CINXE.COM

(PDF) Melanoma Detection via Structural and Textural Feature Fusion

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="I9x/opijtmnnRZFczl4TvdvRS4W34FZDqXtO1wNG4BpKWKfUoc4O0KjKWBMrQS92zvrWWJe0s5+ovvg86Kf5UQ==" /> <meta name="citation_title" content="Fusion of structural and textural features for melanoma recognition" /> <meta name="citation_publication_date" content="2018/01/01" /> <meta name="citation_journal_title" content="IET Computer Vision" /> <meta name="citation_author" content="Fakhreddine Ababsa" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/111609800/Fusion_of_structural_and_textural_features_for_melanoma_recognition" /> <meta name="twitter:title" content="Fusion of structural and textural features for melanoma recognition" /> <meta name="twitter:description" content="Melanoma is one the most increasing cancers since past decades. For accurate detection and classification, discriminative features are required to distinguish between benign and malignant cases. In this study, the authors introduce a fusion of" /> <meta name="twitter:image" content="https://0.academia-photos.com/263837202/115339392/104625007/s200_fakhreddine.ababsa.png" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/111609800/Fusion_of_structural_and_textural_features_for_melanoma_recognition" /> <meta property="og:title" content="Fusion of structural and textural features for melanoma recognition" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Melanoma is one the most increasing cancers since past decades. For accurate detection and classification, discriminative features are required to distinguish between benign and malignant cases. In this study, the authors introduce a fusion of" /> <meta property="article:author" content="https://gadz.academia.edu/FakhreddineAbabsa" /> <meta name="description" content="Melanoma is one the most increasing cancers since past decades. For accurate detection and classification, discriminative features are required to distinguish between benign and malignant cases. In this study, the authors introduce a fusion of" /> <title>(PDF) Melanoma Detection via Structural and Textural Feature Fusion</title> <link rel="canonical" href="https://www.academia.edu/111609800/Fusion_of_structural_and_textural_features_for_melanoma_recognition" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = 'a780cc88a085c47718c74cbee01ed38f9303fee5'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1733268219000); window.Aedu.timeDifference = new Date().getTime() - 1733268219000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"Melanoma is one the most increasing cancers since past decades. For accurate detection and classification, discriminative features are required to distinguish between benign and malignant cases. In this study, the authors introduce a fusion of structural and textural features from two descriptors. The structural features are extracted from wavelet and curvelet transforms, whereas the textural features are extracted from different variants of local binary pattern operator. The proposed method is implemented on 200 images from dermoscopy database including 160 non‐melanoma and 40 melanoma images, where a rigorous statistical analysis for the database is performed. Using support vector machine (SVM) classifier with random sampling cross‐validation method between the three cases of skin lesions given in the database, the validated results showed a very encouraging performance with a sensitivity of 78.93%, a specificity of 93.25% and an accuracy of 86.07%. The proposed approach outperfor...","author":[{"@context":"https://schema.org","@type":"Person","name":"Fakhreddine Ababsa"}],"contributor":[],"dateCreated":"2023-12-16","dateModified":"2024-11-29","datePublished":"2018-01-01","headline":"Fusion of structural and textural features for melanoma recognition","image":"https://attachments.academia-assets.com/109098762/thumbnails/1.jpg","inLanguage":"en","keywords":["Cognitive Science","Computer Science","Artificial Intelligence","Medical Image Processing","Cancer","Support Vector Machines","Image fusion","Wavelet Transforms","Fusion","Feature Extraction","Image recognition","Support vector machine","Curvelet","Dermoscopy","Cancers","Electrical And Electronic Engineering","Textural Features","Local Binary Patterns","Structural Features"],"publication":"IET Computer Vision","publisher":{"@context":"https://schema.org","@type":"Organization","name":"Institution of Engineering and Technology (IET)"},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"gadz"}],"thumbnailUrl":"https://attachments.academia-assets.com/109098762/thumbnails/1.jpg","url":"https://www.academia.edu/111609800/Fusion_of_structural_and_textural_features_for_melanoma_recognition"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "457a239f37afb385b30a0850a381863cae0396df52b4d5de61b4dc8f24b2db08", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="rwPWOgx9KMk+0zl8dRUswyw/Ue66P/wFpw7hz8yykFPGhw5MNRCQcHFc8DOQChAIORTMM5prGdmmy1ckJ1OJGA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/111609800/Fusion_of_structural_and_textural_features_for_melanoma_recognition" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="QWyK5wZ0ieDt8Yq/1/Ii5fFLq22ZvmxQTZ4JE8IJHM4o6FKRPxkxWaJ+Q/Ay7R4u5GA2sLnqiYxMW7/4KegFhQ==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-97865a4b41eebf6819eddc4c76d29598fe6b0336be57e9b6cde63060c39bfa02.