CINXE.COM
WIPAC – Department of Physics – UW–Madison
<!DOCTYPE html> <html lang="en-US" prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns/fb#" class="no-js"> <head> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="preload" href="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/fonts/uw-rh/redhat-display-latin.v14.woff2" as="font" type="font/woff2" crossorigin> <link rel="preload" href="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/fonts/uw-rh/redhat-text-latin.v13.woff2" as="font" type="font/woff2" crossorigin> <!-- Global site tag (gtag.js) - Google Analytics --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-HDEG1JB5JH"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-HDEG1JB5JH', { 'cookie_domain': 'none' }); </script> <script>(function(H){H.className=H.className.replace(/\bno-js\b/,'')})(document.documentElement)</script> <title>WIPAC – Department of Physics – UW–Madison</title> <meta name='robots' content='max-image-preview:large' /> <style>img:is([sizes="auto" i], [sizes^="auto," i]) { contain-intrinsic-size: 3000px 1500px }</style> <link rel='dns-prefetch' href='//cdn.wisc.cloud' /> <link rel="alternate" type="application/rss+xml" title="Department of Physics » Feed" href="https://www.physics.wisc.edu/feed/" /> <link rel="alternate" type="application/rss+xml" title="Department of Physics » Comments Feed" href="https://www.physics.wisc.edu/comments/feed/" /> <link rel="alternate" type="application/rss+xml" title="Department of Physics » WIPAC Tag Feed" href="https://www.physics.wisc.edu/tag/wipac/feed/" /> <link rel='stylesheet' id='sbi_styles-css' href='https://www.physics.wisc.edu/wp-content/plugins/instagram-feed/css/sbi-styles.min.css?ver=6.6.1' media='all' /> <style id='classic-theme-styles-inline-css'> /*! This file is auto-generated */ .wp-block-button__link{color:#fff;background-color:#32373c;border-radius:9999px;box-shadow:none;text-decoration:none;padding:calc(.667em + 2px) calc(1.333em + 2px);font-size:1.125em}.wp-block-file__button{background:#32373c;color:#fff;text-decoration:none} </style> <link rel='stylesheet' id='bg-shce-genericons-css' href='https://www.physics.wisc.edu/wp-content/plugins/show-hidecollapse-expand/assets/css/genericons/genericons.css?ver=6.7.1' media='all' /> <link rel='stylesheet' id='bg-show-hide-css' href='https://www.physics.wisc.edu/wp-content/plugins/show-hidecollapse-expand/assets/css/bg-show-hide.css?ver=6.7.1' media='all' /> <link rel='stylesheet' id='parent-style-css' href='https://www.physics.wisc.edu/wp-content/themes/uw-theme/style.css?ver=6.7.1' media='all' /> <link rel='stylesheet' id='child-style-css' href='https://www.physics.wisc.edu/wp-content/themes/uw-physics/style.css?ver=1.0.4' media='all' /> <link rel='stylesheet' id='uwmadison-style-css' href='https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/main.min.css?ver=1.35.1' media='all' /> <!--[if lt IE 10]> <link rel='stylesheet' id='uwmadison-ie-css' href='https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/css/ie.css?ver=1.35.1' media='all' /> <![endif]--> <link rel="https://api.w.org/" href="https://www.physics.wisc.edu/wp-json/" /><link rel="alternate" title="JSON" type="application/json" href="https://www.physics.wisc.edu/wp-json/wp/v2/tags/105" /><link rel="EditURI" type="application/rsd+xml" title="RSD" href="https://www.physics.wisc.edu/xmlrpc.php?rsd" /> <!-- Generic meta tags --> <meta name="description" content="Research, teaching and outreach in Physics at UW–Madison" /> <!-- Open Graph meta tags --> <meta property="og:title" content="WIPAC" /> <meta property="og:url" content="https://www.physics.wisc.edu/2023/06/29/icecube-shows-milky-way-galaxy-is-a-neutrino-desert/" /> <meta property="og:description" content="Research, teaching and outreach in Physics at UW–Madison" /> <meta property="og:site_name" content="Department of Physics" /> <meta property="og:type" content="website" /> <meta property="og:image" content="https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1-1024x576.jpeg" /> <meta property="og:image:alt" content ="a red-lit IceCube lab (a metal modern-looking lab building stationed at the south pole) with the white swirl of the Milky Way behind it is in a photo, with an artists rendering of a stream of neutrinos (greek letter nu) streams out of the center of the Milky Way" /> <meta property="og:image:height" content="360"/> <meta property="og:image:width" content="640"/> <!-- Schema.org meta tags --> <meta itemprop="name" content="WIPAC"> <meta itemprop="description" content="Research, teaching and outreach in Physics at UW–Madison"> <meta itemprop="image" content="https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1-1024x576.jpeg"> <!-- Twitter meta tags --> <meta name="twitter:card" content="summary" /> <meta name="twitter:title" content="WIPAC" /> <meta name="twitter:description" content="Research, teaching and outreach in Physics at UW–Madison" /> <meta property="twitter:image" content="https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1-1024x576.jpeg" /> <meta property="twitter:image:src" content="https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1-1024x576.jpeg" /> <meta property="twitter:image:alt" content ="a red-lit IceCube lab (a metal modern-looking lab building stationed at the south pole) with the white swirl of the Milky Way behind it is in a photo, with an artists rendering of a stream of neutrinos (greek letter nu) streams out of the center of the Milky Way" /> <!-- START - Open Graph and Twitter Card Tags 3.3.3 --> <!-- Facebook Open Graph --> <meta property="og:locale" content="en_US"/> <meta property="og:site_name" content="Department of Physics"/> <meta property="og:title" content="WIPAC"/> <meta property="og:url" content="https://www.physics.wisc.edu/tag/wipac/"/> <meta property="og:type" content="article"/> <meta property="og:description" content="Research, teaching and outreach in Physics at UW–Madison"/> <!-- Google+ / Schema.org --> <meta itemprop="name" content="WIPAC"/> <meta itemprop="headline" content="WIPAC"/> <meta itemprop="description" content="Research, teaching and outreach in Physics at UW–Madison"/> <!--<meta itemprop="publisher" content="Department of Physics"/>--> <!-- To solve: The attribute publisher.itemtype has an invalid value --> <!-- Twitter Cards --> <meta name="twitter:title" content="WIPAC"/> <meta name="twitter:url" content="https://www.physics.wisc.edu/tag/wipac/"/> <meta name="twitter:description" content="Research, teaching and outreach in Physics at UW–Madison"/> <meta name="twitter:card" content="summary_large_image"/> <!-- SEO --> <!-- Misc. tags --> <!-- is_tag --> <!-- END - Open Graph and Twitter Card Tags 3.3.3 --> <link rel="profile" href="http://gmpg.org/xfn/11"> <link rel="apple-touch-icon" href="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/images/favicons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/images/favicons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/images/favicons/favicon-16x16.png"> <link rel="manifest" href="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/images/favicons/site.webmanifest"> <link rel="mask-icon" href="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/images/favicons/safari-pinned-tab.svg" color="#c5050c"> <link rel="icon" href="/favicon.ico"> <meta name="msapplication-TileColor" content="#c5050c"> <meta name="msapplication-config" content="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/images/favicons/browserconfig.xml"> <meta name="theme-color" content="#ffffff"> </head> <body class="archive tag tag-wipac tag-105 uw-white-bg"> <a class="show-on-focus" href="#main" id="skip-link">Skip to main content</a> <div class="uw-global-bar " role="navigation"> <a class="uw-global-name-link" href="https://www.wisc.edu" aria-label="University of Wisconsin Madison home page">U<span>niversity <span class="uw-of">of</span> </span>W<span>isconsin</span>–Madison</a> </div> <header class="uw-header uw-has-search"> <div class="uw-header-container"> <div class="uw-header-crest-title"> <div class="uw-header-crest"> <a href="https://www.physics.wisc.edu/" aria-hidden="true" tabindex="-1"><svg viewBox="0 0 55.5 87.28" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e2586e24fa7.25162368"> <title id="dynid674e2586e24fa7.25162368">UW Crest</title> <style> .cls-1{fill:url(#Web_Shield_blend);} .cls-2{fill:#282728;} .cls-3{fill:#c5050c;} .cls-4{fill:#fff;} </style> <g> <radialGradient id="Web_Shield_blend" cx="46.25" cy="16.57" r="33.44" gradientTransform="translate(-22.22 26.01) scale(1.09 1.09)" gradientUnits="userSpaceOnUse"><stop offset="0.17" stop-color="#fff"/><stop offset="0.3" stop-color="#f6ede4"/><stop offset="0.69" stop-color="#debe9b"/><stop offset="0.87" stop-color="#d4ac7f"/></radialGradient> </g> <path id="Gold_gradient" data-name="Gold gradient" class="cls-1" d="M28,87.36a3.78,3.78,0,0,1-1.05-1.16l-0.06-.09-0.11,0C8.65,81.86-1.45,54,.83,31.71a47.71,47.71,0,0,1,1.29-7.25,35.39,35.39,0,0,1,2.33-6.39,23.55,23.55,0,0,1,3.75-5.65A14.7,14.7,0,0,1,19,7.28,0.33,0.33,0,0,0,19.33,7,5.49,5.49,0,0,1,23.21,4.4l0.19,0,0-.19A4.69,4.69,0,0,1,28,.64a4.76,4.76,0,0,1,4.56,3.54l0,0.19,0.19,0A5.51,5.51,0,0,1,36.67,7a0.32,0.32,0,0,0,.37.26,14.7,14.7,0,0,1,10.77,5.13,24,24,0,0,1,4.24,6.71l0.23,0.55a42.56,42.56,0,0,1,2.89,12C57.45,54,47.35,81.86,29.23,86.08l-0.11,0-0.06.09A3.78,3.78,0,0,1,28,87.36Z" transform="translate(-0.25 -0.36)"/><path id="Black" class="cls-2" d="M55.43,31.68a49.49,49.49,0,0,0-.86-5.5,39.81,39.81,0,0,0-1.39-4.93,31.29,31.29,0,0,0-2.23-4.93,22.63,22.63,0,0,0-3-4.1A14.94,14.94,0,0,0,37,7H36.94a5.77,5.77,0,0,0-4.16-2.91,4.93,4.93,0,0,0-9.56,0A5.77,5.77,0,0,0,19.06,7H19A14.94,14.94,0,0,0,8,12.23a22.63,22.63,0,0,0-3,4.1,31.29,31.29,0,0,0-2.23,4.93,39.81,39.81,0,0,0-1.39,4.93,49.49,49.49,0,0,0-.86,5.5C-1.73,54.3,8.44,82.1,26.73,86.36A3.17,3.17,0,0,0,28,87.64a3.17,3.17,0,0,0,1.27-1.28C47.56,82.1,57.73,54.3,55.43,31.68ZM28,1.23A3.9,3.9,0,0,1,31.93,4a4.86,4.86,0,0,0-3.86,2.47,0.17,0.17,0,0,1-.07.09,0.15,0.15,0,0,1-.07-0.09A4.86,4.86,0,0,0,24.07,4,3.9,3.9,0,0,1,28,1.23ZM26.14,5.52a3.51,3.51,0,0,1,1.59,2.11A0.46,0.46,0,0,0,28,8a0.46,0.46,0,0,0,.27-0.42,3.51,3.51,0,0,1,1.59-2.11,4.19,4.19,0,0,1,6,1.58,13.38,13.38,0,0,0-1.67.42,6.6,6.6,0,0,0-2.38,1.32,9.4,9.4,0,0,0-3,6.1c-0.67,7.31,7.72,6.16,8.14,6.13,1.08,0,1.9-1.71,1.9-4s-0.84-4-1.9-4c-0.65,0-1.77.52-1.88,2.55C35,17.1,35.7,19,36.6,19.11c0.47,0.06.89-.76,1-1.6s0.06-1.87-.59-2a0.38,0.38,0,0,0-.46.28A3.83,3.83,0,0,1,37,17.1c0,1.25-1.28.63-1.12-1.36C36,14,36.89,14.09,36.93,14.09c0.5,0,1.26,1,1.26,3,0,1.75-.84,3.63-2.46,2.65-1.36-1-1.89-3.28-1.52-5,0.17-.81.87-3,3.13-3,3.26,0,6.3,1.71,8.72,4.9-0.27.85-1.95,4.1-7.28,7.21l-0.29.15a11,11,0,0,0-4.93-1,27.07,27.07,0,0,0-4.64.74,4.09,4.09,0,0,1-.92.15h0a4.09,4.09,0,0,1-.92-0.15A27.07,27.07,0,0,0,22.44,23a11,11,0,0,0-4.93,1l-0.29-.15c-5.34-3.11-7-6.36-7.28-7.21,2.42-3.19,5.46-4.9,8.72-4.9,2.26,0,3,2.21,3.13,3,0.38,1.77-.16,4.05-1.52,5-1.61,1-2.46-.9-2.46-2.65,0-2,.76-3,1.26-3,0,0,.94-0.11,1.09,1.65,0.17,2-1.09,2.61-1.12,1.36a3.83,3.83,0,0,1,.39-1.34A0.38,0.38,0,0,0,19,15.48c-0.65.16-.71,1.3-0.59,2s0.56,1.66,1,1.6c0.9-.12,1.6-2,1.52-3.44-0.1-2-1.23-2.55-1.88-2.55-1.06,0-1.9,1.71-1.9,4s0.82,4,1.9,4c0.42,0,8.81,1.18,8.14-6.13a9.4,9.4,0,0,0-3-6.1,6.6,6.6,0,0,0-2.38-1.32A13.38,13.38,0,0,0,20.1,7.1,4.19,4.19,0,0,1,26.14,5.52ZM10.28,36.18A32.49,32.49,0,0,0,10,39.49a44.42,44.42,0,0,0,2,15.25,49.48,49.48,0,0,0,4.13,9.32A11.48,11.48,0,0,1,11,66.39,66.66,66.66,0,0,1,4.53,34.57,16.13,16.13,0,0,0,10.28,36.18ZM4.56,34c0.44-7.31,2.29-13.05,5-16.87,0.48,1.24,2.57,4.35,7.39,7.18-4.1,2.47-6,7.56-6.58,11.36A15.81,15.81,0,0,1,4.56,34ZM16.41,64.53c3.08,5.3,6.12,8.46,8.45,10.13A11.54,11.54,0,0,1,21.32,79c-4-2.7-7.4-7-10.07-12.13A11.81,11.81,0,0,0,16.41,64.53ZM25.33,75A12.2,12.2,0,0,0,28,76.46,12.2,12.2,0,0,0,30.67,75a12,12,0,0,0,3.53,4.34,18.69,18.69,0,0,1-3.58,1.78s0-.09,0-0.13c-0.26-1.32-2-1.59-2.61-1.59s-2.35.27-2.61,1.59c0,0,0,.09,0,0.13a18.69,18.69,0,0,1-3.58-1.78A12,12,0,0,0,25.33,75Zm5.81-.32c2.33-1.67,5.37-4.83,8.45-10.13a11.81,11.81,0,0,0,5.16,2.36C42.08,72,38.69,76.32,34.68,79A11.54,11.54,0,0,1,31.14,74.66Zm8.72-10.61A49.48,49.48,0,0,0,44,54.73a44.1,44.1,0,0,0,1.66-7.32A44.34,44.34,0,0,0,46,39.49a32.49,32.49,0,0,0-.32-3.31,16.13,16.13,0,0,0,5.75-1.61A66.66,66.66,0,0,1,45,66.39,11.48,11.48,0,0,1,39.86,64.05Zm5.78-28.4c-0.62-3.8-2.5-8.8-6.58-11.36,4.82-2.83,6.92-5.94,7.39-7.18,2.69,3.82,4.55,9.56,5,16.87A15.81,15.81,0,0,1,45.64,35.65ZM25,84.76a23.29,23.29,0,0,1-5.87-2.93,27.5,27.5,0,0,1-3.25-2.62,31.1,31.1,0,0,1-2.35-2.47q-0.76-.88-1.46-1.81a47.49,47.49,0,0,1-5.58-9.69A63.9,63.9,0,0,1,3.09,55,70.46,70.46,0,0,1,1.3,44.19a64.57,64.57,0,0,1-.07-10.84C1.4,31.43,1.63,29.5,2,27.59A39.32,39.32,0,0,1,3.4,22a31,31,0,0,1,2.1-4.86,20.93,20.93,0,0,1,3.15-4.44,16.19,16.19,0,0,1,4-3.1,13.93,13.93,0,0,1,1.93-.87q0.51-.18,1-0.32a8.82,8.82,0,0,1,1-.26,14,14,0,0,1,2.56-.21,7.58,7.58,0,0,1,3.88,1,8,8,0,0,1,3.34,6c0.39,4.52-4.21,5.23-5.11,5.22-0.14,0-.21-0.13.24-0.59a6.53,6.53,0,0,0,1-5.1c-0.44-2.07-1.9-3.69-4-3.69a11.16,11.16,0,0,0-8.12,3.89A22.78,22.78,0,0,0,6,22.61,42.69,42.69,0,0,0,3.76,34,62.43,62.43,0,0,0,4,44.63,68.71,68.71,0,0,0,5.94,55.22a60.82,60.82,0,0,0,3.53,9.85,43.36,43.36,0,0,0,5.48,9A25.89,25.89,0,0,0,23.08,81a18.15,18.15,0,0,0,2.21,1A6.71,6.71,0,0,0,26,85,6.63,6.63,0,0,1,25,84.76Zm3.29,1.55a0.6,0.6,0,0,1-.31.21,0.6,0.6,0,0,1-.31-0.21,6.49,6.49,0,0,1-1.51-5.17c0.12-.64,1.2-0.93,1.82-0.94s1.7,0.3,1.82.94A6.49,6.49,0,0,1,28.31,86.3ZM54.7,44.19A70.46,70.46,0,0,1,52.91,55a63.9,63.9,0,0,1-3.42,10.2,47.49,47.49,0,0,1-5.58,9.69q-0.7.93-1.46,1.81a31.1,31.1,0,0,1-2.35,2.47,27.5,27.5,0,0,1-3.25,2.62A23.29,23.29,0,0,1,31,84.76,6.63,6.63,0,0,1,30,85a6.71,6.71,0,0,0,.67-3.1,18.15,18.15,0,0,0,2.21-1,25.89,25.89,0,0,0,8.13-6.87,43.36,43.36,0,0,0,5.48-9,60.82,60.82,0,0,0,3.53-9.85A68.71,68.71,0,0,0,52,44.63,62.43,62.43,0,0,0,52.24,34,42.69,42.69,0,0,0,50,22.61a22.78,22.78,0,0,0-4.47-7.87,11.16,11.16,0,0,0-8.12-3.89c-2.12,0-3.58,1.62-4,3.69a6.53,6.53,0,0,0,1,5.1c0.45,0.46.38,0.59,0.24,0.59-0.9,0-5.51-.71-5.11-5.22a8,8,0,0,1,3.34-6,7.58,7.58,0,0,1,3.88-1,14,14,0,0,1,2.56.21,8.77,8.77,0,0,1,1,.26q0.52,0.14,1,.32a13.93,13.93,0,0,1,1.93.87,16.19,16.19,0,0,1,4,3.1,20.93,20.93,0,0,1,3.15,4.44A31,31,0,0,1,52.6,22,39.32,39.32,0,0,1,54,27.59c0.35,1.91.58,3.84,0.74,5.77A64.57,64.57,0,0,1,54.7,44.19Z" transform="translate(-0.25 -0.36)"/><path id="Red" class="cls-3" d="M45,39.63c-0.11-2.69-.9-10.9-6.48-14.46A9.41,9.41,0,0,0,34.18,24c-2.74-.18-4.77.87-6.14,0.91H28c-1.37,0-3.42-1.09-6.16-.91a9.35,9.35,0,0,0-4.37,1.21C11.85,28.73,11.07,36.94,11,39.63a43.52,43.52,0,0,0,3.54,19C18.36,67.12,23,73.14,27.63,75.19L28,75.35l0.37-.16c4.61-2,9.27-8.06,13.14-16.57A43.53,43.53,0,0,0,45,39.63Z" transform="translate(-0.25 -0.36)"/><path id="W" class="cls-4" d="M36.3,33.18V35L36.67,35h0.18a1.17,1.17,0,0,1,.82.28,1.27,1.27,0,0,1,.21,1.11s-3.74,16.19-4.45,19.27c-0.82-3.9-5.26-25.18-5.26-25.18l0-.09H27.27v0.1L23.4,55.32,19,36.37a2.7,2.7,0,0,1,0-.28,1.27,1.27,0,0,1,.31-1A1,1,0,0,1,20,34.92l0.37,0v-1.8H14.13v1.76l0.28,0a1.16,1.16,0,0,1,.95.83L23,68.48l0,0.09h1.1v-0.1l3.56-23.3,4.53,23.31,0,0.09h1l7.25-32.78a1,1,0,0,1,1-.75h0.07l0.36,0V33.18H36.3Z" transform="translate(-0.25 -0.36)"/> </svg></a> </div> <div class="uw-title-tagline"> <div id="site-title" class="uw-site-title uw-red-title "> <a href="https://www.physics.wisc.edu/" rel="home">Department of Physics</a> </div> <div id="site-description" class="uw-site-tagline">Research, teaching and outreach in Physics at UW–Madison</div> </div> </div> <div class="uw-header-search"> <form role="search" class="uw-search-form" method="get" id="searchform" action="https://www.physics.wisc.edu/"> <label for="s" class="show-for-sr">Search</label> <input type="text" class="field uw-search-input" name="s" id="s" placeholder="Search" /> <input type="submit" class="submit uw-search-submit uw-button" name="submit" id="searchsubmit" value="Search" /> </form> </div> </div> </header><!