CINXE.COM

Search results for: titanium alloys

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: titanium alloys</title> <meta name="description" content="Search results for: titanium alloys"> <meta name="keywords" content="titanium alloys"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="titanium alloys" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="titanium alloys"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 846</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: titanium alloys</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> Biological Evaluation of Some Modern Titanium Alloys for Dental Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Maria%20Angelescu">Roxana Maria Angelescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raluca%20Ion"> Raluca Ion</a>, <a href="https://publications.waset.org/abstracts/search?q=Ani%C5%9Foara%20C%C3%AEmpean"> Anişoara Cîmpean</a>, <a href="https://publications.waset.org/abstracts/search?q=Doina%20R%C4%83ducanu"> Doina Răducanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Lucia%20Angelescu"> Mariana Lucia Angelescu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an attempt to find titanium alloys that fulfill the requirements for mechanical and biological compatibility, laboratory and material related tests were performed during the years, as well as preclinical and clinical trials. The multidisciplinary scientific research facilitates the global evaluation of biocompatibility and osseointegration regarding the dental implant alloys. The aim of this study was to determine the in vitro biocompatibility of three modern titanium alloys: Ti-31.7Nb-6.21Zr-1.4Fe-0.16O (wt%), Ti-36.5Nb-4.5Zr-3Ta-0.16O (wt%) and Ti-20Nb-5Ta (wt%), in order to establish whether the use of these titanium alloys can have any toxic or injurious effects on biological systems. The commonly used Ti-6Al-4V alloy was investigated as a reference material. The behavior of MC3T3-E1 pre-osteoblasts on all these four metallic surfaces was evaluated. The tests of immunofluorescence, cytotoxicity and cellular proliferation lead to the conclusion that the newly-developed titanium alloys elicit a good cellular response in terms of cellular survival, adhesion, morphology and proliferative potential as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility%20tests" title="biocompatibility tests">biocompatibility tests</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implants" title=" dental implants"> dental implants</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20engineering" title=" biomedical engineering"> biomedical engineering</a> </p> <a href="https://publications.waset.org/abstracts/27562/biological-evaluation-of-some-modern-titanium-alloys-for-dental-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20M.%20Abd-elrhman">Yasser M. Abd-elrhman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Gepreel"> Mohamed A. Gepreel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiochi%20Nakamura"> Kiochi Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abd%20El-Moneim"> Ahmed Abd El-Moneim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sengo%20Kobayashi"> Sengo Kobayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mervat%20M.%20Ibrahim"> Mervat M. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title="titanium alloys">titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Ringer%E2%80%99s%20solution" title=" Ringer’s solution"> Ringer’s solution</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20corrosion" title=" electrochemical corrosion"> electrochemical corrosion</a> </p> <a href="https://publications.waset.org/abstracts/19503/electrochemical-corrosion-behavior-of-new-developed-titanium-alloys-in-ringers-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Talib%20Mohammed">Mohsin Talib Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20A.%20Khan"> Zahid A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20N.%20Siddiquee"> Arshad N. Siddiquee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%20alloys" title="beta alloys">beta alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young&#039;s modulus"> Young&#039;s modulus</a> </p> <a href="https://publications.waset.org/abstracts/6030/beta-titanium-alloys-the-lowest-elastic-modulus-for-biomedical-applications-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">843</span> Effect of Machining Induced Microstructure Changes on the Edge Formability of Titanium Alloys at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20S.%20Kwame">James S. Kwame</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Yakushina"> E. Yakushina</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Blackwell"> P. Blackwell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The challenges in forming titanium alloys at room temperature are well researched and are linked both to the limitations imposed by the basic crystal structure and their ability to form texture during plastic deformation. One major issue of concern for the sheet forming of titanium alloys is their high sensitivity to surface inhomogeneity. Various machining processes are utilised in preparing sheet hole edges for edge flanging applications. However, the response of edge forming tendencies of titanium to different edge surface finishes is not well investigated. The hole expansion test is used in this project to elucidate the impact of abrasive water jet (AWJ) and electro-discharge machining (EDM) cutting techniques on the edge formability of CP-Ti (Grade 2) and Ti-3Al-2.5V alloys at room temperature. The results show that the quality of the edge surface finish has a major effect on the edge formability of the materials. The work also found that the variations in the edge forming performance are mainly the result of the influence of machining induced edge surface defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title="titanium alloys">titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20expansion%20test" title=" hole expansion test"> hole expansion test</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20formability" title=" edge formability"> edge formability</a>, <a href="https://publications.waset.org/abstracts/search?q=non-conventional%20machining" title=" non-conventional machining"> non-conventional machining</a> </p> <a href="https://publications.waset.org/abstracts/110917/effect-of-machining-induced-microstructure-changes-on-the-edge-formability-of-titanium-alloys-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">842</span> Elaboration of Titania Nanotubes on Ti₆Al₄V Substrate by Electrochemical Anodization for Dental Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Boucheham">Abdelghani Boucheham</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahcene%20Karaali"> Ahcene Karaali</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Manseri"> Amar Manseri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanostructured Titania layers formed on the surface of titanium and titanium alloys by anodic oxidation play an important role in the enhancement of their biocompatibility and osseointegration in the human body. In the current work, highly ordered titania nanotube array films were elaborated on Ti₆Al₄V medical grade alloys in organic electrolyte containing ethylene glycol, 0.2 wt. % NH₄F and 4 vol. % H₂O at an applied potential of 60 V for different durations. The