CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 55 results for author: <span class="mathjax">Aeschlimann, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Aeschlimann, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Aeschlimann%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Aeschlimann, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05187">arXiv:2408.05187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05187">pdf</a>, <a href="https://arxiv.org/format/2408.05187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> All optical excitation of spin polarization in d-wave altermagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Weber%2C+M">Marius Weber</a>, <a href="/search/?searchtype=author&amp;query=Wust%2C+S">Stephan Wust</a>, <a href="/search/?searchtype=author&amp;query=Haag%2C+L">Luca Haag</a>, <a href="/search/?searchtype=author&amp;query=Akashdeep%2C+A">Akashdeep Akashdeep</a>, <a href="/search/?searchtype=author&amp;query=Leckron%2C+K">Kai Leckron</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+C">Christin Schmitt</a>, <a href="/search/?searchtype=author&amp;query=Ramos%2C+R">Rafael Ramos</a>, <a href="/search/?searchtype=author&amp;query=Kikkawa%2C+T">Takashi Kikkawa</a>, <a href="/search/?searchtype=author&amp;query=Saitoh%2C+E">Eiji Saitoh</a>, <a href="/search/?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a>, <a href="/search/?searchtype=author&amp;query=%C5%A0mejkal%2C+L">Libor 艩mejkal</a>, <a href="/search/?searchtype=author&amp;query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Jakob%2C+G">Gerhard Jakob</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+H+C">Hans Christian Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05187v1-abstract-short" style="display: inline;"> The recently discovered altermagnets exhibit collinear magnetic order with zero net magnetization but with unconventional spin-polarized d/g/i-wave band structures, expanding the known paradigms of ferromagnets and antiferromagnets. In addition to novel current-driven electronic transport effects, the unconventional time-reversal symmetry breaking in these systems also makes it possible to obtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05187v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05187v1-abstract-full" style="display: none;"> The recently discovered altermagnets exhibit collinear magnetic order with zero net magnetization but with unconventional spin-polarized d/g/i-wave band structures, expanding the known paradigms of ferromagnets and antiferromagnets. In addition to novel current-driven electronic transport effects, the unconventional time-reversal symmetry breaking in these systems also makes it possible to obtain a spin response to linearly polarized fields in the optical frequency domain. We show through ab-initio calculations of the prototypical d-wave altermagnet RuO$_2$, with $[C_2\|C_{4z}]$ symmetry combining twofold spin rotation with fourfold lattice rotation, that there is an optical analogue of a spin splitter effect, as the coupling to a linearly polarized exciting laser field makes the d-wave character of the altermagnet directly visible. By magneto-optical measurements on RuO$_2$ films of a few nanometer thickness, we demonstrate the predicted connection between the polarization of an ultrashort pump pulse and the sign and magnitude of a persistent optically excited electronic spin polarization. Our results point to the possibility of exciting and controlling the electronic spin polarization in altermagnets by such ultrashort optical pulses. In addition, the possibility of exciting an electronic spin polarization by linearly polarized optical fields in a compensated system is a unique consequence of the altermagnetic material properties, and our experimental results therefore present an indication for the existence of an altermagnetic phase in ultrathin RuO$_2$ films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05187v1-abstract-full').style.display = 'none'; document.getElementById('2408.05187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18686">arXiv:2406.18686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18686">pdf</a>, <a href="https://arxiv.org/format/2406.18686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Signatures of ballistic and diffusive transport in the time-dependent Kerr-response of magnetic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ashok%2C+S">Sanjay Ashok</a>, <a href="/search/?searchtype=author&amp;query=Hoefer%2C+J">Jonas Hoefer</a>, <a href="/search/?searchtype=author&amp;query=Stiehl%2C+M">Martin Stiehl</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+H+C">Hans Christian Schneider</a>, <a href="/search/?searchtype=author&amp;query=Rethfeld%2C+B">Baerbel Rethfeld</a>, <a href="/search/?searchtype=author&amp;query=Stadtmueller%2C+B">Benjamin Stadtmueller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18686v1-abstract-short" style="display: inline;"> We calculate the influence of diffusive and ballistic