-- #branding --> <button class="uw-mobile-menu-button-bar uw-mobile-menu-button-bar-reversed" aria-label="Open menu" aria-expanded="false" aria-controls="uw-top-menus"><span>Menu</span><svg viewBox="0 0 1024 1024" version="1.1" role="img" focusable="false" aria-labelledby="dynid674e2586e27206.98538608"> <title id="dynid674e2586e27206.98538608">open menu</title> <path class="path1" d="M128 256h768v86h-768v-86zM128 554v-84h768v84h-768zM128 768v-86h768v86h-768z"/> </svg><svg viewBox="0 0 805 1024" version="1.1" role="img" focusable="false" aria-labelledby="dynid674e2586e27a70.20841567"> <title id="dynid674e2586e27a70.20841567">close</title> <path class="path1" d="M741.714 755.429q0 22.857-16 38.857l-77.714 77.714q-16 16-38.857 16t-38.857-16l-168-168-168 168q-16 16-38.857 16t-38.857-16l-77.714-77.714q-16-16-16-38.857t16-38.857l168-168-168-168q-16-16-16-38.857t16-38.857l77.714-77.714q16-16 38.857-16t38.857 16l168 168 168-168q16-16 38.857-16t38.857 16l77.714 77.714q16 16 16 38.857t-16 38.857l-168 168 168 168q16 16 16 38.857z"/> </svg></button> <div id="uw-top-menus" class="uw-is-visible uw-horizontal uw-hidden" aria-hidden="false"> <div class="uw-main-nav"> <nav class="uw-nav-menu uw-nav-menu-reverse" aria-label="Main Menu"> <ul id="uw-main-nav" class=""><li id="menu-item-3698" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children uw-dropdown menu-item-3698"><a href="https://www.physics.wisc.edu/graduate/" aria-haspopup="true" aria-expanded="false">Graduate<svg class="uw-caret" viewBox="0 0 1792 1792" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e2587069fd6.07541964"> <title id="dynid674e2587069fd6.07541964">Expand</title> <path d="M1395 736q0 13-10 23l-466 466q-10 10-23 10t-23-10l-466-466q-10-10-10-23t10-23l50-50q10-10 23-10t23 10l393 393 393-393q10-10 23-10t23 10l50 50q10 10 10 23z"/> </svg><svg class="uw-caret" viewBox="0 0 1792 1792" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e258706aa94.15150371"> <title id="dynid674e258706aa94.15150371">Collapse</title> <path d="M1395 1184q0 13-10 23l-50 50q-10 10-23 10t-23-10l-393-393-393 393q-10 10-23 10t-23-10l-50-50q-10-10-10-23t10-23l466-466q10-10 23-10t23 10l466 466q10 10 10 23z"/> </svg></a> <ul aria-hidden="true" aria-label="Graduate submenu" class="sub-menu uw-child-menu"> <li id="menu-item-3701" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-3701"><a href="https://www.physics.wisc.edu/graduate/">Prospective Students</a></li> <li id="menu-item-12558" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-12558"><a href="https://www.physics.wisc.edu/graduate/phd-program/">PhD Program</a></li> <li id="menu-item-8556" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-8556"><a href="https://www.physics.wisc.edu/graduate/mspqc-program/">MSPQC Program</a></li> <li id="menu-item-7973" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-7973"><a href="https://www.physics.wisc.edu/courses/">Courses</a></li> <li id="menu-item-7974" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7974"><a href="https://www.physics.wisc.edu/uw-student-resources/">Student Resources</a></li> <li id="menu-item-7975" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7975"><a href="https://www.physics.wisc.edu/graduate/phd-program/contacts/">PhD Program Contacts</a></li> <li id="menu-item-7976" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7976"><a href="https://www.physics.wisc.edu/graduate/mspqc-current-students/mspqc-faculty/">MSPQC Program Contacts</a></li> </ul> </li> <li id="menu-item-3188" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-has-children uw-dropdown menu-item-3188"><a href="https://www.physics.wisc.edu/undergraduate/" aria-haspopup="true" aria-expanded="false">Undergraduate<svg class="uw-caret" viewBox="0 0 1792 1792" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e258706de40.86071804"> <title id="dynid674e258706de40.86071804">Expand</title> <path d="M1395 736q0 13-10 23l-466 466q-10 10-23 10t-23-10l-466-466q-10-10-10-23t10-23l50-50q10-10 23-10t23 10l393 393 393-393q10-10 23-10t23 10l50 50q10 10 10 23z"/> </svg><svg class="uw-caret" viewBox="0 0 1792 1792" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e258706e7d8.99305447"> <title id="dynid674e258706e7d8.99305447">Collapse</title> <path d="M1395 1184q0 13-10 23l-50 50q-10 10-23 10t-23-10l-393-393-393 393q-10 10-23 10t-23-10l-50-50q-10-10-10-23t10-23l466-466q10-10 23-10t23 10l466 466q10 10 10 23z"/> </svg></a> <ul aria-hidden="true" aria-label="Undergraduate submenu" class="sub-menu uw-child-menu"> <li id="menu-item-9666" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-9666"><a href="https://www.physics.wisc.edu/undergraduate/">Home</a></li> <li id="menu-item-7981" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7981"><a href="https://www.physics.wisc.edu/undergraduate/prospective-students/">Prospective Majors</a></li> <li id="menu-item-7982" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7982"><a href="https://www.physics.wisc.edu/undergraduate/the-physics-major/">Current students</a></li> <li id="menu-item-7985" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7985"><a href="https://www.physics.wisc.edu/courses/">Courses</a></li> <li id="menu-item-9664" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-9664"><a href="https://www.physics.wisc.edu/undergraduate/certificate-in-physics/">Certificate in Physics</a></li> <li id="menu-item-7983" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7983"><a href="https://www.physics.wisc.edu/undergraduate/contact-us/">Advising and Course Enrollment Assistance</a></li> <li id="menu-item-7986" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-7986"><a href="https://www.physics.wisc.edu/undergraduate/files/Physics-Declaration-Form.pdf">Major declaration form</a></li> <li id="menu-item-7987" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-7987"><a href="https://www.physics.wisc.edu/undergraduate/files/Independent-Study-Course-Approval-Form-online.pdf">Independent study approval form</a></li> <li id="menu-item-9862" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-9862"><a href="https://visp.wisc.edu/thematic-physics/">Visiting Scholars (VISP)</a></li> </ul> </li> <li id="menu-item-6319" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-6319"><a href="https://www.physics.wisc.edu/research/">Research</a></li> <li id="menu-item-2923" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children uw-dropdown menu-item-2923"><a href="https://www.physics.wisc.edu/people/" aria-haspopup="true" aria-expanded="false">People<svg class="uw-caret" viewBox="0 0 1792 1792" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e25870721a3.55574242"> <title id="dynid674e25870721a3.55574242">Expand</title> <path d="M1395 736q0 13-10 23l-466 466q-10 10-23 10t-23-10l-466-466q-10-10-10-23t10-23l50-50q10-10 23-10t23 10l393 393 393-393q10-10 23-10t23 10l50 50q10 10 10 23z"/> </svg><svg class="uw-caret" viewBox="0 0 1792 1792" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e2587072b10.72346408"> <title id="dynid674e2587072b10.72346408">Collapse</title> <path d="M1395 1184q0 13-10 23l-50 50q-10 10-23 10t-23-10l-393-393-393 393q-10 10-23 10t-23-10l-50-50q-10-10-10-23t10-23l466-466q10-10 23-10t23 10l466 466q10 10 10 23z"/> </svg></a> <ul aria-hidden="true" aria-label="People submenu" class="sub-menu uw-child-menu"> <li id="menu-item-3052" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-3052"><a href="https://www.physics.wisc.edu/people/faculty/">Faculty</a></li> <li id="menu-item-3056" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-3056"><a href="https://www.physics.wisc.edu/people/visitors/">Visiting Faculty and Researchers</a></li> <li id="menu-item-3057" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-3057"><a href="https://www.physics.wisc.edu/people/department/">Department Staff</a></li> <li id="menu-item-3058" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-3058"><a href="https://www.physics.wisc.edu/people/research-staff/">Research Staff</a></li> <li id="menu-item-3059" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-3059"><a href="https://www.physics.wisc.edu/people/phd-students/">PhD Students</a></li> <li id="menu-item-3627" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-3627"><a href="https://www.physics.wisc.edu/people/mspqc-students/">MSPQC Students</a></li> <li id="menu-item-3053" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-3053"><a href="https://www.physics.wisc.edu/people/emeritus-faculty/">Emeritus Faculty</a></li> <li id="menu-item-3061" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-3061"><a href="https://www.physics.wisc.edu/people/board-of-visitors/">Board of Visitors</a></li> <li id="menu-item-12265" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-12265"><a href="https://www.physics.wisc.edu/people/search/">Search for People</a></li> </ul> </li> <li id="menu-item-7957" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-has-children uw-dropdown menu-item-7957"><a href="https://www.physics.wisc.edu/news/" aria-haspopup="true" aria-expanded="false">News & Events<svg class="uw-caret" viewBox="0 0 1792 1792" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e25870763f5.04927224"> <title id="dynid674e25870763f5.04927224">Expand</title> <path d="M1395 736q0 13-10 23l-466 466q-10 10-23 10t-23-10l-466-466q-10-10-10-23t10-23l50-50q10-10 23-10t23 10l393 393 393-393q10-10 23-10t23 10l50 50q10 10 10 23z"/> </svg><svg class="uw-caret" viewBox="0 0 1792 1792" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e2587076d58.31723920"> <title id="dynid674e2587076d58.31723920">Collapse</title> <path d="M1395 1184q0 13-10 23l-50 50q-10 10-23 10t-23-10l-393-393-393 393q-10 10-23 10t-23-10l-50-50q-10-10-10-23t10-23l466-466q10-10 23-10t23 10l466 466q10 10 10 23z"/> </svg></a> <ul aria-hidden="true" aria-label="News & Events submenu" class="sub-menu uw-child-menu"> <li id="menu-item-7959" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7959"><a href="https://www.physics.wisc.edu/events/">Events</a></li> <li id="menu-item-7958" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7958"><a href="https://www.physics.wisc.edu/news/">Department News</a></li> <li id="menu-item-7960" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7960"><a href="https://www.physics.wisc.edu/department/alumni-friends/">The Wisconsin Physicist</a></li> <li id="menu-item-7961" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-7961"><a href="https://explore.wisc.edu/physics-subscriptions">Subscribe to e-newsletter</a></li> </ul> </li> <li id="menu-item-5126" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-5126"><a href="https://www.physics.wisc.edu/department/climate-diversity/">Climate & Diversity</a></li> <li id="menu-item-6209" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-6209"><a href="https://www.physics.wisc.edu/outreach/">Outreach</a></li> <li id="menu-item-7964" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-home menu-item-has-children uw-dropdown menu-item-7964"><a href="https://www.physics.wisc.edu/" aria-haspopup="true" aria-expanded="false">Resources<svg class="uw-caret" viewBox="0 0 1792 1792" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e2587079a68.90796772"> <title id="dynid674e2587079a68.90796772">Expand</title> <path d="M1395 736q0 13-10 23l-466 466q-10 10-23 10t-23-10l-466-466q-10-10-10-23t10-23l50-50q10-10 23-10t23 10l393 393 393-393q10-10 23-10t23 10l50 50q10 10 10 23z"/> </svg><svg class="uw-caret" viewBox="0 0 1792 1792" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e258707a591.59272191"> <title id="dynid674e258707a591.59272191">Collapse</title> <path d="M1395 1184q0 13-10 23l-50 50q-10 10-23 10t-23-10l-393-393-393 393q-10 10-23 10t-23-10l-50-50q-10-10-10-23t10-23l466-466q10-10 23-10t23 10l466 466q10 10 10 23z"/> </svg></a> <ul aria-hidden="true" aria-label="Resources submenu" class="sub-menu uw-child-menu"> <li id="menu-item-7965" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7965"><a href="https://www.physics.wisc.edu/department/">Department Resources</a></li> <li id="menu-item-7990" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-7990"><a href="https://www.physics.wisc.edu/uw-student-resources/">Student Resources</a></li> </ul> </li> <li id="menu-item-7968" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-7968"><a href="https://www.physics.wisc.edu/giving/">Giving</a></li> </ul> </nav> </div> <div class="uw-secondary-nav"> <nav