CINXE.COM
Search results for: electrostatic sensor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electrostatic sensor</title> <meta name="description" content="Search results for: electrostatic sensor"> <meta name="keywords" content="electrostatic sensor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electrostatic sensor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electrostatic sensor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1598</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electrostatic sensor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1598</span> Cepstrum Analysis of Human Walking Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koichi%20Kurita">Koichi Kurita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we propose a real-time data collection technique for the detection of human walking motion from the charge generated on the human body. This technique is based on the detection of a sub-picoampere electrostatic induction current, generated by the motion, flowing through the electrode of a wireless portable sensor attached to the subject. An FFT analysis of the wave-forms of the electrostatic induction currents generated by the walking motions showed that the currents generated under normal and restricted walking conditions were different. Moreover, we carried out a cepstrum analysis to detect any differences in the walking style. Results suggest that a slight difference in motion, either due to the individual’s gait or a splinted leg, is directly reflected in the electrostatic induction current generated by the walking motion. The proposed wireless portable sensor enables the detection of even subtle differences in walking motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20motion" title="human walking motion">human walking motion</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20measurement" title=" motion measurement"> motion measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20measurement" title=" current measurement"> current measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20induction" title=" electrostatic induction"> electrostatic induction</a> </p> <a href="https://publications.waset.org/abstracts/12335/cepstrum-analysis-of-human-walking-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1597</span> Study of Parameters Affecting the Electrostatic Attractions Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Sabermand">Vahid Sabermand</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Hojjat"> Yousef Hojjat</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Hasanzadeh"> Majid Hasanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contains two main parts. In the first part of paper we simulated and studied three type of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part, we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode Length and methods of improvement of adhesion force by changing these values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20force" title="electrostatic force">electrostatic force</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20adhesion" title=" electrostatic adhesion"> electrostatic adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20chuck" title=" electrostatic chuck"> electrostatic chuck</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20application%20in%20industry" title=" electrostatic application in industry"> electrostatic application in industry</a>, <a href="https://publications.waset.org/abstracts/search?q=electroadhesive%20grippers" title=" electroadhesive grippers"> electroadhesive grippers</a> </p> <a href="https://publications.waset.org/abstracts/16573/study-of-parameters-affecting-the-electrostatic-attractions-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1596</span> Non-Contact Human Movement Monitoring Technique for Security Control System Based 2n Electrostatic Induction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koichi%20Kurita">Koichi Kurita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an effective non-contact technique for the detection of human physical activity is proposed. The technique is based on detecting the electrostatic induction current generated by the walking motion under non-contact and non-attached conditions. A theoretical model for the electrostatic induction current generated because of a change in the electric potential of the human body is proposed. By comparing the obtained electrostatic induction current with the theoretical model, it becomes obvious that this model effectively explains the behavior of the waveform of the electrostatic induction current. The normal walking motions are recorded using a portable sensor measurement located in a passageway of office building. The obtained results show that detailed information regarding physical activity such as a walking cycle can be estimated using our proposed technique. This suggests that the proposed technique which is based on the detection of the walking signal, can be successfully applied to the detection of human walking motion in a secured building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20motion" title="human walking motion">human walking motion</a>, <a href="https://publications.waset.org/abstracts/search?q=access%20control" title=" access control"> access control</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20induction" title=" electrostatic induction"> electrostatic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=alarm%20monitoring" title=" alarm monitoring"> alarm monitoring</a> </p> <a href="https://publications.waset.org/abstracts/13589/non-contact-human-movement-monitoring-technique-for-security-control-system-based-2n-electrostatic-induction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1595</span> Improving the Uniformity of Electrostatic Meter’s Spatial Sensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdalla">Mohamed Abdalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruixue%20Cheng"> Ruixue Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianyong%20Zhang"> Jianyong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In pneumatic conveying, the solids are mixed with air or gas. In industries such as coal fired power stations, blast furnaces for iron