diameters, lengths and wall thicknesses of the obtained nanotubes were characterized by scanning electronic microscopy (SEM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anodization" title="anodization">anodization</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implants" title=" dental implants"> dental implants</a>, <a href="https://publications.waset.org/abstracts/search?q=titania%20nanotubes" title=" titania nanotubes"> titania nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/53217/elaboration-of-titania-nanotubes-on-ti6al4v-substrate-by-electrochemical-anodization-for-dental-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">841</span> Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Brunke">F. Brunke</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Waalkes"> L. Waalkes</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Siemers"> C. Siemers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti 15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the micro structure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti-15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ti%2015Mo" title="Ti 15Mo">Ti 15Mo</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20metals" title=" rare earth metals"> rare earth metals</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20machining%20alloy" title=" free machining alloy "> free machining alloy </a> </p> <a href="https://publications.waset.org/abstracts/10012/deformability-of-the-rare-earth-metal-modified-metastable-v-alloy-ti-15mo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">840</span> Texture and Twinning in Selective Laser Melting Ti-6Al-4V Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Kazantseva">N. Kazantseva</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Krakhmalev"> P. Krakhmalev</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Yadroitsev"> I. Yadroitsev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fefelov"> A. Fefelov</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Vinogradova"> N. Vinogradova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ezhov"> I. Ezhov</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kurennykh"> T. Kurennykh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Martensitic texture-phase transition in Selective Laser Melting (SLM) Ti-6Al-4V (ELI) alloys was found. Electron Backscatter Diffraction (EBSD) analysis showed the initial cubic beta &lt; 100 &gt; (001) BCC texture. Such kind of texture is observed in BCC metals with flat rolling texture when axis is in the direction of rolling and the texture plane coincides with the plane of rolling. It was found that the texture of the parent BCC beta-phase determined the texture of low-temperature HCP alpha-phase limited the choice of its orientation variants. The {10-12} &lt; -1011 &gt; twinning system in titanium alloys after SLM was determined. Analysis of the oxygen contamination in SLM alloys was done. Comparison of the obtained results with the conventional titanium alloys is also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20technology" title="additive technology">additive technology</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=twins" title=" twins"> twins</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V" title=" Ti-6Al-4V"> Ti-6Al-4V</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20content" title=" oxygen content"> oxygen content</a> </p> <a href="https://publications.waset.org/abstracts/63604/texture-and-twinning-in-selective-laser-melting-ti-6al-4v-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> Titanium Alloys for Cryogenic Gas Bottle Applications: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhanu%20Pant">Bhanu Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20H.%20Upadhyay"> Sanjay H. Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys, owing to their high specific strength coupled with excellent resistance to corrosion in many severe environments, find extensive usage in the aerospace sector. Alpha and beta lean Titanium alloys have an additional characteristic of exhibiting high toughness with an NTS/ UTS ratio greater than one down to liquid oxygen and liquid helium temperatures. The cryogenic stage of high-performance rockets utilizes cryo-fluid submerged pressurizing tanks to improve volume to mass performance factor. A superior volume-to-mass ratio is achieved for LH2-submerged pressurizing tanks as compared to those submerged in LOX. Such high-efficiency tanks for LH2 submerged application necessitate the use of difficult to process alpha type Ti5Al2.5Sn-ELI alloy, which requires close control of process parameters to develop the tanks. In the present paper, a comparison of this alpha-type cryogenic Titanium alloy has been brought out with conventional alpha-beta Ti6Al4V-ELI alloy, which is usable up to LOX temperatures. Specific challenges faced during the development of these cryogenic pressurizing tanks for a launch vehicle based on the author's experience are included in the paper on the comparatively lesser-studied alpha Ti5Al2.5Sn-ELI alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20tanks" title="cryogenic tanks">cryogenic tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20Alloys" title=" titanium Alloys"> titanium Alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=NTS%2FUTS%20ratio" title=" NTS/UTS ratio"> NTS/UTS ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20and%20alpha-beta%20ELI%20alloys" title=" alpha and alpha-beta ELI alloys"> alpha and alpha-beta ELI alloys</a> </p> <a href="https://publications.waset.org/abstracts/184964/titanium-alloys-for-cryogenic-gas-bottle-applications-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> Effect of Incremental Forming Parameters on Titanium Alloys Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Homola">P. Homola</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Novakova"> L. Novakova</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kafka"> V. Kafka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Oscoz"> M. P. Oscoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and micro-hardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the micro-hardness at higher straining due to recovery processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incremental%20forming" title="incremental forming">incremental forming</a>, <a href="https://publications.waset.org/abstracts/search?q=metallography" title=" metallography"> metallography</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20spinning" title=" shear spinning"> shear spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a> </p> <a href="https://publications.waset.org/abstracts/4222/effect-of-incremental-forming-parameters-on-titanium-alloys-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> Characterization of Titanium -Niobium Alloys by Powder Metallurgy as İmplant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyy%C3%BCp%20Murat%20Karakurt">Eyyüp Murat Karakurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Huang">Yan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Kaya">Mehmet Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyin%20Demirta%C5%9F">Hüseyin Demirtaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20%C4%B0ncesu">Alper İncesu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Ti-(x) Nb (at. %) master alloys (x:10, 20, and 30) were