class="uw-nav-menu uw-nav-menu-secondary" aria-label="Secondary Menu"> <ul id="uw-secondary-nav" class="utility-menu"><li id="menu-item-1411" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-1411"><a href="https://www.physics.wisc.edu/department/contact/">Contact</a></li> <li id="menu-item-4302" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-4302"><a href="https://www.physics.wisc.edu/courses/">Courses</a></li> <li id="menu-item-3726" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-3726"><a href="https://www.physics.wisc.edu/department/employment/">Jobs</a></li> <li id="menu-item-7971" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-7971"><a href="https://www.physics.wisc.edu/department/visit/">Visit</a></li> <a href="https://www.physics.wisc.edu/wp-login.php?redirect_to=%2Ftag%2Fwipac%2F&action=shibboleth">Log in</a></ul> </nav> </div> </div> <nav class="breadcrumb-nav" aria-label="Breadcrumb"> <ol itemscope itemtype="http://schema.org/BreadcrumbList" id="breadcrumbs" class="breadcrumb-nav__list breadcrumbs"> <li itemprop="itemListElement" itemscope itemtype="http://schema.org/ListItem" class="breadcrumb-nav__item item-home"> <a itemprop="item" href="https://www.physics.wisc.edu/" class="breadcrumb-nav__link bread-link bread-home" title="Home" > <span itemprop="name">Home</span> <meta itemprop="position" content="1"> </a> </li> <li itemprop="itemListElement" itemscope itemtype="http://schema.org/ListItem" class="breadcrumb-nav__item item-current item-tag-105 item-tag-wipac"> <a itemprop="item" href="https://www.physics.wisc.edu/tag/wipac/" class="breadcrumb-nav__link bread-current bread-tag-105 bread-tag-wipac" title="Tag: WIPAC" aria-current="page"> <span itemprop="name">Tag: WIPAC</span> <meta itemprop="position" content="2"> </a> </li> </ol> </nav> <div id="page" class="content"> <main id="main" class="site-main" role="main"> <header class="page-header"> <h1 class="page-title uw-mini-bar">WIPAC</h1> </header> <article id="post-9680" class="post-9680 post type-post status-publish format-standard has-post-thumbnail hentry category-research category-wipac tag-icecube tag-multimessenger tag-neutrinos tag-particle-physics tag-wipac"> <header class="entry-header"> <h1 class="page-title uw-mini-bar">IceCube shows Milky Way galaxy is a neutrino desert</h1> <div class="entry-meta"> <span class="posted-on">Posted on <a href="https://www.physics.wisc.edu/2023/06/29/icecube-shows-milky-way-galaxy-is-a-neutrino-desert/" rel="bookmark"><time class="entry-date published updated" datetime="2023-06-29T14:21:01-05:00">June 29, 2023</time></a></span> </div><!-- .entry-meta --> </header> <div class="entry-content"> <img width="1200" height="675" src="https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1-1200x675.jpeg" class="attachment-post-thumbnail size-post-thumbnail wp-post-image" alt="a red-lit IceCube lab (a metal modern-looking lab building stationed at the south pole) with the white swirl of the Milky Way behind it is in a photo, with an artists rendering of a stream of neutrinos (greek letter nu) streams out of the center of the Milky Way" decoding="async" fetchpriority="high" srcset="https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1-1200x675.jpeg 1200w, https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1-300x169.jpeg 300w, https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1-1024x576.jpeg 1024w, https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1-768x432.jpeg 768w, https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1-1536x864.jpeg 1536w, https://www.physics.wisc.edu/wp-content/uploads/2023/06/icecube-MW-neutrino-1600x900-1.jpeg 1600w" sizes="(max-width: 1200px) 100vw, 1200px" /><p>The Milky Way galaxy is an awe-inspiring feature of the night sky, dominating all wavelengths of light and viewable with the naked eye as a hazy band of stars stretching from horizon to horizon. Now,</p> <p>In a June 30 article in the journal Science, the IceCube Collaboration — an international group of more than 350 scientists — presents this new evidence of high-energy neutrino emission from the Milky Way. The findings indicate that the Milky Way produces far fewer neutrinos than the average distant galaxies.</p> <p>“What’s intriguing is that, unlike the case for light of any wavelength, in neutrinos, the universe outshines the nearby sources in our own galaxy,” says <a href="https://www.physics.wisc.edu/directory/halzen-francis-l/">Francis Halzen</a>, a professor of physics at the University of Wisconsin–Madison and principal investigator at IceCube.</p> <p>The IceCube search focused on the southern sky, where the bulk of neutrino emission from the galactic plane is expected near the center of the galaxy. However, until now, a background of neutrinos and other particles produced by cosmic-ray interactions with the Earth’s atmosphere made it difficult to parse out neutrinos originating from galactic sources — a significant challenge compounded by relatively sparse neutrino production in general.</p> <p style="text-align: center"><a class="uw-button uw-button-red" href="https://news.wisc.edu/icecube-shows-milky-way-galaxy-is-a-neutrino-desert/">Read the full story</a></p> </div> <footer class="entry-footer"> <span class="cat-links">Posted in <a href="https://www.physics.wisc.edu/category/research/" rel="category tag">Research</a>, <a href="https://www.physics.wisc.edu/category/wipac/" rel="category tag">WIPAC</a></span><span class="tags-links">Tagged <a href="https://www.physics.wisc.edu/tag/icecube/" rel="tag">IceCube</a>, <a href="https://www.physics.wisc.edu/tag/multimessenger/" rel="tag">multimessenger</a>, <a href="https://www.physics.wisc.edu/tag/neutrinos/" rel="tag">neutrinos</a>, <a href="https://www.physics.wisc.edu/tag/particle-physics/" rel="tag">particle physics</a>, <a href="https://www.physics.wisc.edu/tag/wipac/" rel="tag">WIPAC</a></span> </footer> </article> <article id="post-9261" class="post-9261 post type-post status-publish format-standard has-post-thumbnail hentry category-awards-and-honors tag-astrophysics tag-gamma-rays tag-hawc tag-icecube tag-multimessenger tag-neutrinos tag-nsf tag-particle-physics tag-wipac"> <header class="entry-header"> <h1 class="page-title uw-mini-bar">Ke Fang earns NSF CAREER award</h1> <div class="entry-meta"> <span class="posted-on">Posted on <a href="https://www.physics.wisc.edu/2023/05/04/ke-fang-earns-nsf-career-award/" rel="bookmark"><time class="entry-date published updated" datetime="2023-05-04T10:02:06-05:00">May 4, 2023</time></a></span> </div><!-- .entry-meta --> </header> <div class="entry-content"> <figure id="attachment_2048" class="wp-caption alignright" style="max-width: 222px;" aria-label="Ke Fang"><a href="https://www.physics.wisc.edu/wp-content/uploads/2020/04/Ke_Fang.jpg"><img decoding="async" class="size-medium wp-image-2048" src="https://www.physics.wisc.edu/wp-content/uploads/2020/04/Ke_Fang-222x300.jpg" alt="profile photo of Ke Fang" width="222" height="300" srcset="https://www.physics.wisc.edu/wp-content/uploads/2020/04/Ke_Fang-222x300.jpg 222w, https://www.physics.wisc.edu/wp-content/uploads/2020/04/Ke_Fang.jpg 335w" sizes="(max-width: 222px) 100vw, 222px" /></a><figcaption class="wp-caption-text">Ke Fang</figcaption></figure> <p>Congrats to <a href="https://www.physics.wisc.edu/directory/fang-ke/">Ke Fang</a>, assistant professor of physics, <a href="https://wipac.wisc.edu/">WIPAC</a> faculty member, and HAWC spokesperson, on earning an NSF CAREER award! CAREER awards are NSF’s most prestigious awards in support of early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization.</p> <p>Fang’s award is sponsored by the NSF Windows on the Universe: Multimessenger Astrophysics program. In multimessenger astrophysics, scientists search for multiple high energy signals to identify their sources and learn more about the makeup of our universe. WIPAC hosts both the IceCube neutrino telescope and the HAWC gamma ray telescope, and Fang says she is excited to have access to high-quality data from both. In her NSF proposal, she plans to use that data in two ways.</p> <p>“One is evolving novel data analysis techniques to study the problems that remain outstanding, such as the source of high-energy neutrinos,” Fang says. “The second part is once we have these data analysis results, then we’ll use numerical simulations to understand our observations.”</p> <p>In addition to an innovative research component, NSF proposals require that the research has broader societal impacts, such as working toward greater inclusion in STEM or increasing public understanding of science. Once again, Fang finds herself well-positioned at WIPAC, where the outreach team has developed Master Classes, a one-day event where high school students come to WIPAC, spend time with scientists, and learn about topics not typically covered in high school physics class. Currently, the students learn about IceCube’s instrumentation and how to analyze the complex detector data.</p> <p>“The course is already well designed, but from my perspective, I use a lot of numerical simulation in my research, so one thing I proposed to do is that I would design a module that would incorporate some of these modern numerical study techniques into the master class,” Fang says. “The students will now learn how to study physics using supercomputers, using numerical simulations.”</p> </div> <footer class="entry-footer"> <span class="cat-links">Posted in <a href="https://www.physics.wisc.edu/category/awards-and-honors/" rel="category tag">Awards and Honors</a></span><span class="tags-links">Tagged <a href="https://www.physics.wisc.edu/tag/astrophysics/" rel="tag">astrophysics</a>, <a href="https://www.physics.wisc.edu/tag/gamma-rays/" rel="tag">gamma rays</a>, <a href="https://www.physics.wisc.edu/tag/hawc/" rel="tag">HAWC</a>, <a href="https://www.physics.wisc.edu/tag/icecube/" rel="tag">IceCube</a>, <a href="https://www.physics.wisc.edu/tag/multimessenger/" rel="tag">multimessenger</a>, <a href="https://www.physics.wisc.edu/tag/neutrinos/" rel="tag">neutrinos</a>, <a href="https://www.physics.wisc.edu/tag/nsf/" rel="tag">NSF</a>, <a href="https://www.physics.wisc.edu/tag/particle-physics/" rel="tag">particle physics</a>, <a href="https://www.physics.wisc.edu/tag/wipac/" rel="tag">WIPAC</a></span> </footer> </article> <article id="post-8984" class="post-8984 post type-post status-publish format-standard has-post-thumbnail hentry category-wipac tag-citizen-science tag-icecube tag-neutrinos tag-wipac"> <header class="entry-header"> <h1 class="page-title uw-mini-bar">Help IceCube decode signals from outer space in new Citizen Science project</h1> <div class="entry-meta"> <span class="posted-on">Posted on <a href="https://www.physics.wisc.edu/2023/03/16/help-icecube-decode-signals-from-outer-space-in-new-citizen-science-project/" rel="bookmark"><time class="entry-date published updated" datetime="2023-03-16T15:32:52-05:00">March 16, 2023</time></a></span> </div><!-- .entry-meta --> </header> <div class="entry-content"> <p>Every second, about 100 trillion neutrinos pass through your body unnoticed. At the South Pole, the IceCube Neutrino Observatory detects these elusive particles and works to identify their astronomical origins to help unlock mysteries of the universe. Such an undertaking requires a massive amount of data, with one terabyte of data recorded daily by IceCube. But organizing the data can be labor intensive. This is where the public can help.</p> <p>Starting today, volunteers from anywhere can participate in the <a href="https://www.zooniverse.org/projects/icecubeobservatory/name-that-neutrino" target="_blank" rel="noreferrer noopener" data-type="URL" data-id="https://www.zooniverse.org/projects/icecubeobservatory/name-that-neutrino">Name that Neutrino</a> project led by IceCube researchers at Drexel University, which asks users to categorize IceCube data. Through the Zooniverse platform, volunteers can join in from the convenience of their own computer or phone. Name that Neutrino is open to everyone and will run for about 10 weeks.</p> <p><em>Read the full story at <a href="https://icecube.wisc.edu/news/2023/03/help-icecube-decode-signals-from-outer-space/">https://icecube.wisc.edu/news/2023/03/help-icecube-decode-signals-from-outer-space/</a></em></p> <p><em>Want to get involved? Here’s how:</em></p> <ol> <li><em>Click on the link: </em><a href="https://www.zooniverse.org/projects/icecubeobservatory/name-that-neutrino"><em>https://www.zooniverse.org/projects/icecubeobservatory/name-that-neutrino</em></a><em> </em></li> <li><em>Click “Get Started” to begin.</em></li> <li><em>Click “Tutorial” to learn about how to classify signals.</em></li> <li><em>Watch the brief video and pick one of the five categories for signals.</em></li> <li><em>Check out the “Field Guide” for more examples and information.</em></li> </ol> </div> <footer class="entry-footer"> <span class="cat-links">Posted in <a href="https://www.physics.wisc.edu/category/wipac/" rel="category tag">WIPAC</a></span><span class="tags-links">Tagged <a href="https://www.physics.wisc.edu/tag/citizen-science/" rel="tag">citizen science</a>, <a href="https://www.physics.wisc.edu/tag/icecube/" rel="tag">IceCube</a>, <a href="https://www.physics.wisc.edu/tag/neutrinos/" rel="tag">neutrinos</a>, <a href="https://www.physics.wisc.edu/tag/wipac/" rel="tag">WIPAC</a></span> </footer> </article> <article id="post-8312" class="post-8312 post type-post status-publish format-standard has-post-thumbnail hentry category-wipac tag-astrophysics tag-icecube tag-neutrinos tag-particle-physics tag-wipac"> <header class="entry-header"> <h1 class="page-title uw-mini-bar">UW–Madison physicists key in revealing neutrinos emanating from galactic neighbor with a gigantic black hole</h1> <div class="entry-meta"> <span class="posted-on">Posted on <a href="https://www.physics.wisc.edu/2022/11/03/uw-madison-physicists-key-in-revealing-neutrinos-emanating-from-galactic-neighbor-with-a-gigantic-black-hole/" rel="bookmark"><time class="entry-date published updated" datetime="2022-11-03T13:59:13-05:00">November 3, 2022</time></a></span> </div><!