CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;46 of 46 results for author: <span class="mathjax">Li, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/nucl-th" aria-role="search"> Searching in archive <strong>nucl-th</strong>. <a href="/search/?searchtype=author&amp;query=Li%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12816">arXiv:2412.12816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12816">pdf</a>, <a href="https://arxiv.org/format/2412.12816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Constraining the $DDD^*$ three-body bound state via the $Z_c(3900)$ pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+H">Hai-Xiang Zhu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Meng%2C+L">Lu Meng</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12816v1-abstract-short" style="display: inline;"> In this study, we propose using the $Z_c(3900)$ pole position to constrain the existence of the $DDD^*$ three-body bound state within the one-boson-exchange (OBE) model. The existence of the $DDD^*$ bound state remains uncertain due to significant variations in the OBE interaction, particularly in the strength of scalar-meson-exchange interactions, which can differ by a factor about 20 between two&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12816v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12816v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12816v1-abstract-full" style="display: none;"> In this study, we propose using the $Z_c(3900)$ pole position to constrain the existence of the $DDD^*$ three-body bound state within the one-boson-exchange (OBE) model. The existence of the $DDD^*$ bound state remains uncertain due to significant variations in the OBE interaction, particularly in the strength of scalar-meson-exchange interactions, which can differ by a factor about 20 between two commonly used OBE models. This discrepancy renders the $DDD^*$ system highly model-dependent. To address this issue, we constrain the scalar-meson-exchange interaction using the $Z_c(3900)$ pole position, where the pseudoscalar-meson coupling is well-determined, and the $蟻$- and $蠅$-exchange interactions nearly cancel each other out, leaving the coupling constant of the $蟽$-exchange as the only unknown parameter. Our results indicate that the isospin-$\frac{1}{2}$ $DDD^*$ bound states exist when $Z_c(3900)$ is a virtual state of $D\bar{D}^*/\bar{D}D^*$ located within approximately $-15$ MeV of the threshold. However, the three-body bound state is gone when the $Z_c(3900)$ virtual state pole is more than $20$ MeV away from the threshold. Each experimental progress, either on the $DDD^*$ state or the $Z_c(3900)$, can shed light on the nature of the other state. Another significant outcome is a refined set of OBE model parameters calibrated using the pole positions of $X(3872)$, $T_{cc}(3875)$, and $Z_c(3900)$, rigorously addressing the cutoff dependence. These parameters provide a valuable resource for more accurate calculations of systems involving few-body $D$, $D^*$ and their antiparticles. Additionally, we find no evidence of the $DDD^*$ three-body resonances after extensive search using a combination of the Gaussian expansion method and the complex scaling method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12816v1-abstract-full').style.display = 'none'; document.getElementById('2412.12816v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages,8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16759">arXiv:2310.16759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16759">pdf</a>, <a href="https://arxiv.org/ps/2310.16759">ps</a>, <a href="https://arxiv.org/format/2310.16759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Zero-sound modes for the nuclear equation of state at supra-normal densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Ye%2C+J">Jing Ye</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Margueron%2C+J">J. Margueron</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Niu Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Jiang%2C+W+Z">W. Z. Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16759v1-abstract-short" style="display: inline;"> The meaningful correlations between the zero-sound modes and the stiffness of the nuclear equation of state (EOS) are uncovered in nuclear matter with the relativistic mean-field theory. It is demonstrated that the high-density zero-sound modes merely exist in models with the stiff EOS. While the stiff EOS can be softened by including 蠅-meson self-interactions (the 蠅4 term), the weakened coupling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16759v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16759v1-abstract-full" style="display: none;"> The meaningful correlations between the zero-sound modes and the stiffness of the nuclear equation of state (EOS) are uncovered in nuclear matter with the relativistic mean-field theory. It is demonstrated that the high-density zero-sound modes merely exist in models with the stiff EOS. While the stiff EOS can be softened by including 蠅-meson self-interactions (the 蠅4 term), the weakened coupling of the 蠅-meson self-interactions reignites the zero sound at high density. These results suggest that the high-density zero-sound modes can be used to probe the stiffness of the EOS at supra-normal densities. The implications and effects of zero sounds are also discussed in heavy ion collisions and neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16759v1-abstract-full').style.display = 'none'; document.getElementById('2310.16759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.04500">arXiv:2306.04500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.04500">pdf</a>, <a href="https://arxiv.org/format/2306.04500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.232502">10.1103/PhysRevLett.132.232502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structure Factors for Hot Neutron Matter from Ab Initio Lattice Simulations with High-Fidelity Chiral Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Ma%2C+Y">Yuan-Zhuo Ma</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lin%2C+Z">Zidu Lin</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Steiner%2C+A+W">Andrew W. Steiner</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Wang%2C+Q">Qian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.04500v3-abstract-short" style="display: inline;"> We present the first ab initio lattice calculations of spin and density correlations in hot neutron matter using high-fidelity interactions at next-to-next-to-next-to-leading order (N3LO) in chiral effective field theory. These correlations have a large impact on neutrino heating and shock revival in core-collapse supernovae and are encapsulated in functions called structure factors. Unfortunately&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04500v3-abstract-full').style.display = 'inline'; document.getElementById('2306.04500v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.04500v3-abstract-full" style="display: none;"> We present the first ab initio lattice calculations of spin and density correlations in hot neutron matter using high-fidelity interactions at next-to-next-to-next-to-leading order (N3LO) in chiral effective field theory. These correlations have a large impact on neutrino heating and shock revival in core-collapse supernovae and are encapsulated in functions called structure factors. Unfortunately, calculations of structure factors using high-fidelity chiral interactions were well out of reach using existing computational methods. In this work, we solve the problem using a computational approach called the rank-one operator (RO) method. The RO method is a general technique with broad applications to simulations of fermionic many-body systems. It solves the problem of exponential scaling of computational effort when using perturbation theory for higher-body operators and higher-order corrections. Using the RO method, we compute the vector and axial static structure factors for hot neutron matter as a function of temperature and density. The ab initio lattice results are in good agreement with virial expansion calculations at low densities but are more reliable at higher densities. Random phase approximation codes used to estimate neutrino opacity in core-collapse supernovae simulations can now be calibrated with ab initio lattice calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04500v3-abstract-full').style.display = 'none'; document.getElementById('2306.04500v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13921">arXiv:2304.13921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13921">pdf</a>, <a href="https://arxiv.org/ps/2304.13921">ps</a>, <a href="https://arxiv.org/format/2304.13921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.251902">10.1103/PhysRevLett.130.251902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First study of reaction $螢^{0}n\rightarrow螢^{-}p$ using $螢^0$-nucleus scattering at an electron-positron collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/nucl-th?searchtype=author&amp;query=An%2C+M+R">M. R. An</a>, <a href="/search/nucl-th?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bloms%2C+J">J. Bloms</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (593 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13921v3-abstract-short" style="display: inline;"> Using $(1.0087\pm0.0044)\times10^{10}$ $J/蠄$ events collected with the BESIII detector at the BEPCII storage ring, the process $螢^{0}n\rightarrow螢^{-}p$ is studied, where the $螢^0$ baryon is produced in the process $J/蠄\rightarrow螢^0\bar螢^0$ and the neutron is a component of the $^9\rm{Be}$, $^{12}\rm{C}$ and $^{197}\rm{Au}$ nuclei in the beam pipe. A clear signal is observed with a statistical si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13921v3-abstract-full').style.display = 'inline'; document.getElementById('2304.13921v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13921v3-abstract-full" style="display: none;"> Using $(1.0087\pm0.0044)\times10^{10}$ $J/蠄$ events collected with the BESIII detector at the BEPCII storage ring, the process $螢^{0}n\rightarrow螢^{-}p$ is studied, where the $螢^0$ baryon is produced in the process $J/蠄\rightarrow螢^0\bar螢^0$ and the neutron is a component of the $^9\rm{Be}$, $^{12}\rm{C}$ and $^{197}\rm{Au}$ nuclei in the beam pipe. A clear signal is observed with a statistical significance of $7.1蟽$. The cross section of the reaction $螢^0+{^9\rm{Be}}\rightarrow螢^-+p+{^8\rm{Be}}$ is determined to be $蟽(螢^0+{^9\rm{Be}}\rightarrow螢^-+p+{^8\rm{Be}})=(22.1\pm5.3_{\rm{stat}}\pm4.5_{\rm{sys}})$ mb at the $螢^0$ momentum of $0.818$ GeV/$c$, where the first uncertainty is statistical and the second is systematic. No significant $H$-dibaryon signal is observed in the $螢^-p$ final state. This is the first study of hyperon-nucleon interactions in electron-positron collisions and opens up a new direction for such research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13921v3-abstract-full').style.display = 'none'; document.getElementById('2304.13921v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, with Supplemental Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04485">arXiv:2302.04485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04485">pdf</a>, <a href="https://arxiv.org/ps/2302.04485">ps</a>, <a href="https://arxiv.org/format/2302.04485">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.137765">10.1016/j.physletb.2023.137765 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong correlation of the neutron star core-crust transition density with the $蟽$-meson mass via vacuum polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Niu Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Jiang%2C+W">Wei-Zhou Jiang</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ye%2C+J">Jing Ye</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Yang%2C+R">Rong-Yao Yang</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Wei%2C+S">Si-Na Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04485v3-abstract-short" style="display: inline;"> We study the neutron star core-crust transition density $蟻_t$ with the inclusion of the vacuum polarization in the dielectric function in the nonlinear relativistic Hartree approach (RHAn). It is found that the strong correlation between the $蟻_{t}$ and the scalar meson mass $m_蟽$ strikingly overwhelms the uncertainty of the nuclear equation of state in the RHAn models, in contrast to the usual aw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04485v3-abstract-full').style.display = 'inline'; document.getElementById('2302.04485v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04485v3-abstract-full" style="display: none;"> We study the neutron star core-crust transition density $蟻_t$ with the inclusion of the vacuum polarization in the dielectric function in the nonlinear relativistic Hartree approach (RHAn). It is found that the strong correlation between the $蟻_{t}$ and the scalar meson mass $m_蟽$ strikingly overwhelms the uncertainty of the nuclear equation of state in the RHAn models, in contrast to the usual awareness that $蟻_{t}$ is predominantly sensitive to the isovector nuclear potential and symmetry energy. The accurate extraction of $蟻_{t}$ through the future gravitational wave measurements can thus provide a strong constraint on the longstanding uncertainty of $m_蟽$, which is of significance to better infer the vacuum property. As an astrophysical implication, it suggests that the correlation between $蟻_t$ and $m_蟽$ is very favorable to reconcile the difficulty in reproducing the large crustal moment of inertia for the pulsar glitches with the well constrained symmetry energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04485v3-abstract-full').style.display = 'none'; document.getElementById('2302.04485v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters B Volume 839, 10 April 2023, 137765 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.17488">arXiv:2210.17488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.17488">pdf</a>, <a href="https://arxiv.org/format/2210.17488">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07422-z">10.1038/s41586-024-07422-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wavefunction matching for solving quantum many-body problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bovermann%2C+L">Lukas Bovermann</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ma%2C+Y">Yuanzhuo Ma</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Frame%2C+D">Dillon Frame</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Hildenbrand%2C+F">Fabian Hildenbrand</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Kim%2C+M">Myungkuk Kim</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Kim%2C+Y">Youngman Kim</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/nucl-th?