CINXE.COM

Search results for: oil spill

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: oil spill</title> <meta name="description" content="Search results for: oil spill"> <meta name="keywords" content="oil spill"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="oil spill" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="oil spill"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 67</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: oil spill</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Biomarkers, A Reliable Tool for Delineating Spill Trajectory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okpor%20Victor">Okpor Victor</a>, <a href="https://publications.waset.org/abstracts/search?q=Selegha%20Abrakasa"> Selegha Abrakasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil (Petroleum) spill occur frequently and in this era of a higher degree of awareness, it is pertinent that the trajectory of the spill is properly defined, to make certain of the area of impact by the spill. In this study, biomarkers that are known as the custodians of paleo information in oils are suggested to be used as reliable tools for defining the pathway of a spill. Samples were collected as tills alongside the GPS coordinates of the sample points suspected to have been impacted by a spill. Oils in the samples were extracted and analyzed as whole oil using GC–MS. Some biomarker parametric ratios were derived, and the ratio showed consistency of values along the sample trail from sample 1 to sample 20. The consistency of the values indicates that the oils at each sample point are the same hence the same value. This method can be used to validate the trajectory/pathway of a spill and also to define or establish a suspected pathway for a spill. The Oleanane/C30Hopane ratio showed good consistency and was suggested as a reliable parameter for establishing the trajectory of an oil spill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spill" title="spill">spill</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=pathway" title=" pathway"> pathway</a> </p> <a href="https://publications.waset.org/abstracts/173283/biomarkers-a-reliable-tool-for-delineating-spill-trajectory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Using GIS for Assessment and Modelling of Oil Spill Risk at Vulnerable Coastal Resources: Of Misratah Coast, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abduladim%20Maitieg">Abduladim Maitieg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oil manufacture is one of the main productive activities in Libya and has a massive infrastructure, including offshore drilling and exploration and wide oil export platform sites that located in coastal area. There is a threat to marine and coastal area of oil spills is greatest in those sites with a high spills comes from urban and industry, parallel to that, monitoring oil spills and risk emergency strategy is weakness, An approach for estimating a coastal resources vulnerability to oil spills is presented based on abundance, environmental and Scio-economic importance, distance to oil spill resources and oil risk likelihood. As many as 10 coastal resources were selected for oil spill assessment at the coast. This study aims to evaluate, determine and establish vulnerable coastal resource maps and estimating the rate of oil spill comes for different oil spill resources in Misratah marine environment. In the study area there are two type of oil spill resources, major oil resources come from offshore oil industries which are 96 km from the Coast and Loading/Uploading oil platform. However, the miner oil resources come from urban sewage pipes and fish ports. In order to analyse the collected database, the Geographic information system software has been used to identify oil spill location, to map oil tracks in front of study area, and developing seasonal vulnerable costal resources maps. This work shows that there is a differential distribution of the degree of vulnerability to oil spills along the coastline, with values ranging from high vulnerability and low vulnerability, and highlights the link between oil spill movement and coastal resources vulnerability. The results of assessment found most of costal freshwater spring sites are highly vulnerable to oil spill due to their location on the intertidal zone and their close to proximity to oil spills recourses such as Zreag coast. Furthermore, the Saltmarsh coastline is highly vulnerable to oil spill risk due to characterisation as it contains a nesting area of sea turtles and feeding places for migratory birds and the . Oil will reach the coast in winter season according to oil spill movement. Coastal tourist beaches in the north coast are considered as highly vulnerable to oil spill due to location and closeness to oil spill resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20recourses%20vulnerability" title="coastal recourses vulnerability">coastal recourses vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20trajectory" title=" oil spill trajectory"> oil spill trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=gnome%20software" title=" gnome software"> gnome software</a>, <a href="https://publications.waset.org/abstracts/search?q=Misratah%20coast-%20Libya" title=" Misratah coast- Libya"> Misratah coast- Libya</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/36483/using-gis-for-assessment-and-modelling-of-oil-spill-risk-at-vulnerable-coastal-resources-of-misratah-coast-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Multi-Criteria Decision-Making Evaluations for Oily Waste Management of Marine Oil Spill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naznin%20Sultana%20Daisy">Naznin Sultana Daisy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hesam%20Hafezi"> Mohammad Hesam Hafezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Liu"> Lei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, oily solid waste management has become an important issue for many countries due to frequent oil spill accidents and the increase of industrial oily wastewater. The historical oil spill data show that marine oil spills that affect the shoreline can, in extreme cases, produce up to 30 or 40 times more waste than the volume of oil initially released. Hence, responsive authorities aim to develop the most effective oily waste management solution in a timely manner to manage and minimize the waste generated. In this study initially, we tried to develop the roadmap of oily waste management for three-tiered spill scenarios for Atlantic Canada. For that purpose, three oily waste disposal scenarios are evaluated via six criteria which are determined according to the opinions of the experts from the field. Consequently, through sustainable response strategies, the most appropriate and feasible scenario is determined. The results of this study will assist to develop an integrated oily waste management system for identifying the optimal waste-generation-allocation-disposal schemes and generating the optimal management alternatives based on the holistic consideration of environmental, technological, economic, social, and regulatory factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oily%20waste%20management" title="oily waste management">oily waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20oil%20spill" title=" marine oil spill"> marine oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-criteria%20decision%20making" title=" multi-criteria decision making"> multi-criteria decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20response" title=" oil spill response"> oil spill response</a> </p> <a href="https://publications.waset.org/abstracts/107239/multi-criteria-decision-making-evaluations-for-oily-waste-management-of-marine-oil-spill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Oil-Spill Monitoring in Istanbul Strait and Marmara Sea by RASAT Remote Sensing Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozgun%20Oktar">Ozgun Oktar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevilay%20Can"> Sevilay Can</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20V.