-- .entry-meta --> </header> <div class="entry-content"> <p>On Earth, billions of subatomic particles called neutrinos pass through us every second, but we never notice because they rarely interact with matter. Because of this, neutrinos can travel straight paths over vast distances unimpeded, carrying information about their cosmic origins.</p> <p>Although most of these aptly named “ghost” particles detected on Earth originate from the Sun or our own atmosphere, some neutrinos come from the cosmos, far beyond our galaxy. These neutrinos, called astrophysical neutrinos, can provide valuable insight into some of the most powerful objects in the universe.</p> <p>For the first time, an international team of scientists has found evidence of high-energy astrophysical neutrinos emanating from the galaxy NGC 1068 in the constellation Cetus.</p> <p>The detection was made by the National Science Foundation-supported <a href="https://icecube.wisc.edu/">IceCube Neutrino Observatory</a>, a 1-billion-ton neutrino telescope made of scientific instruments and ice situated 1.5-2.5 kilometers below the surface at the South Pole.</p> <p>These new results, to be published tomorrow (Nov. 4, 2022) in Science, were shared in a presentation given today at the Wisconsin Institute for Discovery.</p> <p>“One neutrino can single out a source. But only an observation with multiple neutrinos will reveal the obscured core of the most energetic cosmic objects,” says <a href="https://www.physics.wisc.edu/directory/halzen-francis-l/">Francis Halzen</a>, a University of Wisconsin–Madison professor of physics and principal investigator of the IceCube project. “IceCube has accumulated some 80 neutrinos of teraelectronvolt energy from NGC 1068, which are not yet enough to answer all our questions, but they definitely are the next big step toward the realization of neutrino astronomy.”</p> <p>For the full story, please visit <a href="https://news.wisc.edu/uw-madison-scientists-and-staff-key-in-revealing-neutrinos-emanating-from-galactic-neighbor-with-a-gigantic-black-hole/">https://news.wisc.edu/uw-madison-scientists-and-staff-key-in-revealing-neutrinos-emanating-from-galactic-neighbor-with-a-gigantic-black-hole/</a></p> <p> </p> </div> <footer class="entry-footer"> <span class="cat-links">Posted in <a href="https://www.physics.wisc.edu/category/wipac/" rel="category tag">WIPAC</a></span><span class="tags-links">Tagged <a href="https://www.physics.wisc.edu/tag/astrophysics/" rel="tag">astrophysics</a>, <a href="https://www.physics.wisc.edu/tag/icecube/" rel="tag">IceCube</a>, <a href="https://www.physics.wisc.edu/tag/neutrinos/" rel="tag">neutrinos</a>, <a href="https://www.physics.wisc.edu/tag/particle-physics/" rel="tag">particle physics</a>, <a href="https://www.physics.wisc.edu/tag/wipac/" rel="tag">WIPAC</a></span> </footer> </article> <article id="post-8304" class="post-8304 post type-post status-publish format-standard has-post-thumbnail hentry category-astrophysics category-graduate-students tag-high-energy tag-icecube tag-neutrinos tag-wipac"> <header class="entry-header"> <h1 class="page-title uw-mini-bar">IceCube analysis indicates there are many high-energy astrophysical neutrino sources</h1> <div class="entry-meta"> <span class="posted-on">Posted on <a href="https://www.physics.wisc.edu/2022/10/31/icecube-analysis-indicates-there-are-many-high-energy-astrophysical-neutrino-sources/" rel="bookmark"><time class="entry-date published updated" datetime="2022-10-31T15:11:05-05:00">October 31, 2022</time></a></span> </div><!-- .entry-meta --> </header> <div class="entry-content"> <blockquote><p>This story was <a href="https://wipac.wisc.edu/icecube-analysis-indicates-there-are-many-high-energy-astrophysical-neutrino-sources/">originally published by WIPAC</a></p></blockquote> <p>Back in 2013, the IceCube Neutrino Observatory—a cubic-kilometer neutrino detector embedded in Antarctic ice—<a href="https://icecube.wisc.edu/news/press-releases/2013/11/icecube-pushes-neutrinos-to-forefront-of-astronomy/">announced the first observation</a> of high-energy (above 100 TeV) neutrinos originating from outside our solar system, spawning a new age in astronomy. Four years later, on September 22, 2017, a high-energy neutrino event was detected coincident with a gamma-ray flare from a cosmic particle accelerator, a blazar known as TXS 0506+056. The coincident observation provided the <a href="https://icecube.wisc.edu/news/press-releases/2018/07/icecube-neutrinos-point-to-long-sought-cosmic-ray-accelerator/">first evidence</a> for an extragalactic source of high-energy neutrinos.</p> <p>The identification of this source was possible thanks to IceCube’s real-time high-energy neutrino alert program, which notifies the community of directions and energies of individual neutrinos that are most likely to have come from astrophysical sources. These alerts trigger follow-up observations of electromagnetic waves from radio up to gamma-ray, aimed at pinpointing a possible astrophysical source of high-energy neutrinos. However, the sources of the vast majority of the measured diffuse flux of astrophysical neutrinos still remain a mystery, as do how many of those sources exist. Another mystery is whether the neutrino sources are steady or variable over time and, if variable, whether they vary over long or short time scales.</p> <p>In a paper recently submitted to <em>The Astrophysical Journal</em>, the IceCube Collaboration presents a follow-up search that looked for additional, lower-energy events in the direction of the high-energy alert events. The analysis looked at low- and high-energy events from 2011-2020 and was conducted to search for the coincidence in different time scales from 1,000 seconds up to one decade. Although the researchers did not find an excess of low-energy events across the searched time scales, they were able to constrain the abundance of astrophysical neutrino sources in the universe.</p> <figure id="attachment_8305" class="wp-caption aligncenter" style="max-width: 640px;" aria-label="Map of high-energy neutrino candidates (“alert events”) detected by IceCube. The map is in celestial coordinates, with the Galactic plane indicated by a line and the Galactic center by a dot. Two contours are shown for each event, for 50% and 90% confidence in the localization on the sky. The color scale shows the “signalness” of each event, which quantifies the likelihood that each event is an astrophysical neutrino rather than a background event from Earth’s atmosphere. Credit: IceCube Collaboration"><a href="https://www.physics.wisc.edu/wp-content/uploads/2022/10/all_sky_contours-scaled.jpeg"><img decoding="async" class="wp-image-8305 size-large" src="https://www.physics.wisc.edu/wp-content/uploads/2022/10/all_sky_contours-1024x651.jpeg" alt="a map of celestial coordinates with ovoid lines shown as a heatmap of locations where neutrino candidate events likely originated" width="640" height="407" srcset="https://www.physics.wisc.edu/wp-content/uploads/2022/10/all_sky_contours-1024x651.jpeg 1024w, https://www.physics.wisc.edu/wp-content/uploads/2022/10/all_sky_contours-300x191.jpeg 300w, https://www.physics.wisc.edu/wp-content/uploads/2022/10/all_sky_contours-768x488.jpeg 768w, https://www.physics.wisc.edu/wp-content/uploads/2022/10/all_sky_contours-1536x977.jpeg 1536w, https://www.physics.wisc.edu/wp-content/uploads/2022/10/all_sky_contours-2048x1302.jpeg 2048w, https://www.physics.wisc.edu/wp-content/uploads/2022/10/all_sky_contours-1200x763.jpeg 1200w" sizes="(max-width: 640px) 100vw, 640px" /></a><figcaption class="wp-caption-text">Map of high-energy neutrino candidates (“alert events”) detected by IceCube. The map is in celestial coordinates, with the Galactic plane indicated by a line and the Galactic center by a dot. Two contours are shown for each event, for 50% and 90% confidence in the localization on the sky. The color scale shows the “signalness” of each event, which quantifies the likelihood that each event is an astrophysical neutrino rather than a background event from Earth’s atmosphere. Credit: IceCube Collaboration</figcaption></figure> <p>This research also delves into the question of whether the astrophysical neutrino flux measured by IceCube is produced by a large number of weak sources or a small number of strong sources. To distinguish between the two possibilities, the researchers developed a statistical method that used two different sets of neutrinos: 1) alert events that have a high probability of being from an astrophysical source and 2) the gamma-ray follow-up (GFU) sample, where only about one to five out of 1,000 events per day are astrophysical.</p> <p>“If there are a lot of GFU events in the direction of the alerts, that’s a sign that neutrino sources are producing a lot of detectable neutrinos, which would mean there are only a few, bright sources,” explained recent UW–Madison PhD student Alex Pizzuto, a lead on the analysis who is now a software engineer at Google. “If you don’t see a lot of GFU events in the direction of alerts, this is an indication of the opposite, that there are many, dim sources that are responsible for the flux of neutrinos that IceCube detects.”</p> <figure id="attachment_8306" class="wp-caption aligncenter" style="max-width: 640px;" aria-label="Constraints on the luminosity (power) of each individual source as a function of the number density of astrophysical neutrino sources (horizontal axis). Previous IceCube measurements of the total astrophysical neutrino flux indicate that the true combination of the two quantities must lie within the diagonal band marked “diffuse.” The results of the new analysis are shown as an upper limit, compared to the sensitivity, which shows the range of results expected from background alone (no additional signal neutrinos associated with the directions of alert events). The upper limit is above the sensitivity because there is a statistical excess in the result (p = 0.018). Credit: IceCube Collaboration"><a href="https://www.physics.wisc.edu/wp-content/uploads/2022/10/upper_limit_steady.jpeg"><img loading="lazy" decoding="async" class="size-large wp-image-8306" src="https://www.physics.wisc.edu/wp-content/uploads/2022/10/upper_limit_steady-1024x679.jpeg" alt="a graph with power of each individual source on the y-axis and number density of astrophysical neutrino sources on the x-axis. there is a clear indirect relationship, with the lines starting in the upper left and moving toward the lower right of the graph. three "lines" are shown: an upper blue band that says "diffuse," a middle black lines that says "upper limit; this analysis" and a blue-green band that has +/-1 sigma sensitivity " width="640" height="424" srcset="https://www.physics.wisc.edu/wp-content/uploads/2022/10/upper_limit_steady-1024x679.jpeg 1024w, https://www.physics.wisc.edu/wp-content/uploads/2022/10/upper_limit_steady-300x199.jpeg 300w, https://www.physics.wisc.edu/wp-content/uploads/2022/10/upper_limit_steady-768x510.jpeg 768w, https://www.physics.wisc.edu/wp-content/uploads/2022/10/upper_limit_steady-1536x1019.jpeg 1536w, https://www.physics.wisc.edu/wp-content/uploads/2022/10/upper_limit_steady-1200x796.jpeg 1200w, https://www.physics.wisc.edu/wp-content/uploads/2022/10/upper_limit_steady.jpeg 2000w" sizes="auto, (max-width: 640px) 100vw, 640px" /></a><figcaption class="wp-caption-text">Constraints on the luminosity (power) of each individual source as a function of the number density of astrophysical neutrino sources (horizontal axis). Previous IceCube measurements of the total astrophysical neutrino flux indicate that the true combination of the two quantities must lie within the diagonal band marked “diffuse.” The results of the new analysis are shown as an upper limit, compared to the sensitivity, which shows the range of results expected from background alone (no additional signal neutrinos associated with the directions of alert events). The upper limit is above the sensitivity because there is a statistical excess in the result (p = 0.018). Credit: IceCube Collaboration</figcaption></figure> <p>They interpreted the results using a simulation tool called FIRESONG, which looks at populations of neutrino sources and calculates the flux from each of these sources. The simulation was then used to determine if the simulated sources might be responsible for producing a neutrino event.</p> <p>“We did not find a clear excess of low-energy events associated with the high-energy alert events on any of the three time scales we analyzed,” said Justin Vandenbroucke, a physics professor at UW–Madison and colead of the analysis. “This implies that there are many astrophysical neutrino sources because, if there were few, we would detect additional events accompanying the high-energy alerts.”</p> <p>Future analyses will take advantage of larger IceCube data sets and higher quality data from improved calibration methods. With the completion of the larger next-generation telescope, IceCube-Gen2, researchers will be able to detect even more dim neutrino sources. Even knowing the abundance of sources could provide important constraints on the identity of the sources.</p> <p>“The future is very exciting as this analysis shows that planned improvements might reveal more astrophysical sources and populations,” said Abhishek Desai, postdoctoral fellow at UW–Madison and co-lead of the analysis. “This will be due to better event localization, which is already being studied and should be optimized in the near future.”</p> <p>+ info “Constraints on populations of neutrino sources from searches in the directions of IceCube neutrino alerts,” The IceCube Collaboration: R. Abbasi et al. Submitted to <em>The</em> <em>Astrophysical Journal. </em><a href="https://arxiv.org/abs/2210.04930">arxiv.org/abs/2210.04930</a>.