fabricated following a standard powder metallurgy route and were sintered at 1200 ˚C for 6h, under 300 MPa by powder metallurgy method. The effect of the Nb concentration in Ti matrix and porosity level was examined experimentally. For metallographic examination, the alloys were analysed by optical microscopy and energy dispersive spectrometry analysis. In addition, X-ray diffraction was performed on the alloys to determine which compound formed in the microstructure. The compression test was applied to the alloys to understand the mechanical behaviors of the alloys. According to Nb concentration in Ti matrix, the β phase increased. Also, porosity level played a crucial role on the mechanical performance of the alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nb%20concentration" title="Nb concentration">Nb concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20level" title=" porosity level"> porosity level</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20%CE%B2%20phase" title=" The β phase"> The β phase</a> </p> <a href="https://publications.waset.org/abstracts/143340/characterization-of-titanium-niobium-alloys-by-powder-metallurgy-as-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Processing Studies and Challenges Faced in Development of High-Pressure Titanium Alloy Cryogenic Gas Bottles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhanu%20Pant">Bhanu Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20H.%20Upadhyay"> Sanjay H. Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequently, the upper stage of high-performance launch vehicles utilizes cryogenic tank-submerged pressurization gas bottles with high volume-to-weight efficiency to achieve a direct gain in the satellite payload. Titanium alloys, owing to their high specific strength coupled with excellent compatibility with various fluids, are the materials of choice for these applications. Amongst the Titanium alloys, there are two alloys suitable for cryogenic applications, namely Ti6Al4V-ELI and Ti5Al2.5Sn-ELI. The two-phase alpha-beta alloy Ti6Al4V-ELI is usable up to LOX temperature of 90K, while the single-phase alpha alloy Ti5Al2.5Sn-ELI can be used down to LHe temperature of 4 K. The high-pressure gas bottles submerged in the LH2 (20K) can store more amount of gas in as compared to those submerged in LOX (90K) bottles the same volume. Thus, the use of these alpha alloy gas bottles stored at 20K gives a distinct advantage with respect to the need for a lesser number of gas bottles to store the same amount of high-pressure gas, which in turn leads to a one-to-one advantage in the payload in the satellite. The cost advantage to the tune of 15000$/ kg of weight is saved in the upper stages, and, thereby, the satellite payload gain is expected by this change. However, the processing of alpha Ti5Al2.5Sn-ELI alloy gas bottles poses challenges due to the lower forgeability of the alloy and mode of qualification for the critical severe application environment. The present paper describes the processing and challenges/ solutions during the development of these advanced gas bottles for LH2 (20K) applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title="titanium alloys">titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20gas%20bottles" title=" cryogenic gas bottles"> cryogenic gas bottles</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20titanium%20alloy" title=" alpha titanium alloy"> alpha titanium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha-beta%20titanium%20alloy" title=" alpha-beta titanium alloy"> alpha-beta titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/185204/processing-studies-and-challenges-faced-in-development-of-high-pressure-titanium-alloy-cryogenic-gas-bottles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> Effect of Structure on Properties of Incrementally Formed Titanium Alloy Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucie%20Novakova">Lucie Novakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Homola"> Petr Homola</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Kafka"> Vaclav Kafka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asymmetric incremental sheet forming (AISF) could significantly reduce costs incurred by the fabrication of complex industrial components with a minimal environmental impact. The AISF experiments were carried out on commercially pure titanium (Ti-Gr2), Timetal (15-3-3-3) alloy, and Ti-6Al-4V (Ti-Gr5) alloy. A special testing geometry was used to characterize the titanium alloys properties from the point of view of the forming zone and titanium structure effect. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements.The highest differences in the parameters assessed as a function of the sampling zone were observed in the case of alpha-phase Ti-Gr2at the expense of the most substantial sheet thinning occurrence. A springback causes a smaller stored deformation in Timetal (β alloy) resulting in less pronounced microstructure refinement and microhardness increase. Ti-6Al-4V alloy exhibited early failure due to its poor formability at ambient temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incremental%20forming" title="incremental forming">incremental forming</a>, <a href="https://publications.waset.org/abstracts/search?q=metallography" title=" metallography"> metallography</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a> </p> <a href="https://publications.waset.org/abstracts/5510/effect-of-structure-on-properties-of-incrementally-formed-titanium-alloy-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Biocompatible Beta Titanium Alloy Ti36Nb6Ta as a Suitable Material for Bone Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Lukasova">Vera Lukasova</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Filova"> Eva Filova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Dankova"> Jana Dankova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Sovkova"> Vera Sovkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Matej%20Daniel"> Matej Daniel</a>, <a href="https://publications.waset.org/abstracts/search?q=Michala%20Rampichova"> Michala Rampichova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proper bone implants should promote fast adhesion of cells, stimulate cell differentiation and support the formation of bone tissue. Nowadays titanium is used as a biocompatible material capable of bone tissue integration. This study was focused on comparison of bioactive properties of two titanium alloys - beta titanium alloy Ti36Nb6Ta and standard medical titanium alloy Ti6A14V. The advantage of beta titanium alloy Ti36Nb6Ta is mainly that this material does not contain adverse elements like vanadium or aluminium. Titanium alloys were sterilized in ethanol, placed into 48 well plates and seeded with porcine mesenchymal stem cells. Cells were cultivated for 14 days in standard growth cultivation media with osteogenic supplements. Cell metabolic activity was quantified using MTS assay (Promega). Cell adhesion on day 1 and cell proliferation on further days were verified immunohistochemically using beta-actin monoclonal antibody and secondary antibody conjugated with AlexaFluor®488. Differentiation of cells was evaluated using alkaline phosphatase assay. Additionally, gene expression of collagen I was measured by qRT-PCR. Porcine mesenchymal stem cells adhered and spread well on beta titanium alloy Ti36Nb6Ta on day 1. During the 14 days’ time period the cells were spread confluently on the surface of the beta titanium alloy Ti36Nb6Ta. The metabolic activity of cells increased during the whole cultivation period. In comparison to standard medical titanium alloy Ti6A14V, we did not observe any differences. Moreover, the expression of collagen I gene revealed no statistical differences between both titanium alloys. Therefore, a beta titanium alloy Ti36Nb6Ta promotes cell adhesion, metabolic activity, proliferation and collagen I expression equally to standard medical titanium alloy Ti6A14V. Thus, beta titanium is a suitable material that provides sufficient biocompatible properties. This project was supported by the Czech Science Foundation: grant No. 16-14758S. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%20titanium%20alloy" title="beta titanium alloy">beta titanium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a> </p> <a href="https://publications.waset.org/abstracts/52565/biocompatible-beta-titanium-alloy-ti36nb6ta-as-a-suitable-material-for-bone-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Mechanical Properties and Characterization of Ti–6Al–4V Alloy Diffused by Molybdenum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaeddine%20Kaouka">Alaeddine Kaouka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The properties and characterization of Ti-6Al-4V alloys with different contents of Mo were investigated. Microstructure characterization and hardness are considered. The alloy structure was characterized by X-ray diffraction, SEM and optical microscopy. The results showed that the addition of Mo stabilized the β-phase in the treated solution condition. The Mo element added to titanium alloys changes the lattice parameters of phases. Microstructural observations indicate an obvious reduction in the prior grain size. The hardness has increased with the increase in β-phase stability, while Young’s modulus and ductility have decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum" title=" molybdenum"> molybdenum</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloy" title=" titanium alloy"> titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/54796/mechanical-properties-and-characterization-of-ti-6al-4v-alloy-diffused-by-molybdenum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Effect of Vanadium Addition to Aluminum Grain Refined by Ti or Ti + B on Its Microstructure, Mechanical Behavior, Fatigue Strength and Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20I.%20O.%20Zaid">Adnan I. O. Zaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As aluminum solidifies in columnar structure with large grain size which reduces its surface quality and mechanical strength; therefore it is normally grain refined either by titanium or titanium + boron (Ti or Ti + B). In this paper, the effect of addition of either Ti or Ti + B to commercially pure aluminum on its grain size, Vickers hardness, mechanical strength and fatigue strength and life is presented and discussed. Similarly, the effect of vanadium addition to Al grain refined by Ti or Ti+ B is presented and discussed. Two binary master alloys Al-Ti and Al-Vi were laboratory prepared from which five different micro-alloys in addition to the commercially pure aluminum namely Al-Ti, Al-Ti-B, Al-V, Al-Ti-V and Al-Ti-B-V were prepared for the investigation. Finally, the effect of their addition on the fatigue cracks initiation and propagation, using scanning electron microscope, SEM, is also presented and discussed. Photomirographs and photoscans are included in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%2Bboron" title=" titanium+boron"> titanium+boron</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium" title=" vanadium "> vanadium </a> </p> <a href="https://publications.waset.org/abstracts/34047/effect-of-vanadium-addition-to-aluminum-grain-refined-by-ti-or-ti-b-on-its-microstructure-mechanical-behavior-fatigue-strength-and-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> First-Principles Calculations and Thermo-Calc Study of the Elastic and Thermodynamic Properties of Ti-Nb-ZR-Ta Alloy for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Madigoe">M. Madigoe</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Modiba"> R. Modiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High alloyed beta (β) phase-stabilized titanium alloys are known to have a low elastic modulus comparable to that of the human bone (≈30 GPa). The β phase in titanium alloys exhibits an elastic Young’s modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, a theoretical investigation of structural stability and thermodynamic stability, as well as the elastic properties of a quaternary Ti-Nb-Ta-Zr alloy, will be presented with an attempt to lower Young’s modulus. The structural stability and elastic properties of the alloy were evaluated using the first-principles approach within the density functional theory (DFT) framework implemented in the CASTEP code. The elastic properties include bulk modulus B, elastic Young’s modulus E, shear modulus cʹ and Poisson’s ratio v. Thermodynamic stability, as well as the fraction of β phase in the alloy, was evaluated using the Thermo-Calc software package. Thermodynamic properties such as Gibbs free energy (Δ?⁰?) and enthalpy of formation will be presented in addition to phase proportion diagrams. The stoichiometric compositions of the alloy is Ti-Nbx-Ta5-Zr5 (x = 5, 10, 20, 30, 40 at.%). An optimum alloy composition must satisfy the Born stability criteria and also possess low elastic Young’s modulus. In addition, the alloy must be thermodynamically stable, i.e., Δ?⁰? < 0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title="elastic modulus">elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20proportion%20diagram" title=" phase proportion diagram"> phase proportion diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-calc" title=" thermo-calc"> thermo-calc</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a> </p> <a href="https://publications.waset.org/abstracts/141420/first-principles-calculations-and-thermo-calc-study-of-the-elastic-and-thermodynamic-properties-of-ti-nb-zr-ta-alloy-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Busra%20Balli">Busra Balli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuncay%20Dikici"> Tuncay Dikici</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Toparli"> Mustafa Toparli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20implant" title="dental implant">dental implant</a>, <a href="https://publications.waset.org/abstracts/search?q=etching" title=" etching"> etching</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modifications" title=" surface modifications"> surface modifications</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/17922/enhancement-and-characterization-of-titanium-surfaces-with-sandblasting-and-acid-etching-for-dental-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Bok%20Lee">Dong Bok Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Jung%20Kim"> Min Jung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiN<sub>x</sub>O<sub>y</sub>. The maximum microhardness was obtained, when TiN<sub>x</sub>O<sub>y</sub> had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloy" title="titanium