CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;38 of 38 results for author: <span class="mathjax">Bell, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&amp;query=Bell%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bell, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bell%2C+P&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bell, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.19321">arXiv:2501.19321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.19321">pdf</a>, <a href="https://arxiv.org/format/2501.19321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Language Bias in Self-Supervised Learning For Automatic Speech Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Storey%2C+E">Edward Storey</a>, <a href="/search/eess?searchtype=author&amp;query=Harte%2C+N">Naomi Harte</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.19321v1-abstract-short" style="display: inline;"> Self-supervised learning (SSL) is used in deep learning to train on large datasets without the need for expensive labelling of the data. Recently, large Automatic Speech Recognition (ASR) models such as XLS-R have utilised SSL to train on over one hundred different languages simultaneously. However, deeper investigation shows that the bulk of the training data for XLS-R comes from a small number o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19321v1-abstract-full').style.display = 'inline'; document.getElementById('2501.19321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.19321v1-abstract-full" style="display: none;"> Self-supervised learning (SSL) is used in deep learning to train on large datasets without the need for expensive labelling of the data. Recently, large Automatic Speech Recognition (ASR) models such as XLS-R have utilised SSL to train on over one hundred different languages simultaneously. However, deeper investigation shows that the bulk of the training data for XLS-R comes from a small number of languages. Biases learned through SSL have been shown to exist in multiple domains, but language bias in multilingual SSL ASR has not been thoroughly examined. In this paper, we utilise the Lottery Ticket Hypothesis (LTH) to identify language-specific subnetworks within XLS-R and test the performance of these subnetworks on a variety of different languages. We are able to show that when fine-tuning, XLS-R bypasses traditional linguistic knowledge and builds only on weights learned from the languages with the largest data contribution to the pretraining data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19321v1-abstract-full').style.display = 'none'; document.getElementById('2501.19321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Speech and Language Technology Workshop (SLT) 2024 accessible on IEEE Xplore</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12279">arXiv:2410.12279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12279">pdf</a>, <a href="https://arxiv.org/format/2410.12279">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Beyond Oversmoothing: Evaluating DDPM and MSE for Scalable Speech Synthesis in ASR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Minixhofer%2C+C">Christoph Minixhofer</a>, <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ondrej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12279v1-abstract-short" style="display: inline;"> Synthetically generated speech has rapidly approached human levels of naturalness. However, the paradox remains that ASR systems, when trained on TTS output that is judged as natural by humans, continue to perform badly on real speech. In this work, we explore whether this phenomenon is due to the oversmoothing behaviour of models commonly used in TTS, with a particular focus on the behaviour of T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12279v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12279v1-abstract-full" style="display: none;"> Synthetically generated speech has rapidly approached human levels of naturalness. However, the paradox remains that ASR systems, when trained on TTS output that is judged as natural by humans, continue to perform badly on real speech. In this work, we explore whether this phenomenon is due to the oversmoothing behaviour of models commonly used in TTS, with a particular focus on the behaviour of TTS-for-ASR as the amount of TTS training data is scaled up. We systematically compare Denoising Diffusion Probabilistic Models (DDPM) to Mean Squared Error (MSE) based models for TTS, when used for ASR model training. We test the scalability of the two approaches, varying both the number hours, and the number of different speakers. We find that for a given model size, DDPM can make better use of more data, and a more diverse set of speakers, than MSE models. We achieve the best reported ratio between real and synthetic speech WER to date (1.46), but also find that a large gap remains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12279v1-abstract-full').style.display = 'none'; document.getElementById('2410.12279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under review at ICASSP 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16937">arXiv:2409.16937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16937">pdf</a>, <a href="https://arxiv.org/format/2409.16937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Semi-Supervised Cognitive State Classification from Speech with Multi-View Pseudo-Labeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+Z">Zixing Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Han%2C+J">Jing Han</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16937v2-abstract-short" style="display: inline;"> The lack of labeled data is a common challenge in speech classification tasks, particularly those requiring extensive subjective assessment, such as cognitive state classification. In this work, we propose a Semi-Supervised Learning (SSL) framework, introducing a novel multi-view pseudo-labeling method that leverages both acoustic and linguistic characteristics to select the most confident data fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16937v2-abstract-full').style.display = 'inline'; document.getElementById('2409.16937v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16937v2-abstract-full" style="display: none;"> The lack of labeled data is a common challenge in speech classification tasks, particularly those requiring extensive subjective assessment, such as cognitive state classification. In this work, we propose a Semi-Supervised Learning (SSL) framework, introducing a novel multi-view pseudo-labeling method that leverages both acoustic and linguistic characteristics to select the most confident data for training the classification model. Acoustically, unlabeled data are compared to labeled data using the Frechet audio distance, calculated from embeddings generated by multiple audio encoders. Linguistically, large language models are prompted to revise automatic speech recognition transcriptions and predict labels based on our proposed task-specific knowledge. High-confidence data are identified when pseudo-labels from both sources align, while mismatches are treated as low-confidence data. A bimodal classifier is then trained to iteratively label the low-confidence data until a predefined criterion is met. We evaluate our SSL framework on emotion recognition and dementia detection tasks. Experimental results demonstrate that our method achieves competitive performance compared to fully supervised learning using only 30% of the labeled data and significantly outperforms two selected baselines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16937v2-abstract-full').style.display = 'none'; document.getElementById('2409.16937v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15551">arXiv:2409.15551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15551">pdf</a>, <a href="https://arxiv.org/format/2409.15551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Revise, Reason, and Recognize: LLM-Based Emotion Recognition via Emotion-Specific Prompts and ASR Error Correction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Gong%2C+Y">Yuan Gong</a>, <a href="/search/eess?searchtype=author&amp;query=Yang%2C+C+H">Chao-Han Huck Yang</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15551v1-abstract-short" style="display: inline;"> Annotating and recognizing speech emotion using prompt engineering has recently emerged with the advancement of Large Language Models (LLMs), yet its efficacy and reliability remain questionable. In this paper, we conduct a systematic study on this topic, beginning with the proposal of novel prompts that incorporate emotion-specific knowledge from acoustics, linguistics, and psychology. Subsequent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15551v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15551v1-abstract-full" style="display: none;"> Annotating and recognizing speech emotion using prompt engineering has recently emerged with the advancement of Large Language Models (LLMs), yet its efficacy and reliability remain questionable. In this paper, we conduct a systematic study on this topic, beginning with the proposal of novel prompts that incorporate emotion-specific knowledge from acoustics, linguistics, and psychology. Subsequently, we examine the effectiveness of LLM-based prompting on Automatic Speech Recognition (ASR) transcription, contrasting it with ground-truth transcription. Furthermore, we propose a Revise-Reason-Recognize prompting pipeline for robust LLM-based emotion recognition from spoken language with ASR errors. Additionally, experiments on context-aware learning, in-context learning, and instruction tuning are performed to examine the usefulness of LLM training schemes in this direction. Finally, we investigate the sensitivity of LLMs to minor prompt variations. Experimental results demonstrate the efficacy of the emotion-specific prompts, ASR error correction, and LLM training schemes for LLM-based emotion recognition. Our study aims to refine the use of LLMs in emotion recognition and related domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15551v1-abstract-full').style.display = 'none'; document.getElementById('2409.15551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09785">arXiv:2409.09785</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09785">pdf</a>, <a href="https://arxiv.org/format/2409.09785">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Yang%2C+C+H">Chao-Han Huck Yang</a>, <a href="/search/eess?searchtype=author&amp;query=Park%2C+T">Taejin Park</a>, <a href="/search/eess?searchtype=author&amp;query=Gong%2C+Y">Yuan Gong</a>, <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+Z">Zhehuai Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Lin%2C+Y">Yen-Ting Lin</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Hu%2C+Y">Yuchen Hu</a>, <a href="/search/eess?searchtype=author&amp;query=Dhawan%2C+K">Kunal Dhawan</a>, <a href="/search/eess?searchtype=author&amp;query=%C5%BBelasko%2C+P">Piotr 呕elasko</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+Y">Yun-Nung Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Tsao%2C+Y">Yu Tsao</a>, <a href="/search/eess?searchtype=author&amp;query=Balam%2C+J">Jagadeesh Balam</a>, <a href="/search/eess?searchtype=author&amp;query=Ginsburg%2C+B">Boris Ginsburg</a>, <a href="/search/eess?searchtype=author&amp;query=Siniscalchi%2C+S+M">Sabato Marco Siniscalchi</a>, <a href="/search/eess?searchtype=author&amp;query=Chng%2C+E+S">Eng Siong Chng</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a>, <a href="/search/eess?searchtype=author&amp;query=Watanabe%2C+S">Shinji Watanabe</a>, <a href="/search/eess?searchtype=author&amp;query=Stolcke%2C+A">Andreas Stolcke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09785v3-abstract-short" style="display: inline;"> Given recent advances in generative AI technology, a key question is how large language models (LLMs) can enhance acoustic modeling tasks using text decoding results from a frozen, pretrained automatic speech recognition (ASR) model. To explore new capabilities in language modeling for speech processing, we introduce the generative speech transcription