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 263837202; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F111609800%2FFusion_of_structural_and_textural_features_for_melanoma_recognition%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F111609800%2FFusion_of_structural_and_textural_features_for_melanoma_recognition%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":109098762,"identifier":"Attachment_109098762","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":111609800,"created_at":"2023-12-16T23:55:55.307-08:00","from_world_paper_id":245980097,"updated_at":"2024-11-29T16:13:16.414-08:00","_data":{"abstract":"Melanoma is one the most increasing cancers since past decades. For accurate detection and classification, discriminative features are required to distinguish between benign and malignant cases. In this study, the authors introduce a fusion of structural and textural features from two descriptors. The structural features are extracted from wavelet and curvelet transforms, whereas the textural features are extracted from different variants of local binary pattern operator. The proposed method is implemented on 200 images from dermoscopy database including 160 non‐melanoma and 40 melanoma images, where a rigorous statistical analysis for the database is performed. Using support vector machine (SVM) classifier with random sampling cross‐validation method between the three cases of skin lesions given in the database, the validated results showed a very encouraging performance with a sensitivity of 78.93%, a specificity of 93.25% and an accuracy of 86.07%. The proposed approach outperfor...","publisher":"Institution of Engineering and Technology (IET)","ai_title_tag":"Melanoma Detection via Structural and Textural Feature Fusion","publication_date":"2018,,","publication_name":"IET Computer Vision"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Fusion of structural and textural features for melanoma recognition","broadcastable":true,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [263837202]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:109098762,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “Fusion of structural and textural features for melanoma recognition”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/109098762/mini_magick20231217-1-yebge7.png?1702800193" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Fusion of structural and textural features for melanoma recognition</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="263837202" href="https://gadz.academia.edu/FakhreddineAbabsa"><img alt="Profile image of Fakhreddine Ababsa" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/263837202/115339392/104625007/s65_fakhreddine.ababsa.png" />Fakhreddine Ababsa</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2018, IET Computer Vision</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">7 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 111609800; const worksViewsPath = "/v0/works/views?subdomain_param=api&amp;work_ids%5B%5D=111609800"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { const viewCountNumber = Number(viewCount); if (!viewCountNumber) { throw new Error('Failed to parse view count'); } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (viewCountBody) { viewCountBody.textContent = `${commaizedViewCount} views`; } else { throw new Error('Failed to find work views element'); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Melanoma is one the most increasing cancers since past decades. For accurate detection and classification, discriminative features are required to distinguish between benign and malignant cases. In this study, the authors introduce a fusion of structural and textural features from two descriptors. The structural features are extracted from wavelet and curvelet transforms, whereas the textural features are extracted from different variants of local binary pattern operator. The proposed method is implemented on 200 images from dermoscopy database including 160 non‐melanoma and 40 melanoma images, where a rigorous statistical analysis for the database is performed. Using support vector machine (SVM) classifier with random sampling cross‐validation method between the three cases of skin lesions given in the database, the validated results showed a very encouraging performance with a sensitivity of 78.93%, a specificity of 93.25% and an accuracy of 86.07%. The proposed approach outperfor...</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:109098762,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/111609800/Fusion_of_structural_and_textural_features_for_melanoma_recognition&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:109098762,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/111609800/Fusion_of_structural_and_textural_features_for_melanoma_recognition&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="109098762" data-landing_url="https://www.academia.edu/111609800/Fusion_of_structural_and_textural_features_for_melanoma_recognition" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="31905181" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/31905181/Automatic_Recognition_of_Melanoma_Using_Support_Vector_Machines_A_Study_Based_on_Wavelet_Curvelet_and_Color_Features">Automatic Recognition of Melanoma Using Support Vector Machines: A Study Based on Wavelet, Curvelet and Color Features</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="24918733" href="https://mansura.academia.edu/MohamedKhaled">Mohamed Khaled</a></div><p class="ds-related-work--abstract ds2-5-body-sm">This paper proposes an automated non-invasive system for skin cancer (melanoma) detection based on Support Vector Machine classification. The proposed system uses a number of features extracted from the Wavelet or the Curvelet decomposition of the grayscale skin lesion images and color features obtained from the original color images. The dataset used include both digital images and Dermoscopy images for skin lesions that are either benign or malignant. The recognition accuracy obtained by the Support Vector Machine classifier used in this experiment is 87.7.1% for the Wavelet based features and 83.6. 6% for the Curvelet based ones. The proposed system also resulted in a sensitivity of 86.4 % for the case of Wavelet and 76.9% for the case of Curvelet. It also resulted in a specificity of 88.1% for the case of Wavelet and 85.4% for the case of Curvelet. The obtained sensitivity and specificity results are comparable to those obtained by Dermatologists.