</p> </div> <footer class="entry-footer"> <span class="cat-links">Posted in <a href="https://www.physics.wisc.edu/category/astrophysics/" rel="category tag">Astrophysics</a>, <a href="https://www.physics.wisc.edu/category/graduate-students/" rel="category tag">Graduate Students</a></span><span class="tags-links">Tagged <a href="https://www.physics.wisc.edu/tag/high-energy/" rel="tag">high energy</a>, <a href="https://www.physics.wisc.edu/tag/icecube/" rel="tag">IceCube</a>, <a href="https://www.physics.wisc.edu/tag/neutrinos/" rel="tag">neutrinos</a>, <a href="https://www.physics.wisc.edu/tag/wipac/" rel="tag">WIPAC</a></span> </footer> </article> <article id="post-7894" class="post-7894 post type-post status-publish format-standard has-post-thumbnail hentry category-wipac tag-cosmic-rays tag-high-energy tag-icecube tag-particle-physics tag-wipac"> <header class="entry-header"> <h1 class="page-title uw-mini-bar">The future of particle physics is also written from the South Pole</h1> <div class="entry-meta"> <span class="posted-on">Posted on <a href="https://www.physics.wisc.edu/2022/09/01/the-future-of-particle-physics-is-also-written-from-the-south-pole/" rel="bookmark"><time class="entry-date published updated" datetime="2022-09-01T16:19:50-05:00">September 1, 2022</time></a></span> </div><!-- .entry-meta --> </header> <div class="entry-content"> <blockquote><p>This post was <a href="https://icecube.wisc.edu/news/collaboration/2022/09/the-future-of-particle-physics-is-also-written-from-the-south-pole/">originally published by the IceCube collaboration</a>. Several UW–Madison physicists are part of the collaboration and are featured in this story</p></blockquote> <div class="entry-content"> <p>A month ago, the <a href="https://seattlesnowmass2021.net/">Seattle Community Summer Study Workshop</a>—July 17-26, 2022, at the University of Washington—brought together over a thousand scientists in one of the final steps of the Particle Physics Community Planning Exercise. The meetings and accompanying white papers put the cherry on top of a period of collaborative work setting a vision for the future of particle physics in the U.S. and abroad. Later this year, the final report identifying research priorities in this field will be presented. Its main purpose is to advise the Department of Energy and the National Science Foundation on research for their agendas during the next decade.</p> <p>As new and old detectors once again prepare to expand the frontiers of knowledge, we asked some IceCube collaborators about the role the South Pole neutrino observatory should play in the bright future that lies ahead for particle physics.</p> <p><strong>Q: What type of neutrinos are currently detected in IceCube? And will that change with the future extensions?</strong></p> <p>The vast majority of the neutrinos we detect are generated in the atmosphere by cosmic rays, but we also have on the order of 1,000 cosmic neutrinos at energies above 10 TeV. We use the atmospheric neutrinos for a wide range of science, first of all to study the neutrinos themselves.</p> <p>IceCube has detected more than a million neutrinos to date. That’s already a big number for neutrino scientists, and we will detect even more in the future. The deployment of the IceCube Upgrade, an extension of our facility targeting neutrinos at lower energies, will increase the density of sensors in IceCube’s inner subdetector, DeepCore, by a factor of 10. And a second, larger extension is also in the works. With IceCube-Gen2, we will improve the detection at the highest energies, too: the IceCube volume will increase by almost a factor of 10, and our event rate for high-energy cosmic neutrinos will also grow by an order of magnitude.</p> <p><em><a href="https://www.physics.wisc.edu/directory/karle-albrecht/">Albrecht Karle</a>, IceCube associate director for science and instrumentation and a professor of physics at the University of Wisconsin–Madison</em></p> <p><strong>Q: Are the futures of IceCube and that of particle physics intrinsically linked?</strong></p> <p>Absolutely! Many open questions in particle physics have neutrinos at the center. What’s their mass? What is the behavior of neutrino flavor mixing? Are there right-handed (sterile) neutrinos? Neutrinos are particularly attractive in the search for new physics. We can answer all these questions, to varying levels, within IceCube and especially moving forward with the IceCube Upgrade and IceCube-Gen2.</p> <p><em>Erin O’Sullivan, an associate professor of physics at Uppsala University</em></p> <p>IceCube, the Icecube Upgrade, and IceCube-Gen2 can all uniquely contribute to the study of particle physics, in particular, neutrino physics, beyond Standard Model (BSM) physics, and indirect searches of dark matter. The IceCube Upgrade provides complementary and independent measurements of neutrino oscillation in addition to the long-baseline experiments. And IceCube-Gen2 will be crucial to exploring the BSM features, such as sterile neutrinos and secret neutrino interactions, at an energy that cannot be reached by the underground facilities. It will also be a discovery machine for heavy dark matter particles.</p> <p><em><a href="https://www.physics.wisc.edu/directory/fang-ke/">Ke Fang</a>,</em> <em>an assistant professor of physics at the University of Wisconsin–Madison</em></p> <p><strong>Q: Talking about discoveries, now that both IceCube and Super-Kamiokande have reported definitive observations of tau neutrinos in atmospheric and astrophysical neutrino data, why should the international particle physics community continue to improve their detection? </strong></p> <p>The tau neutrino was discovered at Fermilab in an emulsion experiment where they observed double-bang events with a distance on the order of 1 mm separating production and decay. Since they represent the least studied neutrino and, in fact, one of the least studied particles, improved measurements of tau properties may reveal that the 3×3 matrix is not unitary and expose the first indication of physics beyond the 3-flavor oscillation scenario.</p> <p><em><a href="https://www.physics.wisc.edu/directory/halzen-francis-l/">Francis Halzen</a>, IceCube PI and a professor of physics at the University of Wisconsin–Madison</em></p> <p>We are the only experiment operating currently (and in the foreseeable future) that is able to identify tau neutrinos on an event-by-event basis. We can do so by looking at the distinct morphological features they produce in our data at the highest energies. And with the IceCube Upgrade, we will also be the experiment that collects the most tau neutrinos. I suspect that these neutrinos will surprise us again and point us towards new physics.</p> <p><em>Carlos Argüelles, an assistant professor of physics at Harvard University. </em></p> <p>Four hundred years from now, people may see IceCube the way we see Galileo’s telescope, not as an end but as the beginning of a new branch of science. The astrophysical observation of tau neutrinos is but one piece in a large number of studies that IceCube can conduct, including the study of fundamental physics using astrophysical neutrinos.</p> <p><em>Ignacio Taboada, IceCube spokesperson and a professor of physics at the Georgia Institute of Technology</em></p> <p><strong>Q: In 2019, the Wisconsin IceCube Particle Astrophysics Center joined the </strong><a href="https://www.interactions.org/"><strong>Interactions Collaboration</strong></a><strong>, which includes all major particle physics laboratories around the globe. The IceCube letter of introduction to this community detailed some of the most accurate results to date in neutrino physics. What’s unique about IceCube neutrino science?</strong></p> <p>One unique aspect of IceCube is the breadth of neutrino energy that we can measure, all the way down to the MeV energy scale in the case of a galactic supernova and up to as far as a few PeV neutrinos, which are the highest energy neutrinos ever detected. Therefore, IceCube provides us with different windows to study the neutrino and understand its properties. Especially in the context of searching for new physics, this is important as these processes can manifest at a particular energy scale but not be visible at other energy scales.</p> <p><em>Erin O’Sullivan, an associate professor of physics at Uppsala University</em></p> <p><strong>Q: Let’s focus on high-energy neutrinos for a moment. What are the needs for their detection and why is the South Pole ice the perfect place for those searches? </strong></p> <p>The highest energy neutrinos can be directly linked to the most powerful accelerators in the universe but also allow us to test the Standard Model at energies inaccessible to current or future planned colliders.</p> <p>And why the South Pole? Well, what makes the South Pole such an optimal location are the exceptional optical and radio properties of its ice sheet, which is also the largest pool of ice on Earth. Neutrino event rates are very low at these energies and, thus, we need a huge detector to measure them.</p> <p>Deep-ice Cherenkov optical sensors have already been proven as high-performing detectors for TeV and PeV neutrinos when deployed at depths of 1.4 km and greater below the surface. And radio technology is promising because radio waves can travel much further than optical photons in the ice, plus they work at shallow depths. So, when searching for the highest energy neutrinos using the South Pole ice sheet, radio neutrino detectors might be the only solution that scales up. Radio waves are able to travel further in the South Pole than in Greenland, for example. It’s a gift from nature to have this giant, pure block of ice to catch elusive neutrinos from the most powerful accelerators.</p> <p><em><a href="https://www.physics.wisc.edu/directory/lu-lu/">Lu Lu</a>, an assistant professor of physics at the University of Wisconsin–Madison</em></p> <p><strong>Q: And what about the lowest energies? How does IceCube perform there? </strong></p> <p>IceCube’s DeepCore detector was especially designed for that: a more dense layout of photodetectors embedded in the center of IceCube and located at about 2 km depth, it uses the surrounding IceCube sensors to eliminate essentially all background from the otherwise dominant cosmic ray muons. This means that DeepCore can now be analyzed as if it was at 10 km depth, deeper than any mine on Earth. In the near future, the IceCube Upgrade will add seven strings of new sensors inside DeepCore, which will hugely increase its precision for neutrino properties.</p> <p><em>Albrecht Karle, IceCube associate director for science and instrumentation and a professor of physics at the University of Wisconsin–Madison</em><em> </em></p> <p>IceCube’s low energies are what all other neutrino experiments would call high energies. This is a regime where the neutrino interactions are well predicted from accelerator experiments, which means that if deviations are found in the data we can claim new physics. Thus, IceCube and the upcoming IceCub Upgrade results are not only going to yield some of the most precise measurements on the neutrino oscillation parameters but also—and more importantly—test the neutrino oscillation framework.</p> <p><em>Carlos Argüelles, an assistant professor of physics at Harvard University </em></p> <p><strong>Q: And, last but not least, we should think about the people that will make all this possible. </strong><strong>What efforts are underway to diversify who does science and make the field more equitable?</strong></p> <p>Four years ago, IceCube invited a few collaborations to join efforts to increase equity, diversity, inclusion, and accessibility (DEIA) in multimessenger astrophysics. With support from NSF, this was the birth of the Multimessenger Diversity Network (<a href="https://astromdn.github.io/">MDN</a>). This network now includes a dozen participating collaborations, which is an indication of the growing awareness and action to increase DEIA across the field. Set up as a community of practice, where people share their knowledge and experiences with each other, the MDN is a reproducible and scalable model for other fields. We are excited to see this community of practice grow, to contribute with resources and experiences, and to learn from others.</p> <p>For the first time in an official capacity, DEIA efforts were included in the Snowmass planning process and were also incorporated into the Astro2020 Decadal Survey. One take-away from these processes is that more resources and accountability are needed to speed up DEIA efforts.</p> <p><em>Ellen Bechtol, MDN community manager and an outreach specialist at the Wisconsin IceCube Particle Astrophysics Center</em></p> <p><em>Read more about IceCube and its future contributions to particle physics</em></p> <ul> <li>Snowmass Neutrino Frontier: NF04 <a href="https://drive.google.com/file/d/1bj0HHTsZb2EmJ_F9T8feJ6ODHIPoKpo7/view">Topical Group Report</a>. Neutrinos from natural sources. (Jul 2022)</li> <li>CF7. Cosmic Probes of Fundamental Physics. <a href="https://snowmass21.org/_media/cosmic/repv1_cf7.pdf">Topical Group Report </a>(Jul 2022).</li> <li>“High-Energy and Ultra-High-Energy Neutrinos: A Snowmass White Paper”, M.Ackermann et al. <a href="https://arxiv.org/abs/2203.08096">arxiv.org/abs/2203.08096</a></li> <li>“Tau Neutrinos in the Next Decade: from GeV to EeV,” R. S. Abraham et al. <a href="https://arxiv.org/abs/2203.05591">arxiv.org/abs/2203.05591</a></li> <li>“Snowmass White Paper: Beyond the Standard Model effects on Neutrino Flavor,” C. Argüelles et al. <a href="https://arxiv.org/abs/2203.10811">arxiv.org/abs/2203.10811</a></li> <li>“Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments,” J. Berger et al. <a href="https://arxiv.org/abs/2207.02882">arxiv.org/abs/2207.02882</a></li> <li>“White Paper on Light Sterile Neutrino Searches and Related Phenomenology,” M. A. Acero et al, <a href="https://arxiv.org/abs/2203.07323">arxiv.org/abs/2203.07323</a></li> <li>“Ultra-High-Energy Cosmic Rays: The Intersection of the Cosmic and Energy Frontiers,” A. Coleman, <a href="https://arxiv.org/abs/2205.05845">arxiv.org/abs/2205.05845</a></li> <li>“Advancing the Landscape of Multimessenger Science in the Next Decade,” K. Engle et al. <a href="https://arxiv.org/abs/2203.10074">arxiv.org/abs/2203.10074</a></li> </ul> </div> </div> <footer class="entry-footer"> <span class="cat-links">Posted in <a href="https://www.physics.wisc.edu/category/wipac/" rel="category tag">WIPAC</a></span><span class="tags-links">Tagged <a href="https://www.physics.wisc.edu/tag/cosmic-rays/" rel="tag">cosmic rays</a>, <a href="https://www.physics.wisc.edu/tag/high-energy/" rel="tag">high energy</a>, <a href="https://www.physics.wisc.edu/tag/icecube/" rel="tag">IceCube</a>, <a href="https://www.physics.wisc.edu/tag/particle-physics/" rel="tag">particle physics</a>, <a href="https://www.physics.wisc.edu/tag/wipac/" rel="tag">WIPAC</a></span> </footer> </article> <article id="post-7804" class="post-7804 post type-post status-publish format-standard has-post-thumbnail hentry category-astrophysics category-wipac tag-cosmic-rays tag-gravitational-waves tag-icecube tag-multimessenger tag-neutrinos tag-wipac"> <header class="entry-header"> <h1 class="page-title uw-mini-bar">Search for neutrino emission associated with LIGO/Virgo gravitational waves</h1> <div class="entry-meta"> <span class="posted-on">Posted on <a href="https://www.physics.wisc.edu/2022/08/25/search-for-neutrino-emission-associated-with-ligo-virgo-gravitational-waves/" rel="bookmark"><time class="entry-date published updated" datetime="2022-08-25T15:27:00-05:00">August 25, 2022</time></a></span> </div><!