error correction (GenSEC) challenge. This cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09785v3-abstract-full').style.display = 'inline'; document.getElementById('2409.09785v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09785v3-abstract-full" style="display: none;"> Given recent advances in generative AI technology, a key question is how large language models (LLMs) can enhance acoustic modeling tasks using text decoding results from a frozen, pretrained automatic speech recognition (ASR) model. To explore new capabilities in language modeling for speech processing, we introduce the generative speech transcription error correction (GenSEC) challenge. This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition. These tasks aim to emulate future LLM-based agents handling voice-based interfaces while remaining accessible to a broad audience by utilizing open pretrained language models or agent-based APIs. We also discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09785v3-abstract-full').style.display = 'none'; document.getElementById('2409.09785v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IEEE SLT 2024. The initial draft version has been done in December 2023. Post-ASR Text Processing and Understanding Community and LlaMA-7B pre-training correction model: https://huggingface.co/GenSEC-LLM/SLT-Task1-Llama2-7b-HyPo-baseline</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12707">arXiv:2407.12707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12707">pdf</a>, <a href="https://arxiv.org/format/2407.12707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> TTSDS -- Text-to-Speech Distribution Score </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Minixhofer%2C+C">Christoph Minixhofer</a>, <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ond艡ej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12707v3-abstract-short" style="display: inline;"> Many recently published Text-to-Speech (TTS) systems produce audio close to real speech. However, TTS evaluation needs to be revisited to make sense of the results obtained with the new architectures, approaches and datasets. We propose evaluating the quality of synthetic speech as a combination of multiple factors such as prosody, speaker identity, and intelligibility. Our approach assesses how w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12707v3-abstract-full').style.display = 'inline'; document.getElementById('2407.12707v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12707v3-abstract-full" style="display: none;"> Many recently published Text-to-Speech (TTS) systems produce audio close to real speech. However, TTS evaluation needs to be revisited to make sense of the results obtained with the new architectures, approaches and datasets. We propose evaluating the quality of synthetic speech as a combination of multiple factors such as prosody, speaker identity, and intelligibility. Our approach assesses how well synthetic speech mirrors real speech by obtaining correlates of each factor and measuring their distance from both real speech datasets and noise datasets. We benchmark 35 TTS systems developed between 2008 and 2024 and show that our score computed as an unweighted average of factors strongly correlates with the human evaluations from each time period. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12707v3-abstract-full').style.display = 'none'; document.getElementById('2407.12707v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SLT 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08353">arXiv:2406.08353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08353">pdf</a>, <a href="https://arxiv.org/format/2406.08353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Speech Emotion Recognition with ASR Transcripts: A Comprehensive Study on Word Error Rate and Fusion Techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08353v2-abstract-short" style="display: inline;"> Text data is commonly utilized as a primary input to enhance Speech Emotion Recognition (SER) performance and reliability. However, the reliance on human-transcribed text in most studies impedes the development of practical SER systems, creating a gap between in-lab research and real-world scenarios where Automatic Speech Recognition (ASR) serves as the text source. Hence, this study benchmarks SE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08353v2-abstract-full').style.display = 'inline'; document.getElementById('2406.08353v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08353v2-abstract-full" style="display: none;"> Text data is commonly utilized as a primary input to enhance Speech Emotion Recognition (SER) performance and reliability. However, the reliance on human-transcribed text in most studies impedes the development of practical SER systems, creating a gap between in-lab research and real-world scenarios where Automatic Speech Recognition (ASR) serves as the text source. Hence, this study benchmarks SER performance using ASR transcripts with varying Word Error Rates (WERs) from eleven models on three well-known corpora: IEMOCAP, CMU-MOSI, and MSP-Podcast. Our evaluation includes both text-only and bimodal SER with six fusion techniques, aiming for a comprehensive analysis that uncovers novel findings and challenges faced by current SER research. Additionally, we propose a unified ASR error-robust framework integrating ASR error correction and modality-gated fusion, achieving lower WER and higher SER results compared to the best-performing ASR transcript. These findings provide insights into SER with ASR assistance, especially for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08353v2-abstract-full').style.display = 'none'; document.getElementById('2406.08353v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to IEEE SLT 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00898">arXiv:2406.00898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00898">pdf</a>, <a href="https://arxiv.org/format/2406.00898">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Phonetic Error Analysis of Raw Waveform Acoustic Models with Parametric and Non-Parametric CNNs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Loweimi%2C+E">Erfan Loweimi</a>, <a href="/search/eess?searchtype=author&amp;query=Carmantini%2C+A">Andrea Carmantini</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a>, <a href="/search/eess?searchtype=author&amp;query=Cvetkovic%2C+Z">Zoran Cvetkovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00898v1-abstract-short" style="display: inline;"> In this paper, we analyse the error patterns of the raw waveform acoustic models in TIMIT&#39;s phone recognition task. Our analysis goes beyond the conventional phone error rate (PER) metric. We categorise the phones into three groups: {affricate, diphthong, fricative, nasal, plosive, semi-vowel, vowel, silence}, {consonant, vowel+, silence}, and {voiced, unvoiced, silence} and, compute the PER for e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00898v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00898v1-abstract-full" style="display: none;"> In this paper, we analyse the error patterns of the raw waveform acoustic models in TIMIT&#39;s phone recognition task. Our analysis goes beyond the conventional phone error rate (PER) metric. We categorise the phones into three groups: {affricate, diphthong, fricative, nasal, plosive, semi-vowel, vowel, silence}, {consonant, vowel+, silence}, and {voiced, unvoiced, silence} and, compute the PER for each broad phonetic class in each category. We also construct a confusion matrix for each category using the substitution errors and compare the confusion patterns with those of the Filterbank and Wav2vec 2.0 systems. Our raw waveform acoustic models consists of parametric (Sinc2Net) or non-parametric CNNs and Bidirectional LSTMs, achieving down to 13.7%/15.2% PERs on TIMIT Dev/Test sets, outperforming reported PERs for raw waveform models in the literature. We also investigate the impact of transfer learning from WSJ on the phonetic error patterns and confusion matrices. It reduces the PER to 11.8%/13.7% on the Dev/Test sets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00898v1-abstract-full').style.display = 'none'; document.getElementById('2406.00898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20064">arXiv:2405.20064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20064">pdf</a>, <a href="https://arxiv.org/format/2405.20064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> 1st Place Solution to Odyssey Emotion Recognition Challenge Task1: Tackling Class Imbalance Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Chen%2C+M">Mingjie Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+H">Hezhao Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Luo%2C+J">Jiachen Luo</a>, <a href="/search/eess?searchtype=author&amp;query=Wu%2C+W">Wen Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Ma%2C+Z">Ziyang Ma</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a>, <a href="/search/eess?searchtype=author&amp;query=Reiss%2C+J">Joshua Reiss</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+L">Lin Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Woodland%2C+P+C">Philip C. Woodland</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+X">Xie Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Phan%2C+H">Huy Phan</a>, <a href="/search/eess?searchtype=author&amp;query=Hain%2C+T">Thomas Hain</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20064v1-abstract-short" style="display: inline;"> Speech emotion recognition is a challenging classification task with natural emotional speech, especially when the distribution of emotion types is imbalanced in the training and test data. In this case, it is more difficult for a model to learn to separate minority classes, resulting in those sometimes being ignored or frequently misclassified. Previous work has utilised class weighted loss for t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20064v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20064v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20064v1-abstract-full" style="display: none;"> Speech emotion recognition is a challenging classification task with natural emotional speech, especially when the distribution of emotion types is imbalanced in the training and test data. In this case, it is more difficult for a model to learn to separate minority classes, resulting in those sometimes being ignored or frequently misclassified. Previous work has utilised class weighted loss for training, but problems remain as it sometimes causes over-fitting for minor classes or under-fitting for major classes. This paper presents the system developed by a multi-site team for the participation in the Odyssey 2024 Emotion Recognition Challenge Track-1. The challenge data has the aforementioned properties and therefore the presented systems aimed to tackle these issues, by introducing focal loss in optimisation when applying class weighted loss. Specifically, the focal loss is further weighted by prior-based class weights. Experimental results show that combining these two approaches brings better overall performance, by sacrificing performance on major classes. The system further employs a majority voting strategy to combine the outputs of an ensemble of 7 models. The models are trained independently, using different acoustic features and loss functions - with the aim to have different properties for different data. Hence these models show different performance preferences on major classes and minor classes. The ensemble system output obtained the best performance in the challenge, ranking top-1 among 68 submissions. It also outperformed all single models in our set. On the Odyssey 2024 Emotion Recognition Challenge Task-1 data the system obtained a Macro-F1 score of 35.69% and an accuracy of 37.32%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20064v1-abstract-full').style.display = 'none'; document.getElementById('2405.20064v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19796">arXiv:2405.19796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19796">pdf</a>, <a