galaxies, which appear to have depleted their gas and formed stars more efficiently. This suggests that smaller, gas-rich galaxies have higher depletion times due to shallower potential wells and less efficient star formation. Furthermore, we explore the connection between spin-filament alignment and HI content. We find no significant correlation between peak star formation activity and proximity to filaments. However, we do find that the two galaxies in our sample within 1 Mpc of a filament have very low gas-depletion timescales and have their spin axis misaligned with the filament, suggestive of a link between the galaxy properties and proximity to a filament. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14940v1-abstract-full').style.display = 'none'; document.getElementById('2411.14940v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to MNRAS; 14 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08974">arXiv:2411.08974</a> <span> [<a href="https://arxiv.org/pdf/2411.08974">pdf</a>, <a href="https://arxiv.org/format/2411.08974">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> HETDEX-LOFAR Spectroscopic Redshift Catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Debski%2C+M+H">Maya H. Debski</a>, <a href="/search/astro-ph?searchtype=author&query=Zeimann%2C+G+R">Gregory R. Zeimann</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+G+J">Gary J. Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Schneider%2C+D+P">Donald P. Schneider</a>, <a href="/search/astro-ph?searchtype=author&query=Morabito%2C+L">Leah Morabito</a>, <a href="/search/astro-ph?searchtype=author&query=Dalton%2C+G">Gavin Dalton</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Cooper%2C+E+M">Erin Mentuch Cooper</a>, <a href="/search/astro-ph?searchtype=author&query=Ciardullo%2C+R">Robin Ciardullo</a>, <a href="/search/astro-ph?searchtype=author&query=Gawiser%2C+E">Eric Gawiser</a>, <a href="/search/astro-ph?searchtype=author&query=Jurlin%2C+N">Nika Jurlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08974v1-abstract-short" style="display: inline;"> We combine the power of blind integral field spectroscopy from the Hobby-Eberly Telescope (HET) Dark Energy Experiment (HETDEX) with sources detected by the Low Frequency Array (LOFAR) to construct the HETDEX-LOFAR Spectroscopic Redshift Catalog. Starting from the first data release of the LOFAR Two-metre Sky Survey (LoTSS), including a value-added catalog with photometric redshifts, we extracted… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08974v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08974v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08974v1-abstract-full" style="display: none;"> We combine the power of blind integral field spectroscopy from the Hobby-Eberly Telescope (HET) Dark Energy Experiment (HETDEX) with sources detected by the Low Frequency Array (LOFAR) to construct the HETDEX-LOFAR Spectroscopic Redshift Catalog. Starting from the first data release of the LOFAR Two-metre Sky Survey (LoTSS), including a value-added catalog with photometric redshifts, we extracted 28,705 HETDEX spectra. Using an automatic classifying algorithm, we assigned each object a star, galaxy, or quasar label along with a velocity/redshift, with supplemental classifications coming from the continuum and emission line catalogs of the internal, fourth data release from HETDEX (HDR4). We measured 9,087 new redshifts; in combination with the value-added catalog, our final spectroscopic redshift sample is 9,710 sources. This new catalog contains the highest substantial fraction of LOFAR galaxies with spectroscopic redshift information; it improves archival spectroscopic redshifts, and facilitates research to determine the [O II] emission properties of radio galaxies from $0.0 < z < 0.5$, and the Ly$伪$ emission characteristics of both radio galaxies and quasars from $1.9 < z < 3.5$. Additionally, by combining the unique properties of LOFAR and HETDEX, we are able to measure star formation rates (SFR) and stellar masses. Using the Visible Integral-field Replicable Unit Spectrograph (VIRUS), we measure the emission lines of [O III], [Ne III], and [O II] and evaluate line-ratio diagnostics to determine whether the emission from these galaxies is dominated by AGN or star formation and fit a new SFR-L$_{150MHz}$ relationship. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08974v1-abstract-full').style.display = 'none'; document.getElementById('2411.08974v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06813">arXiv:2411.06813</a> <span> [<a href="https://arxiv.org/pdf/2411.06813">pdf</a>, <a href="https://arxiv.org/format/2411.06813">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> A spatially-resolved spectral analysis of giant radio galaxies with MeerKAT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Charlton%2C+K+K+L">K. K. L. Charlton</a>, <a href="/search/astro-ph?searchtype=author&query=Delhaize%2C+J">J. Delhaize</a>, <a href="/search/astro-ph?searchtype=author&query=Thorat%2C+K">K. Thorat</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Hardcastle%2C+M+J">M. J. Hardcastle</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+F">Fangxia An</a>, <a href="/search/astro-ph?searchtype=author&query=Delvecchio%2C+I">I. Delvecchio</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">I. H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Br%C3%BCggen%2C+M">M. Br眉ggen</a>, <a href="/search/astro-ph?searchtype=author&query=Marchetti%2C+L">L. Marchetti</a>, <a href="/search/astro-ph?searchtype=author&query=Morabito%2C+L">L. Morabito</a>, <a href="/search/astro-ph?searchtype=author&query=Randriamanakoto%2C+Z">Z. Randriamanakoto</a>, <a href="/search/astro-ph?searchtype=author&query=White%2C+S+V">S. V. White</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+A+R">A. R. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06813v1-abstract-short" style="display: inline;"> In this study we report spatially resolved, wideband spectral properties of three giant radio galaxies (GRGs) in the COSMOS field: MGTC J095959.63+024608.6 , MGTC J100016.84+015133.0 and MGTC J100022.85+031520.4. One such galaxy MGTC J100022.85+031520.4 is reported here for the first time with a projected linear size of 1.29 Mpc at a redshift of 0.1034. Unlike the other two, it is associated with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06813v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06813v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06813v1-abstract-full" style="display: none;"> In this study we report spatially resolved, wideband spectral properties of three giant radio galaxies (GRGs) in the COSMOS field: MGTC J095959.63+024608.6 , MGTC J100016.84+015133.0 and MGTC J100022.85+031520.4. One such galaxy MGTC J100022.85+031520.4 is reported here for the first time with a projected linear size of 1.29 Mpc at a redshift of 0.1034. Unlike the other two, it is associated with a brightest cluster galaxy (BCG), making it one of the few GRGs known to inhabit cluster environments. We examine the spectral age distributions of the three GRGs using new MeerKAT UHF-band (544-1088 MHz) observations, and $L$-band (900-1670 MHz) data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey. We test two different models of spectral ageing, the Jaffe-Perola and Tribble models, using the Broadband Radio Astronomy Tools (\textsc{brats}) software which we find agree well with each other. We estimate the Tribble spectral age for MGTC J095959.63+024608.6 as 68 Myr, MGTC J100016.84+015133.0 as 47 Myr and MGTC J100022.85+031520.4 as 67 Myr. We find significant disagreements between these spectral age estimates and the estimates of the dynamical ages of these GRGs, modelled in cluster and group environments. Our results highlight the need for additional processes which are not accounted for in either the dynamic age or spectral age estimations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06813v1-abstract-full').style.display = 'none'; document.getElementById('2411.06813v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04958">arXiv:2411.04958</a> <span> [<a href="https://arxiv.org/pdf/2411.04958">pdf</a>, <a href="https://arxiv.org/format/2411.04958">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> MIGHTEE: The Continuum Survey Data Release 1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">I. H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Best%2C+P+N">P. N. Best</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+F">Fangxia An</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Harrison%2C+I">I. Harrison</a>, <a href="/search/astro-ph?searchtype=author&query=Matthews%2C+A">A. Matthews</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+D+J+B">D. J. B. Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+A+R">A. R. Taylor</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">M. Vaccari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04958v1-abstract-short" style="display: inline;"> The MeerKAT International GHz Tiered Extragalactic Exploration Survey (MIGHTEE) is one of the large survey projects using the MeerKAT telescope, covering four fields that have a wealth of ancillary data available. We present Data Release 1 of the MIGHTEE continuum survey, releasing total intensity images and catalogues over $\sim$20 deg$^2$, across three fields at $\sim$1.2-1.3 GHz. This includes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04958v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04958v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04958v1-abstract-full" style="display: none;"> The MeerKAT International GHz Tiered Extragalactic Exploration Survey (MIGHTEE) is one of the large survey projects using the MeerKAT telescope, covering four fields that have a wealth of ancillary data available. We present Data Release 1 of the MIGHTEE continuum survey, releasing total intensity images and catalogues over $\sim$20 deg$^2$, across three fields at $\sim$1.2-1.3 GHz. This includes 4.2 deg$^2$ over the Cosmic Evolution Survey (COSMOS) field, 14.4 deg$^2$ over the XMM Large-Scale Structure (XMM-LSS) field and deeper imaging over 1.5 deg$^2$ of the Extended Chandra Deep Field South (CDFS). We release images at both a lower resolution (7-9 arcsec) and higher resolution ($\sim 5$ arcsec). These images have central rms sensitivities of $\sim$1.3$-$2.7 $渭$Jy beam$^{-1}$ ($\sim$1.2$-$3.6 $渭$Jy beam$^{-1}$) in the lower (higher) resolution images respectively. We also release catalogues comprised of $\sim$144~000 ($\sim$114 000) sources using the lower (higher) resolution images. We compare the astrometry and flux-density calibration with the Early Science data in the COSMOS and XMM-LSS fields and previous radio observations in the CDFS field, finding broad agreement. Furthermore, we extend the source counts at the $\sim$10 $渭$Jy level to these larger areas ($\sim 20$ deg$^2$) and, using the areal coverage of MIGHTEE we measure the sample variance for differing areas of sky. We find a typical sample variance of 10-20 per cent for 0.3 and 0.5 sq. deg. sub-regions at $S_{1.4} \leq 200$ $渭$Jy, which increases at brighter flux densities, given the lower source density and expected higher galaxy bias for these sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04958v1-abstract-full').style.display = 'none'; document.getElementById('2411.04958v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 13 Figures, Accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17713">arXiv:2409.17713</a> <span> [<a href="https://arxiv.org/pdf/2409.17713">pdf</a>, <a href="https://arxiv.org/ps/2409.17713">ps</a>, <a href="https://arxiv.org/format/2409.17713">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae2081">10.1093/mnras/stae2081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: deep spectral line observations of the COSMOS field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">A. A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">N. Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">B. S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">E. A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Baes%2C+M">M. Baes</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchetti%2C+A">A. Bianchetti</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Deane%2C+R+P">R. P. Deane</a>, <a href="/search/astro-ph?searchtype=author&query=Glowacki%2C+M">M. Glowacki</a>, <a href="/search/astro-ph?searchtype=author&query=Jung%2C+S+L">S. L. Jung</a>, <a href="/search/astro-ph?searchtype=author&query=Pan%2C+H">H. Pan</a>, <a href="/search/astro-ph?searchtype=author&query=Rajohnson%2C+S+H+A">S. H. A. Rajohnson</a>, <a href="/search/astro-ph?searchtype=author&query=Rodighiero%2C+G">G. Rodighiero</a>, <a href="/search/astro-ph?searchtype=author&query=Ruffa%2C+I">I. Ruffa</a>, <a href="/search/astro-ph?searchtype=author&query=Santos%2C+M+G">M. G. Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Sinigaglia%2C+F">F. Sinigaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">M. Vaccari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17713v1-abstract-short" style="display: inline;"> The MIGHTEE survey utilises the South African MeerKAT radio telescope to observe four extragalactic deep fields, with the aim of advancing our understanding of the formation and evolution of galaxies across cosmic time. MIGHTEE's frequency coverage encompasses the $\textrm{H}\scriptstyle\mathrm{I}$ line to a redshift of z $\simeq$ 0.58, and OH megamasers to z $\simeq$ 0.9. We present the MIGHTEE-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17713v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17713v1-abstract-full" style="display: none;"> The MIGHTEE survey utilises the South African MeerKAT radio telescope to observe four extragalactic deep fields, with the aim of advancing our understanding of the formation and evolution of galaxies across cosmic time. MIGHTEE's frequency coverage encompasses the $\textrm{H}\scriptstyle\mathrm{I}$ line to a redshift of z $\simeq$ 0.58, and OH megamasers to z $\simeq$ 0.9. We present the MIGHTEE-$\textrm{H}\scriptstyle\mathrm{I}$ imaging products for the COSMOS field, using a total of 94.2 h on-target and a close-packed mosaic of 15 individual pointings. The spectral imaging covers two broad, relatively interference-free regions (960-1150 and 1290-1520~MHz) within MeerKAT's L-band, with up to 26 kHz spectral resolution (5.5 km s$^{-1}$ at $z$ = 0). The median noise in the highest spectral resolution data is 74 $渭$Jy beam$^{-1}$, corresponding to a 5$蟽$ $\textrm{H}\scriptstyle\mathrm{I}$ mass limit of 10$^{8.5}$ M$_{\odot}$ for a 300 km s$^{-1}$ line at $z$ = 0.07. The mosaics cover $>$4 deg$^{2}$, provided at multiple angular resolution / sensitivity pairings, with an angular resolution for $\textrm{H}\scriptstyle\mathrm{I}$ at $z$ = 0 of 12$''$. We describe the spectral line processing workflow that will be the basis for future MIGHTEE-$\textrm{H}\scriptstyle\mathrm{I}$ products, and validation of, and some early results from, the spectral imaging of the COSMOS field. We find no evidence for line emission at the position of the $z$ = 0.376 \HI~line reported from the CHILES survey at a $>$94 per cent confidence level, placing a 3$蟽$ upper limit of 8.1 $\times$ 10$^{9}$ M$_{\odot}$ on $M_{\mathrm{HI}}$ for this galaxy. A public data release accompanies this article. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17713v1-abstract-full').style.display = 'none'; document.getElementById('2409.17713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS, Volume 534, Issue 1, October 2024, p76-96 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16597">arXiv:2408.16597</a> <span> [<a href="https://arxiv.org/pdf/2408.16597">pdf</a>, <a href="https://arxiv.org/format/2408.16597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Deep extragalactic HI survey of the COSMOS field with FAST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pan%2C+H">Hengxing Pan</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Zhu%2C+M">Ming Zhu</a>, <a href="/search/astro-ph?searchtype=author&query=Ma%2C+Y">Yin-Zhe Ma</a>, <a href="/search/astro-ph?searchtype=author&query=Santos%2C+M+G">Mario G. Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">Ian Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Jing%2C+Y">Yingjie Jing</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+C">Chen Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+Z">Ziming Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Chandola%2C+Y">Yogesh Chandola</a>, <a href="/search/astro-ph?searchtype=author&query=Jing%2C+Y">Yipeng Jing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16597v2-abstract-short" style="display: inline;"> We present a deep HI survey at L-band conducted with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) over the COSMOS field. This survey is strategically designed to overlap with the MIGHTEE COSMOS field, aiming to combine the sensitivity of the FAST and high-resolution of the MeerKAT. We observed the field with FAST for approximately 11 hours covering $\sim$2 square degrees, and r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16597v2-abstract-full').style.display = 'inline'; document.getElementById('2408.16597v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16597v2-abstract-full" style="display: none;"> We present a deep HI survey at L-band conducted with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) over the COSMOS field. This survey is strategically designed to overlap with the MIGHTEE COSMOS field, aiming to combine the sensitivity of the FAST and high-resolution of the MeerKAT. We observed the field with FAST for approximately 11 hours covering $\sim$2 square degrees, and reduced the raw data to HI spectral cubes over the frequency range 1310-1420 MHz. The FAST-HI data reach a median 3$蟽$ column density of $N_{\rm HI}\sim2\times10^{17}$ cm$^{-2}$ over a 5 km s$^{-1}$ channel width, allowing for studies of the distribution of HI gas in various environments, such as in galaxies, the Circum-Galactic Medium (CGM) and Intergalactic Medium (IGM). We visually searched the spectral cubes for HI sources, and found a total of 80 HI detections, of which 56 have been cross-matched with the MIGHTEE-HI catalogue. With the cross-matched sources, we compare their HI masses and find that the total HI mass fraction in the IGM and CGM surrounding the galaxy pairs is statistically higher than the HI fraction surrounding the isolated galaxies by a difference of 13$\pm$4%, indicating that the CGM and IGM associated with interacting systems are richer in neutral hydrogen compared to those around isolated galaxies in the local Universe. We also describe several FAST-MeerKAT synergy projects, highlighting the full potential of exploiting both single-dish and interferometric observations to study the distribution and evolution of the diffuse HI gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16597v2-abstract-full').style.display = 'none'; document.getElementById('2408.16597v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 14 figures; Accepted for publication in MNRAS; Minor corrections made at proof stage</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18290">arXiv:2405.18290</a> <span> [<a href="https://arxiv.org/pdf/2405.18290">pdf</a>, <a href="https://arxiv.org/format/2405.18290">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202349055">10.1051/0004-6361/202349055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probabilistic and progressive deblended far-infrared and sub-millimetre point source catalogues I. Methodology and first application in the COSMOS field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Wang%2C+L">Lingyu Wang</a>, <a href="/search/astro-ph?searchtype=author&query=La+Marca%2C+A">Antonio La Marca</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+F">Fangyou Gao</a>, <a href="/search/astro-ph?searchtype=author&query=Pearson%2C+W+J">William J. Pearson</a>, <a href="/search/astro-ph?searchtype=author&query=Margalef-Bentabol%2C+B">Berta Margalef-Bentabol</a>, <a href="/search/astro-ph?searchtype=author&query=B%C3%A9thermin%2C+M">Matthieu B茅thermin</a>, <a href="/search/astro-ph?searchtype=author&query=Bing%2C+L">Longji Bing</a>, <a href="/search/astro-ph?searchtype=author&query=Donnellan%2C+J">James Donnellan</a>, <a href="/search/astro-ph?searchtype=author&query=Hurley%2C+P+D">Peter D. Hurley</a>, <a href="/search/astro-ph?searchtype=author&query=Oliver%2C+S+J">Seb J. Oliver</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">Catherine L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Marchetti%2C+L">Lucia Marchetti</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">Mattia Vaccari</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">Imogen H. Whittam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18290v1-abstract-short" style="display: inline;"> Single-dish far-infrared (far-IR) and sub-millimetre (sub-mm) point source catalogues and their connections with catalogues at other wavelengths are of paramount importance. However, due to the large mismatch in spatial resolution, cross-matching galaxies at different wavelengths is challenging. This work aims to develop the next-generation deblended far-IR and sub-mm catalogues and present the fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18290v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18290v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18290v1-abstract-full" style="display: none;"> Single-dish far-infrared (far-IR) and sub-millimetre (sub-mm) point source catalogues and their connections with catalogues at other wavelengths are of paramount importance. However, due to the large mismatch in spatial resolution, cross-matching galaxies at different wavelengths is challenging. This work aims to develop the next-generation deblended far-IR and sub-mm catalogues and present the first application in the COSMOS field. Our progressive deblending used the Bayesian probabilistic framework known as XID+. The deblending started from the Spitzer/MIPS 24 micron data, using an initial prior list composed of sources selected from the COSMOS2020 catalogue and radio catalogues from the VLA and the MeerKAT surveys, based on spectral energy distribution modelling which predicts fluxes of the known sources at the deblending wavelength. To speed up flux prediction, we made use of a neural network-based emulator. After deblending the 24 micron data, we proceeded to the Herschel PACS (100 & 160 micron) and SPIRE wavebands (250, 350 & 500 micron). Each time we constructed a tailor-made prior list based on the predicted fluxes of the known sources. Using simulated far-IR and sub-mm sky, we detailed the performance of our deblending pipeline. After validation with simulations, we then deblended the real observations from 24 to 500 micron and compared with blindly extracted catalogues and previous versions of deblended catalogues. As an additional test, we deblended the SCUBA-2 850 micron map and compared our deblended fluxes with ALMA measurements, which demonstrates a higher level of flux accuracy compared to previous results.We publicly release our XID+ deblended point source catalogues. These deblended long-wavelength data are crucial for studies such as deriving the fraction of dust-obscured star formation and better separation of quiescent galaxies from dusty star-forming galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18290v1-abstract-full').style.display = 'none'; document.getElementById('2405.18290v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 30 figures, accepted for publication in A&A. Catalogues can be downloaded from https://hedam.lam.fr/HELP/dataproducts/dmu26/dmu26_XID+COSMOS2024/</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 688, A20 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13491">arXiv:2405.13491</a> <span> [<a href="https://arxiv.org/pdf/2405.13491">pdf</a>, <a href="https://arxiv.org/format/2405.13491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Euclid. I. Overview of the Euclid mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Euclid+Collaboration"> Euclid Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Mellier%2C+Y">Y. Mellier</a>, <a href="/search/astro-ph?searchtype=author&query=Abdurro%27uf"> Abdurro'uf</a>, <a href="/search/astro-ph?searchtype=author&query=Barroso%2C+J+A+A">J. A. Acevedo Barroso</a>, <a href="/search/astro-ph?searchtype=author&query=Ach%C3%BAcarro%2C+A">A. Ach煤carro</a>, <a href="/search/astro-ph?searchtype=author&query=Adamek%2C+J">J. Adamek</a>, <a href="/search/astro-ph?searchtype=author&query=Adam%2C+R">R. Adam</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">G. E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Aghanim%2C+N">N. Aghanim</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Ajani%2C+V">V. Ajani</a>, <a href="/search/astro-ph?searchtype=author&query=Akrami%2C+Y">Y. Akrami</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Bahlawan%2C+A">A. Al-Bahlawan</a>, <a href="/search/astro-ph?searchtype=author&query=Alavi%2C+A">A. Alavi</a>, <a href="/search/astro-ph?searchtype=author&query=Albuquerque%2C+I+S">I. S. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&query=Alestas%2C+G">G. Alestas</a>, <a href="/search/astro-ph?searchtype=author&query=Alguero%2C+G">G. Alguero</a>, <a href="/search/astro-ph?searchtype=author&query=Allaoui%2C+A">A. Allaoui</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">S. W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Allevato%2C+V">V. Allevato</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso-Tetilla%2C+A+V">A. V. Alonso-Tetilla</a>, <a href="/search/astro-ph?searchtype=author&query=Altieri%2C+B">B. Altieri</a>, <a href="/search/astro-ph?searchtype=author&query=Alvarez-Candal%2C+A">A. Alvarez-Candal</a>, <a href="/search/astro-ph?searchtype=author&query=Alvi%2C+S">S. Alvi</a>, <a href="/search/astro-ph?searchtype=author&query=Amara%2C+A">A. Amara</a> , et al. (1115 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13491v2-abstract-short" style="display: inline;"> The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13491v2-abstract-full').style.display = 'inline'; document.getElementById('2405.13491v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13491v2-abstract-full" style="display: none;"> The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13491v2-abstract-full').style.display = 'none'; document.getElementById('2405.13491v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the A&A special issue`Euclid on Sky'</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00337">arXiv:2405.00337</a> <span> [<a href="https://arxiv.org/pdf/2405.00337">pdf</a>, <a href="https://arxiv.org/format/2405.00337">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> DEVILS/MIGHTEE/GAMA/DINGO: The Impact of SFR Timescales on the SFR-Radio Luminosity Correlation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cook%2C+R+H+W">Robin H. W. Cook</a>, <a href="/search/astro-ph?searchtype=author&query=Davies%2C+L+J+M">Luke J. M. Davies</a>, <a href="/search/astro-ph?searchtype=author&query=Rhee%2C+J">Jonghwan Rhee</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">Catherine L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Bellstedt%2C+S">Sabine Bellstedt</a>, <a href="/search/astro-ph?searchtype=author&query=Thorne%2C+J+E">Jessica E. Thorne</a>, <a href="/search/astro-ph?searchtype=author&query=Delvecchio%2C+I">Ivan Delvecchio</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">Jordan D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Dodson%2C+R">Richard Dodson</a>, <a href="/search/astro-ph?searchtype=author&query=Driver%2C+S+P">Simon P. Driver</a>, <a href="/search/astro-ph?searchtype=author&query=Holwerda%2C+B+W">Benne W. Holwerda</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Knowles%2C+K">Kenda Knowles</a>, <a href="/search/astro-ph?searchtype=author&query=Lagos%2C+C">Claudia Lagos</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Meyer%2C+M">Martin Meyer</a>, <a href="/search/astro-ph?searchtype=author&query=Robotham%2C+A+S+G">Aaron S. G. Robotham</a>, <a href="/search/astro-ph?searchtype=author&query=Roychowdhury%2C+S">Sambit Roychowdhury</a>, <a href="/search/astro-ph?searchtype=author&query=Rozgonyi%2C+K">Kristof Rozgonyi</a>, <a href="/search/astro-ph?searchtype=author&query=Seymour%2C+N">Nicholas Seymour</a>, <a href="/search/astro-ph?searchtype=author&query=Siudek%2C+M">Malgorzata Siudek</a>, <a href="/search/astro-ph?searchtype=author&query=Whiting%2C+M">Matthew Whiting</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I">Imogen Whittam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00337v1-abstract-short" style="display: inline;"> The tight relationship between infrared luminosity (L$_\mathrm{TIR}$) and 1.4 GHz radio continuum luminosity (L$_\mathrm{1.4GHz}$) has proven useful for understanding star formation free from dust obscuration. Infrared emission in star-forming galaxies typically arises from recently formed, dust-enshrouded stars, whereas radio synchrotron emission is expected from subsequent supernovae. By leverag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00337v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00337v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00337v1-abstract-full" style="display: none;"> The tight relationship between infrared luminosity (L$_\mathrm{TIR}$) and 1.4 GHz radio continuum luminosity (L$_\mathrm{1.4GHz}$) has proven useful for understanding star formation free from dust obscuration. Infrared emission in star-forming galaxies typically arises from recently formed, dust-enshrouded stars, whereas radio synchrotron emission is expected from subsequent supernovae. By leveraging the wealth of ancillary far-ultraviolet - far-infrared photometry from the Deep Extragalactic VIsible Legacy Survey (DEVILS) and Galaxy and Mass Assembly (GAMA) surveys, combined with 1.4 GHz observations from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey and Deep Investigation of Neutral Gas Origins (DINGO) projects, we investigate the impact of timescale differences between far-ultraviolet - far-infrared and radio-derived star formation rate (SFR) tracers. We examine how the SED-derived star formation histories (SFH) of galaxies can be used to explain discrepancies in these SFR tracers, which are sensitive to different timescales. Galaxies exhibiting an increasing SFH have systematically higher L$_\mathrm{TIR}$ and SED-derived SFRs than predicted from their 1.4 GHz radio luminosity. This indicates that insufficient time has passed for subsequent supernovae-driven radio emission to accumulate. We show that backtracking the SFR(t) of galaxies along their SED-derived SFHs to a time several hundred megayears prior to their observed epoch will both linearise the SFR-L$_\mathrm{1.4GHz}$ relation and reduce the overall scatter. The minimum scatter in the SFR(t)-L$_\mathrm{1.4GHz}$ is reached at 200 - 300 Myr prior, consistent with theoretical predictions for the timescales required to disperse the cosmic ray electrons responsible for the synchrotron emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00337v1-abstract-full').style.display = 'none'; document.getElementById('2405.00337v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 13 figures, 2 tables. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00734">arXiv:2403.00734</a> <span> [<a href="https://arxiv.org/pdf/2403.00734">pdf</a>, <a href="https://arxiv.org/format/2403.00734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: HI galaxy properties in the large scale structure environment at z~0.37 from a stacking experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sinigaglia%2C+F">Francesco Sinigaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Rodighiero%2C+G">Giulia Rodighiero</a>, <a href="/search/astro-ph?searchtype=author&query=Elson%2C+E">Ed Elson</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchetti%2C+A">Alessandro Bianchetti</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">Mattia Vaccari</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">Bradley S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Catinella%2C+B">Barbara Catinella</a>, <a href="/search/astro-ph?searchtype=author&query=Cortese%2C+L">Luca Cortese</a>, <a href="/search/astro-ph?searchtype=author&query=Roychowdhury%2C+S">Sambit Roychowdhury</a>, <a href="/search/astro-ph?searchtype=author&query=Baes%2C+M">Maarten Baes</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">Jordan D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Ilbert%2C+O">Olivier Ilbert</a>, <a href="/search/astro-ph?searchtype=author&query=Khostovan%2C+A+A">Ali A. Khostovan</a>, <a href="/search/astro-ph?searchtype=author&query=Kurapati%2C+S">Sushma Kurapati</a>, <a href="/search/astro-ph?searchtype=author&query=Pan%2C+H">Hengxing Pan</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">Isabella Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Rajohnson%2C+S+H+A">Sambatriniaina H. A. Rajohnson</a>, <a href="/search/astro-ph?searchtype=author&query=Salvato%2C+M">Mara Salvato</a>, <a href="/search/astro-ph?searchtype=author&query=Sekhar%2C+S">Srikrishna Sekhar</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+G">Gauri Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00734v1-abstract-short" style="display: inline;"> We present the first measurement of HI mass of star-forming galaxies in different large scale structure environments from a blind survey at $z\sim 0.37$. In particular, we carry out a spectral line stacking analysis considering $2875$ spectra of colour-selected star-forming galaxies undetected in HI at $0.23 < z < 0.49$ in the COSMOS field, extracted from the MIGHTEE-HI Early Science datacubes, ac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00734v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00734v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00734v1-abstract-full" style="display: none;"> We present the first measurement of HI mass of star-forming galaxies in different large scale structure environments from a blind survey at $z\sim 0.37$. In particular, we carry out a spectral line stacking analysis considering $2875$ spectra of colour-selected star-forming galaxies undetected in HI at $0.23 < z < 0.49$ in the COSMOS field, extracted from the MIGHTEE-HI Early Science datacubes, acquired with the MeerKAT radio telescope. We stack galaxies belonging to different subsamples depending on three different definitions of large scale structure environment: local galaxy overdensity, position inside the host dark matter halo (central, satellite, or isolated), and cosmic web type (field, filament, or knot). We first stack the full star-forming galaxy sample and find a robust HI detection yielding an average galaxy HI mass of $M_{\rm HI}=(8.12\pm 0.75)\times 10^9\, {\rm M}_\odot$ at $\sim 11.8蟽$. Next, we investigate the different subsamples finding a negligible difference in $M_{\rm HI}$ as a function of the galaxy overdensity. We report an HI excess compared to the full sample in satellite galaxies ($M_{\rm HI}=(11.31\pm1.22)\times 10^9$, at $\sim 10.2 蟽$) and in filaments ($M_{\rm HI}=(11.62\pm 0.90)\times 10^9$. Conversely, we report non-detections for the central and knot galaxies subsamples, which appear to be HI-deficient. We find the same qualitative results also when stacking in units of HI fraction ($f_{\rm HI}$). We conclude that the HI amount in star-forming galaxies at the studied redshifts correlates with the large scale structure environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00734v1-abstract-full').style.display = 'none'; document.getElementById('2403.00734v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. 15 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15971">arXiv:2401.15971</a> <span> [<a href="https://arxiv.org/pdf/2401.15971">pdf</a>, <a href="https://arxiv.org/format/2401.15971">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The sizes of bright Lyman-break galaxies at $z\simeq3-5$ with JWST PRIMER </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Varadaraj%2C+R+G">R. G. Varadaraj</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Choustikov%2C+N">N. Choustikov</a>, <a href="/search/astro-ph?searchtype=author&query=Koekemoer%2C+A+M">A. M. Koekemoer</a>, <a href="/search/astro-ph?searchtype=author&query=Carnall%2C+A+C">A. C. Carnall</a>, <a href="/search/astro-ph?searchtype=author&query=McLeod%2C+D+J">D. J. McLeod</a>, <a href="/search/astro-ph?searchtype=author&query=Dunlop%2C+J+S">J. S. Dunlop</a>, <a href="/search/astro-ph?searchtype=author&query=Donnan%2C+C+T">C. T. Donnan</a>, <a href="/search/astro-ph?searchtype=author&query=Grogin%2C+N+A">N. A. Grogin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15971v2-abstract-short" style="display: inline;"> We use data from the JWST Public Release IMaging for Extragalactic Research (PRIMER) survey to measure the size scaling relations of 1668 rest-frame UV-bright Lyman-break galaxies (LBGs) at $z=3-5$ with stellar masses $\mathrm{log}_{10}(M_{\star}/M_{\odot}) > 9$. The sample was selected from seeing-dominated ground-based data, presenting an unbiased sampling of the morphology and size distribution… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15971v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15971v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15971v2-abstract-full" style="display: none;"> We use data from the JWST Public Release IMaging for Extragalactic Research (PRIMER) survey to measure the size scaling relations of 1668 rest-frame UV-bright Lyman-break galaxies (LBGs) at $z=3-5$ with stellar masses $\mathrm{log}_{10}(M_{\star}/M_{\odot}) > 9$. The sample was selected from seeing-dominated ground-based data, presenting an unbiased sampling of the morphology and size distributions of luminous sources. We fit S茅rsic profiles to eight NIRCam bands and also measure a non-parametric half-light radius. We find that the size distributions with both measurements are well-fit by a log-normal distribution at all redshifts, consistent with disk formation models where size is governed by host dark-matter halo angular momentum. We find a size-redshift evolution of $R_{e} = 3.51(1+z)^{-0.60\pm0.22}$ kpc, in agreement with JWST studies. When considering the typical (modal) size over $z=3-5$, we find little evolution with bright LBGs remaining compact at $R_{e}\simeq0.7-0.9$ kpc. Simultaneously, we find evidence for a build-up of large ($R_{e} > 2$ kpc) galaxies by $z=3$. We find some evidence for a negatively sloped size-mass relation at $z=5$ when S茅rsic profiles are used to fit the data in F200W. The intrinsic scatter in our size-mass relations increases at higher redshifts. Additionally, measurements probing the rest-UV (F200W) show larger intrinsic scatter than those probing the rest-optical (F356W). Finally, we leverage rest-UV and rest-optical photometry to show that disky galaxies are well established by $z=5$, but are beginning to undergo dissipative processes, such as mergers, by $z=3$. The agreement of our size-mass and size-luminosity relations with simulations provides tentative evidence for centrally concentrated star formation at high-redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15971v2-abstract-full').style.display = 'none'; document.getElementById('2401.15971v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, 3 tables. Accepted to MNRAS. 2 figures added in appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12298">arXiv:2401.12298</a> <span> [<a href="https://arxiv.org/pdf/2401.12298">pdf</a>, <a href="https://arxiv.org/format/2401.12298">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The VLBA CANDELS GOODS-North Survey. I -- Survey Design, Processing, Data Products, and Source Counts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Deane%2C+R+P">Roger P. Deane</a>, <a href="/search/astro-ph?searchtype=author&query=Radcliffe%2C+J+F">Jack F. Radcliffe</a>, <a href="/search/astro-ph?searchtype=author&query=Njeri%2C+A">Ann Njeri</a>, <a href="/search/astro-ph?searchtype=author&query=Akoto-Danso%2C+A">Alexander Akoto-Danso</a>, <a href="/search/astro-ph?searchtype=author&query=Bernardi%2C+G">Gianni Bernardi</a>, <a href="/search/astro-ph?searchtype=author&query=Smirnov%2C+O+M">Oleg M. Smirnov</a>, <a href="/search/astro-ph?searchtype=author&query=Beswick%2C+R">Rob Beswick</a>, <a href="/search/astro-ph?searchtype=author&query=Garrett%2C+M+A">Michael A. Garrett</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">Imogen H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Bourke%2C+S">Stephen Bourke</a>, <a href="/search/astro-ph?searchtype=author&query=Paragi%2C+Z">Zsolt Paragi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12298v1-abstract-short" style="display: inline;"> The past decade has seen significant advances in wide-field cm-wave very long baseline interferometry (VLBI), which is timely given the wide-area, synoptic survey-driven strategy of major facilities across the electromagnetic spectrum. While wide-field VLBI poses significant post-processing challenges that can severely curtail its potential scientific yield, many developments in the km-scale conne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12298v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12298v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12298v1-abstract-full" style="display: none;"> The past decade has seen significant advances in wide-field cm-wave very long baseline interferometry (VLBI), which is timely given the wide-area, synoptic survey-driven strategy of major facilities across the electromagnetic spectrum. While wide-field VLBI poses significant post-processing challenges that can severely curtail its potential scientific yield, many developments in the km-scale connected-element interferometer sphere are directly applicable to addressing these. Here we present the design, processing, data products, and source counts from a deep (11 $渭$Jy beam$^{-1}$), quasi-uniform sensitivity, contiguous wide-field (160 arcmin$^2$) 1.6 GHz VLBI survey of the CANDELS GOODS-North field. This is one of the best-studied extragalactic fields at milli-arcsecond resolution and, therefore, is well-suited as a comparative study for our Tera-pixel VLBI image. The derived VLBI source counts show consistency with those measured in the COSMOS field, which broadly traces the AGN population detected in arcsecond-scale radio surveys. However, there is a distinctive flattening in the $ S_{\rm 1.4GHz}\sim$100-500 $渭$Jy flux density range, which suggests a transition in the population of compact faint radio sources, qualitatively consistent with the excess source counts at 15 GHz that is argued to be an unmodelled population of radio cores. This survey approach will assist in deriving robust VLBI source counts and broadening the discovery space for future wide-field VLBI surveys, including VLBI with the Square Kilometre Array, which will include new large field-of-view antennas on the African continent at $\gtrsim$1000~km baselines. In addition, it may be useful in the design of both monitoring and/or rapidly triggered VLBI transient programmes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12298v1-abstract-full').style.display = 'none'; document.getElementById('2401.12298v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Society</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04345">arXiv:2312.04345</a> <span> [<a href="https://arxiv.org/pdf/2312.04345">pdf</a>, <a href="https://arxiv.org/format/2312.04345">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The discovery of a z=0.7092 OH megamaser with the MIGHTEE survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">Ian Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Jewell%2C+S+M">Sophie M. Jewell</a>, <a href="/search/astro-ph?searchtype=author&query=Deane%2C+R+P">Roger P. Deane</a>, <a href="/search/astro-ph?searchtype=author&query=Kl%C3%B6ckner%2C+H+-">H. -R. Kl枚ckner</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Baker%2C+A+J">Andrew J. Baker</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchetti%2C+A">Alessandro Bianchetti</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">Kelley M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+H">Hayley Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Rodighiero%2C+G">Giulia Rodighiero</a>, <a href="/search/astro-ph?searchtype=author&query=Ruffa%2C+I">Ilaria Ruffa</a>, <a href="/search/astro-ph?searchtype=author&query=Sinigaglia%2C+F">Francesco Sinigaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Varadaraj%2C+R+G">R. G. Varadaraj</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">I. H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Baes%2C+M">Maarten Baes</a>, <a href="/search/astro-ph?searchtype=author&query=Murphy%2C+E+J">Eric J. Murphy</a>, <a href="/search/astro-ph?searchtype=author&query=Pan%2C+H">Hengxing Pan</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">Mattia Vaccari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04345v1-abstract-short" style="display: inline;"> We present the discovery of the most distant OH megamaser to be observed in the main lines, using data from the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. At a newly measured redshift of $z = 0.7092$, the system has strong emission in both the 1665MHz ($L \approx 2500$ L$_{\odot}$) and 1667 MHz ($L \approx 4.5\times10^4$ L$_{\odot}$) transitions, with both… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04345v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04345v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04345v1-abstract-full" style="display: none;"> We present the discovery of the most distant OH megamaser to be observed in the main lines, using data from the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. At a newly measured redshift of $z = 0.7092$, the system has strong emission in both the 1665MHz ($L \approx 2500$ L$_{\odot}$) and 1667 MHz ($L \approx 4.5\times10^4$ L$_{\odot}$) transitions, with both narrow and broad components. We interpret the broad line as a high-velocity-dispersion component of the 1667 MHz transition, with velocity $v \sim 330$km s$^{-1}$ with respect to the systemic velocity. The host galaxy has a stellar mass of $M_{\star} = 2.95 \times 10^{10}$ M$_{\odot}$ and a star-formation rate of SFR = 371 M$_{\odot}$yr$^{-1}$, placing it $\sim 1.5$dex above the main sequence for star-forming galaxies at this redshift, and can be classified as an ultra-luminous infrared galaxy. Alongside the optical imaging data, which exhibits evidence for a tidal tail, this suggests that the OH megamaser arises from a system that is currently undergoing a merger, which is stimulating star formation and providing the necessary conditions for pumping the OH molecule to saturation. The OHM is likely to be lensed, with a magnification factor of $\sim 2.5$, and perhaps more if the maser emitting region is compact and suitably offset relative to the centroid of its host galaxy's optical light. This discovery demonstrates that spectral line mapping with the new generation of radio interferometers may provide important information on the cosmic merger history of galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04345v1-abstract-full').style.display = 'none'; document.getElementById('2312.04345v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06356">arXiv:2311.06356</a> <span> [<a href="https://arxiv.org/pdf/2311.06356">pdf</a>, <a href="https://arxiv.org/format/2311.06356">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Extragalactic Magnetism with SOFIA (SALSA Legacy Program). VII. A Tomographic View of Far-infrared and Radio Polarimetric Observations through MHD Simulations of Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Martin-Alvarez%2C+S">Sergio Martin-Alvarez</a>, <a href="/search/astro-ph?searchtype=author&query=Lopez-Rodriguez%2C+E">Enrique Lopez-Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&query=Dacunha%2C+T">Tara Dacunha</a>, <a