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Shen%2C+S">Shihang Shen</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Song%2C+Y">Young-Ho Song</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Stellin%2C+G">Gianluca Stellin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.17488v4-abstract-short" style="display: inline;"> Ab initio calculations play an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions to quantum chemistry and from atomic and molecular systems to nuclear physics. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17488v4-abstract-full').style.display = 'inline'; document.getElementById('2210.17488v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.17488v4-abstract-full" style="display: none;"> Ab initio calculations play an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions to quantum chemistry and from atomic and molecular systems to nuclear physics. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing a new approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible due to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations of light nuclei, medium-mass nuclei, neutron matter, and nuclear matter. We use high-fidelity chiral effective field theory interactions and find good agreement with empirical data. These results are accompanied by new insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii, and nuclear matter saturation in ab initio calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17488v4-abstract-full').style.display = 'none'; document.getElementById('2210.17488v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figues, 13 tables. This version is the same as the version arXiv:2210.17488v2, and the final version is available at the Nature website</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 630, 59-63 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02328">arXiv:2112.02328</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02328">pdf</a>, <a href="https://arxiv.org/ps/2112.02328">ps</a>, <a href="https://arxiv.org/format/2112.02328">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nuclear potentials relevant to the symmetry energy in chiral models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Niu Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Wei%2C+S">Si-Na Wei</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Jiang%2C+W">Wei-Zhou Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02328v1-abstract-short" style="display: inline;"> We employ the extended Nambu-Jona-Lasinio, linear-$蟽$ models, and the density-dependent model with chiral limits to work out the mean fields and relevant properties of nuclear matter. To have the constraint from the data, we reexamine the Dirac optical potentials and symmetry potential based on the relativistic impulse approximation (RIA). Unlike the extended NJL and the density-dependent models w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02328v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02328v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02328v1-abstract-full" style="display: none;"> We employ the extended Nambu-Jona-Lasinio, linear-$蟽$ models, and the density-dependent model with chiral limits to work out the mean fields and relevant properties of nuclear matter. To have the constraint from the data, we reexamine the Dirac optical potentials and symmetry potential based on the relativistic impulse approximation (RIA). Unlike the extended NJL and the density-dependent models with the chiral limit in terms of the vanishing scalar density, the extended linear-$蟽$ model with a sluggish changing scalar field loses the chiral limit at the high density end. The various scalar fields can characterize the different Schr枚dinger-equivalent potentials and kinetic symmetry energy in the whole density region and the symmetry potential in the intermediate density region. The drop of the scalar field due to the chiral restoration results in a clear rise of the kinetic symmetry energy. The chiral limit in the models gives rise to the softening of the symmetry potential and thereof the symmetry energy at high densities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02328v1-abstract-full').style.display = 'none'; document.getElementById('2112.02328v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.01392">arXiv:2112.01392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.01392">pdf</a>, <a href="https://arxiv.org/format/2112.01392">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Ab initio nuclear thermodynamics from lattice effective field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Drut%2C+J+E">Joaqu铆n E. Drut</a>, <a href="/search/nucl-th?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.01392v1-abstract-short" style="display: inline;"> We show that the {\it ab initio} calculations of nuclear thermodynamics can be performed efficiently using lattice effective field theory. The simulations use a new approach called the pinhole trace algorithm to calculate thermodynamic observables for a fixed number of protons and neutrons enclosed in a finite box. In this framework, we calculate the equation of state, the liquid-vapor coexistence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.01392v1-abstract-full').style.display = 'inline'; document.getElementById('2112.01392v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.01392v1-abstract-full" style="display: none;"> We show that the {\it ab initio} calculations of nuclear thermodynamics can be performed efficiently using lattice effective field theory. The simulations use a new approach called the pinhole trace algorithm to calculate thermodynamic observables for a fixed number of protons and neutrons enclosed in a finite box. In this framework, we calculate the equation of state, the liquid-vapor coexistence line and the critical point of neutral symmetric nuclear matter with high precision. Since the algorithm uses a canonical ensemble with a fixed number of particles, it provides a sizable computational advantage over grand canonical ensemble simulations that can be a factor of several thousands to as much as several millions for large volume simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.01392v1-abstract-full').style.display = 'none'; document.getElementById('2112.01392v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, plenary talk at the 38th International Symposium on Lattice Field Theory (Lattice 2021), 26-30 July 2021, Zoom/Gather @ MIT, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14191">arXiv:2111.14191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14191">pdf</a>, <a href="https://arxiv.org/format/2111.14191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.242501">10.1103/PhysRevLett.128.242501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perturbative quantum Monte Carlo method for nuclear physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ma%2C+Y">Yuan-Zhuo Ma</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14191v2-abstract-short" style="display: inline;"> While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. We demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the bi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14191v2-abstract-full').style.display = 'inline'; document.getElementById('2111.14191v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14191v2-abstract-full" style="display: none;"> While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. We demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies of several light nuclei up to $^{16}$O by expanding the Hamiltonian around the Wigner SU(4) limit and find good agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large second order energy corrections. This occurs because the perturbing interactions break the symmetries of the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14191v2-abstract-full').style.display = 'none'; document.getElementById('2111.14191v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages main text, 6 pages supplemental material, more details on the perturbative expansion, version accepted for publication in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 242501 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03626">arXiv:2107.03626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03626">pdf</a>, <a href="https://arxiv.org/format/2107.03626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.104.044304">10.1103/PhysRevC.104.044304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Many-Body Calculations using Body-Centered Cubic Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Song%2C+Y">Young-Ho Song</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Kim%2C+Y">Youngman Kim</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=He%2C+R">Rongzheng He</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03626v1-abstract-short" style="display: inline;"> It is often computationally advantageous to model space as a discrete set of points forming a lattice grid. This technique is particularly useful for computationally difficult problems such as quantum many-body systems. For reasons of simplicity and familiarity, nearly all quantum many-body calculations have been performed on simple cubic lattices. Since the removal of lattice artifacts is often a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03626v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03626v1-abstract-full" style="display: none;"> It is often computationally advantageous to model space as a discrete set of points forming a lattice grid. This technique is particularly useful for computationally difficult problems such as quantum many-body systems. For reasons of simplicity and familiarity, nearly all quantum many-body calculations have been performed on simple cubic lattices. Since the removal of lattice artifacts is often an important concern, it would be useful to perform calculations using more than one lattice geometry. In this work we show how to perform quantum many-body calculations using auxiliary-field Monte Carlo simulations on a three-dimensional body-centered cubic (BCC) lattice. As a benchmark test we compute the ground state energy of 33 spin-up and 33 spin-down fermions in the unitary limit, which is an idealized limit where the interaction range is zero and scattering length is infinite. As a fraction of the free Fermi gas energy $E_{\rm FG}$, we find that the ground state energy is $E_0/E_{\rm FG}= 0.369(2), 0.371(2),$ using two different definitions of the finite-system energy ratio. This is in excellent agreement with recent results obtained on a cubic lattice \cite{He:2019ipt}. We find that the computational effort and performance on a BCC lattice is approximately the same as that for a cubic lattice with the same number of lattice points. We discuss how the lattice simulations with different geometries can be used to constrain the size lattice artifacts in simulations of continuum quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03626v1-abstract-full').style.display = 'none'; document.getElementById('2107.03626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 104, 044304 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00429">arXiv:2106.00429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.00429">pdf</a>, <a href="https://arxiv.org/ps/2106.00429">ps</a>, <a href="https://arxiv.org/format/2106.00429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.103.064604">10.1103/PhysRevC.103.064604 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry potentials and in-medium nucleon-nucleon cross sections within the Nambu-Jona-Lasinio model in relativistic impulse approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Wei%2C+S">Si-Na Wei</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Yang%2C+R">Rong-Yao Yang</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ye%2C+J">Jing Ye</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Niu Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Jiang%2C+W">Wei-Zhou Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00429v1-abstract-short" style="display: inline;"> In the relativistic impulse approximation (RIA), we study symmetry potentials and in-medium nucleon-nucleon (NN) cross sections with the Nambu-Jona-Lasinio (NJL) model that features chiral symmetry. The chiral symmetry that plays a fundamental role in the nonperturbative physics in the strong interaction is anticipated to add restrictive effects on the symmetry potentials and in-medium NN cross se&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00429v1-abstract-full').style.display = 'inline'; document.getElementById('2106.00429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00429v1-abstract-full" style="display: none;"> In the relativistic impulse approximation (RIA), we study symmetry potentials and in-medium nucleon-nucleon (NN) cross sections with the Nambu-Jona-Lasinio (NJL) model that features chiral symmetry. The chiral symmetry that plays a fundamental role in the nonperturbative physics in the strong interaction is anticipated to add restrictive effects on the symmetry potentials and in-medium NN cross sections. For comparison, we also perform the study with the usual relativistic mean-field (RMF) model. The numerical results with the NJL and RMF models are similar at saturation density and below, since a priori fit was made to saturation properties. With the increase of nuclear density, the chiral symmetry starts to be restored partially in the NJL model, resulting in the explicit fall of the scalar density. In a large energy span, the symmetry potential acquires a significant rise for the partial restoration of the chiral symmetry, compared to the one with the RMF model. It is found that the in-medium NN cross sections in the RIA with the NJL and RMF models both increase with the density in the energy region interested in this study, whereas those with the NJL model increase sharply as long as a clear chiral symmetry restoration takes place. The different tendency of observables in density can be transmitted to the different energy dependence in the RIA. The NJL model is shown to have characteristic energy-dependent symmetry potentials and NN cross sections beyond saturation point, apart from the RMF models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00429v1-abstract-full').style.display = 'none'; document.getElementById('2106.00429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 103, 064604 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.09420">arXiv:2010.09420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.09420">pdf</a>, <a href="https://arxiv.org/format/2010.09420">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.062501">10.1103/PhysRevLett.127.062501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden spin-isospin exchange symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bogner%2C+S">Scott Bogner</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Brown%2C+B+A">B. Alex Brown</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Hergert%2C+H">Heiko Hergert</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Hjorth-Jensen%2C+M">Morten Hjorth-Jensen</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.09420v2-abstract-short" style="display: inline;"> The strong interactions among nucleons have an approximate spin-isospin exchange symmetry that arises from the properties of quantum chromodynamics in the limit of many colors, $N_c$. However this large-$N_c$ symmetry is well hidden and reveals itself only when averaging over intrinsic spin orientations. Furthermore, the symmetry is obscured unless the momentum resolution scale is close to an opti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.09420v2-abstract-full').style.display = 'inline'; document.getElementById('2010.09420v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.09420v2-abstract-full" style="display: none;"> The strong interactions among nucleons have an approximate spin-isospin exchange symmetry that arises from the properties of quantum chromodynamics in the limit of many colors, $N_c$. However this large-$N_c$ symmetry is well hidden and reveals itself only when averaging over intrinsic spin orientations. Furthermore, the symmetry is obscured unless the momentum resolution scale is close to an optimal scale that we call $螞_{{\rm large-}N_c}$. We show that the large-$N_c$ derivation requires a momentum resolution scale of $螞_{{\rm large-}N_c} \sim 500$ MeV. We derive a set of spin-isospin exchange sum rules and discuss implications for the spectrum of $^{30}$P and applications to nuclear forces, nuclear structure calculations, and three-nucleon interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.09420v2-abstract-full').style.display = 'none'; document.getElementById('2010.09420v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages (main) + 3 pages (supplemental materials), 1 figure (main) + 4 figures (supplemental materials), final version to appear in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 062501 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.05105">arXiv:1912.05105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.05105">pdf</a>, <a href="https://arxiv.org/format/1912.05105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.192502">10.1103/PhysRevLett.125.192502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio nuclear thermodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Drut%2C+J+E">Joaqu铆n E. Drut</a>, <a href="/search/nucl-th?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.05105v3-abstract-short" style="display: inline;"> We propose a new Monte Carlo method called the pinhole trace algorithm for {\it ab initio} calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.05105v3-abstract-full').style.display = 'inline'; document.getElementById('1912.05105v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.05105v3-abstract-full" style="display: none;"> We propose a new Monte Carlo method called the pinhole trace algorithm for {\it ab initio} calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first {\it ab initio} study of the density and temperature dependence of nuclear clustering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.05105v3-abstract-full').style.display = 'none'; document.getElementById('1912.05105v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages main text, 9 pages supplemental materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 192502 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07708">arXiv:1910.07708</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.07708">pdf</a>, <a href="https://arxiv.org/ps/1910.07708">ps</a>, <a href="https://arxiv.org/format/1910.07708">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2020.135536">10.1016/j.physletb.2020.135536 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected Cooling Algorithm for Quantum Computation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bonitati%2C+J">Joey Bonitati</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Given%2C+G">Gabriel Given</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Hicks%2C+C">Caleb Hicks</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Rai%2C+A">Abudit Rai</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Sarkar%2C+A">Avik Sarkar</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Watkins%2C+J">Jacob Watkins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07708v2-abstract-short" style="display: inline;"> In the current era of noisy quantum devices, there is a need for quantum algorithms that are efficient and robust against noise. Towards this end, we introduce the projected cooling algorithm for quantum computation. The projected cooling algorithm is able to construct the localized ground state of any Hamiltonian with a translationally-invariant kinetic energy and interactions that vanish at larg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07708v2-abstract-full').style.display = 'inline'; document.getElementById('1910.07708v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07708v2-abstract-full" style="display: none;"> In the current era of noisy quantum devices, there is a need for quantum algorithms that are efficient and robust against noise. Towards this end, we introduce the projected cooling algorithm for quantum computation. The projected cooling algorithm is able to construct the localized ground state of any Hamiltonian with a translationally-invariant kinetic energy and interactions that vanish at large distances. The term &#34;localized&#34; refers to localization in position space. The method can be viewed as the quantum analog of evaporative cooling. We start with an initial state with support over a compact region of a large volume. We then drive the excited quantum states to disperse and measure the remaining portion of the wave function left behind. For the nontrivial examples we consider here, the improvement over other methods is substantial. The only additional resource required is performing the operations in a volume significantly larger than the size of the localized state. These characteristics make the projected cooling algorithm a promising tool for calculations of self-bound systems such as atomic nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07708v2-abstract-full').style.display = 'none'; document.getElementById('1910.07708v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages and 3 figures in the main text, 7 pages in the supplemental materials, final version to appear Physics Letters B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 807, 135536 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.01257">arXiv:1910.01257</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.01257">pdf</a>, <a href="https://arxiv.org/ps/1910.01257">ps</a>, <a href="https://arxiv.org/format/1910.01257">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.063615">10.1103/PhysRevA.101.063615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superfluid Condensate Fraction and Pairing Wave Function of the Unitary Fermi Gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=He%2C+R">Rongzheng He</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.01257v2-abstract-short" style="display: inline;"> The unitary Fermi gas is a many-body system of two-component fermions with zero-range interactions tuned to infinite scattering length. Despite much activity and interest in unitary Fermi gases and its universal properties, there have been great difficulties in performing accurate calculations of the superfluid condensate fraction and pairing wave function. In this work we present auxiliary-field&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01257v2-abstract-full').style.display = 'inline'; document.getElementById('1910.01257v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.01257v2-abstract-full" style="display: none;"> The unitary Fermi gas is a many-body system of two-component fermions with zero-range interactions tuned to infinite scattering length. Despite much activity and interest in unitary Fermi gases and its universal properties, there have been great difficulties in performing accurate calculations of the superfluid condensate fraction and pairing wave function. In this work we present auxiliary-field lattice Monte Carlo simulations using a novel lattice interaction which accelerates the approach to the continuum limit, thereby allowing for robust calculations of these difficult observables. As a benchmark test we compute the ground state energy of 33 spin-up and 33 spin-down particles. As a fraction of the free Fermi gas energy $E_{FG}$, we find $E_0/E_{FG}= 0.369(2), 0.372(2)$, using two different definitions of the finite-system energy ratio, in agreement with the latest theoretical and experimental results. We then determine the condensate fraction by measuring off-diagonal long-range order in the two-body density matrix. We find that the fraction of condensed pairs is $伪= 0.43(2)$. We also extract the pairing wave function and find the pair correlation length to be $味_pk_F = 1.8(3) \hbar$, where $k_F$ is the Fermi momentum. Provided that the simulations can be performed without severe sign oscillations, the methods we present here can be applied to superfluid neutron matter as well as more exotic P-wave and D-wave superfluids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01257v2-abstract-full').style.display = 'none'; document.getElementById('1910.01257v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages and 11 figures, final version to appear Physical Review A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 101, 063615 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.01295">arXiv:1902.01295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.01295">pdf</a>, <a href="https://arxiv.org/format/1902.01295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.99.064001">10.1103/PhysRevC.99.064001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galilean invariance restoration on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.01295v1-abstract-short" style="display: inline;"> We consider the breaking of Galilean invariance due to different lattice cutoff effects in moving frames and a nonlocal smearing parameter which is used in the construction of the nuclear lattice interaction. The dispersion relation and neutron-proton scattering phase shifts are used to investigate the Galilean invariance breaking effects and ways to restore it. For $S$-wave channels, ${}^1S_0$ an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01295v1-abstract-full').style.display = 'inline'; document.getElementById('1902.01295v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.01295v1-abstract-full" style="display: none;"> We consider the breaking of Galilean invariance due to different lattice cutoff effects in moving frames and a nonlocal smearing parameter which is used in the construction of the nuclear lattice interaction. The dispersion relation and neutron-proton scattering phase shifts are used to investigate the Galilean invariance breaking effects and ways to restore it. For $S$-wave channels, ${}^1S_0$ and ${}^3S_1$, we present the neutron-proton scattering phase shifts in moving frames calculated using both L眉scher&#39;s formula and the spherical wall method, as well as the dispersion relation. For the $P$ and $D$ waves, we present the neutron-proton scattering phase shifts in moving frames calculated using the spherical wall method. We find that the Galilean invariance breaking effects stemming from the lattice artifacts partially cancel those caused by the nonlocal smearing parameter. Due to this cancellation, the Galilean invariance breaking effect is small, and the Galilean invariance can be restored by introducing Galilean invariance restoration operators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01295v1-abstract-full').style.display = 'none'; document.getElementById('1902.01295v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 99, 064001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.01661">arXiv:1901.01661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.01661">pdf</a>, <a href="https://arxiv.org/format/1901.01661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.100.011403">10.1103/PhysRevA.100.011403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time fractals and discrete scale invariance with trapped ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Watkins%2C+J">Jacob Watkins</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Frame%2C+D">Dillon Frame</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Given%2C+G">Gabriel Given</a>, <a href="/search/nucl-th?searchtype=author&amp;query=He%2C+R">Rongzheng He</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Sarkar%2C+A">Avik Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.01661v2-abstract-short" style="display: inline;"> We show that a one-dimensional chain of trapped ions can be engineered to produce a quantum mechanical system with discrete scale invariance and fractal-like time dependence. By discrete scale invariance we mean a system that replicates itself under a rescaling of distance for some scale factor, and a time fractal is a signal that is invariant under the rescaling of time. These features are remini&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01661v2-abstract-full').style.display = 'inline'; document.getElementById('1901.01661v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.01661v2-abstract-full" style="display: none;"> We show that a one-dimensional chain of trapped ions can be engineered to produce a quantum mechanical system with discrete scale invariance and fractal-like time dependence. By discrete scale invariance we mean a system that replicates itself under a rescaling of distance for some scale factor, and a time fractal is a signal that is invariant under the rescaling of time. These features are reminiscent of the Efimov effect, which has been predicted and observed in bound states of three-body systems. We demonstrate that discrete scale invariance in the trapped ion system can be controlled with two independently tunable parameters. We also discuss the extension to n-body states where the discrete scaling symmetry has an exotic heterogeneous structure. The results we present can be realized using currently available technologies developed for trapped ion quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01661v2-abstract-full').style.display = 'none'; document.getElementById('1901.01661v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 + 5 pages (main + supplemental materials), 2 + 3 figures (main + supplemental materials), version to appear in Physical Review A Rapid Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 100, 011403 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.10928">arXiv:1812.10928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.10928">pdf</a>, <a href="https://arxiv.org/format/1812.10928">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2019.134863">10.1016/j.physletb.2019.134863 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Essential elements for nuclear binding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.10928v2-abstract-short" style="display: inline;"> How does nuclear binding emerge from first principles? Our current best understanding of nuclear forces is based on a systematic low-energy expansion called chiral effective field theory. However, recent {\it ab initio} calculations of nuclear structure have found that not all chiral effective field theory interactions give accurate predictions with increasing nuclear density. In this letter we ad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.10928v2-abstract-full').style.display = 'inline'; document.getElementById('1812.10928v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.10928v2-abstract-full" style="display: none;"> How does nuclear binding emerge from first principles? Our current best understanding of nuclear forces is based on a systematic low-energy expansion called chiral effective field theory. However, recent {\it ab initio} calculations of nuclear structure have found that not all chiral effective field theory interactions give accurate predictions with increasing nuclear density. In this letter we address the reason for this problem and the first steps toward a solution. Using nuclear lattice simulations, we deduce the minimal nuclear interaction that can reproduce the ground state properties of light nuclei, medium-mass nuclei, and neutron matter simultaneously with no more than a few percent error in the energies and charge radii. We find that only four parameters are needed. With these four parameters one can accurately describe neutron matter up to saturation density and the ground state properties of nuclei up to calcium. Given the absence of sign oscillations in these lattice Monte Carlo simulations and the mild scaling of computational effort scaling with nucleon number, this work provides a pathway to high-quality simulations in the future with as many as one or two hundred nucleons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.10928v2-abstract-full').style.display = 'none'; document.getElementById('1812.10928v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication in Physics Letters B. For better readability, the main section and the supplementary material are merged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters B 797 (2019) 134863 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.07994">arXiv:1806.07994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.07994">pdf</a>, <a href="https://arxiv.org/format/1806.07994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.98.044002">10.1103/PhysRevC.98.044002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron-proton scattering with lattice chiral effective field theory at next-to-next-to-next-to-leading order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.07994v3-abstract-short" style="display: inline;"> We present a new lattice formulation of chiral effective field theory interactions with a simpler decomposition into spin channels. With these interactions the process of fitting to the empirical scattering phase shifts is simplified, and the resulting lattice phase shifts are more accurate than in previous studies. We present results for the neutron-proton system up to next-to-next-to-next-to-lea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07994v3-abstract-full').style.display = 'inline'; document.getElementById('1806.07994v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.07994v3-abstract-full" style="display: none;"> We present a new lattice formulation of chiral effective field theory interactions with a simpler decomposition into spin channels. With these interactions the process of fitting to the empirical scattering phase shifts is simplified, and the resulting lattice phase shifts are more accurate than in previous studies. We present results for the neutron-proton system up to next-to-next-to-next-to-leading order for lattice spacings of $1.97$, $1.64$, $1.32$, and $0.99~{\rm fm}$. Our results provide a pathway to $\textit{ab initio}$ lattice calculations of nuclear structure, reactions, and thermodynamics with accurate and systematic control over the chiral nucleon-nucleon force. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07994v3-abstract-full').style.display = 'none'; document.getElementById('1806.07994v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures and 2 tables. Published in Physical Review C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 98, 044002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.01879">arXiv:1708.01879</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.01879">pdf</a>, <a href="https://arxiv.org/ps/1708.01879">ps</a>, <a href="https://arxiv.org/format/1708.01879">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Phase shift formulas for baryon-baryon scattering in elongated boxes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Wu%2C+Y">Ya-Jie Wu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Liu%2C+Z">Zhan-Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.01879v2-abstract-short" style="display: inline;"> We have established the relations between the baryon-baryon scattering phase shifts and the two-particle energy spectrum in the elongated box. We have studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. This&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01879v2-abstract-full').style.display = 'inline'; document.getElementById('1708.01879v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.01879v2-abstract-full" style="display: none;"> We have established the relations between the baryon-baryon scattering phase shifts and the two-particle energy spectrum in the elongated box. We have studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. This will be helpful to extract the phase shifts in the continuum from lattice QCD data using asymmetric volumes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01879v2-abstract-full').style.display = 'none'; document.getElementById('1708.01879v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.03598">arXiv:1707.03598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.03598">pdf</a>, <a href="https://arxiv.org/format/1707.03598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2018-12578-2">10.1140/epja/i2018-12578-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Possible hadronic molecules composed of the doubly charmed baryon and nucleon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Meng%2C+L">Lu Meng</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+S">Shi-lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.03598v2-abstract-short" style="display: inline;"> We perform a systematical investigation of the possible deuteron-like bound states with configuration $螢_{cc}N (\bar{N})$, where $N(\bar{N})$ denotes the nucleon (anti-nucleon), in the framework of the one-boson-exchange-potential model. In the spin-triplet sector we take into account both the ${}^3S_1$ and ${}^3D_1$ channels due to non-vanishing tensor force. There exist several candidates of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.03598v2-abstract-full').style.display = 'inline'; document.getElementById('1707.03598v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.03598v2-abstract-full" style="display: none;"> We perform a systematical investigation of the possible deuteron-like bound states with configuration $螢_{cc}N (\bar{N})$, where $N(\bar{N})$ denotes the nucleon (anti-nucleon), in the framework of the one-boson-exchange-potential model. In the spin-triplet sector we take into account both the ${}^3S_1$ and ${}^3D_1$ channels due to non-vanishing tensor force. There exist several candidates of the loosely bound molecular states for the $螢_{cc}N$ and $螢_{cc}\bar{N}$ systems, which lie below the threshold of $螞_c螞_c$ or $螞_c{\bar螞}_c$. We also investigate the possible loosely bound states with configurations $螞_cN(\bar{N})$ and $危_cN(\bar{N})$. These molecular candidates may be searched for at Belle II and LHC in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.03598v2-abstract-full').style.display = 'none'; document.getElementById('1707.03598v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.01009">arXiv:1704.01009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.01009">pdf</a>, <a href="https://arxiv.org/format/1704.01009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.114019">10.1103/PhysRevD.95.114019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deuteron-like states composed of two doubly charmed baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Meng%2C+L">Lu Meng</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.01009v2-abstract-short" style="display: inline;"> We present a systematic investigation of the possible molecular states composed of a pair of doubly charmed baryons ($螢_{cc}螢_{cc}$) or one doubly charmed baryon and one doubly charmed antibaryon $(螢_{cc}\bar螢_{cc})$ within the framework of the one-boson-exchange-potential model. For the spin-triplet systems, we take into account the mixing between the ${}^3S_1$ and ${}^3D_1$ channels. For the bar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01009v2-abstract-full').style.display = 'inline'; document.getElementById('1704.01009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.01009v2-abstract-full" style="display: none;"> We present a systematic investigation of the possible molecular states composed of a pair of doubly charmed baryons ($螢_{cc}螢_{cc}$) or one doubly charmed baryon and one doubly charmed antibaryon $(螢_{cc}\bar螢_{cc})$ within the framework of the one-boson-exchange-potential model. For the spin-triplet systems, we take into account the mixing between the ${}^3S_1$ and ${}^3D_1$ channels. For the baryon-baryon system $螢_{cc}螢_{cc}$ with $(R,I) = (\bar{3}, 1/2)$ and $(\bar{3}, 0)$, where $R$ and $I$ represent the group representation and the isospin of the system, respectively, there exist loosely bound molecular states. For the baryon-antibaryon system $螢_{cc}\bar螢_{cc}$ with $(R,I) = (8, 1)$, $(8, 1/2)$ and $(8,0)$, there also exist deuteron-like molecules. The $B_{cc}\bar{B}_{cc}$ molecular states may be produced at LHC. The proximity of their masses to the threshold of two doubly charmed baryons provides a clean clue to identify them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01009v2-abstract-full').style.display = 'none'; document.getElementById('1704.01009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 114019 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.05319">arXiv:1702.05319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.05319">pdf</a>, <a href="https://arxiv.org/ps/1702.05319">ps</a>, <a href="https://arxiv.org/format/1702.05319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2017-12273-x">10.1140/epja/i2017-12273-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Alarc%C3%B3n%2C+J+M">Jose Manuel Alarc贸n</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Du%2C+D">Dechuan Du</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Klein%2C+N">Nico Klein</a>, <a href="/search/nucl-th?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Luu%2C+T">Thomas Luu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.05319v1-abstract-short" style="display: inline;"> We present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact terms and static one-pion exchange. We show results for a fully non-perturbative analysis up to next-to-next-to-leading order (NNLO), followed by a per&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05319v1-abstract-full').style.display = 'inline'; document.getElementById('1702.05319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.05319v1-abstract-full" style="display: none;"> We present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact terms and static one-pion exchange. We show results for a fully non-perturbative analysis up to next-to-next-to-leading order (NNLO), followed by a perturbative treatment of contributions beyond LO. The latter analysis anticipates practical Monte Carlo simulations of heavier nuclei. We explore how our results depend on the lattice spacing a, and estimate sources of uncertainty in the determination of the low-energy constants of the next-to-leading-order (NLO) two-nucleon force. We give results for lattice spacings ranging from a = 1.97 fm down to a = 0.98 fm, and discuss the effects of lattice artifacts on the scattering observables. At a = 0.98 fm, lattice artifacts appear small, and our NNLO results agree well with the Nijmegen partial-wave analysis for S-wave and P-wave channels. We expect the peripheral partial waves to be equally well described once the lattice momenta in the pion-nucleon coupling are taken to coincide with the continuum dispersion relation, and higher-order (N3LO) contributions are included. We stress that for center-of-mass momenta below 100 MeV, the physics of the two-nucleon system is independent of the lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05319v1-abstract-full').style.display = 'none'; document.getElementById('1702.05319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.05177">arXiv:1702.05177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.05177">pdf</a>, <a href="https://arxiv.org/format/1702.05177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.222505">10.1103/PhysRevLett.119.222505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio calculations of the isotopic dependence of nuclear clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/nucl-th?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.05177v2-abstract-short" style="display: inline;"> Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known examples, much remains to be discovered about the general nature of clustering in nuclei. In this letter we present lattice Monte Carlo calculations based on chiral effective field theo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05177v2-abstract-full').style.display = 'inline'; document.getElementById('1702.05177v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.05177v2-abstract-full" style="display: none;"> Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known examples, much remains to be discovered about the general nature of clustering in nuclei. In this letter we present lattice Monte Carlo calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon, and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon correlations at short distances, we determine the shape of the alpha clusters and the entanglement of nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field Monte Carlo simulations in computing density correlations relative to the center of mass. We use the pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster correlations in 12C, 14C, and 16C. The structural similarities among the carbon isotopes suggest that 14C and 16C have excitations analogous to the well-known Hoyle state resonance in 12C. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05177v2-abstract-full').style.display = 'none'; document.getElementById('1702.05177v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version to appear in Physical Review Letters. 5 + 12 pages (main + supplemental materials), 3 + 12 figures (main + supplemental materials)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 222505 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01046">arXiv:1608.01046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.01046">pdf</a>, <a href="https://arxiv.org/ps/1608.01046">ps</a>, <a href="https://arxiv.org/format/1608.01046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.062502">10.1103/PhysRevLett.117.062502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the resonance of Dirac particle by the application of complex momentum representation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Niu Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Shi%2C+M">Min Shi</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Guo%2C+J">Jian-You Guo</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Niu%2C+Z">Zhong-Ming Niu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Liang%2C+H">Haozhao Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01046v1-abstract-short" style="display: inline;"> Resonance plays critical roles in the formation of many physical phenomena, and several methods have been developed for the exploration of resonance. In this work, we propose a new scheme for resonance by solving the Dirac equation in complex momentum representation, in which the resonant states are exposed clearly in complex momentum plane and the resonance parameters can be determined precisely&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01046v1-abstract-full').style.display = 'inline'; document.getElementById('1608.01046v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01046v1-abstract-full" style="display: none;"> Resonance plays critical roles in the formation of many physical phenomena, and several methods have been developed for the exploration of resonance. In this work, we propose a new scheme for resonance by solving the Dirac equation in complex momentum representation, in which the resonant states are exposed clearly in complex momentum plane and the resonance parameters can be determined precisely without imposing unphysical parameters. Combining with the relativistic mean-field theory, this method is applied to probe the resonances in $^{120}$Sn with the energies, widths, and wavefunctions being obtained. Comparing with other methods, this method is not only very effective for narrow resonances, but also can be reliably applied to broad resonances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01046v1-abstract-full').style.display = 'none'; document.getElementById('1608.01046v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 117, 062502 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.04539">arXiv:1602.04539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.04539">pdf</a>, <a href="https://arxiv.org/format/1602.04539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.132501">10.1103/PhysRevLett.117.132501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear binding near a quantum phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Rokash%2C+A">Alexander Rokash</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Alarc%C3%B3n%2C+J+M">Jose Manuel Alarc贸n</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Du%2C+D">Dechuan Du</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Klein%2C+N">Nico Klein</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lu%2C+B">Bing-nan Lu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/nucl-th?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.04539v2-abstract-short" style="display: inline;"> How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperatur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.04539v2-abstract-full').style.display = 'inline'; document.getElementById('1602.04539v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.04539v2-abstract-full" style="display: none;"> How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.04539v2-abstract-full').style.display = 'none'; document.getElementById('1602.04539v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version to appear in Physical Review Letters. Main: 5 pages, 3 figures. Supplemental material: 13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 132501 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.01832">arXiv:1501.01832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.01832">pdf</a>, <a href="https://arxiv.org/format/1501.01832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2015.05.074">10.1016/j.physletb.2015.05.074 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parity violation in neutron capture on the proton: determining the weak pion-nucleon coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=de+Vries%2C+J">J. de Vries</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Nogga%2C+A">A. Nogga</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Epelbaum%2C+E">E. Epelbaum</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Kaiser%2C+N">N. Kaiser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.01832v2-abstract-short" style="display: inline;"> We investigate the parity-violating analyzing power in neutron capture on the proton at thermal energies in the framework of chiral effective field theory. By combining this analysis with a previous analysis of parity violation in proton-proton scattering, we are able to extract the size of the weak pion-nucleon coupling constant. The uncertainty is significant and dominated by the experimental er&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01832v2-abstract-full').style.display = 'inline'; document.getElementById('1501.01832v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.01832v2-abstract-full" style="display: none;"> We investigate the parity-violating analyzing power in neutron capture on the proton at thermal energies in the framework of chiral effective field theory. By combining this analysis with a previous analysis of parity violation in proton-proton scattering, we are able to extract the size of the weak pion-nucleon coupling constant. The uncertainty is significant and dominated by the experimental error which is expected to be reduced soon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01832v2-abstract-full').style.display = 'none'; document.getElementById('1501.01832v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 747 : 299-304, 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.1576">arXiv:1404.1576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.1576">pdf</a>, <a href="https://arxiv.org/format/1404.1576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2014-14108-8">10.1140/epja/i2014-14108-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A study of the parity-odd nucleon-nucleon potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=de+Vries%2C+J">J. de Vries</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Kaiser%2C+N">N. Kaiser</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Liu%2C+X+-">X. -H. Liu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+S+-">S. -L. Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.1576v2-abstract-short" style="display: inline;"> We investigate the parity-violating nucleon-nucleon potential as obtained in chiral effective field theory. By using resonance saturation we compare the chiral potential to the more traditional one-meson exchange potential. In particular, we show how parameters appearing in the different approaches can be compared with each other and demonstrate that analyses of parity violation in proton-proton s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.1576v2-abstract-full').style.display = 'inline'; document.getElementById('1404.1576v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.1576v2-abstract-full" style="display: none;"> We investigate the parity-violating nucleon-nucleon potential as obtained in chiral effective field theory. By using resonance saturation we compare the chiral potential to the more traditional one-meson exchange potential. In particular, we show how parameters appearing in the different approaches can be compared with each other and demonstrate that analyses of parity violation in proton-proton scattering within the different approaches are in good agreement. In the second part of this work, we extend the parity-violating potential to next-to-next-to-leading order. We show that generally it includes both one-pion- and two-pion-exchange corrections, but the former play no significant role. The two-pion-exchange corrections depend on five new low-energy constants which only become important if the leading-order weak pion-nucleon constant $h_蟺$ turns out to be very small. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.1576v2-abstract-full').style.display = 'none'; document.getElementById('1404.1576v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2014) 50: 108 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.3763">arXiv:1311.3763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.3763">pdf</a>, <a href="https://arxiv.org/ps/1311.3763">ps</a>, <a href="https://arxiv.org/format/1311.3763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> XYZ States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Deng%2C+W">Wei-Zhen Deng</a>, <a href="/search/nucl-th?searchtype=author&amp;query=He%2C+J">Jun He</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Liu%2C+X">Xiang Liu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Luo%2C+Z">Zhi-Gang Luo</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Sun%2C+Z">Zhi-Feng Sun</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.3763v1-abstract-short" style="display: inline;"> In the past decade, many new charmonium (or charmonium-like) and bottomonium (or bottomonium-like) states were observed experimentally. I will review these XYZ states which do not fit into the quark model spectrum easily. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.3763v1-abstract-full" style="display: none;"> In the past decade, many new charmonium (or charmonium-like) and bottomonium (or bottomonium-like) states were observed experimentally. I will review these XYZ states which do not fit into the quark model spectrum easily. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.3763v1-abstract-full').style.display = 'none'; document.getElementById('1311.3763v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Plenary talk at the XV International Conference on Hadron Spectroscopy-Hadron 2013, 4-8 November 2013, Nara, Japan</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(Hadron 2013)005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.1770">arXiv:1302.1770</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.1770">pdf</a>, <a href="https://arxiv.org/ps/1302.1770">ps</a>, <a href="https://arxiv.org/format/1302.1770">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.054034">10.1103/PhysRevD.87.054034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The meson-exchange model for the $螞\bar螞$ interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Zhao%2C+L">Lu Zhao</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zou%2C+B">Bing-Song Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.1770v1-abstract-short" style="display: inline;"> In the present work, we apply the one-boson-exchange potential (OBEP) model to investigate the possibility of Y(2175) and $畏(2225)$ as bound states of $螞\bar螞(^3S_1)$ and $螞\bar螞(^1S_0)$ respectively. We consider the effective potential from the pseudoscalar $畏$-exchange and $畏^{&#39;}$-exchange, the scalar $蟽$-exchange, and the vector $蠅$-exchange and $蠁$-exchange. The $畏$ and $畏^{&#39;}$ meson exchange&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.1770v1-abstract-full').style.display = 'inline'; document.getElementById('1302.1770v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.1770v1-abstract-full" style="display: none;"> In the present work, we apply the one-boson-exchange potential (OBEP) model to investigate the possibility of Y(2175) and $畏(2225)$ as bound states of $螞\bar螞(^3S_1)$ and $螞\bar螞(^1S_0)$ respectively. We consider the effective potential from the pseudoscalar $畏$-exchange and $畏^{&#39;}$-exchange, the scalar $蟽$-exchange, and the vector $蠅$-exchange and $蠁$-exchange. The $畏$ and $畏^{&#39;}$ meson exchange potential is repulsive force for the state $^1S_0$ and attractive for $^3S_1$. The results depend very sensitively on the cutoff parameter of the $蠅$-exchange ($螞_蠅$) and least sensitively on that of the $蠁$-exchange ($螞_蠁$). Our result suggests the possible interpretation of Y(2175) and $畏(2225)$ as the bound states of $螞\bar螞(^3S_1)$ and $螞\bar螞(^1S_0)$ respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.1770v1-abstract-full').style.display = 'none'; document.getElementById('1302.1770v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D87 (2013) 054034 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.5007">arXiv:1211.5007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.5007">pdf</a>, <a href="https://arxiv.org/ps/1211.5007">ps</a>, <a href="https://arxiv.org/format/1211.5007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.114008">10.1103/PhysRevD.88.114008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupled-channel analysis of the possible $D^{(*)}D^{(*)}$, $\bar{B}^{(*)}\bar{B}^{(*)}$ and $D^{(*)}\bar{B}^{(*)}$ molecular states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Sun%2C+Z">Zhi-Feng Sun</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Liu%2C+X">Xiang Liu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.5007v2-abstract-short" style="display: inline;"> We perform a coupled-channel study of the possible deuteron-like molecules with two heavy flavor quarks, including the systems of $D^{(*)}D^{(*)}$ with double charm, $\bar{B}^{(*)}\bar{B}^{(*)}$ with double bottom and $D^{(*)}\bar{B}^{(*)}$ with both charm and bottom, within the one-boson-exchange model. In our study, we take into account the S-D mixing which plays an important role in the formati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.5007v2-abstract-full').style.display = 'inline'; document.getElementById('1211.5007v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.5007v2-abstract-full" style="display: none;"> We perform a coupled-channel study of the possible deuteron-like molecules with two heavy flavor quarks, including the systems of $D^{(*)}D^{(*)}$ with double charm, $\bar{B}^{(*)}\bar{B}^{(*)}$ with double bottom and $D^{(*)}\bar{B}^{(*)}$ with both charm and bottom, within the one-boson-exchange model. In our study, we take into account the S-D mixing which plays an important role in the formation of the loosely bound deuteron, and particularly, the coupled-channel effect in the flavor space. According to our calculation, the states $D^{(*)}D^{(*)}[I(J^P)=0(1^+)]$ and $(D^{(*)}D^{(*)})_s[J^P=1^+]$ with double charm, the states $\bar{B}^{(*)}\bar{B}^{(*)}[I(J^P)=0(1^+),0(2^+),1(0^+),1(1^+),1(2^+)]$, $(\bar{B}^{(*)}\bar{B}^{(*)})_s[J^P=0^+,1^+,2^+]$ and $(\bar{B}^{(*)}\bar{B}^{(*)})_{ss}[J^P=0^+,1^+,2^+]$ with double bottom, and the states $D^{(*)}\bar{B}^{(*)}[I(J^P)=0(0^+),0(1^+)]$ and $(D^{(*)}\bar{B}^{(*)})_s[J^P=0^+,1^+]$ with both charm and bottom are good molecule candidates. However, the existence of the states $D^{(*)}D^{(*)}[I(J^P)=0(2^+)]$ with double charm and $D^{(*)}\bar{B}^{(*)}[I(J^P)=1(1^+)]$ with both charm and bottom is ruled out. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.5007v2-abstract-full').style.display = 'none'; document.getElementById('1211.5007v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 figure added, published in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 88, 114008 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.3578">arXiv:1211.3578</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.3578">pdf</a>, <a href="https://arxiv.org/format/1211.3578">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.074015">10.1103/PhysRevD.89.074015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Perturbation Theory and the $\bar B \bar B$ Strong Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.3578v2-abstract-short" style="display: inline;"> We have calculated the potentials of the heavy (charmed or bottomed) pseudoscalar mesons up to $O(蔚^2)$ with the heavy meson chiral perturbation theory. We take into account the contributions from the football, triangle, box, and crossed diagrams with the 2$蠁$ exchange and one-loop corrections to the contact terms. We notice that the total 2$蠁$-exchange potential alone is attractive in the small m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3578v2-abstract-full').style.display = 'inline'; document.getElementById('1211.3578v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.3578v2-abstract-full" style="display: none;"> We have calculated the potentials of the heavy (charmed or bottomed) pseudoscalar mesons up to $O(蔚^2)$ with the heavy meson chiral perturbation theory. We take into account the contributions from the football, triangle, box, and crossed diagrams with the 2$蠁$ exchange and one-loop corrections to the contact terms. We notice that the total 2$蠁$-exchange potential alone is attractive in the small momentum region in the channel ${\bar B \bar B}^{I=1}$, ${\bar B_s \bar B_s}^{I=0}$, or ${\bar B \bar B_s}^{I=1/2}$, while repulsive in the channel ${\bar B \bar B}^{I=0}$. Hopefully the analytical chiral structures of the potentials may be useful in the extrapolation of the heavy meson interaction from lattice QCD simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3578v2-abstract-full').style.display = 'none'; document.getElementById('1211.3578v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, 4 tables; discussion extended, references added, version published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 074015 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.1658">arXiv:1210.1658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.1658">pdf</a>, <a href="https://arxiv.org/ps/1210.1658">ps</a>, <a href="https://arxiv.org/format/1210.1658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/40/7/075104">10.1088/0954-3899/40/7/075104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of anisotropic radial flow in relativistic heavy ion collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Na Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Wu%2C+Y">Yuanfang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.1658v1-abstract-short" style="display: inline;"> We suggest the azimuthal distribution of mean transverse (radial) rapidity of the final state particles as a more direct measure of the transverse motion of the source than the standard azimuthal multiplicity distribution. Using a sample generated by the AMPT model with string melting, we demonstrate that the azimuthal amplitude of the suggested distribution characterizes the anisotropic radial fl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.1658v1-abstract-full').style.display = 'inline'; document.getElementById('1210.1658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.1658v1-abstract-full" style="display: none;"> We suggest the azimuthal distribution of mean transverse (radial) rapidity of the final state particles as a more direct measure of the transverse motion of the source than the standard azimuthal multiplicity distribution. Using a sample generated by the AMPT model with string melting, we demonstrate that the azimuthal amplitude of the suggested distribution characterizes the anisotropic radial flow, and coincides with the parameter of anisotropic radial rapidity extracted from a generalized blast-wave parametrization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.1658v1-abstract-full').style.display = 'none'; document.getElementById('1210.1658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.6347">arXiv:1208.6347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.6347">pdf</a>, <a href="https://arxiv.org/ps/1208.6347">ps</a>, <a href="https://arxiv.org/format/1208.6347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00601-012-0564-2">10.1007/s00601-012-0564-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Few-Body Systems Composed of Heavy Quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Sun%2C+Z">Zhi-Feng Sun</a>, <a href="/search/nucl-th?searchtype=author&amp;query=He%2C+J">Jun He</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Liu%2C+X">Xiang Liu</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Luo%2C+Z">Zhi-Gang Luo</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.6347v1-abstract-short" style="display: inline;"> Within the past ten years many new hadrons states were observed experimentally, some of which do not fit into the conventional quark model. I will talk about the few-body systems composed of heavy quarks, including the charmonium-like states and some loosely bound states. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.6347v1-abstract-full" style="display: none;"> Within the past ten years many new hadrons states were observed experimentally, some of which do not fit into the conventional quark model. I will talk about the few-body systems composed of heavy quarks, including the charmonium-like states and some loosely bound states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.6347v1-abstract-full').style.display = 'none'; document.getElementById('1208.6347v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Plenary talk at the 20th International IUPAP Conference on Few-Body Problems in Physics, to appear in Few Body Systems (2013)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.3364">arXiv:1204.3364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.3364">pdf</a>, <a href="https://arxiv.org/ps/1204.3364">ps</a>, <a href="https://arxiv.org/format/1204.3364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.86.014020">10.1103/PhysRevD.86.014020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadronic Molecular States Composed of Heavy Flavor Baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.3364v2-abstract-short" style="display: inline;"> We investigate the possible molecules composed of two heavy flavor baryons such as &#34;$A_QB_Q$&#34;(Q=b, c) within the one-pion-exchange model (OPE). Our results indicate that the long-range $蟺$ exchange force is strong enough to form molecules such as $[危_Q螢_Q^{&#39;}]^{I=1/2}_{S=1}$(Q=b, c), $[危_Q螞_Q]^{I=1}_{S=1}$(Q=b, c), $[危_b螢_b^{&#39;}]^{I=3/2}_{S=1}$ and $[螢_b螢^{&#39;}_b]^{I=0}_{S=1}$ where the S-D mixing pl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.3364v2-abstract-full').style.display = 'inline'; document.getElementById('1204.3364v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.3364v2-abstract-full" style="display: none;"> We investigate the possible molecules composed of two heavy flavor baryons such as &#34;$A_QB_Q$&#34;(Q=b, c) within the one-pion-exchange model (OPE). Our results indicate that the long-range $蟺$ exchange force is strong enough to form molecules such as $[危_Q螢_Q^{&#39;}]^{I=1/2}_{S=1}$(Q=b, c), $[危_Q螞_Q]^{I=1}_{S=1}$(Q=b, c), $[危_b螢_b^{&#39;}]^{I=3/2}_{S=1}$ and $[螢_b螢^{&#39;}_b]^{I=0}_{S=1}$ where the S-D mixing plays an important role. In contrast, the $蟺$ exchange does not form the spin-singlet $A_QB_Q$ bound states. If we consider the heavier scalar and vector meson exchanges as well as the pion exchange, some loosely bound spin-singlet S-wave states appear while results of the spin-triplet $A_QB_Q$ system does not change significantly, which implies the pion exchange plays an dominant role in forming the spin-triplet molecules. Moreover, we perform an extensive coupled channel analysis of the $螞_Q螞_Q$ system within the OPE and one-boson-exchange (OBE) framework and find that there exist loosely bound states of $螞_Q螞_Q$(Q=b,c) with quantum numbers $I(J^P)=0(0^+)$, $0(0^-)$ and $0(1^-)$. The binding solutions of $螞_Q螞_Q$ system mainly come from the coupled-channel effect in the flavor space. Besides the OPE force, the medium- and short-range attractive force also plays a significant role in the formation of the loosely bound $螞_c螞_c$ and $螞_b螞_b$ states. Once produced, they will be very stable because such a system decays via weak interaction with a very long lifetime around $10^{-13}\sim10^{-12}$s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.3364v2-abstract-full').style.display = 'none'; document.getElementById('1204.3364v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D86, 014020 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.0818">arXiv:1201.0818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.0818">pdf</a>, <a href="https://arxiv.org/ps/1201.0818">ps</a>, <a href="https://arxiv.org/format/1201.0818">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/36/5/007">10.1088/1674-1137/36/5/007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Azimuthal distributions of radial momentum and velocity in relativistic heavy ion collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Na Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Wu%2C+Y">Yuanfang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.0818v1-abstract-short" style="display: inline;"> Azimuthal distributions of radial (transverse) momentum, mean radial momentum, and mean radial velocity of final state particles are suggested for relativistic heavy ion collisions. Using transport model AMPT with string melting, these distributions for Au + Au collisions at 200 GeV are presented and studied. It is demonstrated that the distribution of total radial momentum is more sensitive to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.0818v1-abstract-full').style.display = 'inline'; document.getElementById('1201.0818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.0818v1-abstract-full" style="display: none;"> Azimuthal distributions of radial (transverse) momentum, mean radial momentum, and mean radial velocity of final state particles are suggested for relativistic heavy ion collisions. Using transport model AMPT with string melting, these distributions for Au + Au collisions at 200 GeV are presented and studied. It is demonstrated that the distribution of total radial momentum is more sensitive to the anisotropic expansion, as the anisotropies of final state particles and their associated transverse momentums are both counted in the measure. The mean radial velocity distribution is compared with the radial 掳ow velocity. The thermal motion contributes an isotropic constant to mean radial velocity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.0818v1-abstract-full').style.display = 'none'; document.getElementById('1201.0818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.4242">arXiv:1112.4242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.4242">pdf</a>, <a href="https://arxiv.org/ps/1112.4242">ps</a>, <a href="https://arxiv.org/format/1112.4242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/39/11/115105">10.1088/0954-3899/39/11/115105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Study of Noncollectivity by the Forward-Backward Multiplicity Correlation Function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Na Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Shi%2C+S">Shusu Shi</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Tang%2C+A">Aihong Tang</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Wu%2C+Y">Yuanfang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.4242v2-abstract-short" style="display: inline;"> We propose a forward-backward multiplicity correlation function $C^N_{FB}$, which is experimentally accessible, to measure the noncollectivity contribution. We find that $C^N_{FB}$ is sensitive to the jet contribution for the particle-rich case. Surprisingly, it will automatically decrease for the particle-rare case. Our study indicates that similar decreasing trend observed previously is mainly d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.4242v2-abstract-full').style.display = 'inline'; document.getElementById('1112.4242v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.4242v2-abstract-full" style="display: none;"> We propose a forward-backward multiplicity correlation function $C^N_{FB}$, which is experimentally accessible, to measure the noncollectivity contribution. We find that $C^N_{FB}$ is sensitive to the jet contribution for the particle-rich case. Surprisingly, it will automatically decrease for the particle-rare case. Our study indicates that similar decreasing trend observed previously is mainly driven by particle scarcity instead of jets. The function is studied in Au+Au collision at $\sqrt{s_{NN}}=200$ GeV with a multiphase transport model (AMPT). We find that the jet fraction is about 10% at transverse momentum ($p_T$) around 2.5 GeV/$c$ and reaches up to 30% at 3.5 GeV/$c$. The implication of this study in the investigation of the noncollectivity contribution in elliptic anisotropy parameter $v_2$ is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.4242v2-abstract-full').style.display = 'none'; document.getElementById('1112.4242v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 39 (2012) 115105 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.6213">arXiv:1111.6213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.6213">pdf</a>, <a href="https://arxiv.org/ps/1111.6213">ps</a>, <a href="https://arxiv.org/format/1111.6213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/39/2/025011">10.1088/0954-3899/39/2/025011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of triangular flow $v_3$ in Au+Au and Cu+Cu collisions with a multiphase transport model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Xiao%2C+K">Kai Xiao</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Na Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Shi%2C+S">Shusu Shi</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.6213v2-abstract-short" style="display: inline;"> We studied the relation between the initial geometry anisotropy and the anisotropic flow in a multiphase transport model (AMPT) for both Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV. It is found that unlike the elliptic flow $v_2$, little centrality dependence of the triangular flow $v_3$ is observed. After removing the initial geometry effect, $v_3/蔚_3$ increases with the transverse pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.6213v2-abstract-full').style.display = 'inline'; document.getElementById('1111.6213v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.6213v2-abstract-full" style="display: none;"> We studied the relation between the initial geometry anisotropy and the anisotropic flow in a multiphase transport model (AMPT) for both Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV. It is found that unlike the elliptic flow $v_2$, little centrality dependence of the triangular flow $v_3$ is observed. After removing the initial geometry effect, $v_3/蔚_3$ increases with the transverse particle density, which is similar to $v_2/蔚_2$. The transverse momentum ($p_T$) dependence of $v_3$ from identified particles is qualitatively similar to the $p_T$ dependence of $v_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.6213v2-abstract-full').style.display = 'none'; document.getElementById('1111.6213v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 39 (2012) 025011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.0690">arXiv:1010.0690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.0690">pdf</a>, <a href="https://arxiv.org/format/1010.0690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abdf3f">10.1088/1674-1137/abdf3f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Agakishiev%2C+H">H. Agakishiev</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Anson%2C+C+D">C. D. Anson</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Behera%2C+N+K">N. K. Behera</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Borowski%2C+W">W. Borowski</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bouchet%2C+J">J. Bouchet</a> , et al. (345 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.0690v4-abstract-short" style="display: inline;"> Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.0690v4-abstract-full').style.display = 'inline'; document.getElementById('1010.0690v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.0690v4-abstract-full" style="display: none;"> Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle&#39;s azimuthal angle relative to the event plane, $蠁_s=|蠁_t-蠄_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $蠁_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $螖畏$ correlation) appears to drop with increasing $蠁_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $蠁_s$-dependence of the ridge or the away-side double-peak structure. ... <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.0690v4-abstract-full').style.display = 'none'; document.getElementById('1010.0690v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages, 40 figures, 6 tables. As published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C 45 (2021) 044002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1006.1961">arXiv:1006.1961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1006.1961">pdf</a>, <a href="https://arxiv.org/ps/1006.1961">ps</a>, <a href="https://arxiv.org/format/1006.1961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.84.034909">10.1103/PhysRevC.84.034909 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> K*0 production in Cu+Cu and Au+Au collisions at \sqrt{s_NN} = 62.4 GeV and 200 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Anson%2C+D">Daniel Anson</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Barnby%2C+L+S">L. S. Barnby</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Baumgart%2C+S">S. Baumgart</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bonner%2C+B+E">B. E. Bonner</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Borowski%2C+W">W. Borowski</a> , et al. (362 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1006.1961v1-abstract-short" style="display: inline;"> We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system