making, cement and flour processing, the mass flow rate of solids needs to be monitored or controlled. However the current gas-solids two-phase flow measurement techniques are not as accurate as the flow meters available for the single phase flow. One of the problems that the multi-phase flow meters to face is that the flow profiles vary with measurement locations and conditions of pipe routing, bends, elbows and other restriction devices in conveying system as well as conveying velocity and concentration. To measure solids flow rate or concentration with non-even distribution of solids in gas, a uniform spatial sensitivity is required for a multi-phase flow meter. However, there are not many meters inherently have such property. The circular electrostatic meter is a popular choice for gas-solids flow measurement with its high sensitivity to flow, robust construction, low cost for installation and non-intrusive nature. However such meters have the inherent non-uniform spatial sensitivity. This paper first analyses the spatial sensitivity of circular electrostatic meter in general and then by combining the effect of the sensitivity to a single particle and the sensing volume for a given electrode geometry, the paper reveals first time how a circular electrostatic meter responds to a roping flow stream, which is much more complex than what is believed at present. The paper will provide the recent research findings on spatial sensitivity investigation at the University of Tees side based on Finite element analysis using Ansys Fluent software, including time and frequency domain characteristics and the effect of electrode geometry. The simulation results will be compared tothe experimental results obtained on a large scale (14” diameter) rig. The purpose of this research is paving a way to achieve a uniform spatial sensitivity for the circular electrostatic sensor by mean of compensation so as to improve overall accuracy of gas-solids flow measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20sensitivity" title="spatial sensitivity">spatial sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor" title=" electrostatic sensor"> electrostatic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20conveying" title=" pneumatic conveying"> pneumatic conveying</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansys%20Fluent%20software" title=" Ansys Fluent software"> Ansys Fluent software</a> </p> <a href="https://publications.waset.org/abstracts/12584/improving-the-uniformity-of-electrostatic-meters-spatial-sensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1594</span> A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon"> Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20parking%20monitoring" title="car parking monitoring">car parking monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20node" title=" sensor node"> sensor node</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20protocol" title=" network protocol"> network protocol</a> </p> <a href="https://publications.waset.org/abstracts/11153/a-wireless-sensor-network-protocol-for-a-car-parking-space-monitoring-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1593</span> Implementation of Sensor Fusion Structure of 9-Axis Sensors on the Multipoint Control Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Gil%20Ahn">Jun Gil Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the sensor fusion structure on the multipoint control unit (MCU). Sensor fusion using Kalman filter for 9-axis sensors is considered. The 9-axis inertial sensor is the combination of 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We implement the sensor fusion structure among the sensor hubs in MCU and measure the execution time, power consumptions, and total energy. Experiments with real data from 9-axis sensor in 20Mhz show that the average power consumptions are 44mW and 48mW on Cortx-M0 and Cortex-M3 MCU, respectively. Execution times are 613.03 us and 305.6 us respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=9-axis%20sensor" title="9-axis sensor">9-axis sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=MCU" title=" MCU"> MCU</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20fusion" title=" sensor fusion"> sensor fusion</a> </p> <a href="https://publications.waset.org/abstracts/84323/implementation-of-sensor-fusion-structure-of-9-axis-sensors-on-the-multipoint-control-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1592</span> Investigation Particle Behavior in Gas-Solid Filtration with Electrostatic Discharge in a Hybrid System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fl%C3%A1via%20M.%20Oliveira">Flávia M. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcos%20V.%20Rodrigues"> Marcos V. Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B4nica%20L.%20Aguiar"> Mônica L. Aguiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic fibers are widely used in gas filtration. Previous attempts to optimize the filtration process have employed mixed fibers as the filter medium in gas-solid separation. Some of the materials most frequently used this purpose are composed of polyester, polypropylene, and glass fibers. In order to improve the retention of cement particles in bag filters, the present study investigates the use of synthetic glass fiber filters and polypropylene fiber for particle filtration, with electrostatic discharge of 0 to -2 kV in cement particles. The filtration curves obtained showed that charging increased the particle collection efficiency and lowered the pressure drop. Particle diameter had a direct influence on the formation of the dust cake, and the application of electrostatic discharge to the particles resulted in the retention of more particles, hence increasing the lifetime of fabric filters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber%20filter" title="glass fiber filter">glass fiber filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle" title=" particle"> particle</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20discharge" title=" electrostatic discharge"> electrostatic discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a> </p> <a