%20Ekici"> Cengiz V. Ekici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oil spill is a form of pollution caused by releasing of a liquid petroleum hydrocarbon into the marine environment. Considering the growth of ship traffic, increasing of off-shore oil drilling and seaside refineries affect the risk of oil spill upward. The oil spill is easy to spread to large areas when occurs especially on the sea surface. Remote sensing technology offers the easiest way to control/monitor the area of the oil spill in a large region. It’s usually easy to detect pollution when occurs by the ship accidents, however monitoring non-accidental pollution could be possible by remote sensing. It is also needed to observe specific regions daily and continuously by satellite solutions. Remote sensing satellites mostly and effectively used for monitoring oil pollution are RADARSAT, ENVISAT and MODIS. Spectral coverage and transition period of these satellites are not proper to monitor Marmara Sea and Istanbul Strait continuously. In this study, RASAT and GOKTURK-2 are suggested to use for monitoring Marmara Sea and Istanbul Strait. RASAT, with spectral resolution 420 – 730 nm, is the first Turkish-built satellite. GOKTURK-2’s resolution can reach up to 2,5 meters. This study aims to analyze the images from both satellites and produce maps to show the regions which have potentially affected by spills from shipping traffic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marmara%20Sea" title="Marmara Sea">Marmara Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20remote%20sensing" title=" satellite remote sensing"> satellite remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/52390/oil-spill-monitoring-in-istanbul-strait-and-marmara-sea-by-rasat-remote-sensing-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Impacts and Management of Oil Spill Pollution along the Chabahar Bay by ESI Mapping, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sanjarani">M. Sanjarani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Danehkar"> A. Danehkar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mashincheyan"> A. Mashincheyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Javid"> A. H. Javid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20R.%20Fatemi"> S. M. R. Fatemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oil spill in marine water has direct impact on coastal resources and community. Environmental Sensitivity Index (ESI) map is the first step to assess the potential impact of an oil spill and minimize the damage of coastal resources. In order to create Environmental Sensitivity Maps for the Chabahar bay (Iran), information has been collected in three different layers (Shoreline Classification, Biological and Human- uses resources) by means of field observations and measurements of beach morphology, personal interviews with professionals of different areas and the collection of bibliographic information. In this paper an attempt made to prepare an ESI map for sensitivity to oil spills of Chabahar bay coast. The Chabahar bay is subjected to high threaten to oil spill because of port, dense mangrove forest,only coral spot in Oman Sea and many industrial activities. Mapping the coastal resources, shoreline and coastal structures was carried out using Satellite images and GIS technology. The coastal features classified into three major categories as: Shoreline Classification, Biological and Human uses resources. The important resources classified into mangrove, Exposed tidal flats, sandy beach, etc. The sensitivity of shore was ranked as low to high (1 = low sensitivity,10 = high sensitivity) based on geomorphology of Chabahar bay coast using NOAA standards (sensitivity to oil, ease of clean up, etc). Eight ESI types were found in the area namely; ESI 1A, 1C, 3A, 6B, 7, 8B,9A and 10D. Therefore, in the study area, 50% were defined as High sensitivity, less than 1% as Medium, and 49% as low sensitivity areas. The ESI maps are useful to the oil spill responders, coastal managers and contingency planners. The overall ESI mapping product can provide a valuable management tool not only for oil spill response but for better integrated coastal zone management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESI" title="ESI">ESI</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabahar%20Bay" title=" Chabahar Bay"> Chabahar Bay</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/40151/impacts-and-management-of-oil-spill-pollution-along-the-chabahar-bay-by-esi-mapping-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanmay%20Bisen">Tanmay Bisen</a>, <a href="https://publications.waset.org/abstracts/search?q=Aastha%20Shayla"> Aastha Shayla</a>, <a href="https://publications.waset.org/abstracts/search?q=Susham%20Biswas"> Susham Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anomaly%20Detection" title="Anomaly Detection">Anomaly Detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Oil%20Spill%20Prediction" title=" Oil Spill Prediction"> Oil Spill Prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Machine%20%20Learning" title=" Machine Learning"> Machine Learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Image%20Processing" title=" Image Processing"> Image Processing</a>, <a href="https://publications.waset.org/abstracts/search?q=Graph%20Neural%20%20Network%20%28GNN%29" title=" Graph Neural Network (GNN)"> Graph Neural Network (GNN)</a> </p> <a href="https://publications.waset.org/abstracts/172591/predicting-oil-spills-in-real-time-a-machine-learning-and-ais-data-driven-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Boundary Motion by Curvature: Accessible Modeling of Oil Spill Evaporation/Dissipation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gary%20Miller">Gary Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=Andriy%20Didenko"> Andriy Didenko</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Allison"> David Allison</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary of a region in the plane shrinks according to its curvature. A simple algorithm based upon this motion by curvature performed by a spreadsheet simulates the evaporation/dissipation behavior of oil spill boundaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation" title=" dissipation"> dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary" title=" boundary"> boundary</a> </p> <a href="https://publications.waset.org/abstracts/13621/boundary-motion-by-curvature-accessible-modeling-of-oil-spill-evaporationdissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Analysis of the Contribution of Coastal and Marine Physical Factors to Oil Slick Movement: Case Study of Misrata, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abduladim%20Maitieg">Abduladim Maitieg</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Johnson"> Mark Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing a coastal oil spill management plan for the Misratah coast is the motivating factor for building a database for coastal and marine systems and energy resources. Wind direction and speed, currents, bathymetry, coastal topography and offshore dynamics influence oil spill deposition in coastal water. Therefore, oceanographic and climatological data can be used to understand oil slick movement and potential oil deposits on shoreline area and the behaviour of oil spill trajectories on the sea surface. The purpose of this study is to investigate the effects of the coastal and marine physical factors under strong wave conditions and various bathymetric and coastal topography gradients in the western coastal area of Libya on the movement of oil slicks. The movement of oil slicks was computed using a GNOME simulation model based on current and wind speed/direction. The results in this paper show that (1) Oil slick might reach the Misratah shoreline area in two days in the summer and winter. Seasons. (2 ) The North coast of Misratah is the potential oil deposit area on the Misratah coast. (3) Tarball pollution was observed along the North coast of Misratah. (4) Two scenarios for the summer and the winter season were run, along the western coast of Libya . (5) The eastern coast is at a lower potential risk due to the influence of wind and current energy in the Gulf of Sidra. (6) The Misratah coastline is more vulnerable to oil spill movement in the summer than in winter seasons. (7) Oil slick takes from 2 to 5 days to reach the saltmarsh in the eastern Misratah coast. (8) Oil slick moves 300 km in 30 days from the spill resource location near the Libyan western border to the Misratah coast.