href="https://arxiv.org/format/2405.19796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Explainable Attribute-Based Speaker Verification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Wu%2C+X">Xiaoliang Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Luu%2C+C">Chau Luu</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Rajan%2C+A">Ajitha Rajan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19796v1-abstract-short" style="display: inline;"> This paper proposes a fully explainable approach to speaker verification (SV), a task that fundamentally relies on individual speaker characteristics. The opaque use of speaker attributes in current SV systems raises concerns of trust. Addressing this, we propose an attribute-based explainable SV system that identifies speakers by comparing personal attributes such as gender, nationality, and age&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19796v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19796v1-abstract-full" style="display: none;"> This paper proposes a fully explainable approach to speaker verification (SV), a task that fundamentally relies on individual speaker characteristics. The opaque use of speaker attributes in current SV systems raises concerns of trust. Addressing this, we propose an attribute-based explainable SV system that identifies speakers by comparing personal attributes such as gender, nationality, and age extracted automatically from voice recordings. We believe this approach better aligns with human reasoning, making it more understandable than traditional methods. Evaluated on the Voxceleb1 test set, the best performance of our system is comparable with the ground truth established when using all correct attributes, proving its efficacy. Whilst our approach sacrifices some performance compared to non-explainable methods, we believe that it moves us closer to the goal of transparent, interpretable AI and lays the groundwork for future enhancements through attribute expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19796v1-abstract-full').style.display = 'none'; document.getElementById('2405.19796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16677">arXiv:2405.16677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16677">pdf</a>, <a href="https://arxiv.org/format/2405.16677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Crossmodal ASR Error Correction with Discrete Speech Units </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+P">Pinzhen Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16677v2-abstract-short" style="display: inline;"> ASR remains unsatisfactory in scenarios where the speaking style diverges from that used to train ASR systems, resulting in erroneous transcripts. To address this, ASR Error Correction (AEC), a post-ASR processing approach, is required. In this work, we tackle an understudied issue: the Low-Resource Out-of-Domain (LROOD) problem, by investigating crossmodal AEC on very limited downstream data with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16677v2-abstract-full').style.display = 'inline'; document.getElementById('2405.16677v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16677v2-abstract-full" style="display: none;"> ASR remains unsatisfactory in scenarios where the speaking style diverges from that used to train ASR systems, resulting in erroneous transcripts. To address this, ASR Error Correction (AEC), a post-ASR processing approach, is required. In this work, we tackle an understudied issue: the Low-Resource Out-of-Domain (LROOD) problem, by investigating crossmodal AEC on very limited downstream data with 1-best hypothesis transcription. We explore pre-training and fine-tuning strategies and uncover an ASR domain discrepancy phenomenon, shedding light on appropriate training schemes for LROOD data. Moreover, we propose the incorporation of discrete speech units to align with and enhance the word embeddings for improving AEC quality. Results from multiple corpora and several evaluation metrics demonstrate the feasibility and efficacy of our proposed AEC approach on LROOD data as well as its generalizability and superiority on large-scale data. Finally, a study on speech emotion recognition confirms that our model produces ASR error-robust transcripts suitable for downstream applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16677v2-abstract-full').style.display = 'none'; document.getElementById('2405.16677v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to IEEE SLT 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18011">arXiv:2305.18011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.18011">pdf</a>, <a href="https://arxiv.org/format/2305.18011">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Can We Trust Explainable AI Methods on ASR? An Evaluation on Phoneme Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Wu%2C+X">Xiaoliang Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Rajan%2C+A">Ajitha Rajan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18011v1-abstract-short" style="display: inline;"> Explainable AI (XAI) techniques have been widely used to help explain and understand the output of deep learning models in fields such as image classification and Natural Language Processing. Interest in using XAI techniques to explain deep learning-based automatic speech recognition (ASR) is emerging. but there is not enough evidence on whether these explanations can be trusted. To address this,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18011v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18011v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18011v1-abstract-full" style="display: none;"> Explainable AI (XAI) techniques have been widely used to help explain and understand the output of deep learning models in fields such as image classification and Natural Language Processing. Interest in using XAI techniques to explain deep learning-based automatic speech recognition (ASR) is emerging. but there is not enough evidence on whether these explanations can be trusted. To address this, we adapt a state-of-the-art XAI technique from the image classification domain, Local Interpretable Model-Agnostic Explanations (LIME), to a model trained for a TIMIT-based phoneme recognition task. This simple task provides a controlled setting for evaluation while also providing expert annotated ground truth to assess the quality of explanations. We find a variant of LIME based on time partitioned audio segments, that we propose in this paper, produces the most reliable explanations, containing the ground truth 96% of the time in its top three audio segments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18011v1-abstract-full').style.display = 'none'; document.getElementById('2305.18011v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16076">arXiv:2305.16076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.16076">pdf</a>, <a href="https://arxiv.org/format/2305.16076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Transfer Learning for Personality Perception via Speech Emotion Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16076v2-abstract-short" style="display: inline;"> Holistic perception of affective attributes is an important human perceptual ability. However, this ability is far from being realized in current affective computing, as not all of the attributes are well studied and their interrelationships are poorly understood. In this work, we investigate the relationship between two affective attributes: personality and emotion, from a transfer learning persp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16076v2-abstract-full').style.display = 'inline'; document.getElementById('2305.16076v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16076v2-abstract-full" style="display: none;"> Holistic perception of affective attributes is an important human perceptual ability. However, this ability is far from being realized in current affective computing, as not all of the attributes are well studied and their interrelationships are poorly understood. In this work, we investigate the relationship between two affective attributes: personality and emotion, from a transfer learning perspective. Specifically, we transfer Transformer-based and wav2vec2-based emotion recognition models to perceive personality from speech across corpora. Compared with previous studies, our results show that transferring emotion recognition is effective for personality perception. Moreoever, this allows for better use and exploration of small personality corpora. We also provide novel findings on the relationship between personality and emotion that will aid future research on holistic affect recognition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16076v2-abstract-full').style.display = 'none'; document.getElementById('2305.16076v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to INTERSPEECH 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16065">arXiv:2305.16065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.16065">pdf</a>, <a href="https://arxiv.org/format/2305.16065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> ASR and Emotional Speech: A Word-Level Investigation of the Mutual Impact of Speech and Emotion Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Zhao%2C+Z">Zeyu Zhao</a>, <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ondrej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16065v2-abstract-short" style="display: inline;"> In Speech Emotion Recognition (SER), textual data is often used alongside audio signals to address their inherent variability. However, the reliance on human annotated text in most research hinders the development of practical SER systems. To overcome this challenge, we investigate how Automatic Speech Recognition (ASR) performs on emotional speech by analyzing the ASR performance on emotion corpo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16065v2-abstract-full').style.display = 'inline'; document.getElementById('2305.16065v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16065v2-abstract-full" style="display: none;"> In Speech Emotion Recognition (SER), textual data is often used alongside audio signals to address their inherent variability. However, the reliance on human annotated text in most research hinders the development of practical SER systems. To overcome this challenge, we investigate how Automatic Speech Recognition (ASR) performs on emotional speech by analyzing the ASR performance on emotion corpora and examining the distribution of word errors and confidence scores in ASR transcripts to gain insight into how emotion affects ASR. We utilize four ASR systems, namely Kaldi ASR, wav2vec2, Conformer, and Whisper, and three corpora: IEMOCAP, MOSI, and MELD to ensure generalizability. Additionally, we conduct text-based SER on ASR transcripts with increasing word error rates to investigate how ASR affects SER. The objective of this study is to uncover the relationship and mutual impact of ASR and SER, in order to facilitate ASR adaptation to emotional speech and the use of SER in real world. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16065v2-abstract-full').style.display = 'none'; document.getElementById('2305.16065v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to INTERSPEECH 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13583">arXiv:2305.13583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.13583">pdf</a>, <a href="https://arxiv.org/format/2305.13583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Cross-Attention is Not Enough: Incongruity-Aware Dynamic Hierarchical Fusion for Multimodal Affect Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Wang%2C+Y">Yaoting Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Liang%2C+P+P">Paul Pu Liang</a>, <a href="/search/eess?searchtype=author&amp;query=Morency%2C+L">Louis-Philippe Morency</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13583v4-abstract-short" style="display: inline;"> Fusing multiple modalities has proven effective for multimodal information processing. However, the incongruity between modalities poses a challenge for multimodal fusion, especially in affect recognition. In this study, we first analyze how the salient affective information in one modality can be affected by the other, and demonstrate that inter-modal incongruity exists latently in crossmodal att&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13583v4-abstract-full').style.display = 'inline'; document.getElementById('2305.13583v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13583v4-abstract-full" style="display: none;"> Fusing multiple modalities has proven effective for multimodal information processing. However, the incongruity between modalities poses a challenge for multimodal fusion, especially in affect recognition. In this study, we first analyze how the salient affective information in one modality can be affected by the other, and demonstrate that inter-modal incongruity exists latently in crossmodal attention. Based on this finding, we propose the Hierarchical Crossmodal Transformer with Dynamic Modality Gating (HCT-DMG), a lightweight incongruity-aware model, which dynamically chooses the primary modality in each training batch and reduces fusion times by leveraging the learned hierarchy in the latent space to alleviate incongruity. The experimental evaluation on five benchmark datasets: CMU-MOSI, CMU-MOSEI, and IEMOCAP (sentiment and emotion), where incongruity implicitly lies in hard samples, as well as UR-FUNNY (humour) and MUStaRD (sarcasm), where incongruity is common, verifies the efficacy of our approach, showing that HCT-DMG: 1) outperforms previous multimodal models with a reduced size of approximately 0.8M parameters; 2) recognizes hard samples where incongruity makes affect recognition difficult; 3) mitigates the incongruity at the latent level in crossmodal attention. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13583v4-abstract-full').style.display = 'none'; document.getElementById('2305.13583v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">*First two authors contributed equally</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.18110">arXiv:2303.18110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.18110">pdf</a>, <a href="https://arxiv.org/format/2303.18110">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> The Edinburgh International Accents of English Corpus: Towards the Democratization of English ASR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Sanabria%2C+R">Ramon Sanabria</a>, <a href="/search/eess?searchtype=author&amp;query=Bogoychev%2C+N">Nikolay Bogoychev</a>, <a href="/search/eess?searchtype=author&amp;query=Markl%2C+N">Nina Markl</a>, <a href="/search/eess?searchtype=author&amp;query=Carmantini%2C+A">Andrea Carmantini</a>, <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ondrej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.18110v1-abstract-short" style="display: inline;"> English is the most widely spoken language in the world, used daily by millions of people as a first or second language in many different contexts. As a result, there are many varieties of English. Although the great many advances in English automatic speech recognition (ASR) over the past decades, results are usually reported based on test datasets which fail to represent the diversity of English&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.18110v1-abstract-full').style.display = 'inline'; document.getElementById('2303.18110v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.18110v1-abstract-full" style="display: none;"> English is the most widely spoken language in the world, used daily by millions of people as a first or second language in many different contexts. As a result, there are many varieties of English. Although the great many advances in English automatic speech recognition (ASR) over the past decades, results are usually reported based on test datasets which fail to represent the diversity of English as spoken today around the globe. We present the first release of The Edinburgh International Accents of English Corpus (EdAcc). This dataset attempts to better represent the wide diversity of English, encompassing almost 40 hours of dyadic video call conversations between friends. Unlike other datasets, EdAcc includes a wide range of first and second-language varieties of English and a linguistic background profile of each speaker. Results on latest public, and commercial models show that EdAcc highlights shortcomings of current English ASR models. The best performing model, trained on 680 thousand hours of transcribed data, obtains an average of 19.7% word error rate (WER) -- in contrast to the 2.7% WER obtained when evaluated on US English clean read speech. Across all models, we observe a drop in performance on Indian, Jamaican, and Nigerian English speakers. Recordings, linguistic backgrounds, data statement, and evaluation scripts are released on our website (https://groups.inf.ed.ac.uk/edacc/) under CC-BY-SA license. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.18110v1-abstract-full').style.display = 'none'; document.getElementById('2303.18110v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to IEEE ICASSP 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14062">arXiv:2302.14062</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14062">pdf</a>, <a href="https://arxiv.org/format/2302.14062">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Explanations for Automatic Speech Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Wu%2C+X">Xiaoliang Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Rajan%2C+A">Ajitha Rajan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14062v1-abstract-short" style="display: inline;"> We address quality assessment for neural network based ASR by providing explanations that help increase our understanding of the system and ultimately help build trust in the system. Compared to simple classification labels, explaining transcriptions is more challenging as judging their correctness is not straightforward and transcriptions as a variable-length sequence is not handled by existing i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14062v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14062v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14062v1-abstract-full" style="display: none;"> We address quality assessment for neural network based ASR by providing explanations that help increase our understanding of the system and ultimately help build trust in the system. Compared to simple classification labels, explaining transcriptions is more challenging as judging their correctness is not straightforward and transcriptions as a variable-length sequence is not handled by existing interpretable machine learning models. We provide an explanation for an ASR transcription as a subset of audio frames that is both a minimal and sufficient cause of the transcription. To do this, we adapt existing explainable AI (XAI) techniques from image classification-Statistical Fault Localisation(SFL) and Causal. Additionally, we use an adapted version of Local Interpretable Model-Agnostic Explanations (LIME) for ASR as a baseline in our experiments. We evaluate the quality of the explanations generated by the proposed techniques over three different ASR ,Google API, the baseline model of Sphinx, Deepspeech and 100 audio samples from the Commonvoice dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14062v1-abstract-full').style.display = 'none'; document.getElementById('2302.14062v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Speech Track, ICASSP 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16049">arXiv:2211.16049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.16049">pdf</a>, <a href="https://arxiv.org/format/2211.16049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Evaluating and reducing the distance between synthetic and real speech distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Minixhofer%2C+C">Christoph Minixhofer</a>, <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ond艡ej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16049v2-abstract-short" style="display: inline;"> While modern Text-to-Speech (TTS) systems can produce natural-sounding speech, they remain unable to reproduce the full diversity found in natural speech data. We consider the distribution of all possible real speech samples that could be generated by these speakers alongside the distribution of all synthetic samples that could be generated for the same set of speakers, using a particular TTS syst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16049v2-abstract-full').style.display = 'inline'; document.getElementById('2211.16049v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16049v2-abstract-full" style="display: none;"> While modern Text-to-Speech (TTS) systems can produce natural-sounding speech, they remain unable to reproduce the full diversity found in natural speech data. We consider the distribution of all possible real speech samples that could be generated by these speakers alongside the distribution of all synthetic samples that could be generated for the same set of speakers, using a particular TTS system. We set out to quantify the distance between real and synthetic speech via a range of utterance-level statistics related to properties of the speaker, speech prosody and acoustic environment. Differences in the distribution of these statistics are evaluated using the Wasserstein distance. We reduce these distances by providing ground-truth values at generation time, and quantify the improvements to the overall distribution distance, approximated using an automatic speech recognition system. Our best system achieves a 10\% reduction in distribution distance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16049v2-abstract-full').style.display = 'none'; document.getElementById('2211.16049v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be presented at INTERSPEECH 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05163">arXiv:2211.05163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.05163">pdf</a>, <a href="https://arxiv.org/format/2211.05163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Multimodal Dyadic Impression Recognition via Listener Adaptive Cross-Domain Fusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05163v4-abstract-short" style="display: inline;"> As a sub-branch of affective computing, impression recognition, e.g., perception of speaker characteristics such as warmth or competence, is potentially a critical part of both human-human conversations and spoken dialogue systems. Most research has studied impressions only from the behaviors expressed by the speaker or the response from the listener, yet ignored their latent connection. In this p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05163v4-abstract-full').style.display = 'inline'; document.getElementById('2211.05163v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05163v4-abstract-full" style="display: none;"> As a sub-branch of affective computing, impression recognition, e.g., perception of speaker characteristics such as warmth or competence, is potentially a critical part of both human-human conversations and spoken dialogue systems. Most research has studied impressions only from the behaviors expressed by the speaker or the response from the listener, yet ignored their latent connection. In this paper, we perform impression recognition using a proposed listener adaptive cross-domain architecture, which consists of a listener adaptation function to model the causality between speaker and listener behaviors and a cross-domain fusion function to strengthen their connection. The experimental evaluation on the dyadic IMPRESSION dataset verified the efficacy of our method, producing concordance correlation coefficients of 78.8% and 77.5% in the competence and warmth dimensions, outperforming previous studies. The proposed method is expected to be generalized to similar dyadic interaction scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05163v4-abstract-full').style.display = 'none'; document.getElementById('2211.05163v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ICASSP2023. arXiv admin note: substantial text overlap with arXiv:2203.13932</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02595">arXiv:2210.02595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02595">pdf</a>, <a