href="https://publications.waset.org/abstracts/58308/investigation-particle-behavior-in-gas-solid-filtration-with-electrostatic-discharge-in-a-hybrid-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1591</span> A Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Yawootti">A. Yawootti</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Intra"> P. Intra</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sardyoung"> P. Sardyoung</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Phoosomma"> P. Phoosomma</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Puttipattanasak">R. Puttipattanasak</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Leeragreephol"> S. Leeragreephol</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tippayawong"> N. Tippayawong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to design, develop and test the low-cost implementation of a particulate air pollution sensor system for continuous monitoring of outdoors and indoors particulate air pollution at a lower cost than existing instruments. In this study, measuring electrostatic charge of particles technique via high efficiency particulate-free air filter was carried out. The developed detector consists of a PM10 impactor, a particle charger, a Faraday cup electrometer, a flow meter and controller, a vacuum pump, a DC high voltage power supply and a data processing and control unit. It was reported that the developed detector was capable of measuring mass concentration of particulate ranging from 0 to 500 µg/m3 corresponding to number concentration of particulate ranging from 106 to 1012 particles/m3 with measurement time less than 1 sec. The measurement data of the sensor connects to the internet through a GSM connection to a public cellular network. In this development, the apparatus was applied the energy by a 12 V, 7 A internal battery for continuous measurement of about 20 hours. Finally, the developed apparatus was found to be close agreement with the import standard instrument, portable and benefit for air pollution and particulate matter measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particulate" title="particulate">particulate</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title=" air pollution"> air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/29085/a-wireless-sensor-system-for-continuous-monitoring-of-particulate-air-pollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1590</span> Theoretical and Experimental Electrostatic Potential around the M-Nitrophenol Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Drissi%20Mokhtaria">Drissi Mokhtaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Chouaih%20Abdelkader"> Chouaih Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Fodil%20Hamzaoui"> Fodil Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our work is about a comparison of experimental and theoretical results of the electron charge density distribution and the electrostatic potential around the M-Nitrophenol Molecule (m-NPH) kwon for its interesting physical characteristics. The molecular experimental results have been obtained from a high-resolution X-ray diffraction study. Theoretical investigations were performed under the Gaussian program using the Density Functional Theory at B3LYP level of theory at 6-31G*. The multipolar model of Hansen and Coppens was used for the experimental electron charge density distribution around the molecule, while we used the DFT methods for the theoretical calculations. The electron charge density obtained in both methods allowed us to find out the different molecular properties such us the electrostatic potential and the dipole moment which were finally subject to a comparison leading to an outcome of a good matching results obtained in both methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20charge%20density" title="electron charge density">electron charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=m-nitrophenol" title=" m-nitrophenol"> m-nitrophenol</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optical%20compound" title=" nonlinear optical compound"> nonlinear optical compound</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20potential" title=" electrostatic potential"> electrostatic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized%20geometric" title=" optimized geometric"> optimized geometric</a> </p> <a href="https://publications.waset.org/abstracts/3123/theoretical-and-experimental-electrostatic-potential-around-the-m-nitrophenol-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1589</span> Electronic Device Robustness against Electrostatic Discharges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clara%20Oliver">Clara Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=Oibar%20Martinez"> Oibar Martinez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is intended to reveal the severity of electrostatic discharge (ESD) effects in electronic and optoelectronic devices by performing sensitivity tests based on Human Body Model (HBM) standard. We explain here the HBM standard in detail together with the typical failure modes associated with electrostatic discharges. In addition, a prototype of electrostatic charge generator has been designed, fabricated, and verified to stress electronic devices, which features a compact high voltage source. This prototype is inexpensive and enables one to do a battery of pre-compliance tests aimed at detecting unexpected weaknesses to static discharges at the component level. Some tests with different devices were performed to illustrate the behavior of the proposed generator. A set of discharges was applied according to the HBM standard to commercially available bipolar transistors, complementary metal-oxide-semiconductor transistors and light emitting diodes. It is observed that high current and voltage ratings in electronic devices not necessarily provide a guarantee that the device will withstand high levels of electrostatic discharges. We have also compared the result obtained by performing the sensitivity tests based on HBM with a real discharge generated by a human. For this purpose, the charge accumulated in the person is monitored, and a direct discharge against the devices is generated by touching them. Every test has been performed under controlled relative humidity conditions. It is believed that this paper can be of