(9) Bathymetric features have a profound effect on oil spill movement. (9)Oil dispersion simulations using GNOME are carried out taking into account high-resolution wind and current data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20movement" title="oil spill movement">oil spill movement</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20and%20marine%20physical%20factors" title=" coastal and marine physical factors"> coastal and marine physical factors</a>, <a href="https://publications.waset.org/abstracts/search?q=coast%20area" title=" coast area"> coast area</a>, <a href="https://publications.waset.org/abstracts/search?q=Libyan" title=" Libyan "> Libyan </a> </p> <a href="https://publications.waset.org/abstracts/74155/analysis-of-the-contribution-of-coastal-and-marine-physical-factors-to-oil-slick-movement-case-study-of-misrata-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Efficiency of Maritime Simulator Training in Oil Spill Response Competence Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antti%20Lanki">Antti Lanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Justiina%20Halonen"> Justiina Halonen</a>, <a href="https://publications.waset.org/abstracts/search?q=Juuso%20Punnonen"> Juuso Punnonen</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmi%20Rantavuo"> Emmi Rantavuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine oil spill response operation requires extensive vessel maneuvering and navigation skills. At-sea oil containment and recovery include both single vessel and multi-vessel operations. Towing long oil containment booms that are several hundreds of meters in length, is a challenge in itself. Boom deployment and towing in multi-vessel configurations is an added challenge that requires precise coordination and control of the vessels. Efficient communication, as a prerequisite for shared situational awareness, is needed in order to execute the response task effectively. To gain and maintain adequate maritime skills, practical training is needed. Field exercises are the most effective way of learning, but especially the related vessel operations are resource-intensive and costly. Field exercises may also be affected by environmental limitations such as high sea-state or other adverse weather conditions. In Finland, the seasonal ice-coverage also limits the training period to summer seasons only. In addition, environmental sensitiveness of the sea area restricts the use of real oil or other target substances. This paper examines, whether maritime simulator training can offer a complementary method to overcome the training challenges related to field exercises. The objective is to assess the efficiency and the learning impact of simulator training, and the specific skills that can be trained most effectively in simulators. This paper provides an overview of learning results from two oil spill response pilot courses, in which maritime navigational bridge simulators were used to train the oil spill response authorities. The simulators were equipped with an oil spill functionality module. The courses were targeted at coastal Fire and Rescue Services responsible for near shore oil spill response in Finland. The competence levels of the participants were surveyed before and after the course in order to measure potential shifts in competencies due to the simulator training. In addition to the quantitative analysis, the efficiency of the simulator training is evaluated qualitatively through feedback from the participants. The results indicate that simulator training is a valid and effective method for developing marine oil spill response competencies that complement traditional field exercises. Simulator training provides a safe environment for assessing various oil containment and recovery tactics. One of the main benefits of the simulator training was found to be the immediate feedback the spill modelling software provides on the oil spill behaviour as a reaction to response measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maritime%20training" title="maritime training">maritime training</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20response" title=" oil spill response"> oil spill response</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vessel%20manoeuvring" title=" vessel manoeuvring"> vessel manoeuvring</a> </p> <a href="https://publications.waset.org/abstracts/91067/efficiency-of-maritime-simulator-training-in-oil-spill-response-competence-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Case Scenario Simulation concerning Eventual Ship Sourced Oil Spill, Expansion and Response Process in Istanbul Strait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cihat%20A%C5%9Fan">Cihat Aşan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Istanbul Strait is a crucial and narrow waterway, not only having a role in linking two continents but also has a crossover mission for the petroleum, which is the biggest energy resource, between its supply and demand sources. Besides its substantial features, sensitivities like around 18 million populations in surroundings, military facilities, ports, oil lay down areas etc. also brings the high risk to use of Istanbul Strait. Based on the statistics of Turkish Ministry of Transportation, Maritime and Communication, although the number of vessel passage in Istanbul Strait is declining, tonnage of hazardous and flammable cargo like oil and chemical transportation is increasing and subsequently the risk of oil pollution, loss of life and property is also rising. Based on the mentioned above; it is crucial to be prepared for the initial and subsequent response to eventual ship sourced oil spill which may cause to block the Strait for an unbearable duration. In this study; preconditioned Istanbul Strait sensitive areas studies has been taken into account and possible oil spill scenario is loaded to PISCES 2 (Potential Incident Simulation Control and Evaluation System) decision support system for the determined specific sea area. Consequences of the simulation like oil expanding process, required number and types of assets to response, had in hand and evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Istanbul%20strait" title="Istanbul strait">Istanbul strait</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=PISCES%20simulator" title=" PISCES simulator"> PISCES simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20response" title=" initial response"> initial response</a> </p> <a href="https://publications.waset.org/abstracts/71010/case-scenario-simulation-concerning-eventual-ship-sourced-oil-spill-expansion-and-response-process-in-istanbul-strait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Coastal Resources Spatial Planning and Potential Oil Risk Analysis: Case Study of Misratah’s Coastal Resources, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abduladim%20Maitieg">Abduladim Maitieg</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Lynch"> Kevin Lynch</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Johnson"> Mark Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of the Libyan Environmental General Authority (EGA) and National Oil Corporation (Department of Health, Safety &amp; Environment) during the last 5 years has been to adopt a common approach to coastal and marine spatial planning. Protection and planning of the coastal zone is a significant for Libya, due to the length of coast and, the high rate of oil export, and spills&rsquo; potential negative impacts on coastal and marine habitats. Coastal resource scenarios constitute an important tool for exploring the long-term and short-term consequences of oil spill impact and available response options that would provide an integrated perspective on mitigation. To