transport on ultrafast magnetization in thick metallic films. When only diffusive transport is present, gradients of magnetization in the material remain up to picosecond timescales. In contrast, in the extreme superdiffusive limit where ballistic transport dominates, the magnetization changes homogeneously in space. We calculate the measurable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18686v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18686v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18686v1-abstract-full" style="display: none;"> We calculate the influence of diffusive and ballistic transport on ultrafast magnetization in thick metallic films. When only diffusive transport is present, gradients of magnetization in the material remain up to picosecond timescales. In contrast, in the extreme superdiffusive limit where ballistic transport dominates, the magnetization changes homogeneously in space. We calculate the measurable magneto-optical responses for a $\SI{40}{\nano\meter}$ Nickel film. Although the resulting Kerr rotation dynamics are found to be very similar in the two limits of transport, our simulations reveal a clear signature of magnetization gradients in the Kerr ellipticity dynamics, namely a strong probe-angle dependence for the case when diffusive transport allows gradients to persist. We then perform probe-angle dependent complex magneto-optical Kerr effect (CMOKE) measurements on an excited \SI{40}{\nano\meter} Nickel film. The angle dependence of the measured Kerr signals closely matches the simulated response with diffusive transport. Therefore we conclude that the influence of ballistic transport on ultrafast magnetization dynamics in such films is negligible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18686v1-abstract-full').style.display = 'none'; document.getElementById('2406.18686v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01334">arXiv:2405.01334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01334">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nutation: separating the spin from its magnetic moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=De%2C+A">Anulekha De</a>, <a href="/search/?searchtype=author&amp;query=Schlegel%2C+J">Julius Schlegel</a>, <a href="/search/?searchtype=author&amp;query=Lentfert%2C+A">Akira Lentfert</a>, <a href="/search/?searchtype=author&amp;query=Scheuer%2C+L">Laura Scheuer</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/?searchtype=author&amp;query=von+Freymann%2C+G">Georg von Freymann</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+U">Ulrich Nowak</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01334v1-abstract-short" style="display: inline;"> For nearly 90 years, precession and relaxation processes have been thought to dominate magnetization dynamics. Only recently has it been considered that, on short time scales, an inertia-driven magnetization dynamics should become relevant, leading to additional nutation of the magnetization vector. Here, we trigger magnetic nutation via a sudden excitation of a thin Ni80Fe20 (Permalloy) film with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01334v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01334v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01334v1-abstract-full" style="display: none;"> For nearly 90 years, precession and relaxation processes have been thought to dominate magnetization dynamics. Only recently has it been considered that, on short time scales, an inertia-driven magnetization dynamics should become relevant, leading to additional nutation of the magnetization vector. Here, we trigger magnetic nutation via a sudden excitation of a thin Ni80Fe20 (Permalloy) film with an ultrashort optical pulse, that leads to an abrupt tilting of the effective field acting on the magnetic moments, separating the dynamics of the magnetization from that of its angular momentum. We investigate the resulting magnetization dynamics in the inertial regime experimentally by the time-resolved magneto optical Kerr effect. We find a characteristic oscillation in the Kerr signal in the range of about 0.1 THz superimposed on the precessional oscillations with GHz frequencies. By comparison with atomistic spin dynamics simulations, we demonstrate that this observation cannot be explained by the well-known Landau-Lifshitz-Gilbert equation of motion but can be attributed to inertial contributions leading to nutation of the magnetization vector around its angular momentum. Hence, an optical and non-resonant excitation of inertial magnetization dynamics can trigger and control different magnetic processes, ranging from demagnetization via nutation to precession in a single device. These findings will have profound implications for the understanding of ultrafast spin dynamics and magnetization switching. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01334v1-abstract-full').style.display = 'none'; document.getElementById('2405.01334v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06818">arXiv:2307.06818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06818">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tailoring the ferromagnetic surface potential landscape by a templating two-dimensional metal-organic porous network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lyu%2C+L">Lu Lyu</a>, <a href="/search/?searchtype=author&amp;query=Anstett%2C+M">Martin Anstett</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+K+M">Ka Man Yu</a>, <a href="/search/?searchtype=author&amp;query=Kadkhodazadeh%2C+A">Azadeh Kadkhodazadeh</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06818v1-abstract-short" style="display: inline;"> Two-dimensional metal-organic porous networks (2D-MOPNs) have been identified as versatile nanoarchitectures to tailor surface electronic and magnetic properties on noble metals. In this context, we propose a protocol to redecorate a ferromagnetic surface potential landscape using a 2D-MOPN. Ultrathin cobalt (Co) films grown on Au(111) exhibit a well-ordered surface triangular reconstruction. On t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06818v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06818v1-abstract-full" style="display: none;"> Two-dimensional metal-organic porous networks (2D-MOPNs) have been identified as versatile nanoarchitectures to tailor surface electronic and magnetic properties on noble metals. In this context, we propose a protocol to redecorate a ferromagnetic surface potential landscape using a 2D-MOPN. Ultrathin cobalt (Co) films grown on Au(111) exhibit a well-ordered surface triangular reconstruction. On the ferromagnetic surface, the adsorbed 2,4,6-tris(4-pyridyl)-1,3,5triazine (T4PT) molecules can coordinate with the native Co atoms to form a large-scale Co-T4PT porous network. The Co-T4PT network with periodic nanocavities serves as a templating layer to reshape the ferromagnetic surface potential. The subsequently deposited C60 molecules are steered by the network porous potential and the neighboring C60 interactions. The prototype of the ferromagnetic-supported 2D-MOPN is a promising template for the tailoring of molecular electronic and spin properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06818v1-abstract-full').style.display = 'none'; document.getElementById('2307.06818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06814">arXiv:2307.06814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06814">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Giant confinement of excited surface electrons in a two-dimensional metal-organic porous network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lyu%2C+L">Lu Lyu</a>, <a href="/search/?searchtype=author&amp;query=Eul%2C+T">Tobias Eul</a>, <a href="/search/?searchtype=author&amp;query=Yao%2C+W">Wei Yao</a>, <a href="/search/?searchtype=author&amp;query=Xiao%2C+J">Jin Xiao</a>, <a href="/search/?searchtype=author&amp;query=El-Fattah%2C+Z+M+A">Zakaria M. Abd El-Fattah</a>, <a href="/search/?searchtype=author&amp;query=Ashoush%2C+M">Mostafa Ashoush</a>, <a href="/search/?searchtype=author&amp;query=Piquero-Zulaica%2C+I">Ignacio Piquero-Zulaica</a>, <a href="/search/?searchtype=author&amp;query=Barth%2C+J+V">Johannes V. Barth</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06814v1-abstract-short" style="display: inline;"> Two-dimensional metal-organic porous networks (2D-MOPNs) are highly ordered quantum boxes for exploring surface confinements. In this context, the electron confinement from occupied Shockley-type surface states (SS) has been vigorously studied in 2D-MOPNs. In contrast, the confinement of excited surface states, such as image potential states (IPSs), remains elusive. In this work, we apply two-phot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06814v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06814v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06814v1-abstract-full" style="display: none;"> Two-dimensional metal-organic porous networks (2D-MOPNs) are highly ordered quantum boxes for exploring surface confinements. In this context, the electron confinement from occupied Shockley-type surface states (SS) has been vigorously studied in 2D-MOPNs. In contrast, the confinement of excited surface states, such as image potential states (IPSs), remains elusive. In this work, we apply two-photon photoemission to investigate the confinement exemplarily for the first image state in a Cu-coordinated T4PT porous network (Cu-T4PT). Due to the lateral potential confinement in the Cu-T4PT, periodic replicas of the IPS as well as the SS are present in a momentum map. Surprisingly, the first IPS transforms into a nearly flat band with a substantial increase of the effective mass (&gt; 150 %), while the band dispersion of the SS is almost unchanged. The giant confinement effect of the excited electrons can be attributed to the wavefunction location of the first IPS perpendicular to the surface, where the majority probability density