interest for research teams involved in the development of electronic and optoelectronic devices which need to verify the reliability of their devices in terms of robustness to electrostatic discharges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20body%20model" title="human body model">human body model</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20discharge" title=" electrostatic discharge"> electrostatic discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20tests" title=" sensitivity tests"> sensitivity tests</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20charge%20monitoring" title=" static charge monitoring"> static charge monitoring</a> </p> <a href="https://publications.waset.org/abstracts/107659/electronic-device-robustness-against-electrostatic-discharges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1588</span> Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Haghighatfar">Yashar Haghighatfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrzad%20Mirhosseini"> Shahrzad Mirhosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-in%20instability" title=" pull-in instability"> pull-in instability</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatically%20actuated%20microbeam" title=" electrostatically actuated microbeam"> electrostatically actuated microbeam</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20order%20method" title=" reduced order method"> reduced order method</a> </p> <a href="https://publications.waset.org/abstracts/94193/pull-in-instability-determination-of-microcapacitive-sensor-for-measuring-special-range-of-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1587</span> Valuation on MEMS Pressure Sensors and Device Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Amziah%20Md%20Yunus">Nurul Amziah Md Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Izhal%20Abdul%20Halin"> Izhal Abdul Halin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasri%20Sulaiman"> Nasri Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Faezah%20Ismail"> Noor Faezah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ong%20Kai%20Sheng"> Ong Kai Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MEMS pressure sensor has been introduced and presented in this paper. The types of pressure sensor and its theory of operation are also included. The latest MEMS technology, the fabrication processes of pressure sensor are explored and discussed. Besides, various device applications of pressure sensor such as tire pressure monitoring system, diesel particulate filter and others are explained. Due to further miniaturization of the device nowadays, the pressure sensor with nanotechnology (NEMS) is also reviewed. The NEMS pressure sensor is expected to have better performance as well as lower in its cost. It has gained an excellent popularity in many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor" title="pressure sensor">pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm" title=" diaphragm"> diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20application" title=" automotive application"> automotive application</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20application" title=" biomedical application"> biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=NEMS" title=" NEMS"> NEMS</a> </p> <a href="https://publications.waset.org/abstracts/28395/valuation-on-mems-pressure-sensors-and-device-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1586</span> An Introductory Study on Optimization Algorithm for Movable Sensor Network-Based Odor Source Localization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yossiri%20Ariyakul">Yossiri Ariyakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyakiat%20Insom"> Piyakiat Insom</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonyawat%20Sangiamkulthavorn"> Poonyawat Sangiamkulthavorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Takamichi%20Nakamoto"> Takamichi Nakamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the method of optimization algorithm for sensor network comprised of movable sensor nodes which can be used for odor source localization was proposed. A sensor node is composed of an odor sensor, an anemometer, and a wireless communication module. The odor intensity measured from the sensor nodes are sent to the processor to perform the localization based on optimization algorithm by which the odor source localization map is obtained as a result. The map can represent the exact position of the odor source or show the direction toward it remotely. The proposed method was experimentally validated by creating the odor source localization map using three, four, and five sensor nodes in which the accuracy to predict the position of the odor source can be observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=odor%20sensor" title="odor sensor">odor sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=odor%20source%20localization" title=" odor source localization"> odor source localization</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20network" title=" sensor network"> sensor network</a> </p> <a href="https://publications.waset.org/abstracts/76005/an-introductory-study-on-optimization-algorithm-for-movable-sensor-network-based-odor-source-localization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Performance Comparison of a Low Cost Air Quality Sensor with a Commercial Electronic Nose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%9Cnal%20K%C4%B1z%C4%B1l">Ünal Kızıl</a>, <a href="https://publications.waset.org/abstracts/search?q=Levent%20Gen%C3%A7"> Levent Genç</a>, <a href="https://publications.waset.org/abstracts/search?q=Sefa%20Aksu"> Sefa Aksu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Tap%C4%B1n%C3%A7"> Ahmet Tapınç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Figaro AM-1 sensor module which employs TGS 2600 model gas sensor in air quality assessment was used. The system was coupled with a microprocessor that enables sensor module to create warning message via telephone. This low cot sensor system’s performance was compared with a Diagnose II commercial electronic nose system. Both air quality sensor and electronic nose system employ metal oxide chemical gas sensors. In the study experimental setup, data