investigate that, this paper reviews the Misratah coastal parameters to present the physical and human controls and attributes of coastal habitats as the first step in understanding how they may be damaged by an oil spill. This paper also investigates costal resources, providing a better understanding of the resources and factors that impact the integrity of the ecosystem. Therefore, the study described the potential spatial distribution of oil spill risk and the coastal resources value, and also created spatial maps of coastal resources and their vulnerability to oil spills along the coast. This study proposes an analysis of coastal resources condition at a local level in the Misratah region of the Mediterranean Sea, considering the implementation of coastal and marine spatial planning over time as an indication of the will to manage urban development. Oil spill contamination analysis and their impact on the coastal resources depend on (1) oil spill sequence, (2) oil spill location, (3) oil spill movement near the coastal area. The resulting maps show natural, socio-economic activity, environmental resources along of the coast, and oil spill location. Moreover, the study provides significant geodatabase information which is required for coastal sensitivity index mapping and coastal management studies. The outcome of study provides the information necessary to set an Environmental Sensitivity Index (ESI) for the Misratah shoreline, which can be used for management of coastal resources and setting boundaries for each coastal sensitivity sectors, as well as to help planners measure the impact of oil spills on coastal resources. Geographic Information System (GIS) tools were used in order to store and illustrate the spatial convergence of existing socio-economic activities such as fishing, tourism, and the salt industry, and ecosystem components such as sea turtle nesting area, Sabkha habitats, and migratory birds feeding sites. These geodatabases help planners investigate the vulnerability of coastal resources to an oil spill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20and%20marine%20spatial%20planning%20advancement%20training" title="coastal and marine spatial planning advancement training">coastal and marine spatial planning advancement training</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20mapping" title=" GIS mapping"> GIS mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20uses" title=" human uses"> human uses</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20components" title=" ecosystem components"> ecosystem components</a>, <a href="https://publications.waset.org/abstracts/search?q=Misratah%20coast" title=" Misratah coast"> Misratah coast</a>, <a href="https://publications.waset.org/abstracts/search?q=Libyan" title=" Libyan"> Libyan</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a> </p> <a href="https://publications.waset.org/abstracts/66800/coastal-resources-spatial-planning-and-potential-oil-risk-analysis-case-study-of-misratahs-coastal-resources-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Effect of Asymmetric Amphiphilic Dicationic Ionic Liquids as Oil Spill Dispersants in Red Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghda%20El-Nagara">Raghda El-Nagara</a>, <a href="https://publications.waset.org/abstracts/search?q=Maher%20I.%20Nessim"> Maher I. Nessim</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20E.%20Elshafee"> Carmen E. Elshafee</a>, <a href="https://publications.waset.org/abstracts/search?q=Renee%20I.%20Abdallah"> Renee I. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20M.%20Moustafa"> Yasser M. Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three asymmetric dicationic ionic liquids (ADILs), 1-(2-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)ethyl)-3-methyl pyridinium bromide (IL₁), 1-(6-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)hexyl)-3-methyl pyridinium bromide (IL₂) and 1-(10-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)decyl)-3-methyl pyridinium bromide (IL₃) were synthesized with yield of 83.54, 84.12 & 83.05% respectively. They were elucidated via conventional tools of analysis (elemental analysis, FT-IR, and 1H-NMR). The thermogravimetric analysis confirmed that the three ADILs possessed high thermal stability (up to 500ᵒC). Their critical micelle concentration (CMC) was investigated and exhibited values of 5.5-1*10⁻³ Mol./L. They were evaluated as oil spill dispersants were at different temperatures (10, 30 & 50ᵒC) with different concentrations (750, 1500, 2000, 3000 ppm). Data reveals that the efficiency is ranked as follows: IL₂ > IL₁ > IL₃, which showed high dispersion efficiency reached to 63% with the concentration of 1500 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic" title=" amphiphilic"> amphiphilic</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20dispersants" title=" oil spill dispersants"> oil spill dispersants</a>, <a href="https://publications.waset.org/abstracts/search?q=dicationic" title=" dicationic"> dicationic</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20test" title=" efficiency test"> efficiency test</a> </p> <a href="https://publications.waset.org/abstracts/135621/effect-of-asymmetric-amphiphilic-dicationic-ionic-liquids-as-oil-spill-dispersants-in-red-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Incident Management System: An Essential Tool for Oil Spill Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Heyder%20Alatas">Ali Heyder Alatas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Xin"> D. Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Nai%20Ming"> L. Nai Ming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An oil spill emergency can vary in size and complexity, subject to factors such as volume and characteristics of spilled oil, incident location, impacted sensitivities and resources required. A major incident typically involves numerous stakeholders; these include the responsible party, response organisations, government authorities across multiple jurisdictions, local communities, and a spectrum of technical experts. An incident management team will encounter numerous challenges. Factors such as limited access to location, adverse weather, poor communication, and lack of pre-identified resources can impede a response; delays caused by an inefficient response can exacerbate impacts caused to the wider environment, socio-economic and cultural resources. It is essential that all parties work based on defined roles, responsibilities and authority, and ensure the availability of sufficient resources. To promote steadfast coordination and overcome the challenges highlighted, an Incident Management System (IMS) offers an essential tool for oil spill response. It provides clarity in command and control, improves communication and coordination, facilitates the cooperation between stakeholders, and integrates resources committed. Following the preceding discussion, a comprehensive review of existing literature serves to illustrate the application of IMS in oil spill response to overcome common challenges faced in a major-scaled incident. With a primary audience comprising practitioners in mind, this study will discuss key principles of incident management which enables an effective response, along with pitfalls and challenges, particularly, the tension between government and industry; case studies will be used to frame learning and issues consolidated from previous research, and provide the context to link practice with theory. It will also feature the industry approach to incident management which was further crystallized as part of a review by the Joint Industry Project (JIP) established in the wake of the Macondo well control incident. The authors posit that a common IMS which can be adopted across the industry not only enhances response capacity towards a major oil spill incident but is essential to the global preparedness effort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=command%20and%20control" title="command and control">command and control</a>, <a href="https://publications.waset.org/abstracts/search?q=incident%20management%20system" title=" incident