href="/search/astro-ph?searchtype=author&query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/astro-ph?searchtype=author&query=Borlaff%2C+A+S">Alejandro S. Borlaff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+R">Rainer Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Montero%2C+F+R">Francisco Rodr铆guez Montero</a>, <a href="/search/astro-ph?searchtype=author&query=Jung%2C+S+L">S. Lyla Jung</a>, <a href="/search/astro-ph?searchtype=author&query=Devriendt%2C+J">Julien Devriendt</a>, <a href="/search/astro-ph?searchtype=author&query=Slyz%2C+A">Adrianne Slyz</a>, <a href="/search/astro-ph?searchtype=author&query=Roman-Duval%2C+J">Julia Roman-Duval</a>, <a href="/search/astro-ph?searchtype=author&query=Ntormousi%2C+E">Evangelia Ntormousi</a>, <a href="/search/astro-ph?searchtype=author&query=Tahani%2C+M">Mehrnoosh Tahani</a>, <a href="/search/astro-ph?searchtype=author&query=Subramanian%2C+K">Kandaswamy Subramanian</a>, <a href="/search/astro-ph?searchtype=author&query=Dale%2C+D+A">Daniel A. Dale</a>, <a href="/search/astro-ph?searchtype=author&query=Marcum%2C+P+M">Pamela M. Marcum</a>, <a href="/search/astro-ph?searchtype=author&query=Tassis%2C+K">Konstantinos Tassis</a>, <a href="/search/astro-ph?searchtype=author&query=del+Moral-Castro%2C+I">Ignacio del Moral-Castro</a>, <a href="/search/astro-ph?searchtype=author&query=Tram%2C+L+N">Le Ngoc Tram</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06356v2-abstract-short" style="display: inline;"> The structure of magnetic fields in galaxies remains poorly constrained, despite the importance of magnetism in the evolution of galaxies. Radio synchrotron and far-infrared (FIR) polarization and polarimetric observations are the best methods to measure galactic scale properties of magnetic fields in galaxies beyond the Milky Way. We use synthetic polarimetric observations of a simulated galaxy t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06356v2-abstract-full').style.display = 'inline'; document.getElementById('2311.06356v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06356v2-abstract-full" style="display: none;"> The structure of magnetic fields in galaxies remains poorly constrained, despite the importance of magnetism in the evolution of galaxies. Radio synchrotron and far-infrared (FIR) polarization and polarimetric observations are the best methods to measure galactic scale properties of magnetic fields in galaxies beyond the Milky Way. We use synthetic polarimetric observations of a simulated galaxy to identify and quantify the regions, scales, and interstellar medium (ISM) phases probed at FIR and radio wavelengths. Our studied suite of magnetohydrodynamical cosmological zoom-in simulations features high-resolutions (10 pc full-cell size) and multiple magnetization models. Our synthetic observations have a striking resemblance to those of observed galaxies. We find that the total and polarized radio emission extends to approximately double the altitude above the galactic disk (half-intensity disk thickness of $h_\text{I radio} \sim h_\text{PI radio} = 0.23 \pm 0.03$ kpc) relative to the total FIR and polarized emission that are concentrated in the disk midplane ($h_\text{I FIR} \sim h_\text{PI FIR} = 0.11 \pm 0.01$ kpc). Radio emission traces magnetic fields at scales of $\gtrsim 300$ pc, whereas FIR emission probes magnetic fields at the smallest scales of our simulations. These scales are comparable to our spatial resolution and well below the spatial resolution ($<300$ pc) of existing FIR polarimetric measurements. Finally, we confirm that synchrotron emission traces a combination of the warm neutral and cold neutral gas phases, whereas FIR emission follows the densest gas in the cold neutral phase in the simulation. These results are independent of the ISM magnetic field strength. The complementarity we measure between radio and FIR wavelengths motivates future multiwavelength polarimetric observations to advance our knowledge of extragalactic magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06356v2-abstract-full').style.display = 'none'; document.getElementById('2311.06356v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the ApJ. Replaced to match final version. 35 pages, 17 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17409">arXiv:2310.17409</a> <span> [<a href="https://arxiv.org/pdf/2310.17409">pdf</a>, <a href="https://arxiv.org/format/2310.17409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> MIGHTEE: multi-wavelength counterparts in the COSMOS field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">I. H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Prescott%2C+M">M. Prescott</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+.+J">M . J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+F">Fangxia An</a>, <a href="/search/astro-ph?searchtype=author&query=Glowacki%2C+M">M. Glowacki</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">N. Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Marchetti%2C+L">L. Marchetti</a>, <a href="/search/astro-ph?searchtype=author&query=Morabito%2C+L+K">L. K. Morabito</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Hatfield%2C+P+W">P. W. Hatfield</a>, <a href="/search/astro-ph?searchtype=author&query=Varadaraj%2C+R+G">R. G. Varadaraj</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J">J. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B">B. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+A+R">A. R. Taylor</a>, <a href="/search/astro-ph?searchtype=author&query=Santos%2C+M+G">M. G. Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">M. Vaccari</a>, <a href="/search/astro-ph?searchtype=author&query=Afonso%2C+J">J. Afonso</a>, <a href="/search/astro-ph?searchtype=author&query=Ao%2C+Y">Y. Ao</a>, <a href="/search/astro-ph?searchtype=author&query=Delhaize%2C+J">J. Delhaize</a>, <a href="/search/astro-ph?searchtype=author&query=Knowles%2C+K">K. Knowles</a>, <a href="/search/astro-ph?searchtype=author&query=Kolwa%2C+S">S. Kolwa</a>, <a href="/search/astro-ph?searchtype=author&query=Randriamampandry%2C+S+M">S. M. Randriamampandry</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17409v1-abstract-short" style="display: inline;"> In this paper we combine the Early Science radio continuum data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Survey, with optical and near-infrared data and release the cross-matched catalogues. The radio data used in this work covers $0.86$ deg$^2$ of the COSMOS field, reaches a thermal noise of $1.7$ $渭$Jy/beam and contains $6102$ radio components. We visually in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17409v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17409v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17409v1-abstract-full" style="display: none;"> In this paper we combine the Early Science radio continuum data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Survey, with optical and near-infrared data and release the cross-matched catalogues. The radio data used in this work covers $0.86$ deg$^2$ of the COSMOS field, reaches a thermal noise of $1.7$ $渭$Jy/beam and contains $6102$ radio components. We visually inspect and cross-match the radio sample with optical and near-infrared data from the Hyper Suprime-Cam (HSC) and UltraVISTA surveys. This allows the properties of active galactic nuclei and star-forming populations of galaxies to be probed out to $z \approx 5$. Additionally, we use the likelihood ratio method to automatically cross-match the radio and optical catalogues and compare this to the visually cross-matched catalogue. We find that 94 per cent of our radio source catalogue can be matched with this method, with a reliability of $95$ per cent. We proceed to show that visual classification will still remain an essential process for the cross-matching of complex and extended radio sources. In the near future, the MIGHTEE survey will be expanded in area to cover a total of $\sim$20~deg$^2$; thus the combination of automated and visual identification will be critical. We compare redshift distribution of SFG and AGN to the SKADS and T-RECS simulations and find more AGN than predicted at $z \sim 1$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17409v1-abstract-full').style.display = 'none'; document.getElementById('2310.17409v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 15 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07642">arXiv:2310.07642</a> <span> [<a href="https://arxiv.org/pdf/2310.07642">pdf</a>, <a href="https://arxiv.org/format/2310.07642">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347728">10.1051/0004-6361/202347728 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Cross-correlation with the cosmic microwave background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Nakoneczny%2C+S+J">S. J. Nakoneczny</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">D. Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Bilicki%2C+M">M. Bilicki</a>, <a href="/search/astro-ph?searchtype=author&query=Schwarz%2C+D+J">D. J. Schwarz</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Pollo%2C+A">A. Pollo</a>, <a href="/search/astro-ph?searchtype=author&query=Heneka%2C+C">C. Heneka</a>, <a href="/search/astro-ph?searchtype=author&query=Tiwari%2C+P">P. Tiwari</a>, <a href="/search/astro-ph?searchtype=author&query=Zheng%2C+J">J. Zheng</a>, <a href="/search/astro-ph?searchtype=author&query=Br%C3%BCggen%2C+M">M. Br眉ggen</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Shimwell%2C+T+W">T. W. Shimwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07642v3-abstract-short" style="display: inline;"> We combine the LOw-Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) second data release (DR2) catalogue with gravitational lensing maps from the Cosmic Microwave Background (CMB) to place constraints on the bias evolution of LoTSS radio galaxies, and on the amplitude of matter perturbations. We construct a flux-limited catalogue, and analyse its harmonic-space cross-correlation with CMB lensin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07642v3-abstract-full').style.display = 'inline'; document.getElementById('2310.07642v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07642v3-abstract-full" style="display: none;"> We combine the LOw-Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) second data release (DR2) catalogue with gravitational lensing maps from the Cosmic Microwave Background (CMB) to place constraints on the bias evolution of LoTSS radio galaxies, and on the amplitude of matter perturbations. We construct a flux-limited catalogue, and analyse its harmonic-space cross-correlation with CMB lensing maps from Planck, $C_\ell^{g魏}$, as well as its auto-correlation, $C_\ell^{gg}$. We explore the models describing the redshift evolution of the large-scale radio galaxy bias, discriminating between them through the combination of both $C_\ell^{g魏}$ and $C_\ell^{gg}$. Fixing the bias evolution, we then use these data to place constraints on the amplitude of large scale density fluctuations. We report the significance of the $C_\ell^{g魏}$ signal at a level of $26.6蟽$. We determine that a linear bias evolution of the form $b_g(z) = b_{g,D} / D(z)$, where $D(z)$ is the growth rate, is able to provide a good description of the data, and measure $b_{g,D} = 1.41 \pm 0.06$ for a sample flux-limited at $1.5\,{\rm mJy}$, for scales $\ell < 250$ for $C_\ell^{gg}$, and $\ell < 500$ for $C_\ell^{g魏}$. At the sample's median redshift, we obtain $b(z = 0.82) = 2.34 \pm 0.10$. Using $蟽_8$ as a free parameter, while keeping other cosmological parameters fixed to the Planck values, we find fluctuations of $蟽_8 = 0.75^{+0.05}_{-0.04}$. The result is in agreement with weak lensing surveys, and at $1蟽$ difference with Planck CMB constraints. We also attempt to detect the late-time integrated Sachs-Wolfe effect with LOFAR, but with the current sky coverage, the cross-correlation with CMB temperature maps is consistent with zero. Our results are an important step towards constraining cosmology with radio continuum surveys from LOFAR and other future large radio surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07642v3-abstract-full').style.display = 'none'; document.getElementById('2310.07642v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The code is available at https://github.com/snakoneczny/cosmo-pipe</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A, 681, A105 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07627">arXiv:2310.07627</a> <span> [<a href="https://arxiv.org/pdf/2310.07627">pdf</a>, <a href="https://arxiv.org/format/2310.07627">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Angular Clustering of Radio Sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Schwarz%2C+D+J">D. J. Schwarz</a>, <a href="/search/astro-ph?searchtype=author&query=Best%2C+P+N">P. N. Best</a>, <a href="/search/astro-ph?searchtype=author&query=Nakoneczny%2C+S+J">S. J. Nakoneczny</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">D. Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=B%C3%B6hme%2C+L">L. B枚hme</a>, <a href="/search/astro-ph?searchtype=author&query=Bhardwaj%2C+N">N. Bhardwaj</a>, <a href="/search/astro-ph?searchtype=author&query=Bilicki%2C+M">M. Bilicki</a>, <a href="/search/astro-ph?searchtype=author&query=Camera%2C+S">S. Camera</a>, <a href="/search/astro-ph?searchtype=author&query=Heneka%2C+C+S">C. S. Heneka</a>, <a href="/search/astro-ph?searchtype=author&query=Pashapour-Ahmadabadi%2C+M">M. Pashapour-Ahmadabadi</a>, <a href="/search/astro-ph?searchtype=author&query=Tiwari%2C+P">P. Tiwari</a>, <a href="/search/astro-ph?searchtype=author&query=Zheng%2C+J">J. Zheng</a>, <a href="/search/astro-ph?searchtype=author&query=Duncan%2C+K+J">K. J. Duncan</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Kondapally%2C+R">R. Kondapally</a>, <a href="/search/astro-ph?searchtype=author&query=Magliocchetti%2C+M">M. Magliocchetti</a>, <a href="/search/astro-ph?searchtype=author&query=Rottgering%2C+H+J+A">H. J. A. Rottgering</a>, <a href="/search/astro-ph?searchtype=author&query=Shimwell%2C+T+W">T. W. Shimwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07627v1-abstract-short" style="display: inline;"> Covering $\sim$5600 deg$^2$ to rms sensitivities of $\sim$70$-$100 $渭$Jy beam$^{-1}$, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency ($\sim$150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07627v1-abstract-full').style.display = 'inline'; document.getElementById('2310.07627v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07627v1-abstract-full" style="display: none;"> Covering $\sim$5600 deg$^2$ to rms sensitivities of $\sim$70$-$100 $渭$Jy beam$^{-1}$, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency ($\sim$150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for $\sim$900,000 sources $\geq$$1.5$ mJy and a peak signal-to-noise $\geq$$7.5$ across $\sim$$80\%$ of the observed area. Using the clustering we infer the bias assuming two evolutionary models. When fitting {angular scales of $0.5 \leq胃<5\,掳$, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of $b_{C}= 2.14^{+0.22}_{-0.20}$ (assuming constant bias) and $b_{E}(z=0)= 1.79^{+0.15}_{-0.14}$ (for an evolving model, inversely proportional to the growth factor), corresponding to $b_E= 2.81^{+0.24}_{-0.22}$ at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to $b_{C}= 2.02^{+0.17}_{-0.16}$ and $b_{E}(z=0)= 1.67^{+0.12}_{-0.12}$ when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 ($\geq$2 mJy), our study benefits from larger samples and improved redshift estimates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07627v1-abstract-full').style.display = 'none'; document.getElementById('2310.07627v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. 29 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07561">arXiv:2305.07561</a> <span> [<a href="https://arxiv.org/pdf/2305.07561">pdf</a>, <a href="https://arxiv.org/format/2305.07561">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1432">10.1093/mnras/stad1432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral age distribution for radio-loud active galaxies in the XMM-LSS field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pinjarkar%2C+S">Siddhant Pinjarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Hardcastle%2C+M+J">Martin J. Hardcastle</a>, <a href="/search/astro-ph?searchtype=author&query=Harwood%2C+J+J">Jeremy J. Harwood</a>, <a href="/search/astro-ph?searchtype=author&query=Lal%2C+D+V">Dharam V. Lal</a>, <a href="/search/astro-ph?searchtype=author&query=Hatfield%2C+P+W">Peter W. Hatfield</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Randriamanakoto%2C+Z">Zara Randriamanakoto</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">Imogen H. Whittam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07561v1-abstract-short" style="display: inline;"> Jets of energetic particles, as seen in FR type-I and FR type-II sources, ejected from the center of Radio-Loud AGN affect the sources surrounding intracluster medium/intergalactic medium. Placing constraints on the age of such sources is important in order to measure the jet powers and determine the effects on feedback. To evaluate the age of these sources using spectral age models, we require hi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07561v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07561v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07561v1-abstract-full" style="display: none;"> Jets of energetic particles, as seen in FR type-I and FR type-II sources, ejected from the center of Radio-Loud AGN affect the sources surrounding intracluster medium/intergalactic medium. Placing constraints on the age of such sources is important in order to measure the jet powers and determine the effects on feedback. To evaluate the age of these sources using spectral age models, we require high-resolution multi-wavelength data. The new sensitive and high-resolution MIGHTEE survey of the XMM-LSS field along with data from the Low Frequency Array (LOFAR) and the Giant Metrewave Radio Telescope (GMRT) provide data taken at different frequencies with similar resolution, which enables us to determine the spectral age distribution for radio loud AGN in the survey field. In this study we present a sample of 28 radio galaxies with their best fitting spectral age distribution analyzed using the Jaffe-Perola (JP) model on a pixel-by-pixel basis. Fits are generally good and objects in our sample show maximum ages within the range of 2.8 Myr to 115 Myr with a median of 8.71 Myr. High-resolution maps over a range of frequencies are required to observe detailed age distributions for small sources and high-sensitivity maps will be needed in order to observe fainter extended emission. We do not observe any correlation between the total physical size of the sources and their age and we speculate both dynamical models and the approach to spectral age analysis may need some modification to account for our observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07561v1-abstract-full').style.display = 'none'; document.getElementById('2305.07561v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05782">arXiv:2305.05782</a> <span> [<a href="https://arxiv.org/pdf/2305.05782">pdf</a>, <a href="https://arxiv.org/format/2305.05782">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1308">10.1093/mnras/stad1308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LOFAR Two-metre Sky Survey Deep Fields Data Release 1: V. Survey description, source classifications and host galaxy properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Best%2C+P+N">P. N. Best</a>, <a href="/search/astro-ph?searchtype=author&query=Kondapally%2C+R">R. Kondapally</a>, <a href="/search/astro-ph?searchtype=author&query=Williams%2C+W+L">W. L. Williams</a>, <a href="/search/astro-ph?searchtype=author&query=Cochrane%2C+R+K">R. K. Cochrane</a>, <a href="/search/astro-ph?searchtype=author&query=Duncan%2C+K+J">K. J. Duncan</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Haskell%2C+P">P. Haskell</a>, <a href="/search/astro-ph?searchtype=author&query=Malek%2C+K">K. Malek</a>, <a href="/search/astro-ph?searchtype=author&query=McCheyne%2C+I">I. McCheyne</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+D+J+B">D. J. B. Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+L">L. Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Botteon%2C+A">A. Botteon</a>, <a href="/search/astro-ph?searchtype=author&query=Bonato%2C+M">M. Bonato</a>, <a href="/search/astro-ph?searchtype=author&query=Bondi%2C+M">M. Bondi</a>, <a href="/search/astro-ph?searchtype=author&query=Rivera%2C+G+C">G. Calistro Rivera</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+F">F. Gao</a>, <a href="/search/astro-ph?searchtype=author&query=Gurkan%2C+G">G. Gurkan</a>, <a href="/search/astro-ph?searchtype=author&query=Hardcastle%2C+M+J">M. J. Hardcastle</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Mingo%2C+B">B. Mingo</a>, <a href="/search/astro-ph?searchtype=author&query=Miraghaei%2C+H">H. Miraghaei</a>, <a href="/search/astro-ph?searchtype=author&query=Morabito%2C+L+K">L. K. Morabito</a>, <a href="/search/astro-ph?searchtype=author&query=Nisbet%2C+D">D. Nisbet</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">I. Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Rottgering%2C+H+J+A">H. J. A. Rottgering</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05782v1-abstract-short" style="display: inline;"> Source classifications, stellar masses and star formation rates are presented for 80,000 radio sources from the first data release of the Low Frequency Array Two-metre Sky Survey (LoTSS) Deep Fields, which represents the widest deep radio survey ever undertaken. Using deep multi-wavelength data spanning from the ultraviolet to the far-infrared, spectral energy distribution (SED) fitting is carried… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05782v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05782v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05782v1-abstract-full" style="display: none;"> Source classifications, stellar masses and star formation rates are presented for 80,000 radio sources from the first data release of the Low Frequency Array Two-metre Sky Survey (LoTSS) Deep Fields, which represents the widest deep radio survey ever undertaken. Using deep multi-wavelength data spanning from the ultraviolet to the far-infrared, spectral energy distribution (SED) fitting is carried out for all of the LoTSS-Deep host galaxies using four different SED codes, two of which include modelling of the contributions from an active galactic nucleus (AGN). Comparing the results of the four codes, galaxies that host a radiative AGN are identified, and an optimised consensus estimate of the stellar mass and star-formation rate for each galaxy is derived. Those galaxies with an excess of radio emission over that expected from star formation are then identified, and the LoTSS-Deep sources are divided into four classes: star-forming galaxies, radio-quiet AGN, and radio-loud high-excitation and low-excitation AGN. Ninety-five per cent of the sources can be reliably classified, of which more than two-thirds are star-forming galaxies, ranging from normal galaxies in the nearby Universe to highly-starbursting systems at z>4. Star-forming galaxies become the dominant population below 150-MHz flux densities of about 1 mJy, accounting for 90 per cent of sources at a 150-MHz flux density of 100 microJy. Radio-quiet AGN comprise around 10 per cent of the overall population. Results are compared against the predictions of the SKADS and T-RECS radio sky simulations, and improvements to the simulations are suggested. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05782v1-abstract-full').style.display = 'none'; document.getElementById('2305.05782v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. Catalogues available at www.lofar-surveys.org/deepfields.html. 27 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13051">arXiv:2304.13051</a> <span> [<a href="https://arxiv.org/pdf/2304.13051">pdf</a>, <a href="https://arxiv.org/format/2304.13051">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1249">10.1093/mnras/stad1249 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: The first MeerKAT HI mass function from an untargeted interferometric survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Pan%2C+H">Hengxing Pan</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Jones%2C+M+G">Michael G. Jones</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">Bradley S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Rajohnson%2C+S+H+A">Sambatriniaina H. A. Rajohnson</a>, <a href="/search/astro-ph?searchtype=author&query=Mulaudzi%2C+W">Wanga Mulaudzi</a>, <a href="/search/astro-ph?searchtype=author&query=Meyer%2C+M">Martin Meyer</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Baes%2C+M">Maarten Baes</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">Kelley M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=Kurapati%2C+S">Sushma Kurapati</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">Isabella Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Sinigaglia%2C+F">Francesco Sinigaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Spekkens%2C+K">Kristine Spekkens</a>, <a href="/search/astro-ph?searchtype=author&query=Tudorache%2C+M">Madalina Tudorache</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">Ian Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">Jordan D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Sekhar%2C+S">Srikrishna Sekhar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13051v1-abstract-short" style="display: inline;"> We present the first measurement of the HI mass function (HIMF) using data from MeerKAT, based on 276 direct detections from the MIGHTEE Survey Early Science data covering a period of approximately a billion years ($0 \leq z \leq 0.084 $). This is the first HIMF measured using interferometric data over non-group or cluster field, i.e. a deep blank field. We constrain the parameters of the Schechte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13051v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13051v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13051v1-abstract-full" style="display: none;"> We present the first measurement of the HI mass function (HIMF) using data from MeerKAT, based on 276 direct detections from the MIGHTEE Survey Early Science data covering a period of approximately a billion years ($0 \leq z \leq 0.084 $). This is the first HIMF measured using interferometric data over non-group or cluster field, i.e. a deep blank field. We constrain the parameters of the Schechter function which describes the HIMF with two different methods: $1/\rm V_{\rm max}$ and Modified Maximum Likelihood (MML). We find a low-mass slope $伪=-1.29^{+0.37}_{-0.26}$, `knee' mass $\log_{10}(M_{*}/{\rm M_{\odot}}) = 10.07^{+0.24}_{-0.24}$ and normalisation $\log_{10}(蠁_{*}/\rm Mpc^{-3})=-2.34^{+0.32}_{-0.36}$ ($H_0 = 67.4$ kms$^{-1}$ Mpc$^{-1}$) for $1/\rm V_{\rm max}$ and $伪=-1.44^{+0.13}_{-0.10}$, `knee' mass $\log_{10}(M_{*}/{\rm M_{\odot}}) = 10.22^{+0.10}_{-0.13}$ and normalisation $\log_{10}(蠁_{*}/\rm Mpc^{-3})=-2.52^{+0.19}_{-0.14}$ for MML. When using $1/\rm V_{\rm max}$ we find both the low-mass slope and `knee' mass to be consistent within $1蟽$ with previous studies based on single-dish surveys. The cosmological mass density of HI is found to be slightly larger than previously reported: $惟_{\rm HI}=5.46^{+0.94}_{-0.99} \times 10^{-4}h^{-1}_{67.4}$ from $1/\rm V_{\rm max}$ and $惟_{\rm HI}=6.31^{+0.31}_{-0.31} \times 10^{-4}h^{-1}_{67.4}$ from MML but consistent within the uncertainties. We find no evidence for evolution of the HIMF over the last billion years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13051v1-abstract-full').style.display = 'none'; document.getElementById('2304.13051v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02494">arXiv:2304.02494</a> <span> [<a href="https://arxiv.org/pdf/2304.02494">pdf</a>, <a href="https://arxiv.org/format/2304.02494">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2081">10.1093/mnras/stad2081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The bright end of the galaxy luminosity function at $z \simeq 7$ from the VISTA VIDEO survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Varadaraj%2C+R+G">R. G. Varadaraj</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=H%C3%A4u%C3%9Fler%2C+B">B. H盲u脽ler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02494v2-abstract-short" style="display: inline;"> We have conducted a search for $z\simeq7$ Lyman break galaxies over 8.2 square degrees of near-infrared imaging from the VISTA Deep Extragalactic Observations (VIDEO) survey in the XMM-Newton - Large Scale Structure (XMM-LSS) and the Extended Chandra Deep Field South (ECDF-S) fields. Candidate galaxies were selected from a full photometric redshift analysis down to a $Y+J$ depth of 25.3 ($5蟽$), ut… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02494v2-abstract-full').style.display = 'inline'; document.getElementById('2304.02494v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02494v2-abstract-full" style="display: none;"> We have conducted a search for $z\simeq7$ Lyman break galaxies over 8.2 square degrees of near-infrared imaging from the VISTA Deep Extragalactic Observations (VIDEO) survey in the XMM-Newton - Large Scale Structure (XMM-LSS) and the Extended Chandra Deep Field South (ECDF-S) fields. Candidate galaxies were selected from a full photometric redshift analysis down to a $Y+J$ depth of 25.3 ($5蟽$), utilizing deep auxiliary optical and Spitzer/IRAC data to remove brown dwarf and red interloper galaxy contaminants. Our final sample consists of 28 candidate galaxies at $6.5\le z \le7.5$ with $-23.5 \le M_{\mathrm{UV}} \le -21.6$. We derive stellar masses of $9.1 \le \mathrm{log}_{10}(M/M_{\odot}) \le 10.9$ for the sample, suggesting that these candidates represent some of the most massive galaxies known at this epoch. We measure the rest-frame UV luminosity function (LF) at $z\simeq7$, confirming previous findings of a gradual decline in number density at the bright-end ($M_{\mathrm{UV}} < -22$) that is well described by a double-power law (DPL). We show that quasar contamination in this magnitude range is expected to be minimal, in contrast to conclusions from recent pure-parallel Hubble studies. Our results are up to a factor of ten lower than previous determinations from optical-only ground-based studies at $M_{\rm UV} \lesssim - 23$. We find that the inclusion of $YJHK_{s}$ photometry is vital for removing brown-dwarf contaminants, and $z \simeq 7$ samples based on red-optical data alone could be highly contaminated ($\gtrsim 50$ per cent). In comparison with other robust $z > 5$ samples, our results further support little evolution in the very bright-end of the rest-frame UV LF from $z = 5-10$, potentially signalling a lack of mass quenching and/or dust obscuration in the most massive galaxies in the first Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02494v2-abstract-full').style.display = 'none'; document.getElementById('2304.02494v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, 5 tables (plus additional figures/tables in Appendix). Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03981">arXiv:2212.03981</a> <span> [<a href="https://arxiv.org/pdf/2212.03981">pdf</a>, <a href="https://arxiv.org/format/2212.03981">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad557">10.1093/mnras/stad557 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jin%2C+S">Shoko Jin</a>, <a href="/search/astro-ph?searchtype=author&query=Trager%2C+S+C">Scott C. Trager</a>, <a href="/search/astro-ph?searchtype=author&query=Dalton%2C+G+B">Gavin B. Dalton</a>, <a href="/search/astro-ph?searchtype=author&query=Aguerri%2C+J+A+L">J. Alfonso L. Aguerri</a>, <a href="/search/astro-ph?searchtype=author&query=Drew%2C+J+E">J. E. Drew</a>, <a href="/search/astro-ph?searchtype=author&query=Falc%C3%B3n-Barroso%2C+J">Jes煤s Falc贸n-Barroso</a>, <a href="/search/astro-ph?searchtype=author&query=G%C3%A4nsicke%2C+B+T">Boris T. G盲nsicke</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+V">Vanessa Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Iovino%2C+A">Angela Iovino</a>, <a href="/search/astro-ph?searchtype=author&query=Pieri%2C+M+M">Matthew M. Pieri</a>, <a href="/search/astro-ph?searchtype=author&query=Poggianti%2C+B+M">Bianca M. Poggianti</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+D+J+B">D. J. B. Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Vallenari%2C+A">Antonella Vallenari</a>, <a href="/search/astro-ph?searchtype=author&query=Abrams%2C+D+C">Don Carlos Abrams</a>, <a href="/search/astro-ph?searchtype=author&query=Aguado%2C+D+S">David S. Aguado</a>, <a href="/search/astro-ph?searchtype=author&query=Antoja%2C+T">Teresa Antoja</a>, <a href="/search/astro-ph?searchtype=author&query=Arag%C3%B3n-Salamanca%2C+A">Alfonso Arag贸n-Salamanca</a>, <a href="/search/astro-ph?searchtype=author&query=Ascasibar%2C+Y">Yago Ascasibar</a>, <a href="/search/astro-ph?searchtype=author&query=Babusiaux%2C+C">Carine Babusiaux</a>, <a href="/search/astro-ph?searchtype=author&query=Balcells%2C+M">Marc Balcells</a>, <a href="/search/astro-ph?searchtype=author&query=Barrena%2C+R">R. Barrena</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+G">Giuseppina Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Belokurov%2C+V">Vasily Belokurov</a>, <a href="/search/astro-ph?searchtype=author&query=Bensby%2C+T">Thomas Bensby</a>, <a href="/search/astro-ph?searchtype=author&query=Bonifacio%2C+P">Piercarlo Bonifacio</a> , et al. (190 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03981v2-abstract-short" style="display: inline;"> WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrogr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03981v2-abstract-full').style.display = 'inline'; document.getElementById('2212.03981v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03981v2-abstract-full" style="display: none;"> WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366$-$959\,nm at $R\sim5000$, or two shorter ranges at $R\sim20\,000$. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for $\sim$3 million stars and detailed abundances for $\sim1.5$ million brighter field and open-cluster stars; (ii) survey $\sim0.4$ million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey $\sim400$ neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in $z<0.5$ cluster galaxies; (vi) survey stellar populations and kinematics in $\sim25\,000$ field galaxies at $0.3\lesssim z \lesssim 0.7$; (vii) study the cosmic evolution of accretion and star formation using $>1$ million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at $z>2$. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03981v2-abstract-full').style.display = 'none'; document.getElementById('2212.03981v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 27 figures, accepted for publication by MNRAS; updated version including information on individual grants in a revised Acknowledgements section, corrections to the affiliation list, and an updated references list</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05741">arXiv:2211.05741</a> <span> [<a href="https://arxiv.org/pdf/2211.05741">pdf</a>, <a href="https://arxiv.org/format/2211.05741">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3320">10.1093/mnras/stac3320 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE: Deep 1.4 GHz Source Counts and the Sky Temperature Contribution of Star Forming Galaxies and Active Galactic Nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">I. H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Best%2C+P+N">P. N. Best</a>, <a href="/search/astro-ph?searchtype=author&query=Thomas%2C+N+L">N. L. Thomas</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Prescott%2C+M">M. Prescott</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N">N. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Afonso%2C+J">J. Afonso</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+F">Fangxia An</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Cook%2C+R+H+W">R. H. W. Cook</a>, <a href="/search/astro-ph?searchtype=author&query=Dav%C3%A9%2C+R">R. Dav茅</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">B. S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Glowacki%2C+M">M. Glowacki</a>, <a href="/search/astro-ph?searchtype=author&query=Hatfield%2C+P+W">P. W. Hatfield</a>, <a href="/search/astro-ph?searchtype=author&query=Lovell%2C+S+K+C+C">S. Kolwa C. C. Lovell</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">N. Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Marchetti%2C+L">L. Marchetti</a>, <a href="/search/astro-ph?searchtype=author&query=Morabito%2C+L+K">L. K. Morabito</a>, <a href="/search/astro-ph?searchtype=author&query=Murphy%2C+E">E. Murphy</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">I. Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Randriamanakoto%2C+Z">Z. Randriamanakoto</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+A+R">A. R. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05741v1-abstract-short" style="display: inline;"> We present deep 1.4 GHz source counts from $\sim$5 deg$^2$ of the continuum Early Science data release of the MeerKAT International Gigahertz Tiered Extragalactic Exploration (MIGHTEE) survey down to $S_{1.4\textrm{GHz}}\sim$15 $渭$Jy. Using observations over two extragalactic fields (COSMOS and XMM-LSS), we provide a comprehensive investigation into correcting the incompleteness of the raw source… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05741v1-abstract-full').style.display = 'inline'; document.getElementById('2211.05741v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05741v1-abstract-full" style="display: none;"> We present deep 1.4 GHz source counts from $\sim$5 deg$^2$ of the continuum Early Science data release of the MeerKAT International Gigahertz Tiered Extragalactic Exploration (MIGHTEE) survey down to $S_{1.4\textrm{GHz}}\sim$15 $渭$Jy. Using observations over two extragalactic fields (COSMOS and XMM-LSS), we provide a comprehensive investigation into correcting the incompleteness of the raw source counts within the survey to understand the true underlying source count population. We use a variety of simulations that account for: errors in source detection and characterisation, clustering, and variations in the assumed source model used to simulate sources within the field and characterise source count incompleteness. We present these deep source count distributions and use them to investigate the contribution of extragalactic sources to the sky background temperature at 1.4 GHz using a relatively large sky area. We then use the wealth of ancillary data covering{a subset of the COSMOS field to investigate the specific contributions from both active galactic nuclei (AGN) and star forming galaxies (SFGs) to the source counts and sky background temperature. We find, similar to previous deep studies, that we are unable to reconcile the sky temperature observed by the ARCADE 2 experiment. We show that AGN provide the majority contribution to the sky temperature contribution from radio sources, but the relative contribution of SFGs rises sharply below 1 mJy, reaching an approximate 15-25% contribution to the total sky background temperature ($T_b\sim$100 mK) at $\sim$15 $渭$Jy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05741v1-abstract-full').style.display = 'none'; document.getElementById('2211.05741v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 12 figures; Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04651">arXiv:2210.04651</a> <span> [<a href="https://arxiv.org/pdf/2210.04651">pdf</a>, <a href="https://arxiv.org/format/2210.04651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2343">10.1093/mnras/stad2343 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: The HI mass-stellar mass relation over the last billion years </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pan%2C+H">Hengxing Pan</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Santos%2C+M+G">Mario G. Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">Bradley S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">Isabella Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Kurapati%2C+S">Sushma Kurapati</a>, <a href="/search/astro-ph?searchtype=author&query=Baes%2C+M">Maarten Baes</a>, <a href="/search/astro-ph?searchtype=author&query=Pi%C3%B1a%2C+P+E+M">Pavel E. Mancera Pi帽a</a>, <a href="/search/astro-ph?searchtype=author&query=Rodighiero%2C+G">Giulia Rodighiero</a>, <a href="/search/astro-ph?searchtype=author&query=Meyer%2C+M+J">Martin J. Meyer</a>, <a href="/search/astro-ph?searchtype=author&query=Dav%C3%A9%2C+R">Romeel Dav茅</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+G">Gauri Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Rajohnson%2C+S+H+A">Sambatriniaina H. A. Rajohnson</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">Nathan J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">Rebecca A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Sinigaglia%2C+F">Francesco Sinigaglia</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Hulst%2C+T">Thijs van der Hulst</a>, <a href="/search/astro-ph?searchtype=author&query=Hatfield%2C+P+W">Peter W. Hatfield</a>, <a href="/search/astro-ph?searchtype=author&query=Sekhar%2C+S">Srikrishna Sekhar</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">Jordan D. Collier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04651v2-abstract-short" style="display: inline;"> We study the $M_{\rm HI}-M_{\star}$ relation over the last billion years using the MIGHTEE-HI sample. We first model the upper envelope of the $M_{\rm HI}-M_{\star}$ relation with a Bayesian technique applied to a total number of 249 HI-selected galaxies, without binning the datasets, while taking account of the intrinsic scatter. We fit the envelope with both linear and non-linear models, and fin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04651v2-abstract-full').style.display = 'inline'; document.getElementById('2210.04651v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04651v2-abstract-full" style="display: none;"> We study the $M_{\rm HI}-M_{\star}$ relation over the last billion years using the MIGHTEE-HI sample. We first model the upper envelope of the $M_{\rm HI}-M_{\star}$ relation with a Bayesian technique applied to a total number of 249 HI-selected galaxies, without binning the datasets, while taking account of the intrinsic scatter. We fit the envelope with both linear and non-linear models, and find that the non-linear model is preferred over the linear one with a measured transition stellar mass of $\log_{10}(M_\star$/$M_{\odot})$ = $9.15\pm0.87$, beyond which the slope flattens. This finding supports the view that the lack of HI gas is ultimately responsible for the decreasing star formation rate observed in the massive main-sequence galaxies. For spirals alone, which are biased towards the massive galaxies in our sample, the slope beyond the transition mass is shallower than for the full sample, indicative of distinct gas processes ongoing for the spirals/high-mass galaxies from other types with lower stellar masses. We then create mock catalogues for the MIGHTEE-HI detections and non-detections with two main galaxy populations of late- and early-type galaxies to measure the underlying $M_{\rm HI}-M_{\star}$ relation. We find that the turnover in this relation persists whether considering the two galaxy populations as a whole or separately. We note that an underlying linear relation could mimic this turnover in the observed scaling relation, but a model with a turnover is strongly preferred. Measurements on the logarithmic average of HI masses against the stellar mass are provided as a benchmark for future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04651v2-abstract-full').style.display = 'none'; document.getElementById('2210.04651v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised manuscript accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01121">arXiv:2208.01121</a> <span> [<a href="https://arxiv.org/pdf/2208.01121">pdf</a>, <a href="https://arxiv.org/format/2208.01121">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac85ae">10.3847/2041-8213/ac85ae <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: Evolution of HI scaling relations of star-forming galaxies at $z<0.5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sinigaglia%2C+F">Francesco Sinigaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Rodighiero%2C+G">Giulia Rodighiero</a>, <a href="/search/astro-ph?searchtype=author&query=Elson%2C+E">Ed Elson</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">Mattia Vaccari</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">Bradley S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Oosterloo%2C+T">Tom Oosterloo</a>, <a href="/search/astro-ph?searchtype=author&query=Dav%C3%A9%2C+R">Romeel Dav茅</a>, <a href="/search/astro-ph?searchtype=author&query=Salvato%2C+M">Mara Salvato</a>, <a href="/search/astro-ph?searchtype=author&query=Baes%2C+M">Maarten Baes</a>, <a href="/search/astro-ph?searchtype=author&query=Bellstedt%2C+S">Sabine Bellstedt</a>, <a href="/search/astro-ph?searchtype=author&query=Bisigello%2C+L">Laura Bisigello</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">Jordan D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Cook%2C+R+H+W">Robin H. W. Cook</a>, <a href="/search/astro-ph?searchtype=author&query=Davies%2C+L+J+M">Luke J. M. Davies</a>, <a href="/search/astro-ph?searchtype=author&query=Delhaize%2C+J">Jacinta Delhaize</a>, <a href="/search/astro-ph?searchtype=author&query=Driver%2C+S+P">Simon P. Driver</a>, <a href="/search/astro-ph?searchtype=author&query=Foster%2C+C">Caroline Foster</a>, <a href="/search/astro-ph?searchtype=author&query=Kurapati%2C+S">Sushma Kurapati</a>, <a href="/search/astro-ph?searchtype=author&query=Lagos%2C+C+d+P">Claudia del P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&query=Lidman%2C+C">Christopher Lidman</a>, <a href="/search/astro-ph?searchtype=author&query=Pi%C3%B1a%2C+P+E+M">Pavel E. Mancera Pi帽a</a>, <a href="/search/astro-ph?searchtype=author&query=Meyer%2C+M+J">Martin J. Meyer</a>, <a href="/search/astro-ph?searchtype=author&query=Mogotsi%2C+K+M">K. Moses Mogotsi</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01121v1-abstract-short" style="display: inline;"> We present the first measurements of HI galaxy scaling relations from a blind survey at $z>0.15$. We perform spectral stacking of 9023 spectra of star-forming galaxies undetected in HI at $0.23<z<0.49$, extracted from MIGHTEE-HI Early Science datacubes, acquired with the MeerKAT radio telescope. We stack galaxies in bins of galaxy properties ($M_*$, SFR, and sSFR, with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01121v1-abstract-full').style.display = 'inline'; document.getElementById('2208.01121v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01121v1-abstract-full" style="display: none;"> We present the first measurements of HI galaxy scaling relations from a blind survey at $z>0.15$. We perform spectral stacking of 9023 spectra of star-forming galaxies undetected in HI at $0.23<z<0.49$, extracted from MIGHTEE-HI Early Science datacubes, acquired with the MeerKAT radio telescope. We stack galaxies in bins of galaxy properties ($M_*$, SFR, and sSFR, with ${\rm sSFR}\equiv M_*/{\rm SFR}$), obtaining $\gtrsim 5蟽$ detections in most cases, the strongest HI-stacking detections to date in this redshift range. With these detections, we are able to measure scaling relations in the probed redshift interval, finding evidence for a moderate evolution from the median redshift of our sample $z_{\rm med}\sim 0.37$ to $z\sim 0$. In particular, low-$M_*$ galaxies ($\log_{10}(M_*/{\rm M_\odot})\sim 9$) experience a strong HI depletion ($\sim 0.5$ dex in $\log_{10}(M_{\rm HI}/{\rm M}_\odot)$), while massive galaxies ($\log_{10}(M_*/{\rm M_\odot})\sim 11$) keep their HI mass nearly unchanged. When looking at the star formation activity, highly star-forming galaxies evolve significantly in $M_{\rm HI}$ ($f_{\rm HI}$, where $f_{\rm HI}\equiv M_{\rm}/M_*$) at fixed SFR (sSFR), while at the lowest probed SFR (sSFR) the scaling relations show no evolution. These findings suggest a scenario in which low-$M_*$ galaxies have experienced a strong HI depletion during the last $\sim4$ Gyr, while massive galaxies have undergone a significant HI replenishment through some accretion mechanism, possibly minor mergers. Interestingly, our results are in good agreement with the predictions of the SIMBA simulation. We conclude that this work sets novel important observational constraints on galaxy scaling relations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01121v1-abstract-full').style.display = 'none'; document.getElementById('2208.01121v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures. Accepted for publication in ApJ Letters on 30 July 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12379">arXiv:2207.12379</a> <span> [<a href="https://arxiv.org/pdf/2207.12379">pdf</a>, <a href="https://arxiv.org/format/2207.12379">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2140">10.1093/mnras/stac2140 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE: the nature of the radio-loud AGN population </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">I. H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Prescott%2C+M">M. Prescott</a>, <a href="/search/astro-ph?searchtype=author&query=Morabito%2C+L+K">L. K. Morabito</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Afonso%2C+J">J. Afonso</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+F">Fangxia An</a>, <a href="/search/astro-ph?searchtype=author&query=Ao%2C+Y">Y. Ao</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A">R. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Deane%2C+R+P">R. P. Deane</a>, <a href="/search/astro-ph?searchtype=author&query=Delhaize%2C+J">J. Delhaize</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B">B. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Glowacki%2C+M">M. Glowacki</a>, <a href="/search/astro-ph?searchtype=author&query=Hatfield%2C+P+W">P. W. Hatfield</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">N. Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Marchetti%2C+L">L. Marchetti</a>, <a href="/search/astro-ph?searchtype=author&query=Matthews%2C+A+M">A. M. Matthews</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">I. Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Randriamampandry%2C+S">S. Randriamampandry</a>, <a href="/search/astro-ph?searchtype=author&query=Randriamanakoto%2C+Z">Z. Randriamanakoto</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+D+J+B">D. J. B. Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+A+R">A. R. Taylor</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12379v1-abstract-short" style="display: inline;"> We study the nature of the faint radio source population detected in the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Early Science data in the COSMOS field, focusing on the properties of the radio-loud active galactic nuclei (AGN). Using the extensive multi-wavelength data available in the field, we are able to classify 88 per cent of the 5223 radio sources in the field wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12379v1-abstract-full').style.display = 'inline'; document.getElementById('2207.12379v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12379v1-abstract-full" style="display: none;"> We study the nature of the faint radio source population detected in the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Early Science data in the COSMOS field, focusing on the properties of the radio-loud active galactic nuclei (AGN). Using the extensive multi-wavelength data available in the field, we are able to classify 88 per cent of the 5223 radio sources in the field with host galaxy identifications as AGN (35 per cent) or star-forming galaxies (54 per cent). We select a sample of radio-loud AGN with redshifts out to $z \sim 6$ and radio luminosities $10^{20} < \textrm{L}_{1.4~\textrm{GHz}} / \textrm{W Hz}^{-1} < 10^{27}$ and classify them as high-excitation and low-excitation radio galaxies (HERGs and LERGs). The classification catalogue is released with this work. We find no significant difference in the host galaxy properties of the HERGs and LERGs in our sample. In contrast to previous work, we find that the HERGs and LERGs have very similar Eddington-scaled accretion rates; in particular we identify a population of very slowly accreting AGN that are formally classified as HERGs at these low radio luminosities, where separating into HERGs and LERGs possibly becomes redundant. We investigate how black hole mass affects jet power, and find that a black hole mass $\gtrsim 10^{7.8}~\textrm{M}_\odot$ is required to power a jet with mechanical power greater than the radiative luminosity of the AGN ($L_\textrm{mech}/L_\textrm{bol} > 1$). We discuss that both a high black hole mass and black hole spin may be necessary to launch and sustain a dominant radio jet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12379v1-abstract-full').style.display = 'none'; document.getElementById('2207.12379v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. The multi-wavelength source classification catalogue is released publicly with this work. 20 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09342">arXiv:2207.09342</a> <span> [<a href="https://arxiv.org/pdf/2207.09342">pdf</a>, <a href="https://arxiv.org/format/2207.09342">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The total rest-frame UV luminosity function from $3 < z < 5$: A simultaneous study of AGN and galaxies from $-28<M_{\rm UV}<-16$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Varadaraj%2C+R+G">R. G. Varadaraj</a>, <a href="/search/astro-ph?searchtype=author&query=H%C3%A4u%C3%9Fler%2C+B">B. H盲u脽ler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09342v2-abstract-short" style="display: inline;"> We present measurements of the rest-frame ultraviolet luminosity function at redshifts $z=3$, $z=4$ and $z=5$, using 96894, 38655 and 7571 sources respectively to map the transition between AGN and galaxy-dominated ultraviolet emission shortly after the epoch of reionization. Sources are selected using a comprehensive photometric redshift approach, using $10$deg$^2$ of deep extragalactic legacy fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09342v2-abstract-full').style.display = 'inline'; document.getElementById('2207.09342v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09342v2-abstract-full" style="display: none;"> We present measurements of the rest-frame ultraviolet luminosity function at redshifts $z=3$, $z=4$ and $z=5$, using 96894, 38655 and 7571 sources respectively to map the transition between AGN and galaxy-dominated ultraviolet emission shortly after the epoch of reionization. Sources are selected using a comprehensive photometric redshift approach, using $10$deg$^2$ of deep extragalactic legacy fields covered by both HSC and VISTA. The use of template fitting spanning a wavelength range of $0.3\text{--}2.4渭$m achieves $80\text{--}90$ per cent completeness, much higher than classical colour-colour cut methodology. The measured LF encompasses $-26<M_{\rm UV}<-19.25$. This is further extended to $-28.5<M_{\rm UV}<-16$ using complementary results from other studies, allowing for the simultaneous fitting of the combined AGN and galaxy LF. We find that there are fewer UV luminous galaxies ($M_{\rm UV}<-22$) at $z\sim3$ than $z\sim4$, indicative of an onset of widespread quenching alongside dust obscuration, and that the evolution of the AGN LF is very rapid, with their number density rising by around 2 orders of magnitude from $3<z<6$. It remains difficult to determine if a double power law (DPL) functional form is preferred over the Schechter function to describe the galaxy UV LF. Estimating the Hydrogen ionizing photon budget from our UV LFs, we find that AGN can contribute to, but cannot solely maintain, the reionization of the Universe at $z=3-5$. However, the rapidly evolving AGN LF strongly disfavours a significant contribution within the EoR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09342v2-abstract-full').style.display = 'none'; document.getElementById('2207.09342v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 Tables, 12 Figures, Updated to Accepted MNRAS version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.00748">arXiv:2206.00748</a> <span> [<a href="https://arxiv.org/pdf/2206.00748">pdf</a>, <a href="https://arxiv.org/format/2206.00748">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1042">10.1093/mnras/stac1042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid photometric redshifts for sources in the COSMOS and XMM-LSS fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hatfield%2C+P+W">P. W. Hatfield</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N">N. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=H%C3%A4u%C3%9Fler%2C+B">B. H盲u脽ler</a>, <a href="/search/astro-ph?searchtype=author&query=Duncan%2C+K+J">K. J. Duncan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.00748v1-abstract-short" style="display: inline;"> In this paper we present photometric redshifts for 2.7 million galaxies in the XMM-LSS and COSMOS fields, both with rich optical and near-infrared data from VISTA and HyperSuprimeCam. Both template fitting (using galaxy and Active Galactic Nuclei templates within LePhare) and machine learning (using GPz) methods are run on the aperture photometry of sources selected in the Ks-band. The resulting p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00748v1-abstract-full').style.display = 'inline'; document.getElementById('2206.00748v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.00748v1-abstract-full" style="display: none;"> In this paper we present photometric redshifts for 2.7 million galaxies in the XMM-LSS and COSMOS fields, both with rich optical and near-infrared data from VISTA and HyperSuprimeCam. Both template fitting (using galaxy and Active Galactic Nuclei templates within LePhare) and machine learning (using GPz) methods are run on the aperture photometry of sources selected in the Ks-band. The resulting predictions are then combined using a Hierarchical Bayesian model, to produce consensus photometric redshift point estimates and probability distribution functions that outperform each method individually. Our point estimates have a root mean square error of ~0.08-0.09, and an outlier fraction of ~3-4 percent when compared to spectroscopic redshifts. We also compare our results to the COSMOS2020 photometric redshifts, which contains fewer sources, but had access to a larger number of bands and greater wavelength coverage, finding that comparable photo-z quality can be achieved (for bright and intermediate luminosity sources where a direct comparison can be made). Our resulting redshifts represent the most accurate set of photometric redshifts (for a catalogue this large) for these deep multi-square degree multi-wavelength fields to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00748v1-abstract-full').style.display = 'none'; document.getElementById('2206.00748v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in MNRAS, 15 figures. Photo-z catalogue described in the paper available online here: https://entangled.physics.ox.ac.uk/index.php/s/T1NQAMardpoOQMQ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 513, Issue 3, pp.3719-3733, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.11645">arXiv:2205.11645</a> <span> [<a href="https://arxiv.org/pdf/2205.11645">pdf</a>, <a href="https://arxiv.org/ps/2205.11645">ps</a>, <a href="https://arxiv.org/format/2205.11645">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1359">10.1093/mnras/stac1359 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The star-formation rates of QSOs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Symeonidis%2C+M">M. Symeonidis</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">N. Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Michalowski%2C+M+J">M. J. Michalowski</a>, <a href="/search/astro-ph?searchtype=author&query=Andreani%2C+P">P. Andreani</a>, <a href="/search/astro-ph?searchtype=author&query=Clements%2C+D+L">D. L. Clements</a>, <a href="/search/astro-ph?searchtype=author&query=De+Zotti%2C+G">G. De Zotti</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+S">S. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Gonzalez-Nuevo%2C+J">J. Gonzalez-Nuevo</a>, <a href="/search/astro-ph?searchtype=author&query=Ibar%2C+E">E. Ibar</a>, <a href="/search/astro-ph?searchtype=author&query=Ivison%2C+R+J">R. J. Ivison</a>, <a href="/search/astro-ph?searchtype=author&query=Leeuw%2C+L">L. Leeuw</a>, <a href="/search/astro-ph?searchtype=author&query=Page%2C+M+J">M. J. Page</a>, <a href="/search/astro-ph?searchtype=author&query=Shirley%2C+R">R. Shirley</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+M+W+L">M. W. L. Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">M. Vaccari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.11645v1-abstract-short" style="display: inline;"> We examine the far-IR properties of a sample of 5391 optically selected QSOs in the 0.5<z<2.65 redshift range down to log[nuLnu,2500 (erg/s)]>44.7, using SPIRE data from Herschel-ATLAS. We split the sample in a grid of 74 luminosity-redshift bins and compute the average optical-infrared spectral energy distribution (SED) in each bin. By normalising an intrinsic AGN template to the AGN optical powe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11645v1-abstract-full').style.display = 'inline'; document.getElementById('2205.11645v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.11645v1-abstract-full" style="display: none;"> We examine the far-IR properties of a sample of 5391 optically selected QSOs in the 0.5<z<2.65 redshift range down to log[nuLnu,2500 (erg/s)]>44.7, using SPIRE data from Herschel-ATLAS. We split the sample in a grid of 74 luminosity-redshift bins and compute the average optical-infrared spectral energy distribution (SED) in each bin. By normalising an intrinsic AGN template to the AGN optical power (at 5100A) we decompose the total infrared emission (L_IR; 8-1000um) into an AGN (L_IR,AGN) and star-forming component (L_IR,SF). We find that the AGN contribution to L_IR increases as a function of AGN power which manifests as a reduction of the `far-IR bump' in the average QSO SEDs. We note that L_IR,SF does not correlate with AGN power; the mean star formation rates (SFRs) of AGN host galaxies are a function of redshift only and they range from ~6 Msun/yr at z~0 to a plateau of <200 Msun/yr at z~2.6. Our results indicate that the accuracy of far-IR emission as a proxy for SFR decreases with increasing AGN luminosity. We show that, at any given redshift, observed trends between infrared luminosity (whether monochromatic or total) and AGN power (in the optical or X-rays) can be explained by a simple model which is the sum of two components: (A) the infrared emission from star-formation, uncorrelated with AGN power and (B) the infrared emission from AGN, directly proportional to AGN power in the optical or X-rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11645v1-abstract-full').style.display = 'none'; document.getElementById('2205.11645v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.03041">arXiv:2204.03041</a> <span> [<a href="https://arxiv.org/pdf/2204.03041">pdf</a>, <a href="https://arxiv.org/format/2204.03041">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac996">10.1093/mnras/stac996 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: The relation between the HI gas in galaxies and the cosmic web </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Tudorache%2C+M+N">Madalina N. Tudorache</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">A. A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">N. Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">B. S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">I. H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Baes%2C+M">M. Baes</a>, <a href="/search/astro-ph?searchtype=author&query=Pan%2C+H">H. Pan</a>, <a href="/search/astro-ph?searchtype=author&query=Rajohnson%2C+S+H+A">S. H. A. Rajohnson</a>, <a href="/search/astro-ph?searchtype=author&query=Sinigaglia%2C+F">F. Sinigaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Spekkens%2C+K">K. Spekkens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.03041v1-abstract-short" style="display: inline;"> We study the 3D axis of rotation (3D spin) of 77 HI galaxies from the MIGHTEE-HI Early Science observations, and its relation to the filaments of the cosmic web. For this HI-selected sample, the alignment between the spin axis and the closest filament ($\lvert \cos 蠄\rvert$) is higher for galaxies closer to the filaments, with $\langle\lvert \cos 蠄\rvert\rangle= 0.66 \pm 0.04$ for galaxies $<5$ Mp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.03041v1-abstract-full').style.display = 'inline'; document.getElementById('2204.03041v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.03041v1-abstract-full" style="display: none;"> We study the 3D axis of rotation (3D spin) of 77 HI galaxies from the MIGHTEE-HI Early Science observations, and its relation to the filaments of the cosmic web. For this HI-selected sample, the alignment between the spin axis and the closest filament ($\lvert \cos 蠄\rvert$) is higher for galaxies closer to the filaments, with $\langle\lvert \cos 蠄\rvert\rangle= 0.66 \pm 0.04$ for galaxies $<5$ Mpc from their closest filament compared to $\langle\lvert \cos 蠄\rvert\rangle= 0.37 \pm 0.08$ for galaxies at $5 < d <10$ Mpc. We find that galaxies with a low HI-to-stellar mass ratio ($\log_{10}(M_{\rm HI}/M_{\star}) < 0.11$) are more aligned with their closest filaments, with $\langle\lvert \cos 蠄\rvert\rangle= 0.58 \pm 0.04$; whilst galaxies with ($\log_{10}(M_{\rm HI}/M_{\star}) > 0.11$) tend to be mis-aligned, with $\langle\lvert \cos 蠄\rvert\rangle= 0.44 \pm 0.04$. We find tentative evidence that the spin axis of HI-selected galaxies tend to be aligned with associated filaments ($d<10$ Mpc), but this depends on the gas fractions. Galaxies that have accumulated more stellar mass compared to their gas mass tend towards stronger alignment. Our results suggest that those galaxies that have accrued high gas fraction with respect to their stellar mass may have had their spin axis alignment with the filament disrupted by a recent gas-rich merger, whereas the spin vector for those galaxies in which the neutral gas has not been strongly replenished through a recent merger tend to orientate towards alignment with the filament. We also investigate the spin transition between galaxies with a high HI content and a low HI content at a threshold of $M_{\mathrm{HI}}\approx 10^{9.5} M_{\odot}$ found in simulations, however we find no evidence for such a transition with the current data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.03041v1-abstract-full').style.display = 'none'; document.getElementById('2204.03041v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, 5 tables, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06149">arXiv:2203.06149</a> <span> [<a href="https://arxiv.org/pdf/2203.06149">pdf</a>, <a href="https://arxiv.org/format/2203.06149">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac693">10.1093/mnras/stac693 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: the HI Size-Mass relation over the last billion years </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Rajohnson%2C+S+H+A">Sambatriniaina H. A. Rajohnson</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">Bradley S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Kraan-Korteweg%2C+R+C">Ren茅e C. Kraan-Korteweg</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Oosterloo%2C+T">Tom Oosterloo</a>, <a href="/search/astro-ph?searchtype=author&query=Baes%2C+M">Maarten Baes</a>, <a href="/search/astro-ph?searchtype=author&query=Spekkens%2C+K">Kristine Spekkens</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">Nathan J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Glowacki%2C+M">Marcin Glowacki</a>, <a href="/search/astro-ph?searchtype=author&query=Kurapati%2C+S">Sushma Kurapati</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">Isabella Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">Ian Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">Jordan D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Sekhar%2C+S">Srikrishna Sekhar</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+R">Russ Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06149v1-abstract-short" style="display: inline;"> We present the observed HI size-mass relation of $204$ galaxies from the MIGHTEE Survey Early Science data. The high sensitivity of MeerKAT allows us to detect galaxies spanning more than 4 orders of magnitude in HI mass, ranging from dwarf galaxies to massive spirals, and including all morphological types. This is the first time the relation has been explored on a blind homogeneous data set which… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06149v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06149v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06149v1-abstract-full" style="display: none;"> We present the observed HI size-mass relation of $204$ galaxies from the MIGHTEE Survey Early Science data. The high sensitivity of MeerKAT allows us to detect galaxies spanning more than 4 orders of magnitude in HI mass, ranging from dwarf galaxies to massive spirals, and including all morphological types. This is the first time the relation has been explored on a blind homogeneous data set which extends over a previously unexplored redshift range of $0 < z < 0.084$, i.e. a period of around one billion years in cosmic time. The sample follows the same tight logarithmic relation derived from previous work, between the diameter ($D_{\rm HI}$) and the mass ($M_{\rm HI}$) of HI discs. We measure a slope of $0.501\pm 0.008$, an intercept of $-3.252^{+0.073}_{-0.074}$, and an observed scatter of $0.057$ dex. For the first time, we quantify the intrinsic scatter of $0.054 \pm 0.003$ dex (${\sim} 10 \%$), which provides a constraint for cosmological simulations of galaxy formation and evolution. We derive the relation as a function of galaxy type and find that their intrinsic scatters and slopes are consistent within the errors. We also calculate the $D_{\rm HI} - M_{\rm HI}$ relation for two redshift bins and do not find any evidence for evolution with redshift. These results suggest that over a period of one billion years in lookback time, galaxy discs have not undergone significant evolution in their gas distribution and mean surface mass density, indicating a lack of dependence on both morphological type and redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06149v1-abstract-full').style.display = 'none'; document.getElementById('2203.06149v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06366">arXiv:2112.06366</a> <span> [<a href="https://arxiv.org/pdf/2112.06366">pdf</a>, <a href="https://arxiv.org/format/2112.06366">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3208">10.1093/mnras/stab3208 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Extragalactic VIsible Legacy Survey (DEVILS): Identification of AGN through SED Fitting and the Evolution of the Bolometric AGN Luminosity Function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Thorne%2C+J+E">Jessica E. Thorne</a>, <a href="/search/astro-ph?searchtype=author&query=Robotham%2C+A+S+G">Aaron S. G. Robotham</a>, <a href="/search/astro-ph?searchtype=author&query=Davies%2C+L+J+M">Luke J. M. Davies</a>, <a href="/search/astro-ph?searchtype=author&query=Bellstedt%2C+S">Sabine Bellstedt</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+M+J+I">Michael J. I. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Croom%2C+S+M">Scott M. Croom</a>, <a href="/search/astro-ph?searchtype=author&query=Delvecchio%2C+I">Ivan Delvecchio</a>, <a href="/search/astro-ph?searchtype=author&query=Groves%2C+B">Brent Groves</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Shabala%2C+S+S">Stanislav S. Shabala</a>, <a href="/search/astro-ph?searchtype=author&query=Seymour%2C+N">Nick Seymour</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">Imogen H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Bravo%2C+M">Matias Bravo</a>, <a href="/search/astro-ph?searchtype=author&query=Cook%2C+R+H+W">Robin H. W. Cook</a>, <a href="/search/astro-ph?searchtype=author&query=Driver%2C+S+P">Simon P. Driver</a>, <a href="/search/astro-ph?searchtype=author&query=Holwerda%2C+B">Benne Holwerda</a>, <a href="/search/astro-ph?searchtype=author&query=Phillipps%2C+S">Steven Phillipps</a>, <a href="/search/astro-ph?searchtype=author&query=Siudek%2C+M">Malgorzata Siudek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06366v1-abstract-short" style="display: inline;"> Active galactic nuclei (AGN) are typically identified through radio, mid-infrared, or X-ray emission or through the presence of broad and/or narrow emission lines. AGN can also leave an imprint on a galaxy's spectral energy distribution (SED) through the re-processing of photons by the dusty torus. Using the SED fitting code ProSpect with an incorporated AGN component, we fit the far ultraviolet t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06366v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06366v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06366v1-abstract-full" style="display: none;"> Active galactic nuclei (AGN) are typically identified through radio, mid-infrared, or X-ray emission or through the presence of broad and/or narrow emission lines. AGN can also leave an imprint on a galaxy's spectral energy distribution (SED) through the re-processing of photons by the dusty torus. Using the SED fitting code ProSpect with an incorporated AGN component, we fit the far ultraviolet to far-infrared SEDs of $\sim$494,00 galaxies in the D10-COSMOS field and $\sim$230,000 galaxies from the GAMA survey. By combining an AGN component with a flexible star formation and metallicity implementation, we obtain estimates for the AGN luminosities, stellar masses, star formation histories, and metallicity histories for each of our galaxies. We find that ProSpect can identify AGN components in 91 per cent of galaxies pre-selected as containing AGN through narrow-emission line ratios and the presence of broad lines. Our ProSpect-derived AGN luminosities show close agreement with luminosities derived for X-ray selected AGN using both the X-ray flux and previous SED fitting results. We show that incorporating the flexibility of an AGN component when fitting the SEDs of galaxies with no AGN has no significant impact on the derived galaxy properties. However, in order to obtain accurate estimates of the stellar properties of AGN host galaxies, it is crucial to include an AGN component in the SED fitting process. We use our derived AGN luminosities to map the evolution of the AGN luminosity function for $0<z<2$ and find good agreement with previous measurements and predictions from theoretical models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06366v1-abstract-full').style.display = 'none'; document.getElementById('2112.06366v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06279">arXiv:2112.06279</a> <span> [<a href="https://arxiv.org/pdf/2112.06279">pdf</a>, <a href="https://arxiv.org/format/2112.06279">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3145">10.1093/mnras/stab3145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Extragalactic VIsible Legacy Survey (DEVILS): Evolution of the $蟽_{\mathrm{SFR}}$-M$_{\star}$ relation and implications for self-regulated star formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Davies%2C+L+J+M">L. J. M. Davies</a>, <a href="/search/astro-ph?searchtype=author&query=Thorne%2C+J+E">J. E. Thorne</a>, <a href="/search/astro-ph?searchtype=author&query=Bellstedt%2C+S">S. Bellstedt</a>, <a href="/search/astro-ph?searchtype=author&query=Bravo%2C+M">M. Bravo</a>, <a href="/search/astro-ph?searchtype=author&query=Robotham%2C+A+S+G">A. S. G. Robotham</a>, <a href="/search/astro-ph?searchtype=author&query=Driver%2C+S+P">S. P. Driver</a>, <a href="/search/astro-ph?searchtype=author&query=Cook%2C+R+H+W">R. H. W. Cook</a>, <a href="/search/astro-ph?searchtype=author&query=Cortese%2C+L">L. Cortese</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Silva%2C+J">J. D'Silva</a>, <a href="/search/astro-ph?searchtype=author&query=Grootes%2C+M+W">M. W. Grootes</a>, <a href="/search/astro-ph?searchtype=author&query=Holwerda%2C+B+W">B. W. Holwerda</a>, <a href="/search/astro-ph?searchtype=author&query=Hopkins%2C+A+M">A. M. Hopkins</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Lidman%2C+C">C. Lidman</a>, <a href="/search/astro-ph?searchtype=author&query=Phillipps%2C+S">S. Phillipps</a>, <a href="/search/astro-ph?searchtype=author&query=Siudek%2C+M">M. Siudek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06279v1-abstract-short" style="display: inline;"> We present the evolution of the star-formation dispersion - stellar mass relation ($蟽_{SFR}$-M$_{\star}$) in the DEVILS D10 region using new measurements derived using the ProSpect spectral energy distribution fitting code. We find that $蟽_{SFR}$-M$_{\star}$ shows the characteristic 'U-shape' at intermediate stellar masses from 0.1<z<0.7 for a number of metrics, including using the deconvolved int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06279v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06279v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06279v1-abstract-full" style="display: none;"> We present the evolution of the star-formation dispersion - stellar mass relation ($蟽_{SFR}$-M$_{\star}$) in the DEVILS D10 region using new measurements derived using the ProSpect spectral energy distribution fitting code. We find that $蟽_{SFR}$-M$_{\star}$ shows the characteristic 'U-shape' at intermediate stellar masses from 0.1<z<0.7 for a number of metrics, including using the deconvolved intrinsic dispersion. A physical interpretation of this relation is the combination of stochastic star-formation and stellar feedback causing large scatter at low stellar masses and AGN feedback causing asymmetric scatter at high stellar masses. As such, the shape of this distribution and its evolution encodes detailed information about the astrophysical processes affecting star-formation, feedback and the lifecycle of galaxies. We find that the stellar mass that the minimum $蟽_{SFR}$ occurs evolves linearly with redshift, moving to higher stellar masses with increasing lookback time and traces the turnover in the star-forming sequence. This minimum $蟽_{SFR}$ point is also found to occur at a fixed specific star-formation rate (sSFR) at all epochs (sSFR~10$^{-9.6}$yr$^{-1}$). The physical interpretation of this is that there exists a maximum sSFR at which galaxies can internally self-regulate on the tight sequence of star-formation. At higher sSFRs, stochastic stellar processes begin to cause galaxies to be pushed both above and below the star-forming sequence leading to increased SFR dispersion. As the Universe evolves, a higher fraction of galaxies will drop below this sSFR threshold, causing the dispersion of the low-stellar mass end of the star-forming sequence to decrease with time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06279v1-abstract-full').style.display = 'none'; document.getElementById('2112.06279v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures, Accepted MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00347">arXiv:2110.00347</a> <span> [<a href="https://arxiv.org/pdf/2110.00347">pdf</a>, <a href="https://arxiv.org/ps/2110.00347">ps</a>, <a href="https://arxiv.org/format/2110.00347">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3021">10.1093/mnras/stab3021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE: total intensity radio continuum imaging and the COSMOS / XMM-LSS Early Science fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">I. H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Bester%2C+H+L">H. L. Bester</a>, <a href="/search/astro-ph?searchtype=author&query=Hugo%2C+B">B. Hugo</a>, <a href="/search/astro-ph?searchtype=author&query=Kenyon%2C+J+S">J. S. Kenyon</a>, <a href="/search/astro-ph?searchtype=author&query=Prescott%2C+M">M. Prescott</a>, <a href="/search/astro-ph?searchtype=author&query=Smirnov%2C+O+M">O. M. Smirnov</a>, <a href="/search/astro-ph?searchtype=author&query=Tasse%2C+C">C. Tasse</a>, <a href="/search/astro-ph?searchtype=author&query=Afonso%2C+J+M">J. M. Afonso</a>, <a href="/search/astro-ph?searchtype=author&query=Best%2C+P+N">P. N. Best</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Deane%2C+R+P">R. P. Deane</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">B. S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Hardcastle%2C+M+J">M. J. Hardcastle</a>, <a href="/search/astro-ph?searchtype=author&query=Knowles%2C+K">K. Knowles</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">N. Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Murphy%2C+E+J">E. J. Murphy</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">I. Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Randriamampandry%2C+S+M">S. M. Randriamampandry</a>, <a href="/search/astro-ph?searchtype=author&query=Santos%2C+M+G">M. G. Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Sekhar%2C+S">S. Sekhar</a>, <a href="/search/astro-ph?searchtype=author&query=Tabatabaei%2C+F">F. Tabatabaei</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+A+R">A. R. Taylor</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00347v1-abstract-short" style="display: inline;"> MIGHTEE is a galaxy evolution survey using simultaneous radio continuum, spectro-polarimetry, and spectral line observations from the South African MeerKAT telescope. When complete, the survey will image $\sim$20 deg$^{2}$ over the COSMOS, E-CDFS, ELAIS-S1, and XMM-LSS extragalactic deep fields with a central frequency of 1284 MHz. These were selected based on the extensive multiwavelength dataset… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00347v1-abstract-full').style.display = 'inline'; document.getElementById('2110.00347v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00347v1-abstract-full" style="display: none;"> MIGHTEE is a galaxy evolution survey using simultaneous radio continuum, spectro-polarimetry, and spectral line observations from the South African MeerKAT telescope. When complete, the survey will image $\sim$20 deg$^{2}$ over the COSMOS, E-CDFS, ELAIS-S1, and XMM-LSS extragalactic deep fields with a central frequency of 1284 MHz. These were selected based on the extensive multiwavelength datasets from numerous existing and forthcoming observational campaigns. Here we describe and validate the data processing strategy for the total intensity continuum aspect of MIGHTEE, using a single deep pointing in COSMOS (1.6 deg$^{2}$) and a three-pointing mosaic in XMM-LSS (3.5 deg$^{2}$). The processing includes the correction of direction-dependent effects, and results in thermal noise levels below 2~$\mathrm渭$Jy beam$^{-1}$ in both fields, limited in the central regions by classical confusion at $\sim$8$''$ angular resolution, and meeting the survey specifications. We also produce images at $\sim$5$''$ resolution that are $\sim$3 times shallower. The resulting image products form the basis of the Early Science continuum data release for MIGHTEE. From these images we extract catalogues containing 9,896 and 20,274 radio components in COSMOS and XMM-LSS respectively. We also process a close-packed mosaic of 14 additional pointings in COSMOS and use these in conjunction with the Early Science pointing to investigate methods for primary beam correction of broadband radio images, an analysis that is of relevance to all full-band MeerKAT continuum observations, and wide field interferometric imaging in general. A public release of the MIGHTEE Early Science continuum data products accompanies this article. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00347v1-abstract-full').style.display = 'none'; document.getElementById('2110.00347v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 13 figures, 3 tables, to be published in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04992">arXiv:2109.04992</a> <span> [<a href="https://arxiv.org/pdf/2109.04992">pdf</a>, <a href="https://arxiv.org/format/2109.04992">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2654">10.1093/mnras/stab2654 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: The baryonic Tully-Fisher relation over the last billion years </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Mulaudzi%2C+W">Wanga Mulaudzi</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">Bradley S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/astro-ph?searchtype=author&query=Glowacki%2C+M">Marcin Glowacki</a>, <a href="/search/astro-ph?searchtype=author&query=Kraan-Korteweg%2C+R+C">Ren茅e C. Kraan-Korteweg</a>, <a href="/search/astro-ph?searchtype=author&query=Oosterloo%2C+T+A">Tom A. Oosterloo</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Pan%2C+H">Hengxing Pan</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">Isabella Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Rajohnson%2C+S+H+A">Sambatriniaina H. A. Rajohnson</a>, <a href="/search/astro-ph?searchtype=author&query=Sinigaglia%2C+F">Francesco Sinigaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">Nathan J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">Ian Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">Rebecca A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Hatfield%2C+P+W">Peter W. Hatfield</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">Jordan D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Sekhar%2C+S">Srikrishna Sekhar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04992v1-abstract-short" style="display: inline;"> Using a sample of 67 galaxies from the MIGHTEE Survey Early Science data we study the HI-based baryonic Tully-Fisher relation (bTFr), covering a period of $\sim$one billion years ($0 \leq z \leq 0.081 $). We consider the bTFr based on two different rotational velocity measures: the width of the global HI profile and $\rm V_{out}$, measured as the outermost rotational velocity from the resolved HI… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04992v1-abstract-full').style.display = 'inline'; document.getElementById('2109.04992v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04992v1-abstract-full" style="display: none;"> Using a sample of 67 galaxies from the MIGHTEE Survey Early Science data we study the HI-based baryonic Tully-Fisher relation (bTFr), covering a period of $\sim$one billion years ($0 \leq z \leq 0.081 $). We consider the bTFr based on two different rotational velocity measures: the width of the global HI profile and $\rm V_{out}$, measured as the outermost rotational velocity from the resolved HI rotation curves. Both relations exhibit very low intrinsic scatter orthogonal to the best-fit relation ($蟽_{\perp}=0.07\pm0.01$), comparable to the SPARC sample at $z \simeq 0$. The slopes of the relations are similar and consistent with the $ z \simeq 0$ studies ($3.66^{+0.35}_{-0.29}$ for $\rm W_{50}$ and $3.47^{+0.37}_{-0.30}$ for $\rm V_{out}$). We find no evidence that the bTFr has evolved over the last billion years, and all galaxies in our sample are consistent with the same relation independent of redshift and the rotational velocity measure. Our results set up a reference for all future studies of the HI-based bTFr as a function of redshift that will be conducted with the ongoing deep SKA pathfinders surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04992v1-abstract-full').style.display = 'none'; document.getElementById('2109.04992v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04273">arXiv:2109.04273</a> <span> [<a href="https://arxiv.org/pdf/2109.04273">pdf</a>, <a href="https://arxiv.org/format/2109.04273">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2601">10.1093/mnras/stab2601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the baryonic Tully-Fisher relation below the detection threshold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pan%2C+H">Hengxing Pan</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Santos%2C+M+G">Mario G. Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">Bradley S. Frank</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04273v1-abstract-short" style="display: inline;"> We present a novel 2D flux density model for observed HI emission lines combined with a Bayesian stacking technique to measure the baryonic Tully-Fisher relation below the nominal detection threshold. We simulate a galaxy catalogue, which includes HI lines described either with Gaussian or busy function profiles, and HI data cubes with a range of noise and survey areas similar to the MeerKAT Inter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04273v1-abstract-full').style.display = 'inline'; document.getElementById('2109.04273v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04273v1-abstract-full" style="display: none;"> We present a novel 2D flux density model for observed HI emission lines combined with a Bayesian stacking technique to measure the baryonic Tully-Fisher relation below the nominal detection threshold. We simulate a galaxy catalogue, which includes HI lines described either with Gaussian or busy function profiles, and HI data cubes with a range of noise and survey areas similar to the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. With prior knowledge of redshifts, stellar masses and inclinations of spiral galaxies, we find that our model can reconstruct the input baryonic Tully-Fisher parameters (slope and zero point) most accurately in a relatively broad redshift range from the local Universe to $z = 0.3$ for all the considered levels of noise and survey areas, and up to $z = 0.55$ for a nominal noise of $90\,渭$Jy/channel over 5 deg$^{2}$. Our model can also determine the $M_{\rm HI} - M_{\star}$ relation for spiral galaxies beyond the local Universe, and account for the detailed shape of the HI emission line, which is crucial for understanding the dynamics of spiral galaxies. Thus, we have developed a Bayesian stacking technique for measuring the baryonic Tully-Fisher relation for galaxies at low stellar and/or HI masses and/or those at high redshift, where the direct detection of HI requires prohibitive exposure times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04273v1-abstract-full').style.display = 'none'; document.getElementById('2109.04273v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.02778">arXiv:2108.02778</a> <span> [<a href="https://arxiv.org/pdf/2108.02778">pdf</a>, <a href="https://arxiv.org/ps/2108.02778">ps</a>, <a href="https://arxiv.org/format/2108.02778">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2290">10.1093/mnras/stab2290 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radio spectral properties of star-forming galaxies in the MIGHTEE-COSMOS field and their impact on the far-infrared-radio correlation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=An%2C+F">Fangxia An</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">M. Vaccari</a>, <a href="/search/astro-ph?searchtype=author&query=Smail%2C+I">Ian Smail</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">I. H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Jin%2C+S">S. Jin</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Daddi%2C+E">E. Daddi</a>, <a href="/search/astro-ph?searchtype=author&query=Delhaize%2C+J">J. Delhaize</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B">B. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Murphy%2C+E+J">E. J. Murphy</a>, <a href="/search/astro-ph?searchtype=author&query=Prescott%2C+M">M. Prescott</a>, <a href="/search/astro-ph?searchtype=author&query=Sekhar%2C+S">S. Sekhar</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+A+R">A. R. Taylor</a>, <a href="/search/astro-ph?searchtype=author&query=Ao%2C+Y">Y. Ao</a>, <a href="/search/astro-ph?searchtype=author&query=Knowles%2C+K">K. Knowles</a>, <a href="/search/astro-ph?searchtype=author&query=Marchetti%2C+L">L. Marchetti</a>, <a href="/search/astro-ph?searchtype=author&query=Randriamampandry%2C+S+M">S. M. Randriamampandry</a>, <a href="/search/astro-ph?searchtype=author&query=Randriamanakoto%2C+Z">Z. Randriamanakoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.02778v1-abstract-short" style="display: inline;"> We study the radio spectral properties of 2,094 star-forming galaxies (SFGs) by combining our early science data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey with VLA, GMRT radio data, and rich ancillary data in the COSMOS field. These SFGs are selected at VLA 3GHz, and their flux densities from MeerKAT 1.3GHz and GMRT 325MHz imaging data are extracted using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02778v1-abstract-full').style.display = 'inline'; document.getElementById('2108.02778v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.02778v1-abstract-full" style="display: none;"> We study the radio spectral properties of 2,094 star-forming galaxies (SFGs) by combining our early science data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey with VLA, GMRT radio data, and rich ancillary data in the COSMOS field. These SFGs are selected at VLA 3GHz, and their flux densities from MeerKAT 1.3GHz and GMRT 325MHz imaging data are extracted using the "super-deblending" technique. The median radio spectral index is $伪_{\rm 1.3GHz}^{\rm 3GHz}=-0.80\pm0.01$ without significant variation across the rest-frame frequencies ~1.3-10GHz, indicating radio spectra dominated by synchrotron radiation. On average, the radio spectrum at observer-frame 1.3-3GHz slightly steepens with increasing stellar mass with a linear fitted slope of $尾=-0.08\pm0.01$, which could be explained by age-related synchrotron losses. Due to the sensitivity of GMRT 325MHz data, we apply a further flux density cut at 3GHz ($S_{\rm 3GHz}\ge50\,渭$Jy) and obtain a sample of 166 SFGs with measured flux densities at 325MHz, 1.3GHz, and 3GHz. On average, the radio spectrum of SFGs flattens at low frequency with the median spectral indices of $伪^{\rm 1.3GHz}_{\rm 325MHz}=-0.59^{+0.02}_{-0.03}$ and $伪^{\rm 3.0GHz}_{\rm 1.3GHz}=-0.74^{+0.01}_{-0.02}$. At low frequency, our stacking analyses show that the radio spectrum also slightly steepens with increasing stellar mass. By comparing the far-infrared-radio correlations of SFGs based on different radio spectral indices, we find that adopting $伪_{\rm 1.3GHz}^{\rm 3GHz}$ for $k$-corrections will significantly underestimate the infrared-to-radio luminosity ratio ($q_{\rm IR}$) for >17% of the SFGs with measured flux density at the three radio frequencies in our sample, because their radio spectra are significantly flatter at low frequency (0.33-1.3GHz). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02778v1-abstract-full').style.display = 'none'; document.getElementById('2108.02778v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, 1 table; accepted for publication in MNRAS on 2021 Aug 4</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.09141">arXiv:2107.09141</a> <span> [<a href="https://arxiv.org/pdf/2107.09141">pdf</a>, <a href="https://arxiv.org/format/2107.09141">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1998">10.1093/mnras/stab1998 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The radio loudness of SDSS quasars from the LOFAR Two-metre Sky Survey: ubiquitous jet activity and constraints on star formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Macfarlane%2C+C">C. Macfarlane</a>, <a href="/search/astro-ph?searchtype=author&query=Best%2C+P+N">P. N. Best</a>, <a href="/search/astro-ph?searchtype=author&query=Sabater%2C+J">J. Sabater</a>, <a href="/search/astro-ph?searchtype=author&query=Gurkan%2C+G">G. Gurkan</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Rottgering%2C+H+J+A">H. J. A. Rottgering</a>, <a href="/search/astro-ph?searchtype=author&query=Baldi%2C+R+D">R. D. Baldi</a>, <a href="/search/astro-ph?searchtype=author&query=Rivera%2C+G+C">G. Calistro Rivera</a>, <a href="/search/astro-ph?searchtype=author&query=Duncan%2C+K+J">K. J. Duncan</a>, <a href="/search/astro-ph?searchtype=author&query=Morabito%2C+L+K">L. K. Morabito</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">I. Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Retana-Montenegro%2C+E">E. Retana-Montenegro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.09141v1-abstract-short" style="display: inline;"> We examine the distribution of radio emission from ~42,000 quasars from the Sloan Digital Sky Survey, as measured in the LOFAR Two-Metre Sky Survey (LoTSS). We present a model of the radio luminosity distribution of the quasars that assumes that every quasar displays a superposition of two sources of radio emission: active galactic nuclei (jets) and star-formation. Our two-component model provides… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09141v1-abstract-full').style.display = 'inline'; document.getElementById('2107.09141v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.09141v1-abstract-full" style="display: none;"> We examine the distribution of radio emission from ~42,000 quasars from the Sloan Digital Sky Survey, as measured in the LOFAR Two-Metre Sky Survey (LoTSS). We present a model of the radio luminosity distribution of the quasars that assumes that every quasar displays a superposition of two sources of radio emission: active galactic nuclei (jets) and star-formation. Our two-component model provides an excellent match to the observed radio flux density distributions across a wide range of redshifts and quasar optical luminosities; this suggests that the jet-launching mechanism operates in all quasars but with different powering efficiency. The wide distribution of jet powers allows for a smooth transition between the 'radio-quiet' and 'radio-loud' quasar regimes, without need for any explicit bimodality. The best-fit model parameters indicate that the star-formation rate of quasar host galaxies correlates strongly with quasar luminosity and also increases with redshift at least out to z~2. For a model where star-formation rate scales as $SFR \propto L_{bol}^伪(1+z)^尾$, we find $伪= 0.47 \pm 0.01$ and $尾= 1.61 \pm 0.05$, in agreement with far-infrared studies. Quasars contribute ~0.15 per cent of the cosmic star-formation rate density at z=0.5, rising to 0.4 per cent by z=2. The typical radio jet power is seen to increase with both increasing optical luminosity and black hole mass independently, but does not vary with redshift, suggesting intrinsic properties govern the production of the radio jets. We discuss the implications of these results for the triggering of quasar activity and the launching of jets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09141v1-abstract-full').style.display = 'none'; document.getElementById('2107.09141v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. 21 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.01237">arXiv:2107.01237</a> <span> [<a href="https://arxiv.org/pdf/2107.01237">pdf</a>, <a href="https://arxiv.org/format/2107.01237">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1817">10.1093/mnras/stab1817 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: Discovery of an HI-rich galaxy group at z = 0.044 with MeerKAT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ranchod%2C+S">Shilpa Ranchod</a>, <a href="/search/astro-ph?searchtype=author&query=Deane%2C+R+P">Roger P. Deane</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Blecher%2C+T">Tariq Blecher</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">Bradley S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Mulaudzi%2C+W">Wanga Mulaudzi</a>, <a href="/search/astro-ph?searchtype=author&query=Glowacki%2C+M">Marcin Glowacki</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">Kelley M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=Tudorache%2C+M">Madalina Tudorache</a>, <a href="/search/astro-ph?searchtype=author&query=Verdes-Montenegro%2C+L">Lourdes Verdes-Montenegro</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">Nathan J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">Rebecca A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">Jordan D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+R">Russ Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.01237v1-abstract-short" style="display: inline;"> We present the serendipitous discovery of a galaxy group in the XMM-LSS field with MIGHTEE Early Science observations. Twenty galaxies are detected in HI in this $z\sim0.044$ group, with a $3蟽$ column density sensitivity of $N_\mathrm{HI} = 1.6\times10^{20}\,\mathrm{cm}^{-2}$. This group has not been previously identified, despite residing in a well-studied extragalactic legacy field. We present s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01237v1-abstract-full').style.display = 'inline'; document.getElementById('2107.01237v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.01237v1-abstract-full" style="display: none;"> We present the serendipitous discovery of a galaxy group in the XMM-LSS field with MIGHTEE Early Science observations. Twenty galaxies are detected in HI in this $z\sim0.044$ group, with a $3蟽$ column density sensitivity of $N_\mathrm{HI} = 1.6\times10^{20}\,\mathrm{cm}^{-2}$. This group has not been previously identified, despite residing in a well-studied extragalactic legacy field. We present spatially-resolved HI total intensity and velocity maps for each of the objects, which reveal environmental influence through disturbed morphologies. The group has a dynamical mass of $\log_{10}(M_\mathrm{dyn}/\mathrm{M}_\odot) = 12.32$, and is unusually gas-rich, with an HI-to-stellar mass ratio of $\log_{10}(f_\mathrm{HI}^\mathrm{*}) = -0.2$, which is 0.7 dex greater than expected. The group's high HI content, spatial, velocity, and identified galaxy type distributions strongly suggest that it is in the early stages of its assembly. The discovery of this galaxy group is an example of the importance of mapping spatially-resolved HI in a wide range of environments, including galaxy groups. This scientific goal has been dramatically enhanced by the high sensitivity, large field-of-view, and wide instantaneous bandwidth of the MeerKAT telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01237v1-abstract-full').style.display = 'none'; document.getElementById('2107.01237v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06241">arXiv:2106.06241</a> <span> [<a href="https://arxiv.org/pdf/2106.06241">pdf</a>, <a href="https://arxiv.org/format/2106.06241">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1601">10.1093/mnras/stab1601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Extragalactic VIsible Legacy Survey (DEVILS): Consistent multi-wavelength photometry for the DEVILS regions (COSMOS, XMMLSS & ECDFS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Davies%2C+L+J+M">L. J. M. Davies</a>, <a href="/search/astro-ph?searchtype=author&query=Thorne%2C+J+E">J. E. Thorne</a>, <a href="/search/astro-ph?searchtype=author&query=Robotham%2C+A+S+G">A. S. G. Robotham</a>, <a href="/search/astro-ph?searchtype=author&query=Bellstedt%2C+S">S. Bellstedt</a>, <a href="/search/astro-ph?searchtype=author&query=Driver%2C+S+P">S. P. Driver</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Bilicki%2C+M">M. Bilicki</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Bravo%2C+M">M. Bravo</a>, <a href="/search/astro-ph?searchtype=author&query=Cortese%2C+L">L. Cortese</a>, <a href="/search/astro-ph?searchtype=author&query=Foster%2C+C">C. Foster</a>, <a href="/search/astro-ph?searchtype=author&query=Grootes%2C+M+W">M. W. Grootes</a>, <a href="/search/astro-ph?searchtype=author&query=H%C3%A4u%C3%9Fler%2C+B">B. H盲u脽ler</a>, <a href="/search/astro-ph?searchtype=author&query=Hashemizadeh%2C+A">A. Hashemizadeh</a>, <a href="/search/astro-ph?searchtype=author&query=Holwerda%2C+B+W">B. W. Holwerda</a>, <a href="/search/astro-ph?searchtype=author&query=Hurley%2C+P">P. Hurley</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Lidman%2C+C">C. Lidman</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">N. Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Meyer%2C+M">M. Meyer</a>, <a href="/search/astro-ph?searchtype=author&query=Paolillo%2C+M">M. Paolillo</a>, <a href="/search/astro-ph?searchtype=author&query=Phillipps%2C+S">S. Phillipps</a>, <a href="/search/astro-ph?searchtype=author&query=Radovich%2C+M">M. Radovich</a>, <a href="/search/astro-ph?searchtype=author&query=Siudek%2C+M">M. Siudek</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">M. Vaccari</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06241v1-abstract-short" style="display: inline;"> The Deep Extragalactic VIsible Legacy Survey (DEVILS) is an ongoing high-completeness, deep spectroscopic survey of $\sim$60,000 galaxies to Y$<$21.2 mag, over $\sim$6 deg2 in three well-studied deep extragalactic fields: D10 (COSMOS), D02 (XMM-LSS) and D03 (ECDFS). Numerous DEVILS projects all require consistent, uniformly-derived and state-of-the-art photometric data with which to measure galaxy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06241v1-abstract-full').style.display = 'inline'; document.getElementById('2106.06241v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06241v1-abstract-full" style="display: none;"> The Deep Extragalactic VIsible Legacy Survey (DEVILS) is an ongoing high-completeness, deep spectroscopic survey of $\sim$60,000 galaxies to Y$<$21.2 mag, over $\sim$6 deg2 in three well-studied deep extragalactic fields: D10 (COSMOS), D02 (XMM-LSS) and D03 (ECDFS). Numerous DEVILS projects all require consistent, uniformly-derived and state-of-the-art photometric data with which to measure galaxy properties. Existing photometric catalogues in these regions either use varied photometric measurement techniques for different facilities/wavelengths leading to inconsistencies, older imaging data and/or rely on source detection and photometry techniques with known problems. Here we use the ProFound image analysis package and state-of-the-art imaging datasets (including Subaru-HSC, VST-VOICE, VISTA-VIDEO and UltraVISTA-DR4) to derive matched-source photometry in 22 bands from the FUV to 500渭m. This photometry is found to be consistent, or better, in colour-analysis to previous approaches using fixed-size apertures (which are specifically tuned to derive colours), but produces superior total source photometry, essential for the derivation of stellar masses, star-formation rates, star-formation histories, etc. Our photometric catalogue is described in detail and, after internal DEVILS team projects, will be publicly released for use by the broader scientific community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06241v1-abstract-full').style.display = 'none'; document.getElementById('2106.06241v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 22 figures, Accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.11497">arXiv:2105.11497</a> <span> [<a href="https://arxiv.org/pdf/2105.11497">pdf</a>, <a href="https://arxiv.org/format/2105.11497">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac1e97">10.3847/1538-4357/ac1e97 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First HETDEX Spectroscopic Determinations of Ly$伪$ and UV Luminosity Functions at $z=2-3$: Bridging a Gap Between Faint AGN and Bright Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+Y">Yechi Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Ouchi%2C+M">Masami Ouchi</a>, <a href="/search/astro-ph?searchtype=author&query=Gebhardt%2C+K">Karl Gebhardt</a>, <a href="/search/astro-ph?searchtype=author&query=Cooper%2C+E+M">Erin Mentuch Cooper</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+C">Chenxu Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+D">Dustin Davis</a>, <a href="/search/astro-ph?searchtype=author&query=Jeong%2C+D">Donghui Jeong</a>, <a href="/search/astro-ph?searchtype=author&query=Farrow%2C+D+J">Daniel J. Farrow</a>, <a href="/search/astro-ph?searchtype=author&query=Finkelstein%2C+S+L">Steven L. Finkelstein</a>, <a href="/search/astro-ph?searchtype=author&query=Gawiser%2C+E">Eric Gawiser</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+G+J">Gary J. Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Harikane%2C+Y">Yuichi Harikane</a>, <a href="/search/astro-ph?searchtype=author&query=Kakuma%2C+R">Ryota Kakuma</a>, <a href="/search/astro-ph?searchtype=author&query=Acquaviva%2C+V">Viviana Acquaviva</a>, <a href="/search/astro-ph?searchtype=author&query=Casey%2C+C+M">Caitlin M. Casey</a>, <a href="/search/astro-ph?searchtype=author&query=Fabricius%2C+M">Maximilian Fabricius</a>, <a href="/search/astro-ph?searchtype=author&query=Hopp%2C+U">Ulrich Hopp</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Landriau%2C+M">Martin Landriau</a>, <a href="/search/astro-ph?searchtype=author&query=Mawatari%2C+K">Ken Mawatari</a>, <a href="/search/astro-ph?searchtype=author&query=Mukae%2C+S">Shiro Mukae</a>, <a href="/search/astro-ph?searchtype=author&query=Ono%2C+Y">Yoshiaki Ono</a>, <a href="/search/astro-ph?searchtype=author&query=Sakai%2C+N">Nao Sakai</a>, <a href="/search/astro-ph?searchtype=author&query=Schneider%2C+D+P">Donald P. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.11497v2-abstract-short" style="display: inline;"> We present Ly$伪$ and ultraviolet-continuum (UV) luminosity functions (LFs) of galaxies and active galactic nuclei (AGN) at $z=2.0-3.5$ determined by the un-targetted optical spectroscopic survey of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). We combine deep Subaru imaging with HETDEX spectra resulting in $11.4$ deg$^2$ of fiber-spectra sky coverage, obtaining $18320$ galaxies spect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11497v2-abstract-full').style.display = 'inline'; document.getElementById('2105.11497v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.11497v2-abstract-full" style="display: none;"> We present Ly$伪$ and ultraviolet-continuum (UV) luminosity functions (LFs) of galaxies and active galactic nuclei (AGN) at $z=2.0-3.5$ determined by the un-targetted optical spectroscopic survey of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). We combine deep Subaru imaging with HETDEX spectra resulting in $11.4$ deg$^2$ of fiber-spectra sky coverage, obtaining $18320$ galaxies spectroscopically identified with Ly$伪$ emission, $2126$ of which host type 1 AGN showing broad (FWHM$~>1000$ km s$^{-1}$) Ly$伪$ emission lines. We derive the Ly$伪$ (UV) LF over 2 orders of magnitude covering bright galaxies and AGN in $\log L_\mathrm{Ly伪}/\mathrm{[erg~s^{-1}]}=43.3-45.5$ ($-27<M_\mathrm{UV}<-20$) by the $1/V_\mathrm{max}$ estimator. Our results reveal the bright-end hump of the Ly$伪$ LF is composed of type 1 AGN. In conjunction with previous spectroscopic results at the faint end, we measure a slope of the best-fit Schechter function to be $伪_\mathrm{Sch}=-1.70^{+0.13}_{-0.14}$, which indicates $伪_\mathrm{Sch}$ steepens from $z=2-3$ towards high redshift. Our UV LF agrees well with previous AGN UV LFs, and extends to faint-AGN and bright-galaxy regimes. The number fraction of Ly$伪$-emitting objects ($X_\mathrm{LAE}$) increases from $M_\mathrm{UV}^*\sim-21$ to bright magnitude due to the contribution of type 1 AGN, while previous studies claim that $X_\mathrm{Ly伪}$ decreases from faint magnitude to $M_\mathrm{UV}^*$, suggesting a valley in the $X_\mathrm{Ly伪}-$magnitude relation at $M_\mathrm{UV}^*$. Comparing our UV LF of type 1 AGN at $z=2-3$ with those at $z=0$, we find that the number density of faint ($M_\mathrm{UV}>-21$) type 1 AGN increases from $z\sim2$ to $z\sim0$ as opposed to the evolution of bright ($M_\mathrm{UV}<-21$) type 1 AGN, suggesting the AGN downsizing in the rest-frame UV luminosity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11497v2-abstract-full').style.display = 'none'; document.getElementById('2105.11497v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 19 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09677">arXiv:2103.09677</a> <span> [<a href="https://arxiv.org/pdf/2103.09677">pdf</a>, <a href="https://arxiv.org/format/2103.09677">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039858">10.1051/0004-6361/202039858 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-frequency radio spectra of submillimetre galaxies in the Lockman Hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ramasawmy%2C+J">J. Ramasawmy</a>, <a href="/search/astro-ph?searchtype=author&query=Geach%2C+J+E">J. E. Geach</a>, <a href="/search/astro-ph?searchtype=author&query=Hardcastle%2C+M+J">M. J. Hardcastle</a>, <a href="/search/astro-ph?searchtype=author&query=Best%2C+P+N">P. N. Best</a>, <a href="/search/astro-ph?searchtype=author&query=Bonato%2C+M">M. Bonato</a>, <a href="/search/astro-ph?searchtype=author&query=Bondi%2C+M">M. Bondi</a>, <a href="/search/astro-ph?searchtype=author&query=Rivera%2C+G+C">G. Calistro Rivera</a>, <a href="/search/astro-ph?searchtype=author&query=Cochrane%2C+R+K">R. K. Cochrane</a>, <a href="/search/astro-ph?searchtype=author&query=Conway%2C+J+E">J. E. Conway</a>, <a href="/search/astro-ph?searchtype=author&query=Coppin%2C+K">K. Coppin</a>, <a href="/search/astro-ph?searchtype=author&query=Duncan%2C+K+J">K. J. Duncan</a>, <a href="/search/astro-ph?searchtype=author&query=Dunlop%2C+J+S">J. S. Dunlop</a>, <a href="/search/astro-ph?searchtype=author&query=Franco%2C+M">M. Franco</a>, <a href="/search/astro-ph?searchtype=author&query=Garc%C3%ADa-Vergara%2C+C">C. Garc铆a-Vergara</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Kondapally%2C+R">R. Kondapally</a>, <a href="/search/astro-ph?searchtype=author&query=McCheyne%2C+I">I. McCheyne</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">I. Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=R%C3%B6ttgering%2C+H+J+A">H. J. A. R枚ttgering</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+D+J+B">D. J. B. Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Tasse%2C+C">C. Tasse</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+L">L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09677v1-abstract-short" style="display: inline;"> We investigate the radio properties of a sample of 53 sources selected at 850 $渭$m from the SCUBA-2 Cosmology Legacy Survey using new deep, low-frequency radio imaging of the Lockman Hole field from the Low Frequency Array. Combining these data with additional radio observations from the GMRT and the JVLA, we find a variety of radio spectral shapes and luminosities within our sample despite their… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09677v1-abstract-full').style.display = 'inline'; document.getElementById('2103.09677v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09677v1-abstract-full" style="display: none;"> We investigate the radio properties of a sample of 53 sources selected at 850 $渭$m from the SCUBA-2 Cosmology Legacy Survey using new deep, low-frequency radio imaging of the Lockman Hole field from the Low Frequency Array. Combining these data with additional radio observations from the GMRT and the JVLA, we find a variety of radio spectral shapes and luminosities within our sample despite their similarly bright submillimetre flux densities. We characterise their spectral shapes in terms of multi-band radio spectral indices. Finding strong spectral flattening at low frequencies in ~20% of sources, we investigate the differences between sources with extremely flat low-frequency spectra and those with `normal' radio spectral indices. As there are no other statistically significant differences between the two subgroups of our sample as split by the radio spectral index, we suggest that any differences are undetectable in galaxy-averaged properties that we can observe with our unresolved images, and likely relate to galaxy properties that we cannot resolve, on scales $\lesssim$ 1 kpc. We attribute the observed spectral flattening in the radio to free-free absorption, proposing that those sources with significant low-frequency spectral flattening have a clumpy distribution of star-forming gas. We estimate an average spatial extent of absorbing material of at most several hundred parsecs to produce the levels of absorption observed in the radio spectra. This estimate is consistent with the highest-resolution observations of submillimetre galaxies in the literature, which find examples of non-uniform dust distributions on scales of ~100 pc, with evidence for clumps and knots in the interstellar medium. Additionally, we find two bright (> 6 mJy) submm sources undetected at all other wavelengths. We speculate that these objects may be very high redshift sources, likely residing at z > 4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09677v1-abstract-full').style.display = 'none'; document.getElementById('2103.09677v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures, accepted by A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 648, A14 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.12323">arXiv:2102.12323</a> <span> [<a href="https://arxiv.org/pdf/2102.12323">pdf</a>, <a href="https://arxiv.org/format/2102.12323">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab540">10.1093/mnras/stab540 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GAMA/DEVILS: Constraining the cosmic star-formation history from improved measurements of the 0.3-2.2 micron Extragalactic Background Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Koushan%2C+S">Soheil Koushan</a>, <a href="/search/astro-ph?searchtype=author&query=Driver%2C+S+P">Simon P. Driver</a>, <a href="/search/astro-ph?searchtype=author&query=Bellstedt%2C+S">Sabine Bellstedt</a>, <a href="/search/astro-ph?searchtype=author&query=Davies%2C+L+J">Luke J. Davies</a>, <a href="/search/astro-ph?searchtype=author&query=Robotham%2C+A+S+G">Aaron S. G. Robotham</a>, <a href="/search/astro-ph?searchtype=author&query=Lagos%2C+C+d+P">Claudia del P Lagos</a>, <a href="/search/astro-ph?searchtype=author&query=Hashemizadeh%2C+A">Abdolhosein Hashemizadeh</a>, <a href="/search/astro-ph?searchtype=author&query=Obreschkow%2C+D">Danail Obreschkow</a>, <a href="/search/astro-ph?searchtype=author&query=Thorne%2C+J+E">Jessica E. Thorne</a>, <a href="/search/astro-ph?searchtype=author&query=Bremer%2C+M">Malcolm Bremer</a>, <a href="/search/astro-ph?searchtype=author&query=Holwerda%2C+B+W">B. W. Holwerda</a>, <a href="/search/astro-ph?searchtype=author&query=Hopkins%2C+A+M">Andrew M. Hopkins</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Siudek%2C+M">Malgorzata Siudek</a>, <a href="/search/astro-ph?searchtype=author&query=Windhorst%2C+R+A">Rogier A. Windhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.12323v1-abstract-short" style="display: inline;"> We present a revised measurement of the optical extragalactic background light (EBL), based on the contribution of resolved galaxies to the integrated galaxy light (IGL). The cosmic optical background radiation (COB), encodes the light generated by star-formation, and provides a wealth of information about the cosmic star formation history (CSFH). We combine wide and deep galaxy number counts from… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12323v1-abstract-full').style.display = 'inline'; document.getElementById('2102.12323v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.12323v1-abstract-full" style="display: none;"> We present a revised measurement of the optical extragalactic background light (EBL), based on the contribution of resolved galaxies to the integrated galaxy light (IGL). The cosmic optical background radiation (COB), encodes