siz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.1961v1-abstract-full').style.display = 'inline'; document.getElementById('1006.1961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1006.1961v1-abstract-full" style="display: none;"> We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, &lt;pT&gt;, are presented. The measured N(K*0)/N(K) and N(蠁)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 &lt; pT &lt; 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.1961v1-abstract-full').style.display = 'none'; document.getElementById('1006.1961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages and 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.4959">arXiv:1004.4959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1004.4959">pdf</a>, <a href="https://arxiv.org/ps/1004.4959">ps</a>, <a href="https://arxiv.org/format/1004.4959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.022302">10.1103/PhysRevLett.105.022302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher Moments of Net-proton Multiplicity Distributions at RHIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Barnby%2C+L+S">L. S. Barnby</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Baumgart%2C+S">S. Baumgart</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bonner%2C+3+B+E">3 B. E. Bonner</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Bouchet%2C+J">J. Bouchet</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Braidot%2C+E">E. Braidot</a> , et al. (359 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.4959v2-abstract-short" style="display: inline;"> We report the first measurements of the kurtosis (魏), skewness (S) and variance (蟽^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (渭_B) between 200 - 20 MeV. Our measurements of the products 魏蟽^2 and S 蟽, which can be related to theoretical calculations sensitive t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.4959v2-abstract-full').style.display = 'inline'; document.getElementById('1004.4959v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.4959v2-abstract-full" style="display: none;"> We report the first measurements of the kurtosis (魏), skewness (S) and variance (蟽^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (渭_B) between 200 - 20 MeV. Our measurements of the products 魏蟽^2 and S 蟽, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of 魏蟽^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for 渭_B below 200 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.4959v2-abstract-full').style.display = 'none'; document.getElementById('1004.4959v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 4 figures. Version accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.105:022302,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-ph/0505028">arXiv:hep-ph/0505028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-ph/0505028">pdf</a>, <a href="https://arxiv.org/ps/hep-ph/0505028">ps</a>, <a href="https://arxiv.org/format/hep-ph/0505028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2005.01.066">10.1016/j.physletb.2005.01.066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Estimate of neutrino masses from Koide&#39;s relation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Nan Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ma%2C+B">Bo-Qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-ph/0505028v1-abstract-short" style="display: inline;"> We apply Koide&#39;s mass relation of charged leptons to neutrinos and quarks, with both the normal and inverted mass schemes of neutrinos discussed. We introduce the parameters $k_谓$, $k_u$ and $k_d$ to describe the deviations of neutrinos and quarks from Koide&#39;s relation, and suggest a quark-lepton complementarity of masses such as $ k_{l}+k_{d} \approx k_谓+k_{u} \approx 2$. The masses of neutrino&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0505028v1-abstract-full').style.display = 'inline'; document.getElementById('hep-ph/0505028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-ph/0505028v1-abstract-full" style="display: none;"> We apply Koide&#39;s mass relation of charged leptons to neutrinos and quarks, with both the normal and inverted mass schemes of neutrinos discussed. We introduce the parameters $k_谓$, $k_u$ and $k_d$ to describe the deviations of neutrinos and quarks from Koide&#39;s relation, and suggest a quark-lepton complementarity of masses such as $ k_{l}+k_{d} \approx k_谓+k_{u} \approx 2$. The masses of neutrinos are determined from the improved relation, and they are strongly hierarchical (with the different orders of magnitude of $10^{-5} eV$, $10^{-3} eV$, and $10^{-2} eV$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0505028v1-abstract-full').style.display = 'none'; document.getElementById('hep-ph/0505028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 latex pages, 4 figures, version in publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett. B609 (2005) 309-316 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-ph/0504161">arXiv:hep-ph/0504161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-ph/0504161">pdf</a>, <a href="https://arxiv.org/ps/hep-ph/0504161">ps</a>, <a href="https://arxiv.org/format/hep-ph/0504161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s2005-02251-8">10.1140/epjc/s2005-02251-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relations between quark and lepton mixing angles and matrices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Nan Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ma%2C+B">Bo-Qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-ph/0504161v2-abstract-short" style="display: inline;"> We discuss the relations between the mixing angles and the mixing matrices of quarks and leptons. With Raidal&#39;s numerical relations, we parametrize the lepton mixing (PMNS) matrix with the parameters of the quark mixing (CKM) matrix, and calculate the products of $V_{\mathrm{CKM}}U_{\mathrm{PMNS}}$ and $U_{\mathrm{PMNS}}V_{\mathrm{CKM}}$. Also, under the conjectures&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0504161v2-abstract-full').style.display = 'inline'; document.getElementById('hep-ph/0504161v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-ph/0504161v2-abstract-full" style="display: none;"> We discuss the relations between the mixing angles and the mixing matrices of quarks and leptons. With Raidal&#39;s numerical relations, we parametrize the lepton mixing (PMNS) matrix with the parameters of the quark mixing (CKM) matrix, and calculate the products of $V_{\mathrm{CKM}}U_{\mathrm{PMNS}}$ and $U_{\mathrm{PMNS}}V_{\mathrm{CKM}}$. Also, under the conjectures $V_{\mathrm{CKM}}U_{\mathrm{PMNS}}=U_{\mathrm{bimax}}$ or $U_{\mathrm{PMNS}}V_{\mathrm{CKM}}=U_{\mathrm{bimax}}$, we get the PMNS matrix naturally, and test Raidal&#39;s relations in these two different versions. The similarities and the differences between the different versions are discussed in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0504161v2-abstract-full').style.display = 'none'; document.getElementById('hep-ph/0504161v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, no figure, final version to appear in EPJC</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C42:17-24,2005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-ph/0501226">arXiv:hep-ph/0501226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-ph/0501226">pdf</a>, <a href="https://arxiv.org/ps/hep-ph/0501226">ps</a>, <a href="https://arxiv.org/format/hep-ph/0501226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.71.097301">10.1103/PhysRevD.71.097301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unified Parametrization of Quark and Lepton Mixing Matrices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Nan Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ma%2C+B">Bo-Qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-ph/0501226v3-abstract-short" style="display: inline;"> We present a unified parametrization of quark and lepton mixing matrices. By using some simple relations between the mixing angles of quarks and leptons, i.e., the quark-lepton complementarity, we parametrize the lepton mixing matrix with the Wolfenstein parameters $位$ and $A$ of the quark mixing matrix. It is shown that the Wolfenstein parameter $位$ can measure both the deviation of the quark m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0501226v3-abstract-full').style.display = 'inline'; document.getElementById('hep-ph/0501226v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-ph/0501226v3-abstract-full" style="display: none;"> We present a unified parametrization of quark and lepton mixing matrices. By using some simple relations between the mixing angles of quarks and leptons, i.e., the quark-lepton complementarity, we parametrize the lepton mixing matrix with the Wolfenstein parameters $位$ and $A$ of the quark mixing matrix. It is shown that the Wolfenstein parameter $位$ can measure both the deviation of the quark mixing matrix from the unit matrix, and the deviation of the lepton mixing matrix from the exactly bimaximal mixing pattern. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0501226v3-abstract-full').style.display = 'none'; document.getElementById('hep-ph/0501226v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Latex pages, notation revised, no change in physical content, final version for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D71:097301,2005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-ph/0412126">arXiv:hep-ph/0412126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-ph/0412126">pdf</a>, <a href="https://arxiv.org/ps/hep-ph/0412126">ps</a>, <a href="https://arxiv.org/format/hep-ph/0412126">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.71.017302">10.1103/PhysRevD.71.017302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parametrization of Neutrino Mixing Matrix in Tri-bimaximal Mixing Pattern </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Nan Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ma%2C+B">Bo-Qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-ph/0412126v2-abstract-short" style="display: inline;"> The neutrino mixing matrix is expanded in powers of a small parameter $位$ in tri-bimaximal mixing pattern. We also present some applications of this parametrization, such as to the expression of the Jarlskog parameter $J$. Comparing with other parametrizations (such as the parametrization in bimaximal mixing pattern), this parametrization converges more quickly, but is of less symmetry. </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-ph/0412126v2-abstract-full" style="display: none;"> The neutrino mixing matrix is expanded in powers of a small parameter $位$ in tri-bimaximal mixing pattern. We also present some applications of this parametrization, such as to the expression of the Jarlskog parameter $J$. Comparing with other parametrizations (such as the parametrization in bimaximal mixing pattern), this parametrization converges more quickly, but is of less symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0412126v2-abstract-full').style.display = 'none'; document.getElementById('hep-ph/0412126v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Latex pages, no figure, Version to appear in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D71:017302,2005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-ph/0408235">arXiv:hep-ph/0408235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-ph/0408235">pdf</a>, <a href="https://arxiv.org/ps/hep-ph/0408235">ps</a>, <a href="https://arxiv.org/format/hep-ph/0408235">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2004.08.069">10.1016/j.physletb.2004.08.069 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A New Parametrization of the Neutrino Mixing Matrix </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-th?searchtype=author&amp;query=Li%2C+N">Nan Li</a>, <a href="/search/nucl-th?searchtype=author&amp;query=Ma%2C+B">Bo-Qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-ph/0408235v2-abstract-short" style="display: inline;"> The neutrino mixing matrix is expanded in powers of a small parameter $位$, which approximately equals to 0.1. The meaning of every order of the expansion is discussed respectively, and the range of $位$ is carefully calculated. We also present some applications of this new parametrization, such as to the expression of the Jarlskog parameter $J$, in which the simplicities and advantages of this pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0408235v2-abstract-full').style.display = 'inline'; document.getElementById('hep-ph/0408235v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-ph/0408235v2-abstract-full" style="display: none;"> The neutrino mixing matrix is expanded in powers of a small parameter $位$, which approximately equals to 0.1. The meaning of every order of the expansion is discussed respectively, and the range of $位$ is carefully calculated. We also present some applications of this new parametrization, such as to the expression of the Jarlskog parameter $J$, in which the simplicities and advantages of this parametrization are shown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0408235v2-abstract-full').style.display = 'none'; document.getElementById('hep-ph/0408235v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, version published in PLB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B600:248-254,2004 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10