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Automatic Recognition of Melanoma Using Support Vector Machines: A Study Based on Wavelet, Curvelet and Color Features&quot;,&quot;attachmentId&quot;:52188389,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/31905181/Automatic_Recognition_of_Melanoma_Using_Support_Vector_Machines_A_Study_Based_on_Wavelet_Curvelet_and_Color_Features&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/31905181/Automatic_Recognition_of_Melanoma_Using_Support_Vector_Machines_A_Study_Based_on_Wavelet_Curvelet_and_Color_Features"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="68563282" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68563282/Automatic_Detection_of_Melanoma_Skin_Cancer_using_Texture_Analysis">Automatic Detection of Melanoma Skin Cancer using Texture Analysis</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="27975253" href="https://independent.academia.edu/AmrSharawi">Amr Sharawi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Computer Applications, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Automatic Detection of Melanoma Skin Cancer using Texture Analysis&quot;,&quot;attachmentId&quot;:78995209,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68563282/Automatic_Detection_of_Melanoma_Skin_Cancer_using_Texture_Analysis&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68563282/Automatic_Detection_of_Melanoma_Skin_Cancer_using_Texture_Analysis"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="79202898" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79202898/Resolution_invariant_wavelet_features_of_melanoma_studied_by_SVM_classifiers">Resolution invariant wavelet features of melanoma studied by SVM classifiers</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37957513" href="https://independent.academia.edu/GrzegorzSur%C3%B3wka">Grzegorz Surówka</a></div><p class="ds-related-work--metadata ds2-5-body-xs">PLOS ONE, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Resolution invariant wavelet features of melanoma studied by SVM classifiers&quot;,&quot;attachmentId&quot;:85997223,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/79202898/Resolution_invariant_wavelet_features_of_melanoma_studied_by_SVM_classifiers&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/79202898/Resolution_invariant_wavelet_features_of_melanoma_studied_by_SVM_classifiers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="78881791" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/78881791/Malignant_Melanoma_Detection_Based_on_Machine_Learning_Techniques_A_Survey_1">Malignant Melanoma Detection Based on Machine Learning Techniques : A Survey 1</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1100417" href="https://aden-univ.academia.edu/munyaarasi">Munya Arasi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2016</p><p class="ds-related-work--abstract ds2-5-body-sm">Skin cancer is one of the most growing types and dangerous cancer in the world; the important of these cancers are malignant melanoma. The early diagnosis of malignant melanoma is a critical issue for dermatologists. In this paper, we present an overview of recent the state of the art in Computer-aided detection/diagnosis (CAD) systems in identifying and diagnosing malignant melanoma of dermoscopy images and describe its steps starting with image acquisition, preprocessing; and finishing with malignant melanoma classification of dermoscopic images. The comparative study shows that the most common methods for features extraction are the Discreet Wavelet Transform (DWT) and the method which combines both texture and color features resulting in output of very high accuracy. The methods for the classification:K-Nearest Neighbor, Artificial Neural Networks, and Support Vector Machines are very well in the range [%90 –% 97, 5].</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Malignant Melanoma Detection Based on Machine Learning Techniques : A Survey 1&quot;,&quot;attachmentId&quot;:85768080,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/78881791/Malignant_Melanoma_Detection_Based_on_Machine_Learning_Techniques_A_Survey_1&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/78881791/Malignant_Melanoma_Detection_Based_on_Machine_Learning_Techniques_A_Survey_1"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="82190184" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/82190184/Melanoma_detection_using_color_and_texture_features_in_computer_vision_systems">Melanoma detection using color and texture features in computer vision systems</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="161893240" href="https://independent.academia.edu/EsterZumpano">Ester Zumpano</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Science, Technology and Engineering Systems Journal, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Melanoma detection using color and texture features in computer vision systems&quot;,&quot;attachmentId&quot;:87974925,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/82190184/Melanoma_detection_using_color_and_texture_features_in_computer_vision_systems&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/82190184/Melanoma_detection_using_color_and_texture_features_in_computer_vision_systems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="80047266" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/80047266/Hybrid_Feature_Fusion_and_Machine_Learning_Approaches_for_Melanoma_Skin_Cancer_Detection">Hybrid Feature Fusion and Machine Learning Approaches for Melanoma Skin Cancer Detection</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="63910194" href="https://classics-rutgers.academia.edu/imandehzangi">iman dehzangi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2022</p><p class="ds-related-work--abstract ds2-5-body-sm">Skin cancer is an exquisite disease globally nowadays. Because of the poor contrast and apparent resemblance between skin and lesions, automatic identification of skin cancer is complicated. The rate of human death can be massively reduced if melanoma skin cancer can be detected quickly using dermoscopy images. In this research, an anisotropic diffusion filtering method is used on dermoscopy images to remove multiplicative speckle noise and the fast-bounding box (FBB) method is applied to segment the skin cancer region. Furthermore, the paper consists of two feature extractor parts. One of the two features extractor parts is the hybrid feature extractor (HFE) part and another is the convolutional neural network VGG19 based CNN feature extractor part. The HFE portion combines three feature extraction approaches into a single fused feature vector: Histogram-Oriented Gradient (HOG), Local Binary Pattern (LBP), and Speed Up Robust Feature (SURF). The CNN method also is used to extract a...