mainly resides at the same height as repulsive potentials formed by the Cu-T4PT network. This coincidence leads to a more effective scattering barrier to the IPS electrons, which is not observed in the SS. Our findings demonstrate that the vertical potential landscape in a porous architecture also plays a crucial role in surface electron confinement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06814v1-abstract-full').style.display = 'none'; document.getElementById('2307.06814v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06808">arXiv:2307.06808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06808">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Temperature-driven confinements of surface electrons and adatoms in a weakly interacting 2D organic porous network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lyu%2C+L">Lu Lyu</a>, <a href="/search/?searchtype=author&amp;query=Xiao%2C+J">Jin Xiao</a>, <a href="/search/?searchtype=author&amp;query=El-Fattah%2C+Z+M+A">Zakaria M. Abd El-Fattah</a>, <a href="/search/?searchtype=author&amp;query=Eul%2C+T">Tobias Eul</a>, <a href="/search/?searchtype=author&amp;query=Ashoush%2C+M">Mostafa Ashoush</a>, <a href="/search/?searchtype=author&amp;query=He%2C+J">Jun He</a>, <a href="/search/?searchtype=author&amp;query=Yao%2C+W">Wei Yao</a>, <a href="/search/?searchtype=author&amp;query=Piquero-Zulaica%2C+I">Ignacio Piquero-Zulaica</a>, <a href="/search/?searchtype=author&amp;query=Mousavion%2C+S">Sina Mousavion</a>, <a href="/search/?searchtype=author&amp;query=Arnoldi%2C+B">Benito Arnoldi</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+S">Sebastian Becker</a>, <a href="/search/?searchtype=author&amp;query=Barth%2C+J+V">Johannes V. Barth</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06808v1-abstract-short" style="display: inline;"> Two-dimensional organic porous networks (2DOPNs) have opened new vistas for tailoring the physicochemical characteristics of metallic surfaces. These typically chemically bound nanoporous structures act as periodical quantum wells leading to the 2D confinements of surface electron gases, adatoms and molecular guests. Here we propose a new type of porous network with weakly interacting 2,4,6-triphe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06808v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06808v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06808v1-abstract-full" style="display: none;"> Two-dimensional organic porous networks (2DOPNs) have opened new vistas for tailoring the physicochemical characteristics of metallic surfaces. These typically chemically bound nanoporous structures act as periodical quantum wells leading to the 2D confinements of surface electron gases, adatoms and molecular guests. Here we propose a new type of porous network with weakly interacting 2,4,6-triphenyl-1,3,5-triazine (TPT) molecules on a Cu(111) surface, in which a temperature-driven (T-driven) phase transition can reversibly alter the supramolecular structures from a close-packed (CP-TPT) phase to a porous-network (PN-TPT) phase. Crucially, only the low-temperature PN-TPT exhibits subnano-scale cavities that can confine the surface state electrons and metal adatoms. The confined surface electrons undergo a significant electronic band renormalization. To activate the spin degree of freedom, the T-driven PN-TPT structure can additionally trap Co atoms within the cavities, forming highly ordered quantum dots. Our theoretical simulation reveals a complex spin carrier transfer from the confined Co cluster to the neighbouring TPT molecules via the underlying substrate. Our results demonstrate that weakly interacting 2DOPN offers a unique quantum switch capable of steering and controlling electrons and spin at surfaces via tailored quantum confinements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06808v1-abstract-full').style.display = 'none'; document.getElementById('2307.06808v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11009">arXiv:2306.11009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11009">pdf</a>, <a href="https://arxiv.org/format/2306.11009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin transport and magnetic proximity effect in CoFeB/normal metal/Pt trilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=H%C3%A4user%2C+S">Simon H盲user</a>, <a href="/search/?searchtype=author&amp;query=Schweizer%2C+M+R">Matthias R. Schweizer</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+S">Sascha Keller</a>, <a href="/search/?searchtype=author&amp;query=Conca%2C+A">Andres Conca</a>, <a href="/search/?searchtype=author&amp;query=Hofherr%2C+M">Moritz Hofherr</a>, <a href="/search/?searchtype=author&amp;query=Papaioannou%2C+E">Evangelos Papaioannou</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Weiler%2C+M">Mathias Weiler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11009v2-abstract-short" style="display: inline;"> We present a study of the damping and spin pumping properties of CoFeB/X/Pt systems