management system"> incident management system</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20response" title=" oil spill response"> oil spill response</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20organisation" title=" response organisation"> response organisation</a> </p> <a href="https://publications.waset.org/abstracts/90408/incident-management-system-an-essential-tool-for-oil-spill-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Risk Reassessment Using GIS Technologies for the Development of Emergency Response Management Plans for Water Treatment Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Gul%20Lee">Han Gul Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When water treatments utilities are designed, an initial construction site risk assessment is conducted. This helps us to understand general safety risks that each utility needs to be complemented in the designing stage. Once it’s built, an additional risk reassessment process secures and supplements its disaster management and response plan. Because of its constantly changing surroundings with city renovation and developments, the degree of various risks that each facility has to face changes. Therefore, to improve the preparedness for spill incidents or disasters, emergency managers should run spill simulations with the available scientific technologies. This research used a two-dimensional flow routing model to simulate its spill disaster scenario based on its digital elevation model (DEM) collected with drone technologies. The results of the simulations can help emergency managers to supplement their response plan with concrete situational awareness in advance. Planning based on this simulation model minimizes its potential loss and damage when an incident like earthquakes man-made disaster happens, which could eventually be a threat in a public health context. This pilot research provides an additional paradigm to increase the preparedness to spill disasters. Acknowledgment: This work was supported by Korea Environmental Industry & Technology Institute (KEITI) through Environmental R&D Project on the Disaster Prevention of Environmental Facilities Program funded by Korea Ministry of Environment (MOE) (No.202002860001). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title="risk assessment">risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title=" disaster management"> disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20utilities" title=" water treatment utilities"> water treatment utilities</a>, <a href="https://publications.waset.org/abstracts/search?q=situational%20awareness" title=" situational awareness"> situational awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20technologies" title=" drone technologies"> drone technologies</a> </p> <a href="https://publications.waset.org/abstracts/146648/risk-reassessment-using-gis-technologies-for-the-development-of-emergency-response-management-plans-for-water-treatment-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Ecological Effects of Oil Spill on Water and Sediment from Two Riverine Communities in Warri</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doris%20Fovwe%20Ogeleka">Doris Fovwe Ogeleka</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Tudararo-Aherobo"> L. E. Tudararo-Aherobo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20E.%20Okieimen"> F. E. Okieimen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ecological effects of oil spill in the environment were studied in Warri riverine areas of Ubeji and Jeddo, Delta State. In the two communities, water and sediment samples were analysed for organics (polyaromatic hydrocarbon; total petroleum hydrocarbon (TPH)) and heavy metals (lead, copper, zinc, iron and chromium). The American Public Health Association (APHA) and the American Society for Testing and Materials (ASTM) methods were employed for the laboratory test. The results indicated that after a long period of oil spill (above one year), there were still significant concentrations (p<0.05) of organics indicating hydrocarbon pollution. Mean concentrations recorded for TPH in Ubeji and Jeddo waters were 23.60 ± 1.18 mg/L and 29.96 ± 0.14 mg/L respectively while total PAHs was 0.009 ± 0.002 mg/L and 0.008 ± 0.001 mg/L. Mean concentrations of TPH in the sediment was 48.83 ± 1.49 ppm and 1093 ± 74 ppm in the above order while total PAHs was 0.012 ± 0.002 ppm and 0.026 ± 0.004 ppm. Low concentrations were recorded for most of the heavy metals in the water and sediment. The observed concentrations of hydrocarbons in the study areas should provide the impetus for regulatory surveillance of oil discharged intentionally/unintentionally into the Warri riverine waters and sediment since hydrocarbon released into the environment sorb to the sediment particles where they cause harm to organisms in the sediment and overlying waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=TPH" title=" TPH"> TPH</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spillage" title=" oil spillage"> oil spillage</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/15552/ecological-effects-of-oil-spill-on-water-and-sediment-from-two-riverine-communities-in-warri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suboohi%20Shervani">Suboohi Shervani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjing%20Ling"> Jingjing Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiabin%20Liu"> Jiabin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Husain"> Tahir Husain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography &ndash; flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached &ge; 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title="oil spill">oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-water%20separation" title=" oil-water separation"> oil-water separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/112190/grapheneznopolymer-nanocomposite-thin-film-for-separation-of-oil-water-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> An Investigation into Root Causes of Sabotage and Vandalism of Pipes: A Major Environmental Effluence in Niger Delta, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oshienemen%20Albert">Oshienemen Albert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human’s activities could be pointed as the root cause of almost all environmental damages/ disasters as we contribute to the activities that are currently damaging the ozone layers (global warming), unusual environmental changes and extreme weather conditions (climate change) in recent times. Nigeria just as every other disaster-prone nation is faced with different types of disasters and environmental calamities, starting from terrorist displacement disasters, flood, drought and oil spill hazards. Oil spillage as an environmental disaster has great consequences not just on the environment but on human health, economy and the entire populace that might be involved, which deem necessary to look into the root causes of the incidents and how it can be curtailed. The different incidents of oil spillages and other oil production consequent on the environment is alarming in the Nigerian context and cannot be overemphasized without a critical investigation and synthesis. This paper investigates the root causes of environmental pollution induced by oil spill hazards from petroleum activities within Niger Delta communities of effects and detailed the potential solutions to reduce the causal factors and reoccurrence of the incidents. This study adopts a desk-based approach, interviews with key members of communities which consist of chiefs, youth leaders, and key women within the high environmental damaged communities. Also, Interviews were conducted with environmental expertise representatives from the oil and gas sectors and representatives from oil spill-related agency. Data were analyzed using thematic techniques. The study shows different influencing factors of sabotage and vandalism of oil facilities as such; marginalization, deprivation of resources utility and resource derivation principles were identified as major contributors to vandalism and sabotage act. The