alloy">titanium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxynitriding" title=" oxynitriding"> oxynitriding</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20diffusion" title=" gas diffusion"> gas diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a> </p> <a href="https://publications.waset.org/abstracts/65271/effect-of-gas-diffusion-oxynitriding-on-microstructure-and-hardness-of-ti-6al-4v-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Design of New Alloys from Al-Ti-Zn-Mg-Cu System by in situ Al3Ti Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joao%20Paulo%20De%20Oliveira%20Paschoal">Joao Paulo De Oliveira Paschoal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Victor%20Rodrigues%20Dantas"> Andre Victor Rodrigues Dantas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Almeida%20Da%20Silva%20Fernandes"> Fernando Almeida Da Silva Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugenio%20Jose%20Zoqui"> Eugenio Jose Zoqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the adoption of High Pressure Die Casting technologies for the production of automotive bodies by the famous Giga Castings, the technology of processing metal alloys in the semi-solid state (SSM) becomes interesting because it allows for higher product quality, such as lower porosity and shrinkage voids. However, the alloys currently processed are derived from the foundry industry and are based on the Al-Si-(Cu-Mg) system. High-strength alloys, such as those of the Al-Zn-Mg-Cu system, are not usually processed, but the benefits of using this system, which is susceptible to heat treatments, can be associated with the advantages obtained by processing in the semi-solid state, promoting new possibilities for production routes and improving product performance. The current work proposes a new range of alloys to be processed in the semi-solid state through the modification of aluminum alloys of the Al-Zn-Mg-Cu system by the in-situ formation of Al3Ti intermetallic. Such alloys presented the thermodynamic stability required for semi-solid processing, with a sensitivity below 0.03(Celsius degrees * -1), in a wide temperature range. Furthermore, these alloys presented high hardness after aging heat treatment, reaching 190HV. Therefore, they are excellent candidates for the manufacture of parts that require low levels of defects and high mechanical strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloys" title="aluminum alloys">aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=semisolid%20metals%20processing" title=" semisolid metals processing"> semisolid metals processing</a>, <a href="https://publications.waset.org/abstracts/search?q=intermetallics" title=" intermetallics"> intermetallics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20aluminide" title=" titanium aluminide"> titanium aluminide</a> </p> <a href="https://publications.waset.org/abstracts/194660/design-of-new-alloys-from-al-ti-zn-mg-cu-system-by-in-situ-al3ti-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> Growth and Differentiation of Mesenchymal Stem Cells on Titanium Alloy Ti6Al4V and Novel Beta Titanium Alloy Ti36Nb6Ta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eva%20Filov%C3%A1">Eva Filová</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Da%C5%88kov%C3%A1"> Jana Daňková</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C4%9Bra%20Sovkov%C3%A1"> Věra Sovková</a>, <a href="https://publications.waset.org/abstracts/search?q=Matej%20Daniel"> Matej Daniel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys are biocompatible metals that are widely used in clinical practice as load bearing implants. The chemical modification may influence cell adhesion, proliferation, and differentiation as well as stiffness of the material. The aim of the study was to evaluate the adhesion, growth and differentiation of pig mesenchymal stem cells on the novel beta titanium alloy Ti36Nb6Ta compared to standard medical titanium alloy Ti6Al4V. Discs of Ti36Nb6Ta and Ti6Al4V alloy were sterilized by ethanol, put in 48-well plates, and seeded by pig mesenchymal stem cells at the density of 60×103/cm2 and cultured in Minimum essential medium (Sigma) supplemented with 10% fetal bovine serum and penicillin/streptomycin. Cell viability was evaluated using MTS assay (CellTiter 96® AQueous One Solution Cell Proliferation Assay;Promega), cell proliferation using Quant-iT™ ds DNA Assay Kit (Life Technologies). Cells were stained immunohistochemically using monoclonal antibody beta-actin, and secondary antibody conjugated with AlexaFluor®488 and subsequently the spread area of cells was measured. Cell differentiation was evaluated by alkaline phosphatase assay using p-nitrophenyl phosphate (pNPP) as a substrate; the reaction was stopped by NaOH, and the absorbance was measured at 405 nm. Osteocalcin, specific bone marker was stained immunohistochemically and subsequently visualized using confocal microscopy; the fluorescence intensity was analyzed and quantified. Moreover, gene expression of osteogenic markers osteocalcin and type I collagen was evaluated by real-time reverse transcription-PCR (qRT-PCR). For statistical evaluation, One-way ANOVA followed by Student-Newman-Keuls Method was used. For qRT-PCR, the nonparametric Kruskal-Wallis Test and Dunn's Multiple Comparison Test were used. The absorbance in MTS assay was significantly higher on titanium alloy Ti6Al4V compared to beta titanium alloy Ti36Nb6Ta on days 7 and 14. Mesenchymal stem cells were well spread on both alloys, but no difference in spread area was found. No differences in alkaline phosphatase assay, fluorescence intensity of osteocalcin as well as the expression of type I collagen, and osteocalcin genes were observed. Higher expression of type I collagen compared to osteocalcin was observed for cells on both alloys. Both beta titanium alloy Ti36Nb6Ta and titanium alloy Ti6Al4V Ti36Nb6Ta supported mesenchymal stem cellsˈ adhesion, proliferation and osteogenic differentiation. Novel beta titanium alloys Ti36Nb6Ta is a promising material for bone implantation. The project was supported by the Czech Science Foundation: grant No. 16-14758S, the Grant Agency of the Charles University, grant No. 1246314 and by the Ministry of Education, Youth and Sports NPU I: LO1309. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%20titanium" title="beta titanium">beta titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20growth" title=" cell growth"> cell growth</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloy" title=" titanium alloy"> titanium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=implant" title=" implant"> implant</a> </p> <a href="https://publications.waset.org/abstracts/49554/growth-and-differentiation-of-mesenchymal-stem-cells-on-titanium-alloy-ti6al4v-and-novel-beta-titanium-alloy-ti36nb6ta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Selective Laser Melting (SLM) Process and Its Influence on the Machinability of TA6V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kami%C5%84ski">Rafał Kamiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Rech"> Joel Rech</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Bertrand"> Philippe Bertrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Desrayaud"> Christophe Desrayaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys are among the most important material in the aircraft industry, due to its low density, high strength, and corrosion resistance. However, these