with $\rm X=Al,Cr$ and $\rm Ta$. We show that the total damping of the CoFeB/Pt systems is strongly reduced when an interlayer is introduced independently of the material. Using a model that considers spin relaxation, we identify the origin of this contribution in the magnetically polarized Pt formed by the magneti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11009v2-abstract-full').style.display = 'inline'; document.getElementById('2306.11009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11009v2-abstract-full" style="display: none;"> We present a study of the damping and spin pumping properties of CoFeB/X/Pt systems with $\rm X=Al,Cr$ and $\rm Ta$. We show that the total damping of the CoFeB/Pt systems is strongly reduced when an interlayer is introduced independently of the material. Using a model that considers spin relaxation, we identify the origin of this contribution in the magnetically polarized Pt formed by the magnetic proximity effect (MPE), which is suppressed by the introduction of the interlayer. The induced ferromagnetic order in the Pt layer is confirmed by transverse magneto-optical Kerr spectroscopy at the M$_{2,3}$ and N$_7$ absorption edges as an element-sensitive probe. We discuss the impact of the MPE on parameter extraction in the spin transport model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11009v2-abstract-full').style.display = 'none'; document.getElementById('2306.11009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02170">arXiv:2306.02170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.02170">pdf</a>, <a href="https://arxiv.org/format/2306.02170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fedchenko%2C+O">O. Fedchenko</a>, <a href="/search/?searchtype=author&amp;query=Minar%2C+J">J. Minar</a>, <a href="/search/?searchtype=author&amp;query=Akashdeep%2C+A">A. Akashdeep</a>, <a href="/search/?searchtype=author&amp;query=D%27Souza%2C+S+W">S. W. D&#39;Souza</a>, <a href="/search/?searchtype=author&amp;query=Vasilyev%2C+D">D. Vasilyev</a>, <a href="/search/?searchtype=author&amp;query=Tkach%2C+O">O. Tkach</a>, <a href="/search/?searchtype=author&amp;query=Odenbreit%2C+L">L. Odenbreit</a>, <a href="/search/?searchtype=author&amp;query=Nguyen%2C+Q+L">Q. L. Nguyen</a>, <a href="/search/?searchtype=author&amp;query=Kutnyakhov%2C+D">D. Kutnyakhov</a>, <a href="/search/?searchtype=author&amp;query=Wind%2C+N">N. Wind</a>, <a href="/search/?searchtype=author&amp;query=Wenthaus%2C+L">L. Wenthaus</a>, <a href="/search/?searchtype=author&amp;query=Scholz%2C+M">M. Scholz</a>, <a href="/search/?searchtype=author&amp;query=Rossnagel%2C+K">K. Rossnagel</a>, <a href="/search/?searchtype=author&amp;query=Hoesch%2C+M">M. Hoesch</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Stadtmueller%2C+B">B. Stadtmueller</a>, <a href="/search/?searchtype=author&amp;query=Klaeui%2C+M">M. Klaeui</a>, <a href="/search/?searchtype=author&amp;query=Schoenhense%2C+G">G. Schoenhense</a>, <a href="/search/?searchtype=author&amp;query=Jakob%2C+G">G. Jakob</a>, <a href="/search/?searchtype=author&amp;query=Jungwirth%2C+T">T. Jungwirth</a>, <a href="/search/?searchtype=author&amp;query=Smejkal%2C+L">L. Smejkal</a>, <a href="/search/?searchtype=author&amp;query=Sinova%2C+J">J. Sinova</a>, <a href="/search/?searchtype=author&amp;query=Elmers%2C+H+J">H. J. Elmers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02170v1-abstract-short" style="display: inline;"> Altermagnets are an emerging third elementary class of magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of timereversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02170v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02170v1-abstract-full" style="display: none;"> Altermagnets are an emerging third elementary class of magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of timereversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism, but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO$_2$ by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic-structure basis for a family of novel phenomena and functionalities in fields ranging from topological matter to spintronics, that are based on the unconventional time-reversal symmetry breaking in altermagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02170v1-abstract-full').style.display = 'none'; document.getElementById('2306.02170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00814">arXiv:2305.00814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00814">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.024422">10.1103/PhysRevB.109.024422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent and incoherent magnons induced by strong ultrafast demagnetization in thin permalloy films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=De%2C+A">Anulekha De</a>, <a href="/search/?searchtype=author&amp;query=Lentfert%2C+A">Akira Lentfert</a>, <a href="/search/?searchtype=author&amp;query=Scheuer%2C+L">Laura Scheuer</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=von+Freymann%2C+G">Georg