acquisition methods for electronic nose system, and performance of the low cost air quality system were evaluated and explained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title="air quality">air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20nose" title=" electronic nose"> electronic nose</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20quality" title=" environmental quality"> environmental quality</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/26944/performance-comparison-of-a-low-cost-air-quality-sensor-with-a-commercial-electronic-nose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> Researches Concerning Photons as Corpuscles with Mass and Negative Electrostatic Charge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioan%20Rusu">Ioan Rusu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let us consider that the entire universe is composed of a single hydrogen atom within which the electron is moving around the proton. In this case, according to classical theories of physics, radiation and photons, respectively, should be absorbed by the electron. Depending on the number of photons absorbed, the electron radius of rotation around the proton is established. Until now, the principle of photon absorption by electrons and the electron transition to a new energy level, namely to a higher radius of rotation around the proton, is not clarified in physics. This paper aims to demonstrate that photons have mass and negative electrostatic charge similar to electrons but infinitely smaller. The experiments which demonstrate this theory are simple: thermal expansion, photoelectric effect and thermonuclear reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic" title="electrostatic">electrostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=electron" title=" electron"> electron</a>, <a href="https://publications.waset.org/abstracts/search?q=photon" title=" photon"> photon</a>, <a href="https://publications.waset.org/abstracts/search?q=proton" title=" proton"> proton</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation "> radiation </a> </p> <a href="https://publications.waset.org/abstracts/24883/researches-concerning-photons-as-corpuscles-with-mass-and-negative-electrostatic-charge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1583</span> Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungsik%20Jo">Sungsik Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeonwoo%20Kim"> Hyeonwoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Iksu%20Choi"> Iksu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunmo%20Kim"> Hunmo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20hybrid%20powerpack%20%28SHP%29" title="smart hybrid powerpack (SHP)">smart hybrid powerpack (SHP)</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20hydraulic%20actuator%20%28EHA%29" title=" electro hydraulic actuator (EHA)"> electro hydraulic actuator (EHA)</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20sensor%20fault%20tolerance" title=" permanent sensor fault tolerance"> permanent sensor fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20observer%20%28SMO%29" title=" sliding mode observer (SMO)"> sliding mode observer (SMO)</a>, <a href="https://publications.waset.org/abstracts/search?q=graphic%20user%20interface%20%28GUI%29" title=" graphic user interface (GUI)"> graphic user interface (GUI)</a> </p> <a href="https://publications.waset.org/abstracts/9250/design-of-permanent-sensor-fault-tolerance-algorithms-by-sliding-mode-observer-for-smart-hybrid-powerpack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1582</span> The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abid%20Ali%20Abid">Abid Ali Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20acoustic%20%20waves" title="electron acoustic waves">electron acoustic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=trapping%20of%20cold%20electron" title=" trapping of cold electron"> trapping of cold electron</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir%20waves" title=" Langmuir waves"> Langmuir waves</a>, <a href="https://publications.waset.org/abstracts/search?q=particle-in%20cell%20simulation" title=" particle-in cell simulation"> particle-in cell simulation</a> </p> <a href="https://publications.waset.org/abstracts/120540/the-effects-of-electron-trapping-by-electron-ecoustic-waves-excited-with-electron-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1581</span> Adding Protelium Gas Sensor for Smartphone to Reduce Explosion in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfi%20Al%20Fahreizy">Alfi Al Fahreizy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using LPG (Liquid Protelium Gas), it is very difficult to detect gas leak. Consequently, there is so many incident of gas leak that makes explosion which is occurred in many regions of Indonesia. In this paper, the researcher tries to overcome with it by adding gas sensor for LPG in a smartphone. The aim is to choose the best sensor and how to use it . The methode is to choose sensor by selecting from sensor data sheet qualitatively by giving grade from 1 to 5. Flow chart is shown to make best steps notification that possible to implemented in smartphone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion" title="energy conversion">energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20leak" title=" gas leak"> gas leak</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone" title=" smartphone"> smartphone</a>, <a href="https://publications.waset.org/abstracts/search?q=explosion" title=" explosion"> explosion</a>, <a href="https://publications.waset.org/abstracts/search?q=LPG" title=" LPG "> LPG </a> </p> <a href="https://publications.waset.org/abstracts/21133/adding-protelium-gas-sensor-for-smartphone-to-reduce-explosion-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1580</span> SFO-ECRSEP: Sensor Field Optimızation Based Ecrsep For Heterogeneous WSNS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gagandeep%20Singh">Gagandeep Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sensor field optimization is a serious issue in WSNs and has been ignored by many researchers. As in numerous real-time sensing fields the sensor nodes on the corners i.e. on the segment boundaries