alloys are considered as difficult to machine because they have poor thermal properties and high reactivity with cutting tools. The Selective Laser Melting (SLM) process becomes even more popular through industry since it enables the design of new complex components, that cannot be manufactured by standard processes. However, the high temperature reached during the melting phase as well as the several rapid heating and cooling phases, due to the movement of the laser, induce complex microstructures. These microstructures differ from conventional equiaxed ones obtained by casting+forging. Parts obtained by SLM have to be machined in order calibrate the dimensions and the surface roughness of functional surfaces. The ball milling technique is widely applied to finish complex shapes. However, the machinability of titanium is strongly influenced by the microstructure. So the objective of this work is to investigate the influence of the SLM process, i.e. microstructure, on the machinability of titanium, compared to conventional forming processes. The machinability is analyzed by measuring surface roughness, cutting forces, cutting tool wear for a range of cutting conditions (depth of cut ap, feed per tooth fz, spindle speed N) in accordance with industrial practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20milling" title="ball milling">ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/57947/selective-laser-melting-slm-process-and-its-influence-on-the-machinability-of-ta6v-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> Phase Segregating and Complex Forming Pb Based (=X-Pb) Liquid Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indra%20Bahadur%20Bhandari">Indra Bahadur Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Panthi"> Narayan Panthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishwar%20Koirala"> Ishwar Koirala</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20Adhikari"> Devendra Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have used a theoretical model based on the assumption of compound formation in binary alloys to study the thermodynamic, microscopic, and surface properties of Bi-Pb and In-Pb liquid alloys. A review of the phase diagrams for these alloys shows that one of the stable complexes for Bi-Pb liquid alloy is BiPb3; also, that InPb is a stable phase in liquid In-Pb alloys. Using the same interaction parameters that are fitted for the free energy of mixing, we have been able to compute the bulk and thermodynamic properties of the alloys. From our observations, we are able to show that the Bi-Pb liquid alloy exhibits compound formation over the whole concentration range and the In-Pb alloys undergo phase separation. With regards to surface properties, Pb segregates more to the surface in In-Pb alloys than in Bi-Pb alloys. The viscosity isotherms have a positive deviation from ideality for both Bi-Pb and In-Pb alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetry" title="asymmetry">asymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi-Pb" title=" Bi-Pb"> Bi-Pb</a>, <a href="https://publications.waset.org/abstracts/search?q=deviation" title=" deviation"> deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Pb" title=" In-Pb"> In-Pb</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20parameters" title=" interaction parameters"> interaction parameters</a> </p> <a href="https://publications.waset.org/abstracts/136406/phase-segregating-and-complex-forming-pb-based-x-pb-liquid-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> Investigation of Stellram Indexable Milling Cutter XDLT09-D41 Tool Wear for Machining of Ti6Al4V</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Nawaz">Saad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Gang"> Yu Gang</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Haibin"> Miao Haibin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys are attractive materials for aerospace industry due to their exceptional strength to weight ratio that is maintained at elevated temperatures and their good corrosion resistance. Major applications of titanium alloys were military aerospace industry, but since last decade the trend has now shifted towards commercial industry. On the other hand, titanium alloys are notorious for being poor thermal conductor that leads to them being difficult materials for machining. In this experimental study, Stellram Indexable milling cutter XDLT09-D41 is used for rough down milling of Ti6Al4V for small depth of cut under different combinations of parameters and application of high-pressure coolant. The machining performance was evaluated in terms of tool wear, tool life, and thermal crack. The tool wear was mostly observed at the tool tip and at bottom part of tool thermal deformations were observed which propagated with respect to time. Flank wear due to scratching of the cutting chips and diffusion wear because of high thermal stresses were observed specially at the bottom of the cutting tool. It was found that maximum tool life was obtained at the speed of 40m/min, feed rate of 358mm/min and depth of cut of 0.8mm. In the end, it was concluded that machining of Ti6Al4V is a thermally dominant process which leads to high thermal stresses in machining zone that results in increasing tool wear rate and deformation propagation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title="tool wear">tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20speed" title=" cutting speed"> cutting speed</a>, <a href="https://publications.waset.org/abstracts/search?q=flank%20wear" title=" flank wear "> flank wear </a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20life" title=" tool life"> tool life</a> </p> <a href="https://publications.waset.org/abstracts/55620/investigation-of-stellram-indexable-milling-cutter-xdlt09-d41-tool-wear-for-machining-of-ti6al4v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Functionalization of the Surface of Porous Titanium Nickel Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulsharat%20A.%20Baigonakova">Gulsharat A. Baigonakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20S.%20Marchenko"> Ekaterina S. Marchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Venera%20R.%20Luchsheva"> Venera R. Luchsheva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preferred materials for bone grafting are titanium-nickel alloys. They have a porous, permeable structure similar to that of bone tissue, can withstand long-term physiological stress in the body, and retain the scaffolding function for bone tissue ingrowth. Despite the excellent functional properties of these alloys, there is a possibility of post-operative infectious complications that prevent the newly formed bone tissue from filling the spaces created in a timely manner and prolong the rehabilitation period of patients. In order to minimise such consequences, it is necessary to use biocompatible materials capable of simultaneously fulfilling the function of a long-term functioning implant and an osteoreplacement carrier saturated with drugs. Methods to modify the surface by saturation with bioactive substances, in particular macrocyclic compounds, for the controlled release of drugs, biologically active substances, and cells are becoming increasingly important. This work is dedicated to the functionalisation of the surface of porous titanium nickelide by the deposition of