study proposed potential strategies to curtail the root causes of sabotage and vandalism as the major causes of environmental devastations in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20hazards" title=" oil spill hazards"> oil spill hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=Niger%20delta" title=" Niger delta"> Niger delta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/92954/an-investigation-into-root-causes-of-sabotage-and-vandalism-of-pipes-a-major-environmental-effluence-in-niger-delta-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ghiasvand">Mohammad Ghiasvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Khorsandi"> Babak Khorsandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Kolahdoozan"> Morteza Kolahdoozan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20and%20isotropic%20turbulence" title="homogeneous and isotropic turbulence">homogeneous and isotropic turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20distribution" title=" oil distribution"> oil distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20grid" title=" oscillating grid"> oscillating grid</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a> </p> <a href="https://publications.waset.org/abstracts/150356/evaluation-of-the-effect-of-turbulence-caused-by-the-oscillation-grid-on-oil-spill-in-water-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Sensitivity Analysis of Oil Spills Modeling with ADIOS II for Iranian Fields in Persian Gulf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzingohar%20Mehrnaz">Farzingohar Mehrnaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasemi%20Mehran"> Yasemi Mehran</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaili%20Zinat"> Esmaili Zinat</a>, <a href="https://publications.waset.org/abstracts/search?q=Baharlouian%20Maedeh"> Baharlouian Maedeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aboozar (Ardeshir) and Bahregansar are the two important Iranian oilfields in Persian Gulf waters. The operation activities cause to create spills which impacted on the marine environment. Assumed spills are molded by ADIOS II (Automated Data Inquiry for Oil Spills) which is NOAA’s weathering oil software. Various atmospheric and marine data with different oil types are used for the modeling. Numerous scenarios for 100 bbls with mean daily air temperature and wind speed are input for 5 days. To find the model sensitivity in each setting, one parameter is changed, but the others stayed constant. In both fields, the evaporated and dispersed output values increased hence the remaining rate is reduced. The results clarified that wind speed first, second air temperature and finally oil type respectively were the most effective factors on the oil weathering process. The obtained results can help the emergency systems to predict the floating (dispersed and remained) volume spill in order to find the suitable cleanup tools and methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADIOS" title="ADIOS">ADIOS</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/46836/sensitivity-analysis-of-oil-spills-modeling-with-adios-ii-for-iranian-fields-in-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives using Taguchi Experimental Design Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranudda%20Pimsee">Pranudda Pimsee</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Sablayrolles"> Caroline Sablayrolles</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascale%20De%20Caro"> Pascale De Caro</a>, <a href="https://publications.waset.org/abstracts/search?q=Julien%20Guyomarch"> Julien Guyomarch</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Lesage"> Nicolas Lesage</a>, <a href="https://publications.waset.org/abstracts/search?q=Mireille%20Montr%C3%A9jaud-Vignoles"> Mireille Montréjaud-Vignoles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 Polycyclic Aromatic Hydrocarbons (PAHs) and derivate, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity, and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For gasoline (SP95-E10) and diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mornitoring" title="mornitoring">mornitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20soluble%20fraction" title=" water soluble fraction"> water soluble fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=SBSE" title=" SBSE"> SBSE</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20experimental%20design" title=" Taguchi experimental design"> Taguchi experimental design</a> </p> <a href="https://publications.waset.org/abstracts/4871/effect-of-environmental-parameters-on-the-water-solubility-of-the-polycyclic-aromatic-hydrocarbons-and-derivatives-using-taguchi-experimental-design-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Isolation, Identification and Crude Oil Biodegradation Potential of Providencia sp. BAZ 01</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisami%20A.">Aisami A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20A.%20Adamu"> Z. A. Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Bulama"> Lawan Bulama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to growing issues of crude oil pollution in both marine and terrestrial environments, Billions to Trillions of US Dollars were spent over the years for the treatment of this spill. There is an urgent need for effective bioremediation strategies. This current study focuses on the isolation and characterization of a crude oil-degrading bacterium from hydrocarbon-contaminated soil samples. Soil samples were collected from an oil spill site and subjected to enrichment culture techniques in a mineral salt medium supplemented with crude oil as the singular carbon source. The isolates were screened for their crude oil-degrading capabilities using gravimetric analysis. The most efficient isolation was identified through 16S rRNA gene sequencing. Cultural and physical conditions such pH, temperature salinity and crude oil concentrations were optimized. The isolates showed significant crude oil degradation efficiency, reducing oil concentration (2.5%) by 75% within 15 days of incubation. The strain was identified as Providencia sp. through molecular characterization, the sequence was deposited at the NCBI Genbank with accession number MN880494. The bacterium exhibited optimal growth at 32.5°C, pH 7.0 to 7.5, and in the presence of 1.5% (w/v) NaCl. The isolated Providencia sp. shows encouraging potential for bioremediation of crude oil-contaminated environments. This study successfully isolated and characterized a crude oil-degrading Providencia sp., highlighting its potential in bioremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20degradation" title="crude oil degradation">crude oil degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=providencia%20sp." title=" providencia sp."> providencia sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20utilization" title=" hydrocarbon utilization"> hydrocarbon utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution." title=" environmental pollution."> environmental pollution.