will become lifeless early because no extraordinary safety is presented for them. Accordingly, in this research work the central objective is on the segment based optimization by separating the sensor field between advance and normal segments. The inspiration at the back this sensor field optimization is to extend the time spam when the first sensor node dies. For the reason that in normal sensor nodes which were exist on the borders may become lifeless early because the space among them and the base station is more so they consume more power so at last will become lifeless soon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WSNs" title="WSNs">WSNs</a>, <a href="https://publications.waset.org/abstracts/search?q=ECRSEP" title=" ECRSEP"> ECRSEP</a>, <a href="https://publications.waset.org/abstracts/search?q=SEP" title=" SEP"> SEP</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20optimization" title=" field optimization"> field optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a> </p> <a href="https://publications.waset.org/abstracts/15452/sfo-ecrsep-sensor-field-optimization-based-ecrsep-for-heterogeneous-wsns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1579</span> The Role of Ionic Strength and Mineral Size to Zeta Potential for the Adhesion of P. putida to Mineral Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathiah%20Mohamed%20Zuki">Fathiah Mohamed Zuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20George%20Edyvean"> Robert George Edyvean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrostatic interaction energy (∆EEDL) is a part of the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, which, together with van der Waals (∆EVDW) and acid base (∆EAB) interaction energies, has been extensively used to investigate the initial adhesion of bacteria to surfaces. Electrostatic or electrical double layer interaction energy is considerably affected by surface potential, however it cannot be determined experimentally and is usually replaced by zeta (ζ) potential via electrophoretic mobility. This paper focuses on the effect of ionic concentration as a function of pH and the effect of mineral grain size on ζ potential. It was found that both ionic strength and mineral grain size play a major role in determining the value of ζ potential for the adhesion of P. putida to hematite and quartz surfaces. Higher ζ potential values lead to higher electrostatic interaction energies and eventually to higher total XDLVO interaction energy resulting in bacterial repulsion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XDLVO" title="XDLVO">XDLVO</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20interaction%20energy" title=" electrostatic interaction energy"> electrostatic interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta%20potential" title=" zeta potential"> zeta potential</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20putida" title=" P. putida"> P. putida</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral" title=" mineral "> mineral </a> </p> <a href="https://publications.waset.org/abstracts/24721/the-role-of-ionic-strength-and-mineral-size-to-zeta-potential-for-the-adhesion-of-p-putida-to-mineral-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1578</span> New Features for Copy-Move Image Forgery Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Zimba">Michael Zimba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20electrostatic%20field" title="virtual electrostatic field">virtual electrostatic field</a>, <a href="https://publications.waset.org/abstracts/search?q=features" title=" features"> features</a>, <a href="https://publications.waset.org/abstracts/search?q=affine%20transformation" title=" affine transformation"> affine transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=copy-move%20image%20forgery" title=" copy-move image forgery"> copy-move image forgery</a> </p> <a href="https://publications.waset.org/abstracts/29604/new-features-for-copy-move-image-forgery-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1577</span> Security Threats on Wireless Sensor Network Protocols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gorine">H. Gorine</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramadan%20Elmezughi"> M. Ramadan Elmezughi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issues of security in wireless sensor networks in an attempt to encourage more research into this area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title="wireless sensor networks">wireless sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20security" title=" network security"> network security</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20weight%20encryption" title=" light weight encryption"> light weight encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=threats" title=" threats"> threats</a> </p> <a href="https://publications.waset.org/abstracts/51644/security-threats-on-wireless-sensor-network-protocols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1576</span> A New Realization of Multidimensional System for Grid Sensor Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xiong">Yang Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Cheng"> Hua Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grid%20sensor%20networks" title="grid sensor networks">grid sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Roesser%20model" title=" Roesser model"> Roesser model</a>, <a href="https://publications.waset.org/abstracts/search?q=state-space%20realization" title=" state-space realization"> state-space realization</a>, <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20systems" title=" multidimensional systems"> multidimensional systems</a> </p> <a href="https://publications.waset.org/abstracts/19671/a-new-realization-of-multidimensional-system-for-grid-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">655</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1575</span> A Car Parking Monitoring System Using a Line-Topology Wireless Sensor Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dae%20Il%20Kim">Dae Il Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungho%20Moon"> Jungho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Yun%20Chung"> Tae