macrocyclic compounds in order to provide titanium nickelide with antibacterial activity and accelerated osteogenesis. The paper evaluates the effect of macrocyclic compound deposition methods on the continuity, structure, and cytocompatibility of the surface properties of porous titanium nickelide. Macrocyclic compounds were deposited on the porous surface of titanium nickelide under the influence of various physical effects. Structural research methods have allowed the evaluation of the surface morphology of titanium nickelide and the nature of the distribution of these compounds. The method of surface functionalisation of titanium nickelide influences the size of the deposited bioactive molecules and the nature of their distribution. The surface functionalisation method developed has enabled titanium nickelide to be deposited uniformly on the inner and outer surfaces of the pores, which will subsequently enable the material to be uniformly saturated with various drugs, including antibiotics and inhibitors. The surface-modified porous titanium nickelide showed high biocompatibility and low cytotoxicity in in vitro studies. The research was carried out with financial support from the Russian Science Foundation under Grant No. 22-72-10037. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=NiTi" title=" NiTi"> NiTi</a>, <a href="https://publications.waset.org/abstracts/search?q=surface" title=" surface"> surface</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structure" title=" porous structure"> porous structure</a> </p> <a href="https://publications.waset.org/abstracts/172094/functionalization-of-the-surface-of-porous-titanium-nickel-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Effect of Carbon Additions on FeCrNiMnTi High Entropy Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20D.%20Gomez-Esparza">C. D. Gomez-Esparza</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20V.%20Hernandez-Castro"> Z. V. Hernandez-Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Rodriguez-Gonzalez"> C. A. Rodriguez-Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Martinez-Sanchez"> R. Martinez-Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Duarte-Moller"> A. Duarte-Moller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the high entropy alloys (HEA) are the focus of attention in metallurgical and materials science due to their desirable and superior properties in comparison to conventional alloys. The HEA field has promoted the exploration of several compositions including the addition of non-metallic elements like carbon, which in traditional metallurgy is mainly used in the steel industry. The aim of this work was the synthesis of equiatomic FeCrNiMnTi high entropy alloys, with minor carbon content, by mechanical alloying and sintering. The effect of the addition of carbon nanotubes and graphite were evaluated by X-ray diffraction, scanning electron microscopy, and microhardness test. The structural and microstructural characteristics of the equiatomic alloys, as well as their hardness were compared with those of an austenitic AISI 321 stainless steel processed under the same conditions. The results showed that porosity in bulk samples decreases with carbon nanotubes addition, while the equiatomic composition favors the formation of titanium carbide and increased the AISI 321 hardness more than three times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloys" title=" high entropy alloys"> high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a> </p> <a href="https://publications.waset.org/abstracts/87464/effect-of-carbon-additions-on-fecrnimnti-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> The Effect of Addition of Some Rare Earth Materials to Zinc Aluminum Alloy ZA-22</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20I.%20O.%20Zaid">Adnan I. O. Zaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc aluminum alloys are versatile materials which are widely used in manufacturing several parts in the automobile and aircraft industries. The effect of grain refinement of these alloys by rare earth elements on their mechanical characteristics is scarce. The equal channel angular pressing is relatively recent method for producing severe plastic deformation in materials subjected to it resulting in refinement of their structure and enhancement of their mechanical characteristics. The phase diagram of these alloys indicates that large dendrites of large grain size can be formed during their solidification of the cast which tends to deteriorate their mechanical strength and surface quality. To overcome this problem they are normally grain refined by either titanium or titanium + boron to their melt prior to solidification. In this paper, comparison between the effect of adding either titanium, (Ti), titanium+boron, (Ti+B), or Molybdenum, Mo, to zinc-aluminum22, alloy, (ZA22) on its metallurgical and mechanical characteristics in the cast condition and after pressing by the ECAP process is investigated. It was found that addition of either Ti, Ti+B, or Mo to the ZA22 alloy in the cast condition resulted in refining of their structure being more refined by the addition of Mo, then .Ti+B and less refining by Ti addition. Furthermore, the ECAP process resulted in further refinement of the alloy micro structure except in case of Ti+B addition where poisoning i.e. coarsening of the grains has occurred. Regarding the addition of these element on the mechanical behavior; it was found that addition of Ti Or Ti+B resulted in little enhancement of the alloy strength factor and its flow stress at 20% true strain; whereas, the addition of resulted in deteriorating of its mechanical behavior as % decrease in the strength factor and % in its flow stress of 20%. As for the strain hardening index; addition of any of these elements resulted in decreasing the strain hardening index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=addition" title="addition">addition</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characteristics" title=" mechanical characteristics"> mechanical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=ZA-22" title=" ZA-22"> ZA-22</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinc-%20aluminum%20alloy" title=" Zinc- aluminum alloy "> Zinc- aluminum alloy </a> </p> <a href="https://publications.waset.org/abstracts/34046/the-effect-of-addition-of-some-rare-earth-materials-to-zinc-aluminum-alloy-za-22" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> Microstructural and Corrosion Analysis of a Ti-Nb-Ta Biocompatible Dental Implant Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Maria%20Angelescu">Roxana Maria Angelescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Doina%20R%C4%83ducanu"> Doina Răducanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Lucia%20Angelescu"> Mariana Lucia Angelescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ion%20Cinc%C4%83"> Ion Cincă</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasile%20D%C4%83nu%C5%A3%20Cojocaru"> Vasile Dănuţ Cojocaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Cosmin%20Cotru%C8%9B"> Cosmin Cotruț</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eerban%20Nicolae"> Şerban Nicolae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys are often used for biomedical applications as hard tissue replacements, such as: orthopedic implants, spinal fixation devices