the light generated by star-formation, and provides a wealth of information about the cosmic star formation history (CSFH). We combine wide and deep galaxy number counts from the Galaxy And Mass Assembly survey (GAMA) and Deep Extragalactic VIsible Legacy Survey (DEVILS), along with the Hubble Space Telescope (HST) archive and other deep survey datasets, in 9 multi-wavelength filters to measure the COB in the range from 0.35 micron to 2.2 micron. We derive the luminosity density in each band independently and show good agreement with recent and complementary estimates of the optical-EBL from very high-energy (VHE) experiments. Our error analysis suggests that the IGL and Gamma-ray measurements are now fully consistent to within ~10%, suggesting little need for any additional source of diffuse light beyond the known galaxy population. We use our revised IGL measurements to constrain the cosmic star-formation history, and place amplitude constraints on a number of recent estimates. As a consistency check, we can now demonstrate convincingly, that the CSFH, stellar mass growth, and the optical-EBL provide a fully consistent picture of galaxy evolution. We conclude that the peak of star-formation rate lies in the range 0.066-0.076 Msol/yr/Mpc^3 at a lookback time of 9.1 to 10.9 Gyrs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12323v1-abstract-full').style.display = 'none'; document.getElementById('2102.12323v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.07182">arXiv:2101.07182</a> <span> [<a href="https://arxiv.org/pdf/2101.07182">pdf</a>, <a href="https://arxiv.org/format/2101.07182">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1956">10.1093/mnras/stab1956 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the galaxy stellar mass function: evidence for an increasing $M^*$ from $z=2$ to the present day </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Hau%C3%9Fler%2C+B">B. Hau脽ler</a>, <a href="/search/astro-ph?searchtype=author&query=Lagos%2C+C+D+P">C. D. P. Lagos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.07182v2-abstract-short" style="display: inline;"> Utilising optical and near-infrared broadband photometry covering $> 5\,{\rm deg}^2$ in two of the most well-studied extragalactic legacy fields (COSMOS and XMM-LSS), we measure the galaxy stellar mass function (GSMF) between $0.1 < z < 2.0$. We explore in detail the effect of two source extraction methods (SExtractor and ProFound) in addition to the inclusion/exclusion of Spitzer IRAC 3.6 and 4.5… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07182v2-abstract-full').style.display = 'inline'; document.getElementById('2101.07182v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.07182v2-abstract-full" style="display: none;"> Utilising optical and near-infrared broadband photometry covering $> 5\,{\rm deg}^2$ in two of the most well-studied extragalactic legacy fields (COSMOS and XMM-LSS), we measure the galaxy stellar mass function (GSMF) between $0.1 < z < 2.0$. We explore in detail the effect of two source extraction methods (SExtractor and ProFound) in addition to the inclusion/exclusion of Spitzer IRAC 3.6 and 4.5$渭$m photometry when measuring the GSMF. We find that including IRAC data reduces the number of massive ($\log_{10}(M/M_\odot) > 11.25$) galaxies found due to improved photometric redshift accuracy, but has little effect on the more numerous lower-mass galaxies. We fit the resultant GSMFs with double Schechter functions down to $\log_{10}(M/M_\odot)$ = 7.75 (9.75) at z = 0.1 (2.0) and find that the choice of source extraction software has no significant effect on the derived best-fit parameters. However, the choice of methodology used to correct for the Eddington bias has a larger impact on the high-mass end of the GSMF, which can partly explain the spread in derived $M^*$ values from previous studies. Using an empirical correction to model the intrinsic GSMF, we find evidence for an evolving characteristic stellar mass with $未\log_{10}(M^*/M_\odot)/未z$ = $-0.16\pm0.05 \, (-0.11\pm0.05)$, when using SExtractor (ProFound). We argue that with widely quenched star formation rates in massive galaxies at low redshift ($z<0.5$), additional growth via mergers is required in order to sustain such an evolution to a higher characteristic mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07182v2-abstract-full').style.display = 'none'; document.getElementById('2101.07182v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 8 tables, submitted to MNRAS. Updated to accepted version from journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.01195">arXiv:2101.01195</a> <span> [<a href="https://arxiv.org/pdf/2101.01195">pdf</a>, <a href="https://arxiv.org/format/2101.01195">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab038">10.1093/mnras/stab038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The rapid transition from star-formation to AGN dominated rest-frame UV light at z ~ 4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=H%C3%A4u%C3%9Fler%2C+B">B. H盲u脽ler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.01195v1-abstract-short" style="display: inline;"> With the advent of deep optical-to-near-infrared extragalactic imaging on the degree scale, samples of high-redshift sources are being selected that contain both bright star-forming (SF) galaxies and faint active galactic nuclei (AGN). In this study we investigate the transition between SF and AGN-dominated systems at $z \simeq 4$ in the rest-frame UV. We find a rapid transition to AGN-dominated s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01195v1-abstract-full').style.display = 'inline'; document.getElementById('2101.01195v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.01195v1-abstract-full" style="display: none;"> With the advent of deep optical-to-near-infrared extragalactic imaging on the degree scale, samples of high-redshift sources are being selected that contain both bright star-forming (SF) galaxies and faint active galactic nuclei (AGN). In this study we investigate the transition between SF and AGN-dominated systems at $z \simeq 4$ in the rest-frame UV. We find a rapid transition to AGN-dominated sources bright-ward of $M_{\rm UV} \simeq -23.2$. The effect is observed in the rest-frame UV morphology and size-luminosity relation, where extended clumpy systems become point-source dominated, and also in the available spectra for the sample. These results allow us to derive the rest-frame UV luminosity function for the SF and AGN-dominated sub-samples. We find the SF-dominated LF is best fit with a double-power law, with a lensed Schechter function being unable to explain the existence of extremely luminous SF galaxies at $M_{\rm UV} \simeq -23.5$. If we identify AGN-dominated sources according to a point-source morphology criterion we recover the relatively flat faint-end slope of the AGN LF determined in previous studies. If we instead separate the LF according to the current spectroscopic AGN fraction, we find a steeper faint-end slope of $伪= -1.83 \pm 0.11$. Using a simple model to predict the rest-frame AGN LF from the $z = 4 $ galaxy LF we find that the increasing impact of host galaxy light on the measured morphology of faint AGN can explain our observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01195v1-abstract-full').style.display = 'none'; document.getElementById('2101.01195v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures, 2 tables. Accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09797">arXiv:2012.09797</a> <span> [<a href="https://arxiv.org/pdf/2012.09797">pdf</a>, <a href="https://arxiv.org/format/2012.09797">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3242">10.1093/mnras/stab3242 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A deep radio view of the evolution of the cosmic star-formation rate density from a stellar-mass selected sample in VLA-COSMOS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Malefahlo%2C+E+D">Eliab D. Malefahlo</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Santos%2C+M+G">Mario G. Santos</a>, <a href="/search/astro-ph?searchtype=author&query=White%2C+S+V">Sarah V. White</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">Nathan J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">Rebecca A. A. Bowler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09797v1-abstract-short" style="display: inline;"> We present the 1.4GHz radio luminosity functions (RLFs) of galaxies in the COSMOS field, measured above and below the $5蟽$ detection threshold, using a Bayesian model-fitting technique. The radio flux-densities from VLA-COSMOS 3-GHz data, are extracted at the position of stellar mass-limited near-infrared (NIR) galaxies. We fit a local RLF model, which is a combination of active galactic nuclei (A… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09797v1-abstract-full').style.display = 'inline'; document.getElementById('2012.09797v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09797v1-abstract-full" style="display: none;"> We present the 1.4GHz radio luminosity functions (RLFs) of galaxies in the COSMOS field, measured above and below the $5蟽$ detection threshold, using a Bayesian model-fitting technique. The radio flux-densities from VLA-COSMOS 3-GHz data, are extracted at the position of stellar mass-limited near-infrared (NIR) galaxies. We fit a local RLF model, which is a combination of active galactic nuclei (AGN) and star-forming galaxy (SFG), in 10 redshift bins with a pure luminosity evolution (PLE) model. We show that the evolution strength is similar to literature values up to $z\sim 1.6$. Beyond $z\sim 2$, we find that the SFG RLF exhibits a negative evolution ($L^*$ moves to lower luminosities) due to the decrease in low stellar-mass sources in our stellar mass-limited sample at high redshifts. From the RLF for SFGs, we determine the evolution in the cosmic star-formation-rate density (SFRD), which we find to be consistent with the established behaviour up to $z\sim 1$. Beyond $z\sim 1$ cosmic SFRD declines if one assumes an evolving infrared--radio correlation (IRRC), whereas it stays relatively higher if one adopts a constant IRRC. We find that the form of the relation between radio luminosity and SFR is therefore crucial in measuring the cosmic SFRD from radio data. We investigate the effects of stellar mass on the total RLF by splitting our sample into low ($10^{8.5} \leq M/\mathrm{M}_{\odot} \leq 10^{10}$) and high ($M>10^{10}\,\mathrm{M}_{\odot}$) stellar-mass subsets. We find that the SFRD is dominated by sources in the high stellar masses bin, at all redshifts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09797v1-abstract-full').style.display = 'none'; document.getElementById('2012.09797v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 16 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05759">arXiv:2012.05759</a> <span> [<a href="https://arxiv.org/pdf/2012.05759">pdf</a>, <a href="https://arxiv.org/format/2012.05759">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3837">10.1093/mnras/staa3837 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE: Are giant radio galaxies more common than we thought? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Delhaize%2C+J">J. Delhaize</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Prescott%2C+M">M. Prescott</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Delvecchio%2C+I">I. Delvecchio</a>, <a href="/search/astro-ph?searchtype=author&query=Whittam%2C+I+H">I. H. Whittam</a>, <a href="/search/astro-ph?searchtype=author&query=White%2C+S+V">S. V. White</a>, <a href="/search/astro-ph?searchtype=author&query=Hardcastle%2C+M+J">M. J. Hardcastle</a>, <a href="/search/astro-ph?searchtype=author&query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&query=Afonso%2C+J">J. Afonso</a>, <a href="/search/astro-ph?searchtype=author&query=Ao%2C+Y">Y. Ao</a>, <a href="/search/astro-ph?searchtype=author&query=Brienza%2C+M">M. Brienza</a>, <a href="/search/astro-ph?searchtype=author&query=Brueggen%2C+M">M. Brueggen</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Daddi%2C+E">E. Daddi</a>, <a href="/search/astro-ph?searchtype=author&query=Glowacki%2C+M">M. Glowacki</a>, <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">N. Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Morabito%2C+L+K">L. K. Morabito</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">I. Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Randriamanakoto%2C+Z">Z. Randriamanakoto</a>, <a href="/search/astro-ph?searchtype=author&query=Sekhar%2C+S">S. Sekhar</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+F">Fangxia An</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Blyth%2C+S">S. Blyth</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05759v1-abstract-short" style="display: inline;"> We report the discovery of two new giant radio galaxies (GRGs) using the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey. Both GRGs were found within a 1 deg^2 region inside the COSMOS field. They have redshifts of z=0.1656 and z=0.3363 and physical sizes of 2.4Mpc and 2.0Mpc, respectively. Only the cores of these GRGs were clearly visible in previous high resolution VL… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05759v1-abstract-full').style.display = 'inline'; document.getElementById('2012.05759v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05759v1-abstract-full" style="display: none;"> We report the discovery of two new giant radio galaxies (GRGs) using the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey. Both GRGs were found within a 1 deg^2 region inside the COSMOS field. They have redshifts of z=0.1656 and z=0.3363 and physical sizes of 2.4Mpc and 2.0Mpc, respectively. Only the cores of these GRGs were clearly visible in previous high resolution VLA observations, since the diffuse emission of the lobes was resolved out. However, the excellent sensitivity and uv coverage of the new MeerKAT telescope allowed this diffuse emission to be detected. The GRGs occupy a unpopulated region of radio power - size parameter space. Based on a recent estimate of the GRG number density, the probability of finding two or more GRGs with such large sizes at z<0.4 in a ~1deg^2 field is only 2.7x10^-6, assuming Poisson statistics. This supports the hypothesis that the prevalence of GRGs has been significantly underestimated in the past due to limited sensitivity to low surface brightness emission. The two GRGs presented here may be the first of a new population to be revealed through surveys like MIGHTEE which provide exquisite sensitivity to diffuse, extended emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05759v1-abstract-full').style.display = 'none'; document.getElementById('2012.05759v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages; 8 figures, accepted for publication in MNRAS on 2020 Dec 9</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.15030">arXiv:2011.15030</a> <span> [<a href="https://arxiv.org/pdf/2011.15030">pdf</a>, <a href="https://arxiv.org/format/2011.15030">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3714">10.1093/mnras/staa3714 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Spitzer survey of Deep Drilling Fields to be targeted by the Vera C. Rubin Observatory Legacy Survey of Space and Time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lacy%2C+M">M. Lacy</a>, <a href="/search/astro-ph?searchtype=author&query=Surace%2C+J+A">J. A. Surace</a>, <a href="/search/astro-ph?searchtype=author&query=Farrah%2C+D">D. Farrah</a>, <a href="/search/astro-ph?searchtype=author&query=Nyland%2C+K">K. Nyland</a>, <a href="/search/astro-ph?searchtype=author&query=Afonso%2C+J">J. Afonso</a>, <a href="/search/astro-ph?searchtype=author&query=Brandt%2C+W+N">W. N. Brandt</a>, <a href="/search/astro-ph?searchtype=author&query=Clements%2C+D+L">D. L. Clements</a>, <a href="/search/astro-ph?searchtype=author&query=Lagos%2C+C+D+P">C. D. P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&query=Maraston%2C+C">C. Maraston</a>, <a href="/search/astro-ph?searchtype=author&query=Pforr%2C+J">J. Pforr</a>, <a href="/search/astro-ph?searchtype=author&query=Sajina%2C+A">A. Sajina</a>, <a href="/search/astro-ph?searchtype=author&query=Sako%2C+M">M. Sako</a>, <a href="/search/astro-ph?searchtype=author&query=Vaccari%2C+M">M. Vaccari</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson%2C+G">G. Wilson</a>, <a href="/search/astro-ph?searchtype=author&query=Ballantyne%2C+D+R">D. R. Ballantyne</a>, <a href="/search/astro-ph?searchtype=author&query=Barkhouse%2C+W+A">W. A. Barkhouse</a>, <a href="/search/astro-ph?searchtype=author&query=Brunner%2C+R">R. Brunner</a>, <a href="/search/astro-ph?searchtype=author&query=Cane%2C+R">R. Cane</a>, <a href="/search/astro-ph?searchtype=author&query=Clarke%2C+T+E">T. E. Clarke</a>, <a href="/search/astro-ph?searchtype=author&query=Cooper%2C+M">M. Cooper</a>, <a href="/search/astro-ph?searchtype=author&query=Cooray%2C+A">A. Cooray</a>, <a href="/search/astro-ph?searchtype=author&query=Covone%2C+G">G. Covone</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Andrea%2C+C">C. D'Andrea</a>, <a href="/search/astro-ph?searchtype=author&query=Evrard%2C+A+E">A. E. Evrard</a>, <a href="/search/astro-ph?searchtype=author&query=Ferguson%2C+H+C">H. C. Ferguson</a> , et al. (38 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.15030v1-abstract-short" style="display: inline;"> The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will observe several Deep Drilling Fields (DDFs) to a greater depth and with a more rapid cadence than the main survey. In this paper, we describe the ``DeepDrill'' survey, which used the Spitzer Space Telescope Infrared Array Camera (IRAC) to observe three of the four currently defined DDFs in two bands, centered on 3.6 $渭$m and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.15030v1-abstract-full').style.display = 'inline'; document.getElementById('2011.15030v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.15030v1-abstract-full" style="display: none;"> The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will observe several Deep Drilling Fields (DDFs) to a greater depth and with a more rapid cadence than the main survey. In this paper, we describe the ``DeepDrill'' survey, which used the Spitzer Space Telescope Infrared Array Camera (IRAC) to observe three of the four currently defined DDFs in two bands, centered on 3.6 $渭$m and 4.5 $渭$m. These observations expand the area which was covered by an earlier set of observations in these three fields by the Spitzer Extragalactic Representative Volume Survey (SERVS). The combined DeepDrill and SERVS data cover the footprints of the LSST DDFs in the Extended Chandra Deep Field-South field (ECDFS), the ELAIS-S1 field (ES1), and the XMM Large-Scale Structure Survey field (XMM-LSS). The observations reach an approximate $5蟽$ point-source depth of 2 $渭$Jy (corresponding to an AB magnitude of 23.1; sufficient to detect a 10$^{11} M_{\odot}$ galaxy out to $z\approx 5$) in each of the two bands over a total area of $\approx 29\,$deg$^2$. The dual-band catalogues contain a total of 2.35 million sources. In this paper we describe the observations and data products from the survey, and an overview of the properties of galaxies in the survey. We compare the source counts to predictions from the SHARK semi-analytic model of galaxy formation. We also identify a population of sources with extremely red ([3.6]$-$[4.5] $>1.2$) colours which we show mostly consists of highly-obscured active galactic nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.15030v1-abstract-full').style.display = 'none'; document.getElementById('2011.15030v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures; MNRAS in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09470">arXiv:2011.09470</a> <span> [<a href="https://arxiv.org/pdf/2011.09470">pdf</a>, <a href="https://arxiv.org/ps/2011.09470">ps</a>, <a href="https://arxiv.org/format/2011.09470">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039655">10.1051/0004-6361/202039655 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: The HI emission project of the MeerKAT MIGHTEE survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">Bradley S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Ponomareva%2C+A+A">A. A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">E. A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Dav%C3%A9%2C+R">R. Dav茅</a>, <a href="/search/astro-ph?searchtype=author&query=Oosterloo%2C+T+A">T. A. Oosterloo</a>, <a href="/search/astro-ph?searchtype=author&query=Santos%2C+M+G">M. G. Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Blyth%2C+S+L">S. L. Blyth</a>, <a href="/search/astro-ph?searchtype=author&query=Glowacki%2C+M">M. Glowacki</a>, <a href="/search/astro-ph?searchtype=author&query=Kraan-Korteweg%2C+R+C">R. C. Kraan-Korteweg</a>, <a href="/search/astro-ph?searchtype=author&query=Mulaudzi%2C+W">W. Mulaudzi</a>, <a href="/search/astro-ph?searchtype=author&query=Namumba%2C+B">B. Namumba</a>, <a href="/search/astro-ph?searchtype=author&query=Prandoni%2C+I">I. Prandoni</a>, <a href="/search/astro-ph?searchtype=author&query=Rajohnson%2C+S+H+A">S. H. A. Rajohnson</a>, <a href="/search/astro-ph?searchtype=author&query=Spekkens%2C+K">K. Spekkens</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+N+J">N. J. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Bowler%2C+R+A+A">R. A. A. Bowler</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&query=Sekhar%2C+S">S. Sekhar</a>, <a href="/search/astro-ph?searchtype=author&query=Taylor%2C+A+R">A. R. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09470v1-abstract-short" style="display: inline;"> We present the HI emission project within the MIGHTEE survey, currently being carried out with the newly commissioned MeerKAT radio telescope. This is one of the first deep, blind, medium-wide interferometric surveys for neutral hydrogen (HI) ever undertaken, extending our knowledge of HI emission to z=0.6. The science goals of this medium-deep, medium-wide survey are extensive, including the evol… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09470v1-abstract-full').style.display = 'inline'; document.getElementById('2011.09470v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09470v1-abstract-full" style="display: none;"> We present the HI emission project within the MIGHTEE survey, currently being carried out with the newly commissioned MeerKAT radio telescope. This is one of the first deep, blind, medium-wide interferometric surveys for neutral hydrogen (HI) ever undertaken, extending our knowledge of HI emission to z=0.6. The science goals of this medium-deep, medium-wide survey are extensive, including the evolution of the neutral gas content of galaxies over the past 5 billion years. Simulations predict nearly 3000 galaxies over 0<z<0.4 will be detected directly in HI, with statistical detections extending to z=0.6. The survey allows us to explore HI as a function of galaxy environment, with massive groups and galaxy clusters within the survey volume. Additionally, the area is large enough to contain as many as 50 local galaxies with HI mass $<10^8$ Msun, which allows us to study the low-mass galaxy population. The 20 deg$^2$ main survey area is centred on fields with exceptional multi-wavelength ancillary data, with photometry ranging from optical through far-infrared wavelengths, supplemented with multiple spectroscopic campaigns. We describe here the survey design and the key science goals. We also show first results from the Early Science observations, including kinematic modelling of individual sources, along with the redshift, HI, and stellar mass ranges of the sample to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09470v1-abstract-full').style.display = 'none'; document.getElementById('2011.09470v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 646, A35 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Jarvis%2C+M+J&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>