von Freymann</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00814v2-abstract-short" style="display: inline;"> Understanding spin dynamics on femto- and picosecond timescales offers new opportunities for faster and more efficient spintronic devices. Here, we experimentally investigate the coherent spin dynamics after ultrashort laser excitation by time-resolved magneto optical Kerr effect (TR-MOKE) in thin Ni80Fe20 films. We provide a detailed study of the magnetic field and pump fluence dependence of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00814v2-abstract-full').style.display = 'inline'; document.getElementById('2305.00814v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00814v2-abstract-full" style="display: none;"> Understanding spin dynamics on femto- and picosecond timescales offers new opportunities for faster and more efficient spintronic devices. Here, we experimentally investigate the coherent spin dynamics after ultrashort laser excitation by time-resolved magneto optical Kerr effect (TR-MOKE) in thin Ni80Fe20 films. We provide a detailed study of the magnetic field and pump fluence dependence of the coherent precessional dynamics. We show that the coherent precession lifetime increases with the applied external magnetic field which cannot be understood by viscous Gilbert damping of the coherent magnons. Instead, it can be explained by nonlinear magnon interactions and by the change in the fraction of incoherent magnons. This interpretation is in agreement with the observed trends of the coherent magnon amplitude and lifetime as a function of the exciting laser fluence. Our results provide a new insight into the magnetization relaxation processes in ferromagnetic thin films, which is of great importance for further spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00814v2-abstract-full').style.display = 'none'; document.getElementById('2305.00814v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B, 109, 024422, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14957">arXiv:2304.14957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14957">pdf</a>, <a href="https://arxiv.org/format/2304.14957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Competing signatures of intersite and interlayer spin transfer in the ultrafast magnetization dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=H%C3%A4user%2C+S">Simon H盲user</a>, <a href="/search/?searchtype=author&amp;query=Weber%2C+S+T">Sebastian T. Weber</a>, <a href="/search/?searchtype=author&amp;query=Seibel%2C+C">Christopher Seibel</a>, <a href="/search/?searchtype=author&amp;query=Weber%2C+M">Marius Weber</a>, <a href="/search/?searchtype=author&amp;query=Scheuer%2C+L">Laura Scheuer</a>, <a href="/search/?searchtype=author&amp;query=Anstett%2C+M">Martin Anstett</a>, <a href="/search/?searchtype=author&amp;query=Zinke%2C+G">Gregor Zinke</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+H+C">Hans C. Schneider</a>, <a href="/search/?searchtype=author&amp;query=Rethfeld%2C+B">B盲rbel Rethfeld</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14957v1-abstract-short" style="display: inline;"> Optically driven intersite and interlayer spin transfer are individually known as the fastest processes for manipulating the spin order of magnetic materials on the sub 100 fs time scale. However, their competing influence on the ultrafast magnetization dynamics remains unexplored. In our work, we show that optically induced intersite spin transfer (also known as OISTR) dominates the ultrafast mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14957v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14957v1-abstract-full" style="display: none;"> Optically driven intersite and interlayer spin transfer are individually known as the fastest processes for manipulating the spin order of magnetic materials on the sub 100 fs time scale. However, their competing influence on the ultrafast magnetization dynamics remains unexplored. In our work, we show that optically induced intersite spin transfer (also known as OISTR) dominates the ultrafast magnetization dynamics of ferromagnetic alloys such as Permalloy (Ni80Fe20) only in the absence of interlayer spin transfer into a substrate. Once interlayer spin transfer is possible, the influence of OISTR is significantly reduced and interlayer spin transfer dominates the ultrafast magnetization dynamics. This provides a new approach to control the magnetization dynamics of alloys on extremely short time scales by fine-tuning the interlayer spin transfer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14957v1-abstract-full').style.display = 'none'; document.getElementById('2304.14957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14325">arXiv:2304.14325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14325">pdf</a>, <a href="https://arxiv.org/format/2304.14325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coherent magnetization dynamics in strongly quenched Ni thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lentfert%2C+A">Akira Lentfert</a>, <a href="/search/?searchtype=author&amp;query=De%2C+A">Anulekha De</a>, <a href="/search/?searchtype=author&amp;query=Scheuer%2C+L">Laura Scheuer</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=von+Freymann%2C+G">Georg von Freymann</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14325v1-abstract-short" style="display: inline;"> The remagnetization process after ultrafast demagnetization can be described by relaxation mechanisms between the spin, electron, and lattice reservoirs. Thereby, collective spin excitations in form of spin waves and their angular momentum transfer play an important role on the longer timescales. In this work, we address the question whether the strength of demagnetization affects the coherency an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14325v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14325v1-abstract-full" style="display: none;"> The remagnetization process after ultrafast demagnetization can be described by relaxation mechanisms between the spin, electron, and lattice reservoirs. Thereby, collective spin excitations in form of spin waves and their angular momentum transfer play an important role on the longer timescales. In this work, we address the question whether the strength of demagnetization affects the coherency and the phase of the excited spin waves. We present a study of coherent magnetization dynamics in thin nickel films after ultrafast demagnetization using the all-optical, time-resolved magneto-optical Kerr-effect (tr-MOKE) technique. The largest coherent oscillation amplitude was observed for strongly quenched systems, showing the conservation of coherency for demagnetizations of up to 90%. Moreover, the phase of the excited spin-waves increases with pump power, indicating a delayed start of the precession during the remagnetization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14325v1-abstract-full').style.display = 'none'; document.getElementById('2304.14325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10237">arXiv:2304.10237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10237">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-47821-4">10.1038/s41467-024-47821-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing Hidden Spin Polarization in Centrosymmetric van der Waals Materials on Ultrafast Timescales </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Arnoldi%2C+B">Benito Arnoldi</a>, <a href="/search/?searchtype=author&amp;query=Zachritz%2C+S+L">Sara L. Zachritz</a>, <a href="/search/?searchtype=author&amp;query=Hedwig%2C+S">Sebastian Hedwig</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Monti%2C+O+L+A">Oliver L. A. Monti</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10237v1-abstract-short" style="display: inline;"> One of the key challenges for spintronic and novel quantum technologies is to achieve active control of the spin angular momentum of electrons in nanoscale materials on ultrafast, femtosecond timescales. While conventional ferromagnetic materials and materials supporting spin texture suffer both from conceptional limitations in miniaturization and in efficiency of optical and electronic manipulati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10237v1-abstract-full').style.display = 'inline'; document.getElementById('2304.10237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10237v1-abstract-full" style="display: none;"> One of the key challenges for spintronic and novel quantum technologies is to achieve active control of the spin angular momentum of electrons in nanoscale materials on ultrafast, femtosecond timescales. While conventional ferromagnetic materials and materials supporting spin texture suffer both from conceptional limitations in miniaturization and in efficiency of optical and electronic manipulation, non-magnetic centrosymmetric layered materials with hidden spin polarization may offer an alternative pathway to manipulate the spin degree of freedom by external stimuli. Here we demonstrate a novel approach to generate transient spin polarization on a femtosecond timescale in the otherwise spin-unpolarized band structure of the centrosymmetric 2H-stacked group VI transition metal dichalcogenide WSe$_{2}$. Using ultrafast optical excitation of a fullerene layer grown on top of WSe$_{2}$, we trigger an ultrafast interlayer electron transfer from the fullerene layer into the WSe$_{2}$ crystal. The resulting transient charging of the C$_{60}$/WSe$_{2}$ interface leads to a substantial interfacial electric field that by means of spin-layer-valley locking ultimately creates ultrafast spin polarization without the need of an external magnetic field. Our findings hence open a novel pathway for optically engineering spin functionalities such as the sub-picosecond generation and manipulation of ultrafast spin currents in 2D heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10237v1-abstract-full').style.display = 'none'; document.getElementById('2304.10237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 3573, (2024); </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13904">arXiv:2303.13904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.13904">pdf</a>, <a href="https://arxiv.org/format/2303.13904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-45973-x">10.1038/s41467-024-45973-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiorbital exciton formation in an organic semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bennecke%2C+W">Wiebke Bennecke</a>, <a href="/search/?searchtype=author&amp;query=Windischbacher%2C+A">Andreas Windischbacher</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+D">David Schmitt</a>, <a href="/search/?searchtype=author&amp;query=Bange%2C+J+P">Jan Philipp Bange</a>, <a href="/search/?searchtype=author&amp;query=Hemm%2C+R">Ralf Hemm</a>, <a href="/search/?searchtype=author&amp;query=Kern%2C+C+S">Christian S. Kern</a>, <a href="/search/?searchtype=author&amp;query=D%60Avino%2C+G">Gabriele D`Avino</a>, <a href="/search/?searchtype=author&amp;query=Blase%2C+X">Xavier Blase</a>, <a href="/search/?searchtype=author&amp;query=Steil%2C+D">Daniel Steil</a>, <a href="/search/?searchtype=author&amp;query=Steil%2C+S">Sabine Steil</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Stadtmueller%2C+B">Benjamin Stadtmueller</a>, <a href="/search/?searchtype=author&amp;query=Reutzel%2C+M">Marcel Reutzel</a>, <a href="/search/?searchtype=author&amp;query=Puschnig%2C+P">Peter Puschnig</a>, <a href="/search/?searchtype=author&amp;query=Jansen%2C+G+S+M">G. S. Matthijs Jansen</a>, <a href="/search/?searchtype=author&amp;query=Mathias%2C+S">Stefan Mathias</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13904v1-abstract-short" style="display: inline;"> Harnessing the optoelectronic response of organic semiconductors requires a thorough understanding of the fundamental light-matter interaction that is dominated by the excitation of correlated electron-hole pairs, i.e. excitons. The nature of these excitons would be fully captured by knowing the quantum-mechanical wavefunction, which, however, is difficult to access both theoretically and experime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13904v1-abstract-full').style.display = 'inline'; document.getElementById('2303.13904v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13904v1-abstract-full" style="display: none;"> Harnessing the optoelectronic response of organic semiconductors requires a thorough understanding of the fundamental light-matter interaction that is dominated by the excitation of correlated electron-hole pairs, i.e. excitons. The nature of these excitons would be fully captured by knowing the quantum-mechanical wavefunction, which, however, is difficult to access both theoretically and experimentally. Here, we use femtosecond photoemission orbital tomography in combination with many-body perturbation theory to gain access to exciton wavefunctions in organic semiconductors. We find that the coherent sum of multiple electron-hole pair contributions that typically make up a single exciton can be experimentally evidenced by photoelectron spectroscopy. For the prototypical organic semiconductor buckminsterfullerene (C$_{60}$), we show how to disentangle such multiorbital contributions and thereby access key properties of the exciton wavefunctions including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13904v1-abstract-full').style.display = 'none'; document.getElementById('2303.13904v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 1804 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.11009">arXiv:2210.11009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.11009">pdf</a>, <a href="https://arxiv.org/format/2210.11009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202213536">10.1002/adfm.202213536 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser-induced Creation of antiferromagnetic 180-degree domains in NiO/Pt bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Meer%2C+H">Hendrik Meer</a>, <a href="/search/?searchtype=author&amp;query=Wust%2C+S">Stephan Wust</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+C">Christin Schmitt</a>, <a href="/search/?searchtype=author&amp;query=Herrgen%2C+P">Paul Herrgen</a>, <a href="/search/?searchtype=author&amp;query=Fuhrmann%2C+F">Felix Fuhrmann</a>, <a href="/search/?searchtype=author&amp;query=Hirtle%2C+S">Steffen Hirtle</a>, <a href="/search/?searchtype=author&amp;query=Bednarz%2C+B">Beatrice Bednarz</a>, <a href="/search/?searchtype=author&amp;query=Rajan%2C+A">Adithya Rajan</a>, <a href="/search/?searchtype=author&amp;query=Ramos%2C+R">Rafael Ramos</a>, <a href="/search/?searchtype=author&amp;query=Ni%C3%B1o%2C+M+A">Miguel Angel Ni帽o</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+M">Michael Foerster</a>, <a href="/search/?searchtype=author&amp;query=Kronast%2C+F">Florian Kronast</a>, <a href="/search/?searchtype=author&amp;query=Kleibert%