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Hybrid Feature Fusion and Machine Learning Approaches for Melanoma Skin Cancer Detection&quot;,&quot;attachmentId&quot;:86558910,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/80047266/Hybrid_Feature_Fusion_and_Machine_Learning_Approaches_for_Melanoma_Skin_Cancer_Detection&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/80047266/Hybrid_Feature_Fusion_and_Machine_Learning_Approaches_for_Melanoma_Skin_Cancer_Detection"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="113280440" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113280440/Computer_Vision_Based_Skin_Cancer_Classification_by_Using_Texture_Features">Computer Vision Based Skin Cancer Classification by Using Texture Features</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="290868774" href="https://independent.academia.edu/AqibAli227">Aqib Ali</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of MOL2NET&#39;22, Conference on Molecular, Biomedical &amp;amp; Computational Sciences and Engineering, 8th ed. - MOL2NET: FROM MOLECULES TO NETWORKS</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Computer Vision Based Skin Cancer Classification by Using Texture Features&quot;,&quot;attachmentId&quot;:110280688,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/113280440/Computer_Vision_Based_Skin_Cancer_Classification_by_Using_Texture_Features&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/113280440/Computer_Vision_Based_Skin_Cancer_Classification_by_Using_Texture_Features"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="12213267" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/12213267/Two_systems_for_the_detection_of_melanomas_in_dermoscopy_images_using_texture_and_color_features">Two systems for the detection of melanomas in dermoscopy images using texture and color features</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="30689266" href="https://unigranrio.academia.edu/TMendon%C3%A7a">T. Mendonça</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Two systems for the detection of melanomas in dermoscopy images using texture and color features&quot;,&quot;attachmentId&quot;:46299502,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/12213267/Two_systems_for_the_detection_of_melanomas_in_dermoscopy_images_using_texture_and_color_features&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/12213267/Two_systems_for_the_detection_of_melanomas_in_dermoscopy_images_using_texture_and_color_features"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="43174662" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/43174662/Classification_of_Melanoma_and_Nevus_in_Digital_Images_for_Diagnosis_of_Skin_Cancer">Classification of Melanoma and Nevus in Digital Images for Diagnosis of Skin Cancer</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="656912" href="https://ijera.academia.edu/ijera">IJERA Journal</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Melanoma is considered a fatal type of skin cancer. However, it is sometimes hard to distinguish it from Nevus due to their identical visual appearance and symptoms. The mortality rate because of this disease is higher than all other skin related consolidated malignancies. The number of cases is growing amongst young people but if it is diagnosed at its earlier stage then the survival rates become very high. The cost and time required for the doctors to diagnose all patients for Melanoma are very high. In this research work, we propose an intelligent system to detect and distinguish Melanoma from Nevus by using state of the art image processing techniques. At first, Gaussian Filter is used for removing noise from the skin lesion of the acquired images followed by the use of improved K-mean clustering to segment out the lesion. A distinctive hybrid super feature vector is formed by the extraction of textural and color features from the lesion. Support Vector Machine (SVM) is utilized for the classification of skin cancer into melanoma and nevus. Our aim is to test the effectiveness of the proposed segmentation technique, extract the most suitable features and compare the classification results with the other techniques present in the literature. The proposed methodology is tested on DERMIS dataset having a total number of 397 skin cancer images where 146 are melanoma and 251 are nevus skinlesions. Our proposed methodology archives encouraging resultshaving 96% accuracy.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Classification of Melanoma and Nevus in Digital Images for Diagnosis of Skin Cancer&quot;,&quot;attachmentId&quot;:63438439,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/43174662/Classification_of_Melanoma_and_Nevus_in_Digital_Images_for_Diagnosis_of_Skin_Cancer&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/43174662/Classification_of_Melanoma_and_Nevus_in_Digital_Images_for_Diagnosis_of_Skin_Cancer"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="12215807" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/12215807/Wavelet_and_Curvelet_Analysis_for_Automatic_Identification_of_Melanoma_Based_on_Neural_Network_Classification">Wavelet and Curvelet Analysis for Automatic Identification of Melanoma Based on Neural Network Classification</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="30700012" href="https://uts.academia.edu/MohamedKhaledAbuMahmoud">Mohamed Khaled Abu Mahmoud</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Wavelet