-- .entry-meta --> </header> <div class="entry-content"> <p>Gravitational waves (GWs) are a signature for some of the most energetic phenomena in the universe, which cause ripples in space-time that travel at the speed of light. These events, spurred by massive accelerating objects, act as cosmic messengers that carry with them clues to their origins. They are also probable sources for highly energetic neutrinos, nearly massless cosmic messengers hurtling through space unimpeded. Because neutrinos rarely interact with surrounding matter, they can reveal phenomena that are otherwise unobserved with electromagnetic waves. These high-energy neutrinos are detected by the IceCube Neutrino Observatory, a cubic-kilometer detector enveloped in Antarctic ice at the South Pole.</p> <p>Both GWs and neutrinos are recently introduced messengers in astronomy and have yet to be detected by the same source. Such a major discovery would not only shed light on the sources of cosmic rays but would also help in understanding the most energetic processes in the universe. By coordinating traditional observations (from radio to gamma rays) with these new messengers, researchers can gain deeper insights into astrophysical sources that were unobtainable before.</p> <p>Previously, the IceCube Collaboration looked for joint emission of GWs and high-energy neutrinos with data collected by IceCube, the Laser Interferometer Gravitational-Wave Observatory (LIGO), and the Virgo gravitational wave detector. <a href="https://icecube.wisc.edu/news/research/2020/07/searching-for-neutrino-emission-from-11-ligo-virgo-gravitational-wave-sources/">These results </a>were from GWs observed during the first two observing runs (O1 and O2) of LIGO and Virgo. IceCube researchers from the University of Wisconsin–Madison and Columbia University conducted an updated analysis of GWs from the third observing run (O3) of the LIGO/Virgo detectors. The increased number of GWs improved the researchers’ overall analysis. Their findings were recently submitted to <em>The</em> <em>Astrophysical Journal</em>.</p> <p style="text-align: center"><a class="uw-button uw-button-red" href="https://icecube.wisc.edu/news/research/2022/08/search-for-neutrino-emission-associated-with-ligo-virgo-gravitational-waves/">Read the full story by WIPAC</a></p> </div> <footer class="entry-footer"> <span class="cat-links">Posted in <a href="https://www.physics.wisc.edu/category/astrophysics/" rel="category tag">Astrophysics</a>, <a href="https://www.physics.wisc.edu/category/wipac/" rel="category tag">WIPAC</a></span><span class="tags-links">Tagged <a href="https://www.physics.wisc.edu/tag/cosmic-rays/" rel="tag">cosmic rays</a>, <a href="https://www.physics.wisc.edu/tag/gravitational-waves/" rel="tag">gravitational waves</a>, <a href="https://www.physics.wisc.edu/tag/icecube/" rel="tag">IceCube</a>, <a href="https://www.physics.wisc.edu/tag/multimessenger/" rel="tag">multimessenger</a>, <a href="https://www.physics.wisc.edu/tag/neutrinos/" rel="tag">neutrinos</a>, <a href="https://www.physics.wisc.edu/tag/wipac/" rel="tag">WIPAC</a></span> </footer> </article> <article id="post-7648" class="post-7648 post type-post status-publish format-standard has-post-thumbnail hentry category-wipac tag-astrophysics tag-icecube tag-particle-physics tag-wipac"> <header class="entry-header"> <h1 class="page-title uw-mini-bar">Study led by UW–Madison researcher confirms star wreck as source of extreme cosmic particles</h1> <div class="entry-meta"> <span class="posted-on">Posted on <a href="https://www.physics.wisc.edu/2022/08/10/study-led-by-uw-madison-researcher-confirms-star-wreck-as-source-of-extreme-cosmic-particles/" rel="bookmark"><time class="entry-date published updated" datetime="2022-08-10T11:17:36-05:00">August 10, 2022</time></a></span> </div><!-- .entry-meta --> </header> <div class="entry-content"> <p>Astronomers have long sought the launch sites for some of the highest energy protons in our galaxy. Now, a study using 12 years of data from NASA’s<a href="https://www.nasa.gov/content/fermi-gamma-ray-space-telescope"> Fermi Gamma-ray Space Telescope</a> (Fermi) confirms that a remnant of a supernova, or star explosion, is just such a place, solving a decade-long cosmic mystery.</p> <figure id="attachment_7649" class="wp-caption alignright" style="max-width: 300px;" aria-label="The newly discovered PeVatron (in pink) is hosted by a supernova remnant (in green) called G106.3+2.7. The supernova remnant is believed to have formed together with the pulsar (in magenta) about 10,000 years ago. Particles accelerated by the shock waves of the supernova remnant interact with the gas in the interstellar medium, producing high-energy gamma-ray emission. Credit: Jayanne English, University of Manitoba, NASA/Fermi/Fang et al. 2022, and Canadian Galactic Plane Survey/DRAO."><a href="https://www.physics.wisc.edu/wp-content/uploads/2022/08/Screen-Shot-2022-07-11-at-3.47.20-PM-2048x1578-1.png"><img loading="lazy" decoding="async" class="size-medium wp-image-7649" src="https://www.physics.wisc.edu/wp-content/uploads/2022/08/Screen-Shot-2022-07-11-at-3.47.20-PM-2048x1578-1-300x231.png" alt="a mostly black image of space, with some small white-ish out-of-focus stars, and a large fuzzy pink blob partially overlapping a green-hued amorphous apparition" width="300" height="231" srcset="https://www.physics.wisc.edu/wp-content/uploads/2022/08/Screen-Shot-2022-07-11-at-3.47.20-PM-2048x1578-1-300x231.png 300w, https://www.physics.wisc.edu/wp-content/uploads/2022/08/Screen-Shot-2022-07-11-at-3.47.20-PM-2048x1578-1-1024x789.png 1024w, https://www.physics.wisc.edu/wp-content/uploads/2022/08/Screen-Shot-2022-07-11-at-3.47.20-PM-2048x1578-1-768x592.png 768w, https://www.physics.wisc.edu/wp-content/uploads/2022/08/Screen-Shot-2022-07-11-at-3.47.20-PM-2048x1578-1-1536x1184.png 1536w, https://www.physics.wisc.edu/wp-content/uploads/2022/08/Screen-Shot-2022-07-11-at-3.47.20-PM-2048x1578-1-1200x925.png 1200w, https://www.physics.wisc.edu/wp-content/uploads/2022/08/Screen-Shot-2022-07-11-at-3.47.20-PM-2048x1578-1.png 2048w" sizes="auto, (max-width: 300px) 100vw, 300px" /></a><figcaption class="wp-caption-text">The newly discovered PeVatron (in pink) is hosted by a supernova remnant (in green) called G106.3+2.7. The supernova remnant is believed to have formed together with the pulsar (in magenta) about 10,000 years ago. Particles accelerated by the shock waves of the supernova remnant interact with the gas in the interstellar medium, producing high-energy gamma-ray emission. Credit: Jayanne English, University of Manitoba, NASA/Fermi/Fang et al. 2022, and Canadian Galactic Plane Survey/DRAO.</figcaption></figure> <p>Previously, Fermi has shown that<a href="https://www.nasa.gov/mission_pages/GLAST/news/supernova-cosmic-rays.html"> the shock waves of exploded stars boost particles to speeds comparable to that of light</a>. Called cosmic rays, these particles mostly take the form of protons, but can include atomic nuclei and electrons. Because they all carry an electric charge, their paths become scrambled as they whisk through our galaxy’s magnetic field, which masks their origins. But when these particles collide with interstellar gas near the supernova remnant (SNR), they produce a telltale glow in gamma rays—the highest-energy light there is.</p> <p>“Theorists think the highest energy cosmic ray protons in the Milky Way reach a million billion electron volts, or PeV energies,” said Ke Fang, an assistant professor of physics at the Wisconsin IceCube Particle Astrophysics Center (WIPAC), a research center at the University of Wisconsin–Madison. “The precise nature of their sources, which we call PeVatrons, has been difficult to pin down.”</p> <p>Fang, who led the study, performed the data analysis and developed the theory models. The research team identified a few suspected PeVatrons, including one at the center of our galaxy. Naturally, SNR top the list of candidates. Yet out of about 300 known remnants, only a few have been found to emit gamma rays with sufficiently high energies.</p> <p style="text-align: center"><a class="uw-button uw-button-red" href="https://wipac.wisc.edu/study-led-by-uw-madison-researcher-confirms-star-wreck-as-source-of-extreme-cosmic-particles/">Read the full story</a></p> </div> <footer class="entry-footer"> <span class="cat-links">Posted in <a href="https://www.physics.wisc.edu/category/wipac/" rel="category tag">WIPAC</a></span><span class="tags-links">Tagged <a href="https://www.physics.wisc.edu/tag/astrophysics/" rel="tag">astrophysics</a>, <a href="https://www.physics.wisc.edu/tag/icecube/" rel="tag">IceCube</a>, <a href="https://www.physics.wisc.edu/tag/particle-physics/" rel="tag">particle physics</a>, <a href="https://www.physics.wisc.edu/tag/wipac/" rel="tag">WIPAC</a></span> </footer> </article> <article id="post-5900" class="post-5900 post type-post status-publish format-standard has-post-thumbnail hentry category-in-the-news tag-astrophysics tag-icecube tag-neutrinos tag-wipac"> <header class="entry-header"> <h1 class="page-title uw-mini-bar">IceCube to appear in BBC and PBS documentaries</h1> <div class="entry-meta"> <span class="posted-on">Posted on <a href="https://www.physics.wisc.edu/2021/09/22/icecube-to-appear-in-bbc-and-pbs-documentaries/" rel="bookmark"><time class="entry-date published updated" datetime="2021-09-22T08:57:04-05:00">September 22, 2021</time></a></span> </div><!-- .entry-meta --> </header> <div class="entry-content"> <p><em>This story was <a href="https://icecube.wisc.edu/news/outreach/2021/09/icecube-to-appear-in-bbc-and-pbs-documentaries/">originally published</a> by IceCube.</em></p> <p>The IceCube Neutrino Observatory, a massive astroparticle physics experiment located at the South Pole, will be featured in two upcoming documentaries about neutrinos produced for the BBC and PBS NOVA.</p> <p>Sometimes called the world’s biggest and strangest telescope, IceCube comprises over 5,000 light sensors deployed in a cubic kilometer of ice at the South Pole. Despite its inhospitable environment, the South Pole’s abundance of ice makes it an ideal location for detecting neutrinos: tiny fundamental particles that could reveal unseen parts of the universe.</p> <p>For these documentaries, IceCube staff from the experiment’s headquarters at the Wisconsin IceCube Particle Astrophysics Center (WIPAC), a research center of the University of Wisconsin–Madison, captured video footage at the South Pole. During the austral summer of 2019, Kael Hanson, John Hardin, Matt Kauer, John Kelley, and Yuya Makino recorded video at the bottom of the world as they conducted annual maintenance and other work on the observatory. The footage was then sent “up north” for use in the two different documentaries.</p> <p>The BBC documentary, “<a href="https://www.bbc.co.uk/programmes/m000zwqr">Neutrino: Hunting the Ghost Particle</a>,” will premiere on BBC Four on Wednesday, September 22 from 9:00 – 10:00 pm BST. It is described as “an astonishing tale of perseverance and ingenuity that reveals how scientists have battled against the odds for almost a century to detect and decode the neutrino, the smallest and strangest particle of matter in the universe.” The documentary will feature footage and interviews from IceCube and will discuss the experiment’s role in neutrino astronomy.</p> <p>PBS NOVA will feature IceCube and its science in its “<a href="https://www.pbs.org/wgbh/nova/video/particles-unknown/">Particles Unknown</a>” documentary premiering on Wednesday, October 6 at 9:00 pm CDT. IceCube will appear near the end of the program, which is also about the hunt for neutrinos, “the universe’s most common—yet most elusive and baffling—particle,” and includes an interview with Hanson, who is also IceCube’s director of operations and the director of WIPAC.</p> <p>Learn more about IceCube and neutrinos at IceCube’s <a href="https://icecube.wisc.edu/">website</a>.</p> <p><i>The IceCube Neutrino Observatory is </i><a href="https://icecube.wisc.edu/collaboration/funding/"><i>funded</i></a><i> primarily by the National Science Foundation (OPP-1600823 and PHY-1913607) and is headquartered at the Wisconsin IceCube Particle Astrophysics Center, a research center of UW–Madison in the United States. IceCube’s research efforts, including critical contributions to the detector operation, are funded by agencies in Australia, Belgium, Canada, Denmark, Germany, Japan, New Zealand, Republic of Korea, Sweden, Switzerland, the United Kingdom, and the United States. The IceCube EPSCoR Initiative (IEI) also receives additional support through NSF-EPSCoR-2019597.</i> <i>IceCube construction was also funded with significant contributions from the National Fund for Scientific Research (FNRS & FWO) in Belgium; the Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG) in Germany; the Knut and Alice Wallenberg Foundation, the Swedish Polar Research Secretariat, and the Swedish Research Council in Sweden; and the University of Wisconsin–Madison Research Fund in the U.S.