Yun Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a car parking monitoring system using a wireless sensor network. The presented sensor network has a line-shaped topology and adopts a TDMA-based protocol for allowing multi-hop communications. Sensor nodes are deployed in the ground of an outdoor parking lot in such a way that a sensor node monitors a parking space. Each sensor node detects the availability of the associated parking space and transmits the detection result to a sink node via intermediate sensor nodes existing between the source sensor node and the sink node. We evaluate the feasibility of the presented sensor network and the TDMA-based communication protocol through experiments using 11 sensor nodes deployed in a real parking lot. The result shows that the presented car parking monitoring system is robust to changes in the communication environments and efficient for monitoring parking spaces of outdoor parking lots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-hop%20communication" title="multi-hop communication">multi-hop communication</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20monitoring%20system" title=" parking monitoring system"> parking monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=TDMA" title=" TDMA"> TDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a> </p> <a href="https://publications.waset.org/abstracts/61438/a-car-parking-monitoring-system-using-a-line-topology-wireless-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1574</span> Highly Selective Polymeric Fluorescence Sensor for Cd(II) Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20Cubuk">Soner Cubuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozge%20Yilmaz"> Ozge Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ece%20Kok%20Yetimoglu"> Ece Kok Yetimoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vezir%20Kahraman"> M. Vezir Kahraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a polymer based highly selective fluorescence sensor membrane was prepared by the photopolymerization technique for the determination Cd(II) ion. Sensor characteristics such as effects of pH, response time and foreign ions on the fluorescence intensity of the sensor were also studied. Under optimized conditions, the polymeric sensor shows a rapid, stable and linear response for 4.45x10-⁹ mol L-¹ - 4.45x10-⁸ mol L-¹ Cd(II) ion with the detection limit of 6.23x10-¹⁰ mol L-¹. In addition, sensor membrane was selective which is not affected by common foreign metal ions. The concentrations of the foreign ions such as Pb²+, Co²+, Ag+, Zn²+, Cu²+, Cr³+ are 1000-fold higher than Cd(II) ions. Moreover, the developed polymeric sensor was successfully applied to the determination of cadmium ions in food and water samples. This work was supported by Marmara University, Commission of Scientific Research Project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium%28II%29" title="cadmium(II)">cadmium(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=photopolymerization" title=" photopolymerization"> photopolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20sensor" title=" polymeric sensor"> polymeric sensor</a> </p> <a href="https://publications.waset.org/abstracts/65360/highly-selective-polymeric-fluorescence-sensor-for-cdii-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1573</span> Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohana%20Musa">Rohana Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuzman%20Yusoff"> Yuzman Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia%20Chieu%20Yin"> Chia Chieu Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanif%20Che%20Lah"> Hanif Che Lah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (V<sub>th</sub>) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20process%20sensor" title="CMOS process sensor">CMOS process sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=PVT%20sensor" title=" PVT sensor"> PVT sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20extractor%20circuit" title=" threshold extractor circuit"> threshold extractor circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=Vth%20extractor%20circuit" title=" Vth extractor circuit"> Vth extractor circuit</a> </p> <a href="https://publications.waset.org/abstracts/129672/design-and-characterization-of-a-cmos-process-sensor-utilizing-vth-extractor-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1572</span> The Effects of Stoke's Drag, Electrostatic Force and Charge on Penetration of Nanoparticles through N95 Respirators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Schwartz">Jacob Schwartz</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxim%20Durach"> Maxim Durach</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Mitra"> Aniruddha Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Rashidi"> Abbas Rashidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Glen%20Sage"> Glen Sage</a>, <a href="https://publications.waset.org/abstracts/search?q=Atin%20Adhikari"> Atin Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NIOSH (National Institute for Occupational Safety and Health) approved N95 respirators are commonly used by workers in construction sites where there is a large amount of dust being produced from sawing, grinding, blasting, welding, etc., both electrostatically charged and not. A significant portion of airborne particles in construction sites could be nanoparticles created beside coarse particles. The penetration of the particles through the masks may differ depending on the size and charge of the individual particle. In field experiments relevant to this current study, we found that nanoparticles of medium size ranges are penetrating more frequently than nanoparticles of smaller and larger sizes. For example, penetration percentages of nanoparticles of 11.5 – 27.4 nm into a sealed N95 respirator on a manikin head ranged from 0.59 to 6.59%, whereas nanoparticles of 36.5 – 86.6 nm ranged from 7.34 to 16.04%. The possible causes behind this increased penetration of mid-size nanoparticles through mask filters are not yet explored. The objective of this study is to identify causes behind this unusual behavior of mid-size nanoparticles. We have considered such physical factors as Boltzmann distribution of the particles in thermal