href="https://arxiv.org/format/2210.02595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Exploration of A Self-Supervised Speech Model: A Study on Emotional Corpora </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Mohamied%2C+Y">Yumnah Mohamied</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02595v3-abstract-short" style="display: inline;"> Self-supervised speech models have grown fast during the past few years and have proven feasible for use in various downstream tasks. Some recent work has started to look at the characteristics of these models, yet many concerns have not been fully addressed. In this work, we conduct a study on emotional corpora to explore a popular self-supervised model -- wav2vec 2.0. Via a set of quantitative a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02595v3-abstract-full').style.display = 'inline'; document.getElementById('2210.02595v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02595v3-abstract-full" style="display: none;"> Self-supervised speech models have grown fast during the past few years and have proven feasible for use in various downstream tasks. Some recent work has started to look at the characteristics of these models, yet many concerns have not been fully addressed. In this work, we conduct a study on emotional corpora to explore a popular self-supervised model -- wav2vec 2.0. Via a set of quantitative analysis, we mainly demonstrate that: 1) wav2vec 2.0 appears to discard paralinguistic information that is less useful for word recognition purposes; 2) for emotion recognition, representations from the middle layer alone perform as well as those derived from layer averaging, while the final layer results in the worst performance in some cases; 3) current self-supervised models may not be the optimal solution for downstream tasks that make use of non-lexical features. Our work provides novel findings that will aid future research in this area and theoretical basis for the use of existing models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02595v3-abstract-full').style.display = 'none'; document.getElementById('2210.02595v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to SLT 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06799">arXiv:2111.06799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.06799">pdf</a>, <a href="https://arxiv.org/format/2111.06799">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Deciphering Speech: a Zero-Resource Approach to Cross-Lingual Transfer in ASR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ondrej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Wallington%2C+E">Electra Wallington</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06799v3-abstract-short" style="display: inline;"> We present a method for cross-lingual training an ASR system using absolutely no transcribed training data from the target language, and with no phonetic knowledge of the language in question. Our approach uses a novel application of a decipherment algorithm, which operates given only unpaired speech and text data from the target language. We apply this decipherment to phone sequences generated by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06799v3-abstract-full').style.display = 'inline'; document.getElementById('2111.06799v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06799v3-abstract-full" style="display: none;"> We present a method for cross-lingual training an ASR system using absolutely no transcribed training data from the target language, and with no phonetic knowledge of the language in question. Our approach uses a novel application of a decipherment algorithm, which operates given only unpaired speech and text data from the target language. We apply this decipherment to phone sequences generated by a universal phone recogniser trained on out-of-language speech corpora, which we follow with flat-start semi-supervised training to obtain an acoustic model for the new language. To the best of our knowledge, this is the first practical approach to zero-resource cross-lingual ASR which does not rely on any hand-crafted phonetic information. We carry out experiments on read speech from the GlobalPhone corpus, and show that it is possible to learn a decipherment model on just 20 minutes of data from the target language. When used to generate pseudo-labels for semi-supervised training, we obtain WERs that range from 32.5% to just 1.9% absolute worse than the equivalent fully supervised models trained on the same data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06799v3-abstract-full').style.display = 'none'; document.getElementById('2111.06799v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Interspeech 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15684">arXiv:2110.15684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.15684">pdf</a>, <a href="https://arxiv.org/format/2110.15684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Fusing ASR Outputs in Joint Training for Speech Emotion Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Li%2C+Y">Yuanchao Li</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+C">Catherine Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15684v2-abstract-short" style="display: inline;"> Alongside acoustic information, linguistic features based on speech transcripts have been proven useful in Speech Emotion Recognition (SER). However, due to the scarcity of emotion labelled data and the difficulty of recognizing emotional speech, it is hard to obtain reliable linguistic features and models in this research area. In this paper, we propose to fuse Automatic Speech Recognition (ASR)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15684v2-abstract-full').style.display = 'inline'; document.getElementById('2110.15684v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15684v2-abstract-full" style="display: none;"> Alongside acoustic information, linguistic features based on speech transcripts have been proven useful in Speech Emotion Recognition (SER). However, due to the scarcity of emotion labelled data and the difficulty of recognizing emotional speech, it is hard to obtain reliable linguistic features and models in this research area. In this paper, we propose to fuse Automatic Speech Recognition (ASR) outputs into the pipeline for joint training SER. The relationship between ASR and SER is understudied, and it is unclear what and how ASR features benefit SER. By examining various ASR outputs and fusion methods, our experiments show that in joint ASR-SER training, incorporating both ASR hidden and text output using a hierarchical co-attention fusion approach improves the SER performance the most. On the IEMOCAP corpus, our approach achieves 63.4% weighted accuracy, which is close to the baseline results achieved by combining ground-truth transcripts. In addition, we also present novel word error rate analysis on IEMOCAP and layer-difference analysis of the Wav2vec 2.0 model to better understand the relationship between ASR and SER. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15684v2-abstract-full').style.display = 'none'; document.getElementById('2110.15684v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for ICASSP 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.04697">arXiv:2102.04697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.04697">pdf</a>, <a href="https://arxiv.org/format/2102.04697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Train your classifier first: Cascade Neural Networks Training from upper layers to lower layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+S">Shucong Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Do%2C+C">Cong-Thanh Do</a>, <a href="/search/eess?searchtype=author&amp;query=Doddipatla%2C+R">Rama Doddipatla</a>, <a href="/search/eess?searchtype=author&amp;query=Loweimi%2C+E">Erfan Loweimi</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.04697v1-abstract-short" style="display: inline;"> Although the lower layers of a deep neural network learn features which are transferable across datasets, these layers are not transferable within the same dataset. That is, in general, freezing the trained feature extractor (the lower layers) and retraining the classifier (the upper layers) on the same dataset leads to worse performance. In this paper, for the first time, we show that the frozen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04697v1-abstract-full').style.display = 'inline'; document.getElementById('2102.04697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.04697v1-abstract-full" style="display: none;"> Although the lower layers of a deep neural network learn features which are transferable across datasets, these layers are not transferable within the same dataset. That is, in general, freezing the trained feature extractor (the lower layers) and retraining the classifier (the upper layers) on the same dataset leads to worse performance. In this paper, for the first time, we show that the frozen classifier is transferable within the same dataset. We develop a novel top-down training method which can be viewed as an algorithm for searching for high-quality classifiers. We tested this method on automatic speech recognition (ASR) tasks and language modelling tasks. The proposed method consistently improves recurrent neural network ASR models on Wall Street Journal, self-attention ASR models on Switchboard, and AWD-LSTM language models on WikiText-2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04697v1-abstract-full').style.display = 'none'; document.getElementById('2102.04697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ICASSP 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.04906">arXiv:2011.04906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.04906">pdf</a>, <a href="https://arxiv.org/format/2011.04906">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> On the Usefulness of Self-Attention for Automatic Speech Recognition with Transformers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+S">Shucong Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Loweimi%2C+E">Erfan Loweimi</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.04906v1-abstract-short" style="display: inline;"> Self-attention models such as Transformers, which can capture temporal relationships without being limited by the distance between events, have given competitive speech recognition results. However, we note the range of the learned context increases from the lower to upper self-attention layers, whilst acoustic events often happen within short time spans in a left-to-right order. This leads to a q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04906v1-abstract-full').style.display = 'inline'; document.getElementById('2011.04906v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.04906v1-abstract-full" style="display: none;"> Self-attention models such as Transformers, which can capture temporal relationships without being limited by the distance between events, have given competitive speech recognition results. However, we note the range of the learned context increases from the lower to upper self-attention layers, whilst acoustic events often happen within short time spans in a left-to-right order. This leads to a question: for speech recognition, is a global view of the entire sequence useful for the upper self-attention encoder layers in Transformers? To investigate this, we train models with lower self-attention/upper feed-forward layers encoders on Wall Street Journal and Switchboard. Compared to baseline Transformers, no performance drop but minor gains are observed. We further developed a novel metric of the diagonality of attention matrices and found the learned diagonality indeed increases from the lower to upper encoder self-attention layers. We conclude the global view is unnecessary in training upper encoder layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04906v1-abstract-full').style.display = 'none'; document.getElementById('2011.04906v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2005.13895</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.04004">arXiv:2011.04004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.04004">pdf</a>, <a