</i></p> <p> </p> </div> <footer class="entry-footer"> <span class="cat-links">Posted in <a href="https://www.physics.wisc.edu/category/in-the-news/" rel="category tag">In the News</a></span><span class="tags-links">Tagged <a href="https://www.physics.wisc.edu/tag/astrophysics/" rel="tag">astrophysics</a>, <a href="https://www.physics.wisc.edu/tag/icecube/" rel="tag">IceCube</a>, <a href="https://www.physics.wisc.edu/tag/neutrinos/" rel="tag">neutrinos</a>, <a href="https://www.physics.wisc.edu/tag/wipac/" rel="tag">WIPAC</a></span> </footer> </article> <article id="post-5564" class="post-5564 post type-post status-publish format-standard has-post-thumbnail hentry category-awards-and-honors tag-awards tag-icecube tag-neutrinos tag-wipac"> <header class="entry-header"> <h1 class="page-title uw-mini-bar">2021 Homi Bhabha Award given to Francis Halzen</h1> <div class="entry-meta"> <span class="posted-on">Posted on <a href="https://www.physics.wisc.edu/2021/07/13/2021-homi-bhabha-award-given-to-francis-halzen/" rel="bookmark"><time class="entry-date published updated" datetime="2021-07-13T16:45:36-05:00">July 13, 2021</time></a></span> </div><!-- .entry-meta --> </header> <div class="entry-content"> <p><em><a href="https://icecube.wisc.edu/news/awards/2021/07/2021-homi-bhabha-award-given-to-francis-halzen-icecube-pi/">This story was originally published by the IceCube collaboration.</a></em></p> <div class="entry-content"> <figure id="attachment_5565" class="wp-caption alignright" style="max-width: 232px;" aria-label="Francis Halzen | Image: Zig Hampel-Arias, WIPAC."><a href="https://www.physics.wisc.edu/wp-content/uploads/2021/07/FrancisHalzen_portrait.png"><img loading="lazy" decoding="async" class="size-medium wp-image-5565" src="https://www.physics.wisc.edu/wp-content/uploads/2021/07/FrancisHalzen_portrait-232x300.png" alt="profile photo of Francis Halzen" width="232" height="300" srcset="https://www.physics.wisc.edu/wp-content/uploads/2021/07/FrancisHalzen_portrait-232x300.png 232w, https://www.physics.wisc.edu/wp-content/uploads/2021/07/FrancisHalzen_portrait.png 744w" sizes="auto, (max-width: 232px) 100vw, 232px" /></a><figcaption class="wp-caption-text">Francis Halzen | Image: Zig Hampel-Arias, WIPAC.</figcaption></figure> <p>The International Union of Pure and Applied Physics (IUPAP) and the Tata Institute of Fundamental Research (TIFR) in Mumbai, India, have awarded the 2021 <a href="https://grapes-3.tifr.res.in/homibhabhaaward.html">Homi Bhabha Medal and Prize</a> to Francis Halzen, the Hilldale and Gregory Breit Distinguished Professor of Physics at the University of Wisconsin–Madison and principal investigator of IceCube, for his “distinguished contributions in the field of high-energy cosmic-ray physics and astroparticle physics over an extended academic career.” Halzen accepted the award at the opening session of the virtual 37<sup>th</sup> International Cosmic Ray Conference, on July 12, 2021.</p> <p>The Bhabha Award was established by IUPAP and TIFR in 2010 to honor Dr. Homi Jehangir Bhabha, a cosmic ray physicist well known for the Bhabha-Heitler cascade theory and relativistic positron-electron scattering, also known as Bhabha scattering. Bhabha founded TIFR in 1945 and initiated the nuclear energy program in India in 1951. He initiated experimental programs for the study of cosmic ray particles and their interactions with instruments either carried aloft to the top of the atmosphere with balloons or placed in laboratories at high altitude or deep underground. The Homi Bhabha Medal and Prize consists of a certificate, a medal, a monetary award, and an invitation to visit the TIFR, Mumbai, and the Cosmic Ray Laboratory, Ooty to give public lectures. It is awarded biennially at the International Cosmic Ray Conference.</p> <p>Born in Belgium, Halzen received his Master’s and PhD degrees from the University of Louvain, Belgium, and has been on the physics faculty at UW–Madison since 1972. The Bhabha Award is just the latest in Halzen’s long and storied career; previous accolades include a 2014 American Ingenuity Award, the 2015 Balzan Prize, a 2018 Bruno Pontecorvo Prize, the <a href="https://icecube.wisc.edu/news/awards/2019/08/francis-halzen-awarded-2019-yodh-prize/">2019 IUPAP Yodh Prize</a>, and the <a href="https://icecube.wisc.edu/news/awards/2021/01/icecube-collaboration-awarded-2021-rossi-prize/">2021 Bruno Rossi Prize</a>. Halzen is the third IceCube collaborator to win a Bhabha Award after <a href="https://icecube.wisc.edu/news/collaboration/2015/08/icecube-at-icrc-2015/">Tom Gaisser</a> in 2015 and <a href="https://icecube.wisc.edu/news/awards/2017/04/subir-sarkar-recognized-with-homi-bhabha-award/">Subir Sarkar</a> in 2017.</p> <p>During his virtual acceptance remarks, Halzen credited his collaborators, saying, “If I made contributions, it is because I ran into incredible collaborators who were leaders in the field, and still are. My ultimate collaborators, of course, I found within the AMANDA collaboration—and now IceCube—who made high-energy neutrinos part of the high-energy cosmic ray spectrum…</p> <p>“Thanks to everybody, and thanks to IceCube; this prize is shared with all of you.”</p> </div> </div> <footer class="entry-footer"> <span class="cat-links">Posted in <a href="https://www.physics.wisc.edu/category/awards-and-honors/" rel="category tag">Awards and Honors</a></span><span class="tags-links">Tagged <a href="https://www.physics.wisc.edu/tag/awards/" rel="tag">awards</a>, <a href="https://www.physics.wisc.edu/tag/icecube/" rel="tag">IceCube</a>, <a href="https://www.physics.wisc.edu/tag/neutrinos/" rel="tag">neutrinos</a>, <a href="https://www.physics.wisc.edu/tag/wipac/" rel="tag">WIPAC</a></span> </footer> </article> <nav class="pagination-container" aria-label="Pagination"><ul class="pagination"><li class="current"><span class="show-for-sr">You're on page</span> 1</li><li><a class="page-numbers" href="https://www.physics.wisc.edu/tag/wipac/page/2/">2</a></li><li class="pagination-next"><a class="next page-numbers" href="https://www.physics.wisc.edu/tag/wipac/page/2/">Next <span class="show-for-sr">page</span></a></li></ul></nav> </main> </div> <footer id="colophon" class="uw-footer"> <h2 class="show-for-sr uw-footer-header">Site footer content</h2> <div class="uw-footer-content"> <div class="uw-logo"> <div class="uw-logo-link-wrapper"><a href="https://www.wisc.edu" aria-label="Link to main university website"> <svg viewBox="0 0 326 216" version="1.1" role="img" focusable="false" aria-labelledby="dynid674e25871735f4.02989459"> <title id="dynid674e25871735f4.02989459">University logo that links to main university website</title> <g> <path d="M21.3,195.1c-5.7-4.1-6.2-3.7-8.3-10.1l-7.3-23c-1.1-3.4-2.1-7.5-5.2-9.6v-0.2h9.1c-0.2,1.4,0.4,3.3,0.7,4.5l9.3,28.9 l7.3-23.7c1.2-3.8,2.4-7.8-1-9.6v-0.2h8.8c-0.4,1.6,0.1,3.5,0.9,6.3l8.7,27l7-22.8c1.1-3.5,3.2-8.6-1.7-10.3v-0.2h9.6l-13.1,42.8 c-5.7-3.9-6.2-3.6-8.2-10L31,163.7L21.3,195.1z"/> <path d="M64.5,161.1c0-2.9,0.4-7.4-2.7-8.6v-0.2h11.8v0.2c-3.1,1.2-2.7,5.8-2.7,8.6v23.5c0,2.8-0.4,7.3,2.7,8.5v0.2H61.7v-0.2 c3.1-1.1,2.7-5.7,2.7-8.5V161.1z"/> <path d="M102.2,159.7c-2.4-2.5-6.3-3.9-9.8-3.9c-3.5,0-8,1.4-8,5.7c0,8.5,21.4,8.4,21.4,19.9c0,6.7-7,12.9-16.7,12.9 c-3.8,0-7.6-0.6-11.1-1.9l-1.8-7.8c3.7,3.2,8.8,5.2,13.6,5.2c3.5,0,8.9-2.1,8.9-6.5c0-9.7-21.4-8-21.4-21.2c0-7.8,8-10.8,15.6-10.8 c3.1,0,6.3,0.4,9.3,1.4V159.7z"/> <path d="M141.5,160c-3.4-2.2-7.4-3.5-11.5-3.5c-8.6,0-14.6,6.3-14.6,15.3c0,9.2,6.2,17.3,15.8,17.3c4.7,0,9.3-1.7,13.3-3.9h0.2 l-3.2,7.2c-2.9,1.4-6.2,1.9-9.4,1.9c-14.7,0-23.8-8.2-23.8-21.5c0-12.9,9.1-21.4,21.8-21.4c3.8,0,7.7,0.7,11.3,1.6V160z"/> <path d="M189.9,172.3c0,12.7-10.5,21.9-22.9,21.9c-12.3,0-22.7-8.8-22.7-21.6c0-11.8,10.3-21.7,23.3-21.4 C180.7,151.2,189.9,161.1,189.9,172.3z M151.3,172.1c0,8.7,6.2,17.7,15.9,17.7c9.5,0,15.5-6.9,15.5-16.2c0-9.1-5.8-17.9-15.6-17.9 C157.5,155.7,151.3,162.7,151.3,172.1z"/> <path d="M199.3,185.2c0,3.5-0.1,6,3.2,7.9v0.2h-11v-0.2c3.3-1.9,3.3-4.4,3.3-7.9v-24.8c0-3.5,0-6-3.2-7.8v-0.2h9.1v0.1 c0.2,0.7,0.5,1.1,0.9,1.6l0.9,1.2l22.8,28.8v-23.6c0-3.5,0.1-6-3.2-7.8v-0.2h11v0.2c-3.2,1.9-3.2,4.4-3.2,7.8v34.9 c-4.4-1.5-6.4-3.5-9.1-7.1l-21.4-27.1V185.2z"/> <path d="M261.2,159.7c-2.4-2.5-6.3-3.9-9.8-3.9c-3.5,0-8,1.4-8,5.7c0,8.5,21.4,8.4,21.4,19.9c0,6.7-7,12.9-16.7,12.9 c-3.8,0-7.6-0.6-11.1-1.9l-1.8-7.8c3.7,3.2,8.8,5.2,13.6,5.2c3.5,0,8.9-2.1,8.9-6.5c0-9.7-21.4-8-21.4-21.2c0-7.8,8-10.8,15.6-10.8 c3.1,0,6.3,0.4,9.3,1.4V159.7z"/> <path d="M270.7,161.1c0-2.9,0.4-7.4-2.7-8.6v-0.2h11.8v0.2c-3.1,1.2-2.7,5.8-2.7,8.6v23.5c0,2.8-0.4,7.3,2.7,8.5v0.2H268v-0.2 c3.1-1.1,2.7-5.7,2.7-8.5V161.1z"/> <path d="M291.8,185.2c0,3.5-0.1,6,3.2,7.9v0.2h-11v-0.2c3.3-1.9,3.3-4.4,3.3-7.9v-24.8c0-3.5,0-6-3.2-7.8v-0.2h9.1v0.1 c0.2,0.7,0.5,1.1,0.9,1.6l0.9,1.2l22.8,28.8v-23.6c0-3.5,0.1-6-3.2-7.8v-0.2h11v0.2c-3.2,1.9-3.2,4.4-3.2,7.8v34.9 c-4.4-1.5-6.4-3.5-9.1-7.1l-21.4-27.1V185.2z"/> </g> <g> <path d="M11.7,203.2v7c0,2.7,1.5,3.5,3,3.5c1.7,0,3-0.8,3-3.5v-7h1.5v6.9c0,3.8-2.1,4.8-4.5,4.8c-2.4,0-4.5-1.2-4.5-4.7v-7H11.7z"/> <path d="M22.3,214.8v-11.6h2c1.7,2.7,5.3,8.5,5.9,9.7h0c-0.1-1.5-0.1-3.3-0.1-5.2v-4.5h1.4v11.6h-1.9c-1.5-2.5-5.3-8.7-6-10h0 c0.1,1.3,0.1,3.3,0.1,5.4v4.6H22.3z"/> <path d="M36.6,203.2v11.6h-1.5v-11.6H36.6z"/> <path d="M42.9,214.8l-4.2-11.6h1.6l2,5.8c0.6,1.7,1.2,3.4,1.4,4.5h0c0.2-0.9,0.9-2.7,1.5-4.4l2.1-5.8H49l-4.4,11.6H42.9z"/> <path d="M58.4,209.3h-5.7v4.1H59l-0.2,1.3h-7.6v-11.6h7.5v1.3h-6v3.5h5.7V209.3z"/> <path d="M63,209.7v5.1h-1.5v-11.6H66c2.4,0,3.6,1.3,3.6,3.1c0,1.5-0.9,2.4-2,2.7c0.9,0.2,1.8,1,1.8,3v0.5c0,0.8,0,1.8,0.2,2.3h-1.5 c-0.2-0.5-0.2-1.4-0.2-2.5V212c0-1.6-0.5-2.4-2.5-2.4H63z M63,208.4h2.5c1.8,0,2.5-0.7,2.5-2c0-1.2-0.8-1.9-2.4-1.9H63V208.4z"/> <path d="M73.3,211.5c0.3,1.4,1.3,2.1,2.9,2.1c1.8,0,2.5-0.8,2.5-1.9c0-1.2-0.6-1.8-2.9-2.4c-2.7-0.7-3.7-1.6-3.7-3.2 c0-1.7,1.3-3.1,3.8-3.1c2.8,0,3.9,1.6,4.1,3.1h-1.6c-0.2-1-0.8-1.9-2.5-1.9c-1.4,0-2.2,0.6-2.2,1.7c0,1.1,0.6,1.5,2.7,2 c3.3,0.8,3.9,2.1,3.9,3.6c0,1.9-1.4,3.3-4.2,3.3c-2.9,0-4.2-1.6-4.4-3.4H73.3z"/> <path d="M84.5,203.2v11.6H83v-11.6H84.5z"/> <path d="M90.4,204.5h-3.7v-1.3h9v1.3h-3.7v10.3h-1.5V204.5z"/> <path d="M101.2,214.8v-4.2c0-0.1,0-0.2-0.1-0.3l-4.1-7h1.8c1,1.9,2.7,4.9,3.3,5.9c0.5-1,2.2-4,3.3-5.9h1.6l-4.2,7 c0,0.1-0.1,0.1-0.1,0.3v4.2H101.2z"/> <path d="M123.5,208.9c0,3.2-1.8,6-5.4,6c-3.4,0-5.3-2.6-5.3-5.9c0-3.3,1.9-5.9,5.4-5.9C121.5,203,123.5,205.5,123.5,208.9z M114.4,208.9c0,2.5,1.3,4.7,3.8,4.7c2.7,0,3.8-2.2,3.8-4.7c0-2.5-1.2-4.6-3.8-4.6C115.5,204.3,114.4,206.5,114.4,208.9z"/> <path d="M126.3,203.2h7.4v1.3h-5.9v3.8h5.5v1.3h-5.5v5.2h-1.5V203.2z"/> <path d="M142.5,214.8l-3.1-11.6h1.6c0.9,3.8,2.1,8.6,2.4,9.9h0c0.3-1.5,1.9-6.9,2.6-9.9h1.5c0.7,2.6,2.3,8.5,2.5,9.8h0 c0.4-2,2-7.5,2.6-9.8h1.5l-3.4,11.6h-1.6c-0.7-2.7-2.2-8.2-2.5-9.6h0c-0.3,1.7-1.8,6.9-2.6,9.6H142.5z"/> <path d="M158,203.2v11.6h-1.5v-11.6H158z"/> <path d="M162.2,211.5c0.3,1.4,1.3,2.1,2.9,2.1c1.8,0,2.5-0.8,2.5-1.9c0-1.2-0.6-1.8-2.9-2.4c-2.7-0.7-3.7-1.6-3.7-3.2 c0-1.7,1.3-3.1,3.8-3.1c2.8,0,3.9,1.6,4.1,3.1h-1.6c-0.2-1-0.8-1.9-2.5-1.9c-1.4,0-2.2,0.6-2.2,1.7c0,1.1,0.6,1.5,2.7,2 c3.3,0.8,3.9,2.1,3.9,3.6c0,1.9-1.4,3.3-4.2,3.3c-2.9,0-4.2-1.6-4.4-3.4H162.2z"/> <path d="M181.1,211.5c-0.5,2-2,3.4-4.6,3.4c-3.5,0-5.2-2.6-5.2-5.9c0-3.1,1.7-6,5.3-6c2.7,0,4.2,1.6,4.6,3.5h-1.5 c-0.4-1.3-1.2-2.2-3.1-2.2c-2.6,0-3.6,2.3-3.6,4.7c0,2.3,1,4.7,3.7,4.7c1.8,0,2.6-1,3-2.1H181.1z"/> <path d="M193.9,208.9c0,3.2-1.8,6-5.4,6c-3.4,0-5.3-2.6-5.3-5.9c0-3.3,1.9-5.9,5.4-5.9C191.8,203,193.9,205.5,193.9,208.9z M184.7,208.9c0,2.5,1.3,4.7,3.8,4.7c2.7,0,3.8-2.2,3.8-4.7c0-2.5-1.2-4.6-3.8-4.6C185.9,204.3,184.7,206.5,184.7,208.9z"/> <path d="M196.6,214.8v-11.6h2c1.7,2.7,5.3,8.5,5.9,9.7h0c-0.1-1.5-0.1-3.3-0.1-5.2v-4.5h1.4v11.6H204c-1.5-2.5-5.3-8.7-6-10h0 c0.1,1.3,0.1,3.3,0.1,5.4v4.6H196.6z"/> <path d="M210.1,211.5c0.3,1.4,1.3,2.1,2.9,2.1c1.8,0,2.5-0.8,2.5-1.9c0-1.2-0.6-1.8-2.9-2.4c-2.7-0.7-3.7-1.6-3.7-3.2 c0-1.7,1.3-3.1,3.8-3.1c2.8,0,3.9,1.6,4.1,3.1h-1.6c-0.2-1-0.8-1.9-2.5-1.9c-1.4,0-2.2,0.6-2.2,1.7c0,1.1,0.6,1.5,2.7,2 c3.3,0.8,3.9,2.1,3.9,3.6c0,1.9-1.4,3.3-4.2,3.3c-2.9,0-4.2-1.6-4.4-3.4H210.1z"/> <path d="M221.3,203.2v11.6h-1.5v-11.6H221.3z"/> <path d="M224.8,214.8v-11.6h2c1.7,2.7,5.3,8.5,5.9,9.7h0c-0.1-1.5-0.1-3.3-0.1-5.2v-4.5h1.4v11.6h-1.9c-1.5-2.5-5.3-8.7-6-10h0 c0.1,1.3,0.1,3.3,0.1,5.4v4.6H224.8z"/> <path d="M243.4,209.8v1.3h-6.6v-1.3H243.4z"/> <path d="M256.1,209.8c0-2.2,0-4.3,0.1-5.6h-0.1c-0.5,1.9-2.4,6.8-3.7,10.5H251c-1-3-2.9-8.5-3.5-10.5h0c0.1,1.3,0.1,3.9,0.1,5.9 v4.6h-1.4v-11.6h2.3c1.3,3.6,2.9,8.2,3.3,9.7h0c0.3-1.1,2.2-6.2,3.5-9.7h2.2v11.6h-1.5V209.8z"/> <path d="M262.6,211.3l-1.2,3.5h-1.5l4.1-11.6h1.9l4.3,11.6h-1.6l-1.3-3.5H262.6z M266.8,210c-1.1-3-1.7-4.7-2-5.5h0 c-0.3,1-1,2.9-1.8,5.5H266.8z"/> <path d="M272.3,203.2h4.1c3.3,0,5.5,2.2,5.5,5.7c0,3.4-2.1,5.9-5.5,5.9h-4.1V203.2z M273.8,213.5h2.4c2.7,0,4-2,4-4.6 c0-2.3-1.2-4.4-4-4.4h-2.4V213.5z"/> <path d="M286.2,203.2v11.6h-1.5v-11.6H286.2z"/> <path d="M290.3,211.5c0.3,1.4,1.3,2.1,2.9,2.1c1.8,0,2.5-0.8,2.5-1.9c0-1.2-0.6-1.8-2.9-2.4c-2.7-0.7-3.7-1.6-3.7-3.2 c0-1.7,1.3-3.1,3.8-3.1c2.8,0,3.9,1.6,4.1,3.1h-1.6c-0.2-1-0.8-1.9-2.5-1.9c-1.4,0-2.2,0.6-2.2,1.7c0,1.1,0.6,1.5,2.7,2 c3.3,0.8,3.9,2.1,3.9,3.6c0,1.9-1.4,3.3-4.2,3.3c-2.9,0-4.2-1.6-4.4-3.4H290.3z"/> <path d="M310.1,208.9c0,3.2-1.8,6-5.4,6c-3.4,0-5.3-2.6-5.3-5.9c0-3.3,1.9-5.9,5.4-5.9C308.1,203,310.1,205.5,310.1,208.9z M301,208.9c0,2.5,1.3,4.7,3.8,4.7c2.7,0,3.8-2.2,3.8-4.7c0-2.5-1.2-4.6-3.8-4.6C302.2,204.3,301,206.5,301,208.9z"/> <path d="M312.9,214.8v-11.6h2c1.7,2.7,5.3,8.5,5.9,9.7h0c-0.1-1.5-0.1-3.3-0.1-5.2v-4.5h1.4v11.6h-1.9c-1.5-2.5-5.3-8.7-6-10h0 c0.1,1.3,0.1,3.3,0.1,5.4v4.6H312.9z"/> </g> <path d="M211.4,52c-0.3-3-0.8-6-1.4-8.9c-0.6-2.7-1.3-5.4-2.3-8c-1-2.8-2.2-5.5-3.6-8c-1.4-2.4-3-4.6-4.8-6.7 c-4.9-5.4-11.1-8.4-17.8-8.5l-0.1,0c-1.1-2.4-4.1-4.4-6.8-4.7c0,0-1.4-6-7.8-6.1c-6.4,0-7.8,6.1-7.8,6.1c-2.6,0.4-5.7,2.3-6.8,4.7 l-0.1,0c-6.8,0.1-12.9,3.1-17.8,8.5c-1.9,2-3.4,4.3-4.8,6.7c-1.4,2.5-2.6,5.3-3.6,8c-0.9,2.6-1.7,5.3-2.3,8 c-0.6,2.9-1.1,5.9-1.4,8.9c-3.7,36.8,12.8,82,42.5,88.9c0.5,0.7,1.5,2.1,2.1,2.1c0.6,0,1.6-1.4,2.1-2.1 