and Curvelet Analysis for Automatic Identification of Melanoma Based on Neural Network Classification&quot;,&quot;attachmentId&quot;:37493556,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/12215807/Wavelet_and_Curvelet_Analysis_for_Automatic_Identification_of_Melanoma_Based_on_Neural_Network_Classification&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/12215807/Wavelet_and_Curvelet_Analysis_for_Automatic_Identification_of_Melanoma_Based_on_Neural_Network_Classification"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:109098762,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:109098762,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_109098762" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="101639376" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/101639376/Analysis_of_Melanoma_Lesion_Images_using_Feature_Extraction_Classification_Algorithms">Analysis of Melanoma Lesion Images using Feature Extraction Classification Algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="269345518" href="https://independent.academia.edu/JoshuaFernandez131">Joshua Fernandez</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Recent Technology and Engineering, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Analysis of Melanoma Lesion Images using Feature Extraction Classification Algorithms&quot;,&quot;attachmentId&quot;:102124678,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/101639376/Analysis_of_Melanoma_Lesion_Images_using_Feature_Extraction_Classification_Algorithms&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/101639376/Analysis_of_Melanoma_Lesion_Images_using_Feature_Extraction_Classification_Algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="72881723" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/72881723/Classification_of_Melanoma_Images_Using_Empirical_Wavelet_Transform">Classification of Melanoma Images Using Empirical Wavelet Transform</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="62670785" href="https://independent.academia.edu/akramrahmani">akram rahmani</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Classification of Melanoma Images Using Empirical Wavelet Transform&quot;,&quot;attachmentId&quot;:81629213,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/72881723/Classification_of_Melanoma_Images_Using_Empirical_Wavelet_Transform&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/72881723/Classification_of_Melanoma_Images_Using_Empirical_Wavelet_Transform"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="86432475" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/86432475/Malignant_Melanoma_Classification_using_GLCM_and_SVM">Malignant Melanoma Classification using GLCM and SVM</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34585077" href="https://technoscienceacademy.academia.edu/IJSRST">International Journal of Scientific Research in Science and Technology IJSRST</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Scientific Research in Science and Technology, 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Malignant Melanoma Classification using GLCM and SVM&quot;,&quot;attachmentId&quot;:90888387,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/86432475/Malignant_Melanoma_Classification_using_GLCM_and_SVM&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/86432475/Malignant_Melanoma_Classification_using_GLCM_and_SVM"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="12216324" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/12216324/Classification_of_Malignant_Melanoma_and_Benign_Nevi_from_Skin_Lesions_Based_on_Support_Vector_Machine">Classification of Malignant Melanoma and Benign Nevi from Skin Lesions Based on Support Vector Machine</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="30700012" href="https://uts.academia.edu/MohamedKhaledAbuMahmoud">Mohamed Khaled Abu Mahmoud</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Classification of Malignant Melanoma and Benign Nevi from Skin Lesions Based on Support Vector Machine&quot;,&quot;attachmentId&quot;:37493816,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/12216324/Classification_of_Malignant_Melanoma_and_Benign_Nevi_from_Skin_Lesions_Based_on_Support_Vector_Machine&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/12216324/Classification_of_Malignant_Melanoma_and_Benign_Nevi_from_Skin_Lesions_Based_on_Support_Vector_Machine"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="56403688" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/56403688/A_Novel_Texture_based_Skin_Melanoma_Detection_using_Color_GLCM_and_CS_LBP_Feature">A Novel Texture based Skin Melanoma Detection using Color GLCM and CS-LBP Feature</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="49851868" href="https://gulbargauni.academia.edu/ShrideviSoma">Shridevi Soma</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Computer Applications</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Novel Texture based Skin Melanoma Detection using Color GLCM and CS-LBP Feature&quot;,&quot;attachmentId&quot;:71807432,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/56403688/A_Novel_Texture_based_Skin_Melanoma_Detection_using_Color_GLCM_and_CS_LBP_Feature&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/56403688/A_Novel_Texture_based_Skin_Melanoma_Detection_using_Color_GLCM_and_CS_LBP_Feature"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="94680314" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/94680314/Melanoma_Recognition">Melanoma Recognition</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="139545527" href="https://independent.academia.edu/PavelZid">Pavel Zid</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Melanoma Recognition&quot;,&quot;attachmentId&quot;:97070622,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/94680314/Melanoma_Recognition&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/94680314/Melanoma_Recognition"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="28715831" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/28715831/A_Cascade_Classifier_for_Diagnosis_of_Melanoma_in_Clinical_Images">A