</a> </p> <a href="https://publications.waset.org/abstracts/188258/isolation-identification-and-crude-oil-biodegradation-potential-of-providencia-sp-baz-01" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Tunde%20Olagunju">K. Tunde Olagunju</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Scott%20Allen"> C. Scott Allen</a>, <a href="https://publications.waset.org/abstracts/search?q=Freek%20Van%20Der%20Meer"> Freek Van Der Meer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title="hydrocarbon">hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral" title=" hyperspectral"> hyperspectral</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon-substrate%20combination" title=" hydrocarbon-substrate combination"> hydrocarbon-substrate combination</a>, <a href="https://publications.waset.org/abstracts/search?q=Sentinel-2" title=" Sentinel-2"> Sentinel-2</a>, <a href="https://publications.waset.org/abstracts/search?q=WorldView-3" title=" WorldView-3"> WorldView-3</a> </p> <a href="https://publications.waset.org/abstracts/139188/assessing-the-theoretical-suitability-of-sentinel-2-and-worldview-3-data-for-hydrocarbon-mapping-of-spill-events-using-hydrocarbon-spectral-slope-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Risk Assessment of Oil Spill Pollution by Integration of Gnome, Aloha and Gis in Bandar Abbas Coast, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Farzingohar">Mehrnaz Farzingohar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Yasemi"> Mehran Yasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Savari"> Ahmad Savari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oil products are imported and exported via Rajaee’s tanker terminal. Within loading and discharging in several cases the oil is released into the berths and made oil spills. The spills are distributed within short time and seriously affected Rajaee port’s environment and even extended areas. The trajectory and fate of oil spills investigated by modeling and parted by three risk levels base on the modeling results. First GNOME (General NOAA Operational Modeling Environment) applied to trajectory the liquid oil. Second, ALOHA (Areal Location Of Hazardous Atmosphere) air quality model, is integrated to predict the oil evaporation path within the air. Base on the identified zones the high risk areas are signed by colored dots which their densities calculated and clarified on a map which displayed the harm places. Wind and water circulation moved the pollution to the East of Rajaee Port that accumulated about 12 km of coastline. Approximately 20 km of north east of Qeshm Island shore is covered by the three levels of risky areas. Since the main wind direction is SSW the pollution pushed to the east and the highest risk zones formed on the crests edges hence the low risk appeared on the concavities. This assessment help the management and emergency systems to monitor the exposure places base on the priority factors and find the best approaches to protect the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title="oil spill">oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/33619/risk-assessment-of-oil-spill-pollution-by-integration-of-gnome-aloha-and-gis-in-bandar-abbas-coast-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Sheathed Cotton Fibers: Material for Oil-Spill Cleanup</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20M%20Dauda">Benjamin M Dauda</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Ibrahim"> Esther Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvester%20Gadimoh"> Sylvester Gadimoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Asabe%20Mustapha"> Asabe Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiyah%20Mohammed"> Jiyah Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite diverse optimization techniques on natural hydrophilic fibers, hydrophobic synthetic fibers are still the best oil sorption materials. However, these hydrophobic fibers are not biodegradable, making their disposal problematic. To this end, this work sets out to develop Nonwoven sorbents from epoxy-coated Cotton fibers. As a way of improving the compatibility of the crude oil and reduction of moisture absorption, cotton fibers were coated with epoxy resin by immersion in acetone-thinned epoxy solution. A needle-punching machine was used to convert the fibers into coherent nonwoven sheets. An oil sorption experiment was then carried out. The result indicates that the developed epoxy-modified sorbent has a higher crude oil-sorption capacity compared with those of untreated cotton and commercial polypropylene sorbents. Absorption Curves show that the coated fiber and polypropylene sorbent saturated faster than the uncoated cotton fiber pad. The result also shows that the coated cotton sorbent adsorbed crude faster than the polypropylene sorbent, and the equilibrium exhaustion was also higher. After a simple mechanical squeezing process, the Nonwoven pads could be restored to their original form and repeatedly recycled for oil/water separation. The results indicate that the cotton-coated non-woven pads hold promise for the cleanup of oil spills. Our data suggests that the sorption behaviors of the epoxy-coated Nonwoven pads and their crude oil sorption capacity are relatively stable under various environmental conditions compared to the commercial sheet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title="oil spill">oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven" title=" nonwoven"> nonwoven</a> </p> <a href="https://publications.waset.org/abstracts/183396/sheathed-cotton-fibers-material-for-oil-spill-cleanup" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanifeh%20Imanian">Hanifeh Imanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Kolahdoozan"> Morteza Kolahdoozan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion" title="dispersion">dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20environment" title=" marine environment"> marine environment</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical-statistical%20relationship" title=" mathematical-statistical relationship"> mathematical-statistical relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a> </p> <a href="https://publications.waset.org/abstracts/51962/dispersion-rate-of-spilled-oil-in-water-column-under-non-breaking-water-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Ammonia Bunkering Spill Scenarios: Modelling Plume’s Behaviour and Potential to Trigger Harmful Algal Blooms in the Singapore Straits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bryan%20Low">Bryan Low</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the coming decades, the global maritime industry will face a most formidable environmental challenge -achieving net zero carbon emissions by 2050. To meet this target, the Maritime Port Authority of Singapore (MPA) has worked to establish green shipping and digital corridors with ports of several other countries around the world where ships will use low-carbon alternative fuels such as ammonia for power generation. While this paradigm shift to the bunkering of greener fuels is encouraging, fuels like ammonia will also introduce a new and unique type of environmental risk in the unlikely scenario of a spill. While numerous modelling studies have been conducted for oil spills and their associated environmental impact on coastal and marine ecosystems, ammonia spills are comparatively less well understood. For example, there is a knowledge gap regarding how the complex hydrodynamic conditions of the Singapore Straits may influence the dispersion of a hypothetical ammonia plume, which has different physical and chemical properties compared to an oil slick. Chemically, ammonia can be absorbed by phytoplankton, thus altering the balance of the marine nitrogen cycle. Biologically, ammonia generally serves the role of a nutrient in coastal ecosystems at lower concentrations. However, at higher concentrations, it has been found to be toxic to many local species. It may also have the potential to trigger eutrophication and harmful algal blooms (HABs) in coastal waters, depending on local hydrodynamic conditions. Thus, the key objective of this research paper is to support the development of a model-based forecasting system that can predict ammonia plume behaviour in coastal waters, given prevailing hydrodynamic conditions and their environmental impact. This will be essential as ammonia bunkering becomes more commonplace in Singapore’s ports and around the world. Specifically, this system must be able to assess the HAB-triggering potential of an ammonia plume, as well as its lethal and sub-lethal toxic effects on local species. This will allow the relevant authorities to better plan risk mitigation measures or choose a time window with the ideal hydrodynamic conditions to conduct ammonia bunkering operations with minimal risk. In this paper, we present the first part of such a forecasting system: a jointly coupled hydrodynamic-water quality model that can capture how advection-diffusion processes driven by ocean currents influence plume behaviour and how the plume interacts with the marine nitrogen cycle. The model is then applied to various ammonia spill scenarios where the results are discussed