equilibrium with the air, kinetic energy of the particles at impact on the mask, Stoke’s drag force, and electrostatic forces in the mask stopping the particles. When the particles collide with the mask, only the particles that have enough kinetic energy to overcome the energy loss due to the electrostatic forces and the Stokes’ drag in the mask can pass through the mask. To understand this process, the following assumptions were made: (1) the effect of Stoke’s drag depends on the particles’ velocity at entry into the mask; (2) the electrostatic force is proportional to the charge on the particles, which in turn is proportional to the surface area of the particles; (3) the general dependence on electrostatic charge and thickness means that for stronger electrostatic resistance in the masks and thicker the masks’ fiber layers the penetration of particles is reduced, which is a sensible conclusion. In sampling situations where one mask was soaked in alcohol eliminating electrostatic interaction the penetration was much larger in the mid-range than the same mask with electrostatic interaction. The smaller nanoparticles showed almost zero penetration most likely because of the small kinetic energy, while the larger sized nanoparticles showed almost negligible penetration most likely due to the interaction of the particle with its own drag force. If there is no electrostatic force the fraction for larger particles grows. But if the electrostatic force is added the fraction for larger particles goes down, so diminished penetration for larger particles should be due to increased electrostatic repulsion, may be due to increased surface area and therefore larger charge on average. We have also explored the effect of ambient temperature on nanoparticle penetrations and determined that the dependence of the penetration of particles on the temperature is weak in the range of temperatures in the measurements 37-42°C, since the factor changes in the range from 3.17 10-3K-1 to 3.22 10-3K-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=respiratory%20protection" title="respiratory protection">respiratory protection</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20hygiene" title=" industrial hygiene"> industrial hygiene</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol" title=" aerosol"> aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20force" title=" electrostatic force"> electrostatic force</a> </p> <a href="https://publications.waset.org/abstracts/84457/the-effects-of-stokes-drag-electrostatic-force-and-charge-on-penetration-of-nanoparticles-through-n95-respirators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1571</span> Molecular Electrostatic Potential in Z-3N(2-Ethoxyphenyl), 2-N'(2-Ethoxyphenyl) Imino Thiazolidin-4-one Molecule by Ab Initio and DFT Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manel%20Boulakoud">Manel Boulakoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Chouaih"> Abdelkader Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=Fodil%20Hamzaoui"> Fodil Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work we are interested in the determination of the Molecular electrostatic potential (MEP) in Z-3N(2-Ethoxyphenyl), 2-N’(2-Ethoxyphenyl) imino thiazolidin-4-one molecule by ab initio and Density Functional Theory (DFT) in the ground state. The MEP is related to the electronic density and is a very useful descriptor in understanding sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions. First, geometry optimization was carried out using Hartree–Fock (HF) and DFT methods with 6-311G(d,p) basis set. In order to get more information on the molecule, its stability has been analyzed by natural bond orbital (NBO) analysis. Mulliken population analyses have been calculated. Finally, the molecular electrostatic potential (MEP) and HOMO-LUMO energy levels have been performed. The calculated HOMO and LUMO energies show also the charge transfer within the molecule. The energy gap obtained is about 4 eV which explain the stability of the studied compound. The obtained molecular electrostatic potential from the two methods confirms the nature of the electron charge transfer at the molecular shell and locate the electropositive part and the electronegative part in molecular scale of the title compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ab%20initio" title=" ab initio"> ab initio</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title=" organic compounds"> organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/43840/molecular-electrostatic-potential-in-z-3n2-ethoxyphenyl-2-n2-ethoxyphenyl-imino-thiazolidin-4-one-molecule-by-ab-initio-and-dft-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1570</span> Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Behera">P. Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Singh"> K. K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Saini"> D. K. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De"> M. De</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=array-based%20sensing" title="array-based sensing">array-based sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistant%20bacteria" title=" drug resistant bacteria"> drug resistant bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20discriminant%20analysis" title=" linear discriminant analysis"> linear discriminant analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20MoS%E2%82%82" title=" two-dimensional MoS₂"> two-dimensional MoS₂</a> </p> <a href="https://publications.waset.org/abstracts/133539/discrimination-of-bio-analytes-by-using-two-dimensional-nano-sensor-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1569</span> Application of Wireless Sensor Networks: A Survey in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sathapath%20Kilaso">Sathapath Kilaso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title=" smart city"> smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=survey" title=" survey"> survey</a>, <a href="https://publications.waset.org/abstracts/search?q=Adhoc%20Network" title=" Adhoc Network"> Adhoc Network</a> </p> <a href="https://publications.waset.org/abstracts/79820/application-of-wireless-sensor-networks-a-survey-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>