Cascade Classifier for Diagnosis of Melanoma in Clinical Images</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="54003559" href="https://independent.academia.edu/anushak26">anusha k</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Cascade Classifier for Diagnosis of Melanoma in Clinical Images&quot;,&quot;attachmentId&quot;:49121179,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/28715831/A_Cascade_Classifier_for_Diagnosis_of_Melanoma_in_Clinical_Images&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/28715831/A_Cascade_Classifier_for_Diagnosis_of_Melanoma_in_Clinical_Images"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="95110751" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/95110751/Melanoma_recognition_using_extended_set_of_descriptors_and_classifiers">Melanoma recognition using extended set of descriptors and classifiers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="103215820" href="https://independent.academia.edu/MonikaSlowinska">Monika Slowinska</a></div><p class="ds-related-work--metadata ds2-5-body-xs">EURASIP Journal on Image and Video Processing, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Melanoma recognition using extended set of descriptors and classifiers&quot;,&quot;attachmentId&quot;:97382427,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/95110751/Melanoma_recognition_using_extended_set_of_descriptors_and_classifiers&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/95110751/Melanoma_recognition_using_extended_set_of_descriptors_and_classifiers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="12216175" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/12216175/The_Automatic_Identification_of_Melanoma_by_Wavelet_and_Curvelet_Analysis_Study_Based_on_Neural_Network_Classification">The Automatic Identification of Melanoma by Wavelet and Curvelet Analysis: Study Based on Neural Network Classification</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="30700012" href="https://uts.academia.edu/MohamedKhaledAbuMahmoud">Mohamed Khaled Abu Mahmoud</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The Automatic Identification of Melanoma by Wavelet and Curvelet Analysis: Study Based on Neural Network Classification&quot;,&quot;attachmentId&quot;:37493791,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/12216175/The_Automatic_Identification_of_Melanoma_by_Wavelet_and_Curvelet_Analysis_Study_Based_on_Neural_Network_Classification&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/12216175/The_Automatic_Identification_of_Melanoma_by_Wavelet_and_Curvelet_Analysis_Study_Based_on_Neural_Network_Classification"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="125694119" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/125694119/A_Multi_Feature_Fusion_Framework_for_Automatic_Skin_Cancer_Diagnostics">A Multi-Feature Fusion Framework for Automatic Skin Cancer Diagnostics</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="322051018" href="https://independent.academia.edu/DrIngSamyBakheet">Dr.-Ing. Samy Bakheet</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Diagnostics</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Multi-Feature Fusion Framework for Automatic Skin Cancer Diagnostics&quot;,&quot;attachmentId&quot;:119690897,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/125694119/A_Multi_Feature_Fusion_Framework_for_Automatic_Skin_Cancer_Diagnostics&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/125694119/A_Multi_Feature_Fusion_Framework_for_Automatic_Skin_Cancer_Diagnostics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="11055111" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/11055111/Machine_classification_of_melanoma_and_nevi_from_skin_lesions">Machine classification of melanoma and nevi from skin lesions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="26735750" href="https://vsu-us.academia.edu/WeiBangChen">Wei-Bang Chen</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Machine classification of melanoma and nevi from skin lesions&quot;,&quot;attachmentId&quot;:46942323,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/11055111/Machine_classification_of_melanoma_and_nevi_from_skin_lesions&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/11055111/Machine_classification_of_melanoma_and_nevi_from_skin_lesions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="86341706" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/86341706/Analysis_and_Classification_of_Skin_Spot_Images_by_Extraction_of_Texture_Attributes_for_Identification_of_Melanoma">Analysis and Classification of Skin Spot Images by Extraction of Texture Attributes for Identification of Melanoma</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="52813672" href="https://neip.academia.edu/MarcosAlmeida">Marcos A . M Almeida</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Biomedical Journal of Scientific and Technical Research, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Analysis and Classification of Skin Spot Images by Extraction of Texture Attributes for Identification of Melanoma&quot;,&quot;attachmentId&quot;:90812296,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/86341706/Analysis_and_Classification_of_Skin_Spot_Images_by_Extraction_of_Texture_Attributes_for_Identification_of_Melanoma&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/86341706/Analysis_and_Classification_of_Skin_Spot_Images_by_Extraction_of_Texture_Attributes_for_Identification_of_Melanoma"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="46939914" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/46939914/Skin_Cancer_Recognition_Using_SVM_Image_Processing_Technique">Skin Cancer Recognition Using SVM Image Processing Technique</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="108952737" href="https://independent.academia.edu/InternationalJournalofBioComputingNanoTechnologyIJBNT">BOHR International Journal of Bio Computing &amp; Nano Technology (BIJBNT)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">BOHR Publishers, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Skin Cancer Recognition Using SVM Image Processing Technique&quot;,&quot;attachmentId&quot;:66299274,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/46939914/Skin_Cancer_Recognition_Using_SVM_Image_Processing_Technique&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/46939914/Skin_Cancer_Recognition_Using_SVM_Image_Processing_Technique"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="103760971" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/103760971/Skin_Melanoma_Cancer_Detection_and_Classification_using_Machine_Learning">Skin Melanoma Cancer Detection and Classification using Machine Learning</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34585077" href="https://technoscienceacademy.academia.edu/IJSRST">International Journal of Scientific Research in Science and Technology IJSRST</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Scientific Research in Science and Technology, 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Skin Melanoma Cancer Detection and Classification using Machine Learning&quot;,&quot;attachmentId&quot;:103679709,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/103760971/Skin_Melanoma_Cancer_Detection_and_Classification_using_Machine_Learning&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/103760971/Skin_Melanoma_Cancer_Detection_and_Classification_using_Machine_Learning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="60791447" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/60791447/An_SVM_Framework_for_Malignant_Melanoma_Detection_Based_on_Optimized_HOG_Features">An SVM Framework for Malignant Melanoma Detection Based on Optimized HOG Features</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6359994" href="https://independent.academia.edu/SamyBakheet">Samy Bakheet</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Computation</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;An SVM Framework for Malignant Melanoma Detection Based on Optimized HOG Features&quot;,&quot;attachmentId&quot;:74078811,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/60791447/An_SVM_Framework_for_Malignant_Melanoma_Detection_Based_on_Optimized_HOG_Features&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/60791447/An_SVM_Framework_for_Malignant_Melanoma_Detection_Based_on_Optimized_HOG_Features"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="88645328" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/88645328/A_Bag_of_Features_Approach_for_the_Classification_of_Melanomas_in_Dermoscopy_Images_The_Role_of_Color_and_Texture_Descriptors">A Bag-of-Features Approach for the Classification of Melanomas in Dermoscopy Images: The Role of Color and Texture Descriptors</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="206648150" href="https://independent.academia.edu/TeresaMendon%C3%A7a7">Teresa Mendonça</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Bag-of-Features Approach for the Classification of Melanomas in Dermoscopy Images: The Role of Color and Texture Descriptors&quot;,&quot;attachmentId&quot;:92578922,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/88645328/A_Bag_of_Features_Approach_for_the_Classification_of_Melanomas_in_Dermoscopy_Images_The_Role_of_Color_and_Texture_Descriptors&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/88645328/A_Bag_of_Features_Approach_for_the_Classification_of_Melanomas_in_Dermoscopy_Images_The_Role_of_Color_and_Texture_Descriptors"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="22306346" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/22306346/Learning_Methods_for_Melanoma_Recognition">Learning Methods for Melanoma Recognition</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="43715940" href="https://independent.academia.edu/TatianaTommasi">Tatiana Tommasi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Learning Methods for Melanoma Recognition&quot;,&quot;attachmentId&quot;:42947573,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/22306346/Learning_Methods_for_Melanoma_Recognition&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/22306346/Learning_Methods_for_Melanoma_Recognition"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="70778608" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/70778608/Melanoma_Skin_Cancer_Detection_Using_Image_Processing">Melanoma Skin Cancer Detection Using Image Processing</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="14418469" href="https://independent.academia.edu/GnanaSaravananS">Gnana Saravanan S</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Intelligent Systems and Computing</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Melanoma Skin Cancer Detection Using Image Processing&quot;,&quot;attachmentId&quot;:80384747,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/70778608/Melanoma_Skin_Cancer_Detection_Using_Image_Processing&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/70778608/Melanoma_Skin_Cancer_Detection_Using_Image_Processing"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="21497721" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21497721/IMPLEMENTATION_OF_SUPERVISED_LEARNING_FOR_MELANOMA_DETECTION_USING_IMAGE_PROCESSING">IMPLEMENTATION OF SUPERVISED LEARNING FOR MELANOMA DETECTION USING IMAGE PROCESSING</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="29235708" href="https://independent.academia.edu/eSATJournals">eSAT Journals</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;IMPLEMENTATION OF SUPERVISED LEARNING FOR MELANOMA DETECTION USING IMAGE PROCESSING&quot;,&quot;attachmentId&quot;:41933816,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/21497721/IMPLEMENTATION_OF_SUPERVISED_LEARNING_FOR_MELANOMA_DETECTION_USING_IMAGE_PROCESSING&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/21497721/IMPLEMENTATION_OF_SUPERVISED_LEARNING_FOR_MELANOMA_DETECTION_USING_IMAGE_PROCESSING"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="74541833" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/74541833/Melanoma_Detection_and_Classification_in_Digital_Dermoscopic_Images_Using_Machine_Learning">Melanoma