in the context of current ammonia toxicity guidelines, impact on local ecosystems, and mitigation measures for future bunkering operations conducted in the Singapore Straits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia%20bunkering" title="ammonia bunkering">ammonia bunkering</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=harmful%20algal%20blooms" title=" harmful algal blooms"> harmful algal blooms</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20nitrogen%20cycle" title=" marine nitrogen cycle"> marine nitrogen cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=oceanography" title=" oceanography"> oceanography</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20modeling" title=" water quality modeling"> water quality modeling</a> </p> <a href="https://publications.waset.org/abstracts/179063/ammonia-bunkering-spill-scenarios-modelling-plumes-behaviour-and-potential-to-trigger-harmful-algal-blooms-in-the-singapore-straits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> A Microcosm Study on the Response of Phytoplankton and Bacterial Community of the Subarctic Northeast Atlantic Ocean to Oil Pollution under Projected Atmospheric CO₂ Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afiq%20Mohd%20Fahmi">Afiq Mohd Fahmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tony%20Gutierrez"> Tony Gutierrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Hennige"> Sebastian Hennige</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing amounts of CO₂ entering the marine environment, also known as ocean acidification, is documented as having harmful impacts on a variety of marine organisms. When considering the future risk of hydrocarbon pollution, which is generally detrimental to marine life as well, this needs to consider how OA-induced changes to microbial communities will compound this since hydrocarbon degradation is influenced by the community-level microbial response. This study aims to evaluate the effects of increased atmospheric CO₂ conditions and oil enrichment on the phytoplankton-associated bacterial communities. Faroe Shetland Channel (FSC) is a subarctic region in the northeast Atlantic where crude oil extraction has recently been expanded. In the event of a major oil spill in this region, it is vital that we understand the response of the bacterial community and its consequence on primary production within this region—some phytoplankton communities found in the ocean harbor hydrocarbon-degrading bacteria that are associated with its psychosphere. Surface water containing phytoplankton and bacteria from FSC were cultured in ambient and elevated atmospheric CO₂ conditions for 4 days of acclimation in microcosms before introducing 1% (v/v) of crude oil into the microcosms to simulate oil spill conditions at sea. It was found that elevated CO₂ conditions do not significantly affect the chl a concentration, and exposure to crude oil detrimentally affected chl a concentration up to 10 days after exposure to crude oil. The diversity and richness of the bacterial community were not significantly affected by both CO₂ treatment and oil enrichment. The increase in the relative abundance of known hydrocarbon degraders such as Oleispira, Marinobacter and Halomonas indicates potential for biodegradation of crude oil, while the resilience of dominant taxa Colwellia, unclassified Gammaproteobacteria, unclassified Rnodobacteria and unclassified Halomonadaceae could be associated with the recovery of microalgal community 13 days after oil exposure. Therefore, the microbial community from the subsurface of FSC has the potential to recover from crude oil pollution even under elevated CO₂ (750 ppm) conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoplankton" title="phytoplankton">phytoplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20acidification" title=" ocean acidification"> ocean acidification</a> </p> <a href="https://publications.waset.org/abstracts/140551/a-microcosm-study-on-the-response-of-phytoplankton-and-bacterial-community-of-the-subarctic-northeast-atlantic-ocean-to-oil-pollution-under-projected-atmospheric-co2-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farokh%20Alipour">Farokh Alipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Falavand"> Ali Falavand</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Beit%20Saeid"> Neda Beit Saeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LNG" title="LNG">LNG</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20fire" title=" pool fire"> pool fire</a>, <a href="https://publications.waset.org/abstracts/search?q=spill" title=" spill"> spill</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/19964/an-investigation-about-rate-of-evaporation-from-the-water-surface-and-lng-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Effect of Aryl Imidazolium Ionic Liquids as Asphaltene Dispersants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghda%20Ahmed%20El-Nagar">Raghda Ahmed El-Nagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil spills are one of the most serious environmental issues that have occurred during the production and transportation of petroleum crude oil. Chemical asphaltene dispersants are hazardous to the marine environment, so Ionic liquids (ILs) as asphaltene dispersants are a critical area of study. In this work, different aryl imidazolium ionic liquids were synthesized with high yield and elucidated via tools of analysis (Elemental analysis, FT-IR, and 1H-NMR). Thermogravimetric analysis confirmed that the prepared ILs posses high thermal stability. The critical micelle concentration (CMC), surface tension, and emulsification index were investigated. Evaluation of synthesized ILs as asphaltene dispersants were assessed at various concentrations, and data reveals high dispersion efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=asphaltene%20dispersants" title=" asphaltene dispersants"> asphaltene dispersants</a>, <a href="https://publications.waset.org/abstracts/search?q=CMC" title=" CMC"> CMC</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/141084/effect-of-aryl-imidazolium-ionic-liquids-as-asphaltene-dispersants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Modelling Export Dynamics in the CSEE Countries Using GVAR Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Jak%C5%A1i%C4%87">S. Jakšić</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20%C5%BDmuk"> B. Žmuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates the key factors of export dynamics for a set of Central and Southeast European (CSEE) countries in the context of current economic and financial crisis. In order to model the export dynamics a Global Vector Auto Regressive (GVAR) model is defined. As opposed to models which model each country separately, the GVAR combines all country models in a global model which enables obtaining important information on spill-over effects in the context of globalization and rising international linkages. The results of the study indicate that for most of the CSEE countries, exports are mainly driven by domestic shocks, both in the short run and in the long run. This study is the first application of the GVAR model to studying the export dynamics in the CSEE countries and therefore the results of the study present an important empirical contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=export" title="export">export</a>, <a href="https://publications.waset.org/abstracts/search?q=GFEVD" title=" GFEVD"> GFEVD</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20VAR" title=" global VAR"> global VAR</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20trade" title=" international trade"> international trade</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20exogeneity" title=" weak exogeneity"> weak exogeneity</a> </p> <a href="https://publications.waset.org/abstracts/2522/modelling-export-dynamics-in-the-csee-countries-using-gvar-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oil%20spill&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oil%20spill&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oil%20spill&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10