C198.6,134,215.1,88.8,211.4,52z M166.8,2.5c5.2,0,6.4,4.4,6.4,4.5c-2.6,0.2-5,1.7-6.3,4c0,0-0.1,0.2-0.1,0.2 c-0.1,0-0.1-0.1-0.1-0.2c-1.3-2.3-3.7-3.8-6.3-4C160.4,6.9,161.5,2.5,166.8,2.5z M163.7,9.5c1.3,0.8,2.2,2,2.6,3.4 c0.1,0.4,0.3,0.7,0.4,0.7s0.3-0.3,0.4-0.7c0.4-1.4,1.3-2.7,2.6-3.4c3.8-2.3,8.1-0.8,9.8,2.6c-0.9,0.1-1.7,0.4-2.7,0.7 c-1.5,0.5-2.8,1.2-3.9,2.1c-2.4,2.2-4.5,5.6-4.9,9.9c-1.1,11.9,12.6,10,13.2,10c1.8,0,3.1-2.8,3.1-6.5c0-3.7-1.4-6.5-3.1-6.5 c-1.1,0-2.9,0.8-3.1,4.1c-0.1,2.3,1,5.4,2.5,5.6c0.8,0.1,1.5-1.2,1.7-2.6c0.2-1.2,0.1-3-1-3.3c-0.3-0.1-0.7,0.1-0.8,0.5 c-0.1,0.3,0.7,0.8,0.6,2.2c0,2-2.1,1-1.8-2.2c0.2-2.9,1.7-2.7,1.8-2.7c0.8,0,2.1,1.7,2.1,4.9c0,2.8-1.4,5.9-4,4.3 c-2.2-1.6-3.1-5.3-2.5-8.2c0.3-1.3,1.4-4.9,5.1-4.9c5.3,0,10.2,2.8,14.2,8c-0.4,1.4-3.2,6.7-11.8,11.7c-0.2,0.1-0.5,0.3-0.5,0.2 c-2.6-1.1-5.1-1.8-8-1.6c-2.6,0.1-5.1,0.6-7.5,1.2c-0.5,0.1-1,0.2-1.5,0.2c-0.5,0-1-0.1-1.5-0.2c-2.5-0.6-5-1.1-7.5-1.2 c-2.9-0.2-5.4,0.5-8,1.6c0,0-0.3-0.2-0.5-0.2c-8.7-5.1-11.4-10.3-11.8-11.7c3.9-5.2,8.9-8,14.2-8c3.7,0,4.8,3.6,5.1,4.9 c0.6,2.9-0.3,6.6-2.5,8.2c-2.6,1.6-4-1.5-4-4.3c0-3.2,1.2-4.9,2.1-4.9c0.1,0,1.5-0.2,1.8,2.7c0.3,3.2-1.8,4.2-1.8,2.2 c0-1.4,0.7-1.9,0.6-2.2c-0.1-0.3-0.4-0.5-0.8-0.5c-1.1,0.3-1.2,2.1-1,3.3c0.2,1.4,0.9,2.7,1.7,2.6c1.5-0.2,2.6-3.3,2.5-5.6 c-0.2-3.3-2-4.1-3.1-4.1c-1.7,0-3.1,2.8-3.1,6.5c0,3.7,1.3,6.5,3.1,6.5c0.7,0.1,14.3,1.9,13.2-10c-0.4-4.3-2.5-7.7-4.9-9.9 c-1.1-1-2.3-1.6-3.9-2.1c-1.1-0.3-1.8-0.5-2.7-0.7C155.6,8.7,159.9,7.1,163.7,9.5z M138.1,58.5c-4.4-0.4-7.8-1.9-9.4-2.7 c0.7-11.9,3.7-21.2,8.1-27.4c0.8,2,4.2,7.1,12,11.7C142.1,44,139.1,52.3,138.1,58.5z M149.6,41.4c2-1.2,4.5-1.8,7.1-2 c4.5-0.3,7.8,1.4,10,1.5h0.1c2.2-0.1,5.5-1.8,10-1.5c2.6,0.2,5.2,0.7,7.1,2c9.1,5.8,10.4,19.1,10.5,23.5c0.6,15.5-4.2,27.5-5.8,30.9 c-6.3,13.8-13.9,23.6-21.4,26.9l-0.6,0.3l-0.6-0.3c-7.5-3.3-15.1-13.1-21.4-26.9c-1.5-3.3-6.4-15.4-5.8-30.9 C139.2,60.6,140.5,47.2,149.6,41.4z M137.9,59.3c-0.3,2.3-0.5,4.2-0.5,5.4c-0.2,4.3,0,8.6,0.6,12.9c0.6,4,1.5,8,2.7,11.9 c1.7,5.3,4,10.3,6.7,15.2c-2.8,2.5-7,3.5-8.4,3.8c-7.5-15-11.4-34.3-10.5-51.7C130.4,57.6,133.7,59,137.9,59.3z M147.9,105.4 c5,8.6,10,13.8,13.7,16.5c-1.4,3.5-4.6,6.2-5.8,7.1c-6.5-4.4-12-11.3-16.4-19.7C141.2,108.9,145.1,107.9,147.9,105.4z M162.4,122.4 c2,1.5,4.1,2.3,4.3,2.4c0.3-0.1,2.3-0.9,4.3-2.4c1.4,3.4,4.4,6,5.7,7.1c-1.9,1.2-3.8,2.2-5.8,2.9c0-0.1,0-0.1,0-0.2 c-0.4-2.1-3.2-2.6-4.2-2.6c-1,0-3.8,0.4-4.2,2.6c0,0.1,0,0.1,0,0.2c-2-0.7-4-1.7-5.8-2.9C158,128.4,161,125.8,162.4,122.4z M171.9,121.9c3.8-2.7,8.7-7.9,13.7-16.5c2.8,2.5,6.7,3.5,8.4,3.8c-4.3,8.4-9.9,15.3-16.4,19.7C176.5,128.1,173.2,125.4,171.9,121.9 z M186,104.6c2.7-4.8,5-9.9,6.7-15.2c1.2-3.9,2.1-7.9,2.7-11.9c0.6-4.3,0.8-8.6,0.6-12.9c0-1.2-0.2-3.1-0.5-5.4 c4.3-0.4,7.6-1.7,9.3-2.6c0.9,17.4-3,36.8-10.5,51.7C193,108.2,188.8,107.2,186,104.6z M195.4,58.5c-1-6.2-4.1-14.3-10.7-18.5 c7.8-4.6,11.2-9.7,12-11.7c4.4,6.2,7.4,15.5,8.1,27.4C203.3,56.6,199.9,58.1,195.4,58.5z M161.9,138.3c-3.4-1.1-6.6-2.7-9.5-4.8 c-1.9-1.3-3.6-2.7-5.3-4.3c-1.3-1.3-2.6-2.6-3.8-4c-0.8-1-1.6-1.9-2.4-2.9c-3.6-4.8-6.7-10.2-9.1-15.7c-2.3-5.4-4.2-10.9-5.6-16.6 c-1.4-5.8-2.4-11.7-2.9-17.6c-0.5-5.8-0.6-11.8-0.1-17.6c0.3-3.1,0.6-6.3,1.2-9.4c0.6-3.1,1.3-6.1,2.3-9.1c0.9-2.7,2-5.4,3.4-7.9 c1.4-2.6,3.1-5.1,5.1-7.2c1.9-2,4-3.7,6.4-5c1-0.5,2.1-1,3.1-1.4c0.5-0.2,1.1-0.4,1.7-0.5c0.5-0.1,1.1-0.4,1.7-0.4 c1.4-0.3,2.8-0.4,4.2-0.4c1.1,0,3.9,0.2,6.3,1.7c2.7,1.9,5,5,5.4,9.8c0.6,7.3-6.8,8.5-8.3,8.5c-0.2,0-0.3-0.2,0.4-1 c1.7-2.2,2.3-5.6,1.7-8.3c-0.7-3.4-3.1-6-6.5-6c-5.2,0-9.8,2.6-13.2,6.3c-3.3,3.6-5.6,8.2-7.3,12.8c-2.1,5.9-3.2,12.2-3.6,18.5 c-0.4,5.8-0.2,11.6,0.4,17.3c0.6,5.8,1.7,11.6,3.2,17.2c1.5,5.5,3.4,10.9,5.7,16c2.4,5.2,5.3,10.2,8.9,14.7 c3.6,4.5,8.1,8.5,13.2,11.2c1.2,0.6,2.4,1.1,3.6,1.6c-0.1,1.9,0.4,3.6,1.1,5C162.6,138.6,162.6,138.5,161.9,138.3z M167.3,140.8 c0,0-0.3,0.3-0.5,0.3c-0.3,0-0.5-0.3-0.5-0.3c-1.3-1.6-3.2-4.7-2.5-8.4c0.2-1,2-1.5,3-1.5c1,0,2.8,0.5,3,1.5 C170.4,136.1,168.5,139.2,167.3,140.8z M210.2,72.4c-0.5,5.9-1.5,11.8-2.9,17.6c-1.4,5.7-3.2,11.2-5.6,16.6 c-2.4,5.5-5.4,10.9-9.1,15.7c-0.8,1-1.5,2-2.4,2.9c-1.2,1.4-2.5,2.7-3.8,4c-1.6,1.5-3.4,3-5.3,4.3c-2.9,2-6.2,3.7-9.5,4.8 c-0.7,0.2-0.7,0.3-1.5,0.4c0.7-1.4,1.2-3.1,1.1-5c1.2-0.4,2.4-1,3.6-1.6c5.2-2.6,9.6-6.7,13.2-11.2c3.6-4.5,6.5-9.5,8.9-14.7 c2.4-5.2,4.3-10.5,5.7-16c1.5-5.6,2.6-11.4,3.2-17.2c0.6-5.7,0.8-11.5,0.4-17.3c-0.4-6.3-1.5-12.6-3.6-18.5 c-1.6-4.6-3.9-9.2-7.3-12.8c-3.4-3.7-8-6.3-13.2-6.3c-3.4,0-5.8,2.6-6.5,6c-0.6,2.7,0,6.1,1.7,8.3c0.7,0.8,0.6,1,0.4,1 c-1.5,0-9-1.1-8.3-8.5c0.4-4.8,2.8-7.9,5.4-9.8c2.4-1.5,5.2-1.7,6.3-1.7c1.4,0,2.8,0.1,4.2,0.4c0.5,0,1.2,0.2,1.7,0.4 c0.6,0.2,1.1,0.3,1.7,0.5c1.1,0.4,2.1,0.9,3.1,1.4c2.4,1.3,4.6,3.1,6.4,5c2,2.1,3.7,4.6,5.1,7.2c1.4,2.5,2.5,5.2,3.4,7.9 c1,3,1.8,6,2.3,9.1c0.6,3.1,0.9,6.2,1.2,9.4C210.8,60.6,210.7,66.5,210.2,72.4z"/> <path d="M180.3,54.4v3l0.6-0.1c0,0,0.1,0,0.3,0c0.3,0,0.9,0.1,1.3,0.5c0.4,0.4,0.5,1,0.3,1.8c0,0-6.1,26.3-7.2,31.3 C174.3,84.6,167,50,167,50l0-0.1h-1.4l0,0.2c0,0-5.2,33.7-6.3,40.4c-1.4-5.8-7.2-30.8-7.2-30.8c0-0.2,0-0.3,0-0.5 c0-0.7,0.2-1.2,0.5-1.5c0.4-0.4,1.1-0.4,1.2-0.4l0.6,0.1l0-2.9h-10.1v2.9l0.4,0.1c0.2,0,1.4,0.3,1.5,1.4c0,0,11.9,51,12.4,53.1 l0,0.1h1.8l0-0.2c0.1-0.4,4.9-32,5.8-37.9c1.1,5.9,7.3,37.5,7.4,37.9l0,0.1h1.6L187,58.7c0.3-1.1,1.2-1.2,1.6-1.2c0.1,0,0.1,0,0.1,0 l0.6,0v-3.1H180.3z"/> </svg> </a><a href="https://www.wisconsin.edu/" class="uw-footer-stand-out-link">Part of the Universities of Wisconsin</a></div> </div> <div class="uw-footer-contact"> <h3 class="uw-footer-header">Contact Us</h3><ul class="uw-contact-list"><li class="uw-contact-item uw-contact-address">Physics Department<br /> 2320 Chamberlin Hall<br /> 1150 University Avenue<br /> Madison, WI 53706-1390<br /> </li> <li class="uw-contact-item uw-contact-map-link"> <a href="/department/visit/">Map<svg class="uw-map-marker" viewBox="0 0 585 1024" version="1.1" role="img" focusable="false" aria-labelledby="dynid674e25871788e9.61621773"> <title id="dynid674e25871788e9.61621773">map marker</title> <path class="path1" d="M438.857 365.714q0-60.571-42.857-103.429t-103.429-42.857-103.429 42.857-42.857 103.429 42.857 103.429 103.429 42.857 103.429-42.857 42.857-103.429zM585.143 365.714q0 62.286-18.857 102.286l-208 442.286q-9.143 18.857-27.143 29.714t-38.571 10.857-38.571-10.857-26.571-29.714l-208.571-442.286q-18.857-40-18.857-102.286 0-121.143 85.714-206.857t206.857-85.714 206.857 85.714 85.714 206.857z"/> </svg></a></li> <li class="uw-contact-item">Email: <a href="mailto:info@physics.wisc.edu">info@physics.wisc.edu</a></li> <li class="uw-contact-item">Phone: <a href="tel:608-262-4526">608-262-4526</a></li> <li><ul class="uw-social-icons"><li id="uw-icon-twitter" class="uw-social-icon"><a aria-label="twitter" href="https://twitter.com/UWMadPhysics"><svg class="uw-social-symbols" viewBox="0 0 512 512" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e2587179098.74765525"> <title id="dynid674e2587179098.74765525">x twitter</title> <path class="path1" d="M389.2 48h70.6L305.6 224.2 487 464H345L233.7 318.6 106.5 464H35.8L200.7 275.5 26.8 48H172.4L272.9 180.9 389.2 48zM364.4 421.8h39.1L151.1 88h-42L364.4 421.8z"/> </svg></a></li><li id="uw-icon-instagram" class="uw-social-icon"><a aria-label="instagram" href="https://instagram.com/UWMadPhysics"><svg class="uw-social-symbols" viewBox="0 0 448 512" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e2587179668.17156889"> <title id="dynid674e2587179668.17156889">instagram</title> <path class="path1" d="M224.1 141c-63.6 0-114.9 51.3-114.9 114.9s51.3 114.9 114.9 114.9S339 319.5 339 255.9 287.7 141 224.1 141zm0 189.6c-41.1 0-74.7-33.5-74.7-74.7s33.5-74.7 74.7-74.7 74.7 33.5 74.7 74.7-33.6 74.7-74.7 74.7zm146.4-194.3c0 14.9-12 26.8-26.8 26.8-14.9 0-26.8-12-26.8-26.8s12-26.8 26.8-26.8 26.8 12 26.8 26.8zm76.1 27.2c-1.7-35.9-9.9-67.7-36.2-93.9-26.2-26.2-58-34.4-93.9-36.2-37-2.1-147.9-2.1-184.9 0-35.8 1.7-67.6 9.9-93.9 36.1s-34.4 58-36.2 93.9c-2.1 37-2.1 147.9 0 184.9 1.7 35.9 9.9 67.7 36.2 93.9s58 34.4 93.9 36.2c37 2.1 147.9 2.1 184.9 0 35.9-1.7 67.7-9.9 93.9-36.2 26.2-26.2 34.4-58 36.2-93.9 2.1-37 2.1-147.8 0-184.8zM398.8 388c-7.8 19.6-22.9 34.7-42.6 42.6-29.5 11.7-99.5 9-132.1 9s-102.7 2.6-132.1-9c-19.6-7.8-34.7-22.9-42.6-42.6-11.7-29.5-9-99.5-9-132.1s-2.6-102.7 9-132.1c7.8-19.6 22.9-34.7 42.6-42.6 29.5-11.7 99.5-9 132.1-9s102.7-2.6 132.1 9c19.6 7.8 34.7 22.9 42.6 42.6 11.7 29.5 9 99.5 9 132.1s2.7 102.7-9 132.1z"/> </svg></a></li><li id="uw-icon-linkedin" class="uw-social-icon"><a aria-label="linkedin" href="https://www.linkedin.com/company/uwmadphysics/"><svg class="uw-social-symbols" viewBox="0 0 448 512" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e2587179c82.70979688"> <title id="dynid674e2587179c82.70979688">linkedin</title> <path class="path1" d="M100.28 448H7.4V148.9h92.88zM53.79 108.1C24.09 108.1 0 83.5 0 53.8a53.79 53.79 0 0 1 107.58 0c0 29.7-24.1 54.3-53.79 54.3zM447.9 448h-92.68V302.4c0-34.7-.7-79.2-48.29-79.2-48.29 0-55.69 37.7-55.69 76.7V448h-92.78V148.9h89.08v40.8h1.3c12.4-23.5 42.69-48.3 87.88-48.3 94 0 111.28 61.9 111.28 142.3V448z"/> </svg></a></li><li id="uw-icon-youtube" class="uw-social-icon"><a aria-label="youtube" href="https://www.youtube.com/channel/UCdVkyf-M9Nu39NEEK9sGZ2g/videos"><svg class="uw-social-symbols" viewBox="0 0 576 512" version="1.1" role="img" focusable="false" aria-hidden="true" aria-labelledby="dynid674e258717a243.20283267"> <title id="dynid674e258717a243.20283267">youtube</title> <path class="path1" d="M549.655 124.083c-6.281-23.65-24.787-42.276-48.284-48.597C458.781 64 288 64 288 64S117.22 64 74.629 75.486c-23.497 6.322-42.003 24.947-48.284 48.597-11.412 42.867-11.412 132.305-11.412 132.305s0 89.438 11.412 132.305c6.281 23.65 24.787 41.5 48.284 47.821C117.22 448 288 448 288 448s170.78 0 213.371-11.486c23.497-6.321 42.003-24.171 48.284-47.821 11.412-42.867 11.412-132.305 11.412-132.305s0-89.438-11.412-132.305zm-317.51 213.508V175.185l142.739 81.205-142.739 81.201z"/> </svg></a></li></ul></li></ul></div> </div> <div class="uw-copyright"> <p>Website feedback, questions or accessibility issues: <a id="uw-website-issues-contact" href="mailto:it-staff@physics.wisc.edu">it-staff@physics.wisc.edu</a>.</p> <p>Learn more about <a href="https://accessible.wisc.edu/">accessibility at UW–Madison</a>.</p> <p>This site was built using the <a href="https://uwtheme.wordpress.wisc.edu/">UW Theme</a> | <a href="https://www.wisc.edu/privacy-notice/">Privacy Notice</a> | © 2024 Board of Regents of the <a href="https://www.wisconsin.edu">University of Wisconsin System.</a> </p> </div> </footer> <!-- Instagram Feed JS --> <script type="text/javascript"> var sbiajaxurl = "https://www.physics.wisc.edu/wp-admin/admin-ajax.php"; </script> <script> var e = document.getElementsByClassName("uw-global-bar"); var site_url = "https://www.physics.wisc.edu"; if( e.length ) { var breadcrumbs = '<span class="website-breadcrumbs"> : <a class="uw-global-name-link" href="https://www.physics.wisc.edu">physics</a>'; // add a link to the top site for this domain (e.g. www.hep.wisc.edu) var domain_re = /.*:\/\/([^\/]*)/; var match = domain_re.exec(site_url); if( match.length > 1 ) { var domain = match[1]; var domain_parts = domain.split("."); var site_part = 0; if( domain_parts[site_part] == "www" ) site_part += 1; if( domain_parts[site_part] == "wp" ) site_part += 1; if( domain_parts[site_part] == "home" ) site_part += 1; if( domain_parts[site_part] != "physics" ) { breadcrumbs += ' : <a class="uw-global-name-link" href="https://' + domain + '">' + domain_parts[site_part] + '</a>'; } } // add a link to this sub-site (e.g. www.hep.wisc.edu/cms) var n = site_url.lastIndexOf("/"); var subsite = site_url.substr(n+1); if( subsite.lastIndexOf(".") < 0 ) { breadcrumbs += ' : <a class="uw-global-name-link" href="' + site_url + '">' + subsite + '</a>'; } e[0].innerHTML = "<span>" + e[0].innerHTML + breadcrumbs + "</span></span>"; } </script> <script> var menu; menu = document.getElementById('menu-item-3698'); if( menu ) { var html = menu.innerHTML; if( html.indexOf("Graduate") >= 0 ) { menu.innerHTML = html.replace("Graduate","Grad<span class='show-for-large show-for-stacked'>uate</span>"); } } menu = document.getElementById('menu-item-3188'); if( menu ) { var html = menu.innerHTML; if( html.indexOf("Undergraduate") >= 0 ) { menu.innerHTML = html.replace("Undergraduate","Undergrad<span class='show-for-large show-for-stacked'>uate</span>"); } } </script><script src="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/js/jquery/jquery.min.js?ver=3.6.0" id="jquery-js"></script> <script src="https://www.physics.wisc.edu/wp-includes/js/jquery/ui/effect.min.js?ver=1.13.3" id="jquery-effects-core-js"></script> <script src="https://www.physics.wisc.edu/wp-includes/js/jquery/ui/effect-slide.min.js?ver=1.13.3" id="jquery-effects-slide-js"></script> <script src="https://www.physics.wisc.edu/wp-includes/js/jquery/ui/effect-highlight.min.js?ver=1.13.3" id="jquery-effects-highlight-js"></script> <script src="https://www.physics.wisc.edu/wp-includes/js/jquery/ui/effect-fold.min.js?ver=1.13.3" id="jquery-effects-fold-js"></script> <script src="https://www.physics.wisc.edu/wp-includes/js/jquery/ui/effect-blind.min.js?ver=1.13.3" id="jquery-effects-blind-js"></script> <script id="bg-show-hide-script-js-extra"> var BG_SHCE_USE_EFFECTS = "0"; var BG_SHCE_TOGGLE_SPEED = "400"; var BG_SHCE_TOGGLE_OPTIONS = "none"; var BG_SHCE_TOGGLE_EFFECT = "blind"; </script> <script src="https://www.physics.wisc.edu/wp-content/plugins/show-hidecollapse-expand/assets/js/bg-show-hide.js?ver=6.7.1" id="bg-show-hide-script-js"></script> <!--[if lt IE 10]> <script src="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/js/polyfills/classList.js?ver=1.0.0" id="uwmadison-ie-js"></script> <![endif]--> <script src="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/main.min.js?ver=1.35.1" id="uwmadison-script-js"></script> <script src="https://www.physics.wisc.edu/wp-content/themes/uw-theme/dist/js/jquery-migrate/jquery-migrate.min.js?ver=3.4.0" id="jquery-migrate-js"></script> <script src="https://cdn.wisc.cloud/cookie-consent/1.1.0/uwcookieconsent.min.js?ver=1.1.0" id="uw-cookie-consent-js"></script> <script id="uw-cookie-consent-js-after"> window.addEventListener("load", function(){window.cookieconsent.initialize()}); </script> </body> </html>