href="https://arxiv.org/format/2011.04004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Stochastic Attention Head Removal: A simple and effective method for improving Transformer Based ASR Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+S">Shucong Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Loweimi%2C+E">Erfan Loweimi</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.04004v2-abstract-short" style="display: inline;"> Recently, Transformer based models have shown competitive automatic speech recognition (ASR) performance. One key factor in the success of these models is the multi-head attention mechanism. However, for trained models, we have previously observed that many attention matrices are close to diagonal, indicating the redundancy of the corresponding attention heads. We have also found that some archite&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04004v2-abstract-full').style.display = 'inline'; document.getElementById('2011.04004v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.04004v2-abstract-full" style="display: none;"> Recently, Transformer based models have shown competitive automatic speech recognition (ASR) performance. One key factor in the success of these models is the multi-head attention mechanism. However, for trained models, we have previously observed that many attention matrices are close to diagonal, indicating the redundancy of the corresponding attention heads. We have also found that some architectures with reduced numbers of attention heads have better performance. Since the search for the best structure is time prohibitive, we propose to randomly remove attention heads during training and keep all attention heads at test time, thus the final model is an ensemble of models with different architectures. The proposed method also forces each head independently learn the most useful patterns. We apply the proposed method to train Transformer based and Convolution-augmented Transformer (Conformer) based ASR models. Our method gives consistent performance gains over strong baselines on the Wall Street Journal, AISHELL, Switchboard and AMI datasets. To the best of our knowledge, we have achieved state-of-the-art end-to-end Transformer based model performance on Switchboard and AMI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04004v2-abstract-full').style.display = 'none'; document.getElementById('2011.04004v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14269">arXiv:2010.14269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.14269">pdf</a>, <a href="https://arxiv.org/format/2010.14269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Leveraging speaker attribute information using multi task learning for speaker verification and diarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Luu%2C+C">Chau Luu</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14269v2-abstract-short" style="display: inline;"> Deep speaker embeddings have become the leading method for encoding speaker identity in speaker recognition tasks. The embedding space should ideally capture the variations between all possible speakers, encoding the multiple acoustic aspects that make up a speaker&#39;s identity, whilst being robust to non-speaker acoustic variation. Deep speaker embeddings are normally trained discriminatively, pred&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14269v2-abstract-full').style.display = 'inline'; document.getElementById('2010.14269v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14269v2-abstract-full" style="display: none;"> Deep speaker embeddings have become the leading method for encoding speaker identity in speaker recognition tasks. The embedding space should ideally capture the variations between all possible speakers, encoding the multiple acoustic aspects that make up a speaker&#39;s identity, whilst being robust to non-speaker acoustic variation. Deep speaker embeddings are normally trained discriminatively, predicting speaker identity labels on the training data. We hypothesise that additionally predicting speaker-related auxiliary variables -- such as age and nationality -- may yield representations that are better able to generalise to unseen speakers. We propose a framework for making use of auxiliary label information, even when it is only available for speech corpora mismatched to the target application. On a test set of US Supreme Court recordings, we show that by leveraging two additional forms of speaker attribute information derived respectively from the matched training data, and VoxCeleb corpus, we improve the performance of our deep speaker embeddings for both verification and diarization tasks, achieving a relative improvement of 26.2% in DER and 6.7% in EER compared to baselines using speaker labels only. This improvement is obtained despite the auxiliary labels having been scraped from the web and being potentially noisy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14269v2-abstract-full').style.display = 'none'; document.getElementById('2010.14269v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Interspeech 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.03807">arXiv:2009.03807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.03807">pdf</a>, <a href="https://arxiv.org/format/2009.03807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Understanding Compositional Structures in Art Historical Images using Pose and Gaze Priors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Madhu%2C+P">Prathmesh Madhu</a>, <a href="/search/eess?searchtype=author&amp;query=Marquart%2C+T">Tilman Marquart</a>, <a href="/search/eess?searchtype=author&amp;query=Kosti%2C+R">Ronak Kosti</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Maier%2C+A">Andreas Maier</a>, <a href="/search/eess?searchtype=author&amp;query=Christlein%2C+V">Vincent Christlein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.03807v1-abstract-short" style="display: inline;"> Image compositions as a tool for analysis of artworks is of extreme significance for art historians. These compositions are useful in analyzing the interactions in an image to study artists and their artworks. Max Imdahl in his work called Ikonik, along with other prominent art historians of the 20th century, underlined the aesthetic and semantic importance of the structural composition of an imag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03807v1-abstract-full').style.display = 'inline'; document.getElementById('2009.03807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.03807v1-abstract-full" style="display: none;"> Image compositions as a tool for analysis of artworks is of extreme significance for art historians. These compositions are useful in analyzing the interactions in an image to study artists and their artworks. Max Imdahl in his work called Ikonik, along with other prominent art historians of the 20th century, underlined the aesthetic and semantic importance of the structural composition of an image. Understanding underlying compositional structures within images is challenging and a time consuming task. Generating these structures automatically using computer vision techniques (1) can help art historians towards their sophisticated analysis by saving lot of time; providing an overview and access to huge image repositories and (2) also provide an important step towards an understanding of man made imagery by machines. In this work, we attempt to automate this process using the existing state of the art machine learning techniques, without involving any form of training. Our approach, inspired by Max Imdahl&#39;s pioneering work, focuses on two central themes of image composition: (a) detection of action regions and action lines of the artwork; and (b) pose-based segmentation of foreground and background. Currently, our approach works for artworks comprising of protagonists (persons) in an image. In order to validate our approach qualitatively and quantitatively, we conduct a user study involving experts and non-experts. The outcome of the study highly correlates with our approach and also demonstrates its domain-agnostic capability. We have open-sourced the code at https://github.com/image-compostion-canvas-group/image-compostion-canvas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03807v1-abstract-full').style.display = 'none'; document.getElementById('2009.03807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be Published in ECCV 2020 Workshops (VISART V)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06580">arXiv:2008.06580</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.06580">pdf</a>, <a href="https://arxiv.org/format/2008.06580">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/OJSP.2020.3045349">10.1109/OJSP.2020.3045349 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adaptation Algorithms for Neural Network-Based Speech Recognition: An Overview </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Fainberg%2C+J">Joachim Fainberg</a>, <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ondrej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Li%2C+J">Jinyu Li</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a>, <a href="/search/eess?searchtype=author&amp;query=Swietojanski%2C+P">Pawel Swietojanski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06580v2-abstract-short" style="display: inline;"> We present a structured overview of adaptation algorithms for neural network-based speech recognition, considering both hybrid hidden Markov model / neural network systems and end-to-end neural network systems, with a focus on speaker adaptation, domain adaptation, and accent adaptation. The overview characterizes adaptation algorithms as based on embeddings, model parameter adaptation, or data au&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06580v2-abstract-full').style.display = 'inline'; document.getElementById('2008.06580v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06580v2-abstract-full" style="display: none;"> We present a structured overview of adaptation algorithms for neural network-based speech recognition, considering both hybrid hidden Markov model / neural network systems and end-to-end neural network systems, with a focus on speaker adaptation, domain adaptation, and accent adaptation. The overview characterizes adaptation algorithms as based on embeddings, model parameter adaptation, or data augmentation. We present a meta-analysis of the performance of speech recognition adaptation algorithms, based on relative error rate reductions as reported in the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06580v2-abstract-full').style.display = 'none'; document.getElementById('2008.06580v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Total of 31 pages, 27 figures. Associated repository: https://github.com/pswietojanski/ojsp_adaptation_review_2020</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Open Journal of Signal Processing, vol. 2, pp. 33-66, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.13895">arXiv:2005.13895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.13895">pdf</a>, <a href="https://arxiv.org/format/2005.13895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> When Can Self-Attention Be Replaced by Feed Forward Layers? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+S">Shucong Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Loweimi%2C+E">Erfan Loweimi</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.13895v1-abstract-short" style="display: inline;"> Recently, self-attention models such as Transformers have given competitive results compared to recurrent neural network systems in speech recognition. The key factor for the outstanding performance of self-attention models is their ability to capture temporal relationships without being limited by the distance between two related events. However, we note that the range of the learned context prog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13895v1-abstract-full').style.display = 'inline'; document.getElementById('2005.13895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.13895v1-abstract-full" style="display: none;"> Recently, self-attention models such as Transformers have given competitive results compared to recurrent neural network systems in speech recognition. The key factor for the outstanding performance of self-attention models is their ability to capture temporal relationships without being limited by the distance between two related events. However, we note that the range of the learned context progressively increases from the lower to upper self-attention layers, whilst acoustic events often happen within short time spans in a left-to-right order. This leads to a question: for speech recognition, is a global view of the entire sequence still important for the upper self-attention layers in the encoder of Transformers? To investigate this, we replace these self-attention layers with feed forward layers. In our speech recognition experiments (Wall Street Journal and Switchboard), we indeed observe an interesting result: replacing the upper self-attention layers in the encoder with feed forward layers leads to no performance drop, and even minor gains. Our experiments offer insights to how self-attention layers process the speech signal, leading to the conclusion that the lower self-attention layers of the encoder encode a sufficiently wide range of inputs, hence learning further contextual information in the upper layers is unnecessary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13895v1-abstract-full').style.display = 'none'; document.getElementById('2005.13895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.00453">arXiv:2002.00453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.00453">pdf</a>, <a href="https://arxiv.org/format/2002.00453">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> DropClass and DropAdapt: Dropping classes for deep speaker representation learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Luu%2C+C">Chau Luu</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.00453v1-abstract-short" style="display: inline;"> Many recent works on deep speaker embeddings train their feature extraction networks on large classification tasks, distinguishing between all speakers in a training set. Empirically, this has been shown to produce speaker-discriminative embeddings, even for unseen speakers. However, it is not clear that this is the optimal means of training embeddings that generalize well. This work proposes two&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00453v1-abstract-full').style.display = 'inline'; document.getElementById('2002.00453v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.00453v1-abstract-full" style="display: none;"> Many recent works on deep speaker embeddings train their feature extraction networks on large classification tasks, distinguishing between all speakers in a training set. Empirically, this has been shown to produce speaker-discriminative embeddings, even for unseen speakers. However, it is not clear that this is the optimal means of training embeddings that generalize well. This work proposes two approaches to learning embeddings, based on the notion of dropping classes during training. We demonstrate that both approaches can yield performance gains in speaker verification tasks. The first proposed method, DropClass, works via periodically dropping a random subset of classes from the training data and the output layer throughout training, resulting in a feature extractor trained on many different classification tasks. Combined with an additive angular margin loss, this method can yield a 7.9% relative improvement in equal error rate (EER) over a strong baseline on VoxCeleb. The second proposed method, DropAdapt, is a means of adapting a trained model to a set of enrolment speakers in an unsupervised manner. This is performed by fine-tuning a model on only those classes which produce high probability predictions when the enrolment speakers are used as input, again also dropping the relevant rows from the output layer. This method yields a large 13.2% relative improvement in EER on VoxCeleb. The code for this paper has been made publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00453v1-abstract-full').style.display = 'none'; document.getElementById('2002.00453v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Speaker Odyssey 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.14443">arXiv:1910.14443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.14443">pdf</a>, <a href="https://arxiv.org/format/1910.14443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Multi-scale Octave Convolutions for Robust Speech Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Rownicka%2C+J">Joanna Rownicka</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.14443v1-abstract-short" style="display: inline;"> We propose a multi-scale octave convolution layer to learn robust speech representations efficiently. Octave convolutions were introduced by Chen et al [1] in the computer vision field to reduce the spatial redundancy of the feature maps by decomposing the output of a convolutional layer into feature maps at two different spatial resolutions, one octave apart. This approach improved the efficiency&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14443v1-abstract-full').style.display = 'inline'; document.getElementById('1910.14443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.14443v1-abstract-full" style="display: none;"> We propose a multi-scale octave convolution layer to learn robust speech representations efficiently. Octave convolutions were introduced by Chen et al [1] in the computer vision field to reduce the spatial redundancy of the feature maps by decomposing the output of a convolutional layer into feature maps at two different spatial resolutions, one octave apart. This approach improved the efficiency as well as the accuracy of the CNN models. The accuracy gain was attributed to the enlargement of the receptive field in the original input space. We argue that octave convolutions likewise improve the robustness of learned representations due to the use of average pooling in the lower resolution group, acting as a low-pass filter. We test this hypothesis by evaluating on two noisy speech corpora - Aurora-4 and AMI. We extend the octave convolution concept to multiple resolution groups and multiple octaves. To evaluate the robustness of the inferred representations, we report the similarity between clean and noisy encodings using an affine projection loss as a proxy robustness measure. The results show that proposed method reduces the WER by up to 6.6% relative for Aurora-4 and 3.6% for AMI, while improving the computational efficiency of the CNN acoustic models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14443v1-abstract-full').style.display = 'none'; document.getElementById('1910.14443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to ICASSP2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.11643">arXiv:1910.11643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.11643">pdf</a>, <a href="https://arxiv.org/format/1910.11643">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ICASSP40776.2020.9053323">10.1109/ICASSP40776.2020.9053323 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Channel adversarial training for speaker verification and diarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Luu%2C+C">Chau Luu</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.11643v1-abstract-short" style="display: inline;"> Previous work has encouraged domain-invariance in deep speaker embedding by adversarially classifying the dataset or labelled environment to which the generated features belong. We propose a training strategy which aims to produce features that are invariant at the granularity of the recording or channel, a finer grained objective than dataset- or environment-invariance. By training an adversary t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11643v1-abstract-full').style.display = 'inline'; document.getElementById('1910.11643v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.11643v1-abstract-full" style="display: none;"> Previous work has encouraged domain-invariance in deep speaker embedding by adversarially classifying the dataset or labelled environment to which the generated features belong. We propose a training strategy which aims to produce features that are invariant at the granularity of the recording or channel, a finer grained objective than dataset- or environment-invariance. By training an adversary to predict whether pairs of same-speaker embeddings belong to the same recording in a Siamese fashion, learned features are discouraged from utilizing channel information that may be speaker discriminative during training. Experiments for verification on VoxCeleb and diarization and verification on CALLHOME show promising improvements over a strong baseline in addition to outperforming a dataset-adversarial model. The VoxCeleb model in particular performs well, achieving a $4\%$ relative improvement in EER over a Kaldi baseline, while using a similar architecture and less training data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11643v1-abstract-full').style.display = 'none'; document.getElementById('1910.11643v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE ICASSP 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.10605">arXiv:1910.10605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.10605">pdf</a>, <a href="https://arxiv.org/ps/1910.10605">ps</a>, <a href="https://arxiv.org/format/1910.10605">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Speaker Adaptive Training using Model Agnostic Meta-Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ond艡ej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Fainberg%2C+J">Joachim Fainberg</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.10605v1-abstract-short" style="display: inline;"> Speaker adaptive training (SAT) of neural network acoustic models learns models in a way that makes them more suitable for adaptation to test conditions. Conventionally, model-based speaker adaptive training is performed by having a set of speaker dependent parameters that are jointly optimised with speaker independent parameters in order to remove speaker variation. However, this does not scale w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10605v1-abstract-full').style.display = 'inline'; document.getElementById('1910.10605v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.10605v1-abstract-full" style="display: none;"> Speaker adaptive training (SAT) of neural network acoustic models learns models in a way that makes them more suitable for adaptation to test conditions. Conventionally, model-based speaker adaptive training is performed by having a set of speaker dependent parameters that are jointly optimised with speaker independent parameters in order to remove speaker variation. However, this does not scale well if all neural network weights are to be adapted to the speaker. In this paper we formulate speaker adaptive training as a meta-learning task, in which an adaptation process using gradient descent is encoded directly into the training of the model. We compare our approach with test-only adaptation of a standard baseline model and a SAT-LHUC model with a learned speaker adaptation schedule and demonstrate that the meta-learning approach achieves comparable results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10605v1-abstract-full').style.display = 'none'; document.getElementById('1910.10605v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to IEEE ASRU 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.02168">arXiv:1910.02168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.02168">pdf</a>, <a href="https://arxiv.org/format/1910.02168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Cross lingual transfer learning for zero-resource domain adaptation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Abad%2C+A">Alberto Abad</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Carmantini%2C+A">Andrea Carmantini</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.02168v2-abstract-short" style="display: inline;"> We propose a method for zero-resource domain adaptation of DNN acoustic models, for use in low-resource