Detection and Classification in Digital Dermoscopic Images Using Machine Learning</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="26666458" href="https://annauniv.academia.edu/KSenthilKumar1">Senthil Kumar K</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Inventive Systems and Control</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Melanoma Detection and Classification in Digital Dermoscopic Images Using Machine Learning&quot;,&quot;attachmentId&quot;:82656968,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/74541833/Melanoma_Detection_and_Classification_in_Digital_Dermoscopic_Images_Using_Machine_Learning&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/74541833/Melanoma_Detection_and_Classification_in_Digital_Dermoscopic_Images_Using_Machine_Learning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="120855449" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/120855449/The_Melanoma_Skin_Cancer_Detection_and_Classification_Using_Image_Processing">The Melanoma Skin Cancer Detection and Classification Using Image Processing</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="94969717" href="https://independent.academia.edu/MEGHAJONNALAGEDDA">MEGHA JONNALAGEDDA</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The Melanoma Skin Cancer Detection and Classification Using Image Processing&quot;,&quot;attachmentId&quot;:115875173,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/120855449/The_Melanoma_Skin_Cancer_Detection_and_Classification_Using_Image_Processing&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/120855449/The_Melanoma_Skin_Cancer_Detection_and_Classification_Using_Image_Processing"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="71581136" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/71581136/A_prelimary_approach_for_the_automated_recognition_of_malignant_melanoma">A prelimary approach for the automated recognition of malignant melanoma</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1143532" href="https://utc-tn.academia.edu/WalidBarhoumi">Walid Barhoumi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2016</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A prelimary approach for the automated recognition of malignant melanoma&quot;,&quot;attachmentId&quot;:80863475,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/71581136/A_prelimary_approach_for_the_automated_recognition_of_malignant_melanoma&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/71581136/A_prelimary_approach_for_the_automated_recognition_of_malignant_melanoma"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="74404269" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/74404269/Classification_Models_for_Skin_Tumor_Detection_Using_Texture_Analysis_in_Medical_Images">Classification Models for Skin Tumor Detection Using Texture Analysis in Medical Images</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="52813672" href="https://neip.academia.edu/MarcosAlmeida">Marcos A . M Almeida</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Imaging</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Classification Models for Skin Tumor Detection Using Texture Analysis in Medical Images&quot;,&quot;attachmentId&quot;:82569476,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/74404269/Classification_Models_for_Skin_Tumor_Detection_Using_Texture_Analysis_in_Medical_Images&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/74404269/Classification_Models_for_Skin_Tumor_Detection_Using_Texture_Analysis_in_Medical_Images"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="237" href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="4998" href="https://www.academia.edu/Documents/in/Medical_Image_Processing">Medical Image Processing</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="6021" href="https://www.academia.edu/Documents/in/Cancer">Cancer</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="10408" href="https://www.academia.edu/Documents/in/Support_Vector_Machines">Support Vector Machines</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="83038" href="https://www.academia.edu/Documents/in/Image_fusion">Image fusion</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="91365" href="https://www.academia.edu/Documents/in/Wavelet_Transforms">Wavelet Transforms</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="150094" href="https://www.academia.edu/Documents/in/Fusion">Fusion</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="160144" href="https://www.academia.edu/Documents/in/Feature_Extraction">Feature Extraction</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="167397" href="https://www.academia.edu/Documents/in/Image_recognition">Image recognition</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="191289" href="https://www.academia.edu/Documents/in/Support_vector_machine">Support vector machine</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="403692" href="https://www.academia.edu/Documents/in/Curvelet">Curvelet</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="457105" href="https://www.academia.edu/Documents/in/Dermoscopy">Dermoscopy</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1010893" href="https://www.academia.edu/Documents/in/Cancers">Cancers</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1237788" href="https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering">Electrical And Electronic Engine...</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1372175" href="https://www.academia.edu/Documents/in/Textural_Features">Textural Features</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1991646" href="https://www.academia.edu/Documents/in/Local_Binary_Patterns">Local Binary Patterns</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="2571968" href="https://www.academia.edu/Documents/in/Structural_Features">Structural Features</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10