and dental implants. Their advantages are well known and demonstrated: excellent mechanical properties, biocompatibility and good corrosion resistance, but it is also known that the main disadvantage of the metallic materials is their tendency of corrosion in in-vivo environments. In 1987, titanium was found to be the only metallic biomaterial that osseointegrates. The aim of this study was to investigate the microstructure and the corrosion behavior of the Ti-20Nb-5Ta wt% alloy. In this case Nb stabilizes the β-Ti structure and Ta is a highly passivating metal. The as studied alloy was melt under argon protective atmosphere in a levitation induction melting furnace, type FIVE CELES - MP25, with a nominal power of 25 kW and a melting capacity of 30 cm3. The microstructure of the as studied alloy was analyzed by using the electronic microscope Tescan Vega II-XMU. The phase structure of the as studied alloy was determined, as well as the crystalline grain size (100-200µ). To determine the corrosion behavior of the as studied alloy, the technique used was the linear polarization, with the PARSTAT 4000 potentiostat, produced by Princeton Applied Research; potentiodynamic curves were obtained with the VeraStudio v.2.4.2 software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title="corrosion resistance">corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a> </p> <a href="https://publications.waset.org/abstracts/25962/microstructural-and-corrosion-analysis-of-a-ti-nb-ta-biocompatible-dental-implant-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Effect of Zirconium Addition to Aluminum Grain Refined by Ti on its Resistance to Wear: A Three-Dimensional Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20Al-Qawabah">S. M. A. Al-Qawabah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20O.%20%20Zaid"> A. I. O. Zaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum and its alloys are versatile materials which are widely used in industrial and engineering applications due to their good and useful properties e.g. high strength to weight ratio, high thermal and electrical conductivities and good resistance to corrosion. However, against these favorable properties they have the disadvantage they solidifying large grain columnar structure which negatively affects their mechanical properties and surface quality. Aluminum alloys are normally grain refined by some alloying elements, such as Ti, Ti-B or Zr. In this paper, the effect of zirconium addition to Al grain refined by Ti after extrusion on its wear resistance is investigated under different loads and sliding speeds namely at 5,10 and 20 N loads and sliding speeds ranging from m/min. and m/min. the results are presented in three-dimensional wear mode. To the best the authors' knowledge, the wear of aluminum in 3-dimensions has never been tackled before. In this work, the wear resistance of by presenting the results of wear are presented and discussed on the time, load and speed plots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20grain%20refined" title="aluminum grain refined">aluminum grain refined</a>, <a href="https://publications.waset.org/abstracts/search?q=addition%20of%20titanium" title=" addition of titanium"> addition of titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/65261/effect-of-zirconium-addition-to-aluminum-grain-refined-by-ti-on-its-resistance-to-wear-a-three-dimensional-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Applications of Nanoparticles via Laser Ablation in Liquids: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawaz%20%20M.%20Abdullah">Fawaz M. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20M.%20Al-Ahmari"> Abdulrahman M. Al-Ahmari</a>, <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Rafaqat"> Madiha Rafaqat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser ablation of any solid target in the liquid leads to fabricate nanoparticles (NPs) with metal or different compositions of materials such as metals, alloys, oxides, carbides, hydroxides. The fabrication of NPs in liquids based on laser ablation has grown up rapidly in the last decades compared to other techniques. Nowadays, laser ablation has been improved to prepare different types of NPs with special morphologies, microstructures, phases, and sizes, which can be applied in various fields. The paper reviews and highlights the different sizes, shapes and application field of nanoparticles that are produced by laser ablation under different liquids and materials. Also, the paper provides a case study for producing a titanium NPs produced by laser ablation submerged in distilled water. The size of NPs is an important parameter, especially for their usage and applications. The size and shape have been analyzed by SEM, (EDAX) was applied to evaluate the oxidation and elements of titanium NPs and the XRD was used to evaluate the phase composition and the peaks of both titanium and some element. SEM technique showed that the synthesized NPs size ranges were between 15-35 nm which can be applied in various field such as annihilator for cancerous cell etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title=" laser ablation"> laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20NPs" title=" titanium NPs"> titanium NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/105599/applications-of-nanoparticles-via-laser-ablation-in-liquids-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> Effect of Impurities in the Chlorination Process of TiO2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min">Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing interest on Ti alloys, the extraction process of Ti from its typical ore, TiO<sub>2</sub>, has long been and will be important issue. As an intermediate product for the production of pigment or titanium metal sponge, tetrachloride (TiCl<sub>4</sub>) is produced by fluidized bed using high TiO<sub>2</sub> feedstock. The purity of TiCl<sub>4</sub> after chlorination is subjected to the quality of the titanium feedstock. Since the impurities in the TiCl<sub>4</sub> product are reported to final products, the purification process of the crude TiCl<sub>4</sub> is required. The purification process includes fractional distillation and chemical treatment, which depends on the nature of the impurities present and the required quality of the final product. In this study, thermodynamic analysis on the impurity effect in the chlorination process, which is the first step of extraction of Ti from TiO<sub>2</sub>, has been conducted. All thermodynamic calculations were performed using the FactSage thermodynamical software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rutile" title="rutile">rutile</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorination%20process" title=" chlorination process"> chlorination process</a>, <a href="https://publications.waset.org/abstracts/search?q=impurities" title=" impurities"> impurities</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20calculation" title=" thermodynamic calculation"> thermodynamic calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=FactSage" title=" FactSage"> FactSage</a> </p> <a href="https://publications.waset.org/abstracts/62214/effect-of-impurities-in-the-chlorination-process-of-tio2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20alloys&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10