situations where the only in-language training data available may be poorly matched to the intended target domain. Our method uses a multi-lingual model in which several DNN layers are shared between languages. This architecture enables domain adaptation transforms learned for one well-resourced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02168v2-abstract-full').style.display = 'inline'; document.getElementById('1910.02168v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.02168v2-abstract-full" style="display: none;"> We propose a method for zero-resource domain adaptation of DNN acoustic models, for use in low-resource situations where the only in-language training data available may be poorly matched to the intended target domain. Our method uses a multi-lingual model in which several DNN layers are shared between languages. This architecture enables domain adaptation transforms learned for one well-resourced language to be applied to an entirely different low-resource language. First, to develop the technique we use English as a well-resourced language and take Spanish to mimic a low-resource language. Experiments in domain adaptation between the conversational telephone speech (CTS) domain and broadcast news (BN) domain demonstrate a 29% relative WER improvement on Spanish BN test data by using only English adaptation data. Second, we demonstrate the effectiveness of the method for low-resource languages with a poor match to the well-resourced language. Even in this scenario, the proposed method achieves relative WER improvements of 18-27% by using solely English data for domain adaptation. Compared to other related approaches based on multi-task and multi-condition training, the proposed method is able to better exploit well-resource language data for improved acoustic modelling of the low-resource target domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02168v2-abstract-full').style.display = 'none'; document.getElementById('1910.02168v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ICASSP 2020. Main updates wrt previous versions: same network config in all experiments, added Babel/Material LR target language experiments, added comparison with alternative/similar methods of cross-lingual adaptation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.13759">arXiv:1909.13759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.13759">pdf</a>, <a href="https://arxiv.org/format/1909.13759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Acoustic Model Adaptation from Raw Waveforms with SincNet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Fainberg%2C+J">Joachim Fainberg</a>, <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ond艡ej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Loweimi%2C+E">Erfan Loweimi</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.13759v1-abstract-short" style="display: inline;"> Raw waveform acoustic modelling has recently gained interest due to neural networks&#39; ability to learn feature extraction, and the potential for finding better representations for a given scenario than hand-crafted features. SincNet has been proposed to reduce the number of parameters required in raw-waveform modelling, by restricting the filter functions, rather than having to learn every tap of e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13759v1-abstract-full').style.display = 'inline'; document.getElementById('1909.13759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.13759v1-abstract-full" style="display: none;"> Raw waveform acoustic modelling has recently gained interest due to neural networks&#39; ability to learn feature extraction, and the potential for finding better representations for a given scenario than hand-crafted features. SincNet has been proposed to reduce the number of parameters required in raw-waveform modelling, by restricting the filter functions, rather than having to learn every tap of each filter. We study the adaptation of the SincNet filter parameters from adults&#39; to children&#39;s speech, and show that the parameterisation of the SincNet layer is well suited for adaptation in practice: we can efficiently adapt with a very small number of parameters, producing error rates comparable to techniques using orders of magnitude more parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13759v1-abstract-full').style.display = 'none'; document.getElementById('1909.13759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to IEEE ASRU 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.13537">arXiv:1909.13537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.13537">pdf</a>, <a href="https://arxiv.org/format/1909.13537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Embeddings for DNN speaker adaptive training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Rownicka%2C+J">Joanna Rownicka</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.13537v1-abstract-short" style="display: inline;"> In this work, we investigate the use of embeddings for speaker-adaptive training of DNNs (DNN-SAT) focusing on a small amount of adaptation data per speaker. DNN-SAT can be viewed as learning a mapping from each embedding to transformation parameters that are applied to the shared parameters of the DNN. We investigate different approaches to applying these transformations, and find that with a goo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13537v1-abstract-full').style.display = 'inline'; document.getElementById('1909.13537v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.13537v1-abstract-full" style="display: none;"> In this work, we investigate the use of embeddings for speaker-adaptive training of DNNs (DNN-SAT) focusing on a small amount of adaptation data per speaker. DNN-SAT can be viewed as learning a mapping from each embedding to transformation parameters that are applied to the shared parameters of the DNN. We investigate different approaches to applying these transformations, and find that with a good training strategy, a multi-layer adaptation network applied to all hidden layers is no more effective than a single linear layer acting on the embeddings to transform the input features. In the second part of our work, we evaluate different embeddings (i-vectors, x-vectors and deep CNN embeddings) in an additional speaker recognition task in order to gain insight into what should characterize an embedding for DNN-SAT. We find the performance for speaker recognition of a given representation is not correlated with its ASR performance; in fact, ability to capture more speech attributes than just speaker identity was the most important characteristic of the embeddings for efficient DNN-SAT ASR. Our best models achieved relative WER gains of 4% and 9% over DNN baselines using speaker-level cepstral mean normalisation (CMN), and a fully speaker-independent model, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13537v1-abstract-full').style.display = 'none'; document.getElementById('1909.13537v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at ASRU 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.11521">arXiv:1906.11521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.11521">pdf</a>, <a href="https://arxiv.org/ps/1906.11521">ps</a>, <a href="https://arxiv.org/format/1906.11521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Lattice-Based Unsupervised Test-Time Adaptation of Neural Network Acoustic Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ondrej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Fainberg%2C+J">Joachim Fainberg</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.11521v1-abstract-short" style="display: inline;"> Acoustic model adaptation to unseen test recordings aims to reduce the mismatch between training and testing conditions. Most adaptation schemes for neural network models require the use of an initial one-best transcription for the test data, generated by an unadapted model, in order to estimate the adaptation transform. It has been found that adaptation methods using discriminative objective func&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11521v1-abstract-full').style.display = 'inline'; document.getElementById('1906.11521v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.11521v1-abstract-full" style="display: none;"> Acoustic model adaptation to unseen test recordings aims to reduce the mismatch between training and testing conditions. Most adaptation schemes for neural network models require the use of an initial one-best transcription for the test data, generated by an unadapted model, in order to estimate the adaptation transform. It has been found that adaptation methods using discriminative objective functions - such as cross-entropy loss - often require careful regularisation to avoid over-fitting to errors in the one-best transcriptions. In this paper we solve this problem by performing discriminative adaptation using lattices obtained from a first pass decoding, an approach that can be readily integrated into the lattice-free maximum mutual information (LF-MMI) framework. We investigate this approach on three transcription tasks of varying difficulty: TED talks, multi-genre broadcast (MGB) and a low-resource language (Somali). We find that our proposed approach enables many more parameters to be adapted without over-fitting being observed, and is successful even when the initial transcription has a WER in excess of 50%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11521v1-abstract-full').style.display = 'none'; document.getElementById('1906.11521v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.13150">arXiv:1905.13150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.13150">pdf</a>, <a href="https://arxiv.org/format/1905.13150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Lattice-based lightly-supervised acoustic model training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Fainberg%2C+J">Joachim Fainberg</a>, <a href="/search/eess?searchtype=author&amp;query=Klejch%2C+O">Ond艡ej Klejch</a>, <a href="/search/eess?searchtype=author&amp;query=Renals%2C+S">Steve Renals</a>, <a href="/search/eess?searchtype=author&amp;query=Bell%2C+P">Peter Bell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.13150v2-abstract-short" style="display: inline;"> In the broadcast domain there is an abundance of related text data and partial transcriptions, such as closed captions and subtitles. This text data can be used for lightly supervised training, in which text matching the audio is selected using an existing speech recognition model. Current approaches to light supervision typically filter the data based on matching error rates between the transcrip&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.13150v2-abstract-full').style.display = 'inline'; document.getElementById('1905.13150v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.13150v2-abstract-full" style="display: none;"> In the broadcast domain there is an abundance of related text data and partial transcriptions, such as closed captions and subtitles. This text data can be used for lightly supervised training, in which text matching the audio is selected using an existing speech recognition model. Current approaches to light supervision typically filter the data based on matching error rates between the transcriptions and biased decoding hypotheses. In contrast, semi-supervised training does not require matching text data, instead generating a hypothesis using a background language model. State-of-the-art semi-supervised training uses lattice-based supervision with the lattice-free MMI (LF-MMI) objective function. We propose a technique to combine inaccurate transcriptions with the lattices generated for semi-supervised training, thus preserving uncertainty in the lattice where appropriate. We demonstrate that this combined approach reduces the expected error rates over the lattices, and reduces the word error rate (WER) on a broadcast task. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.13150v2-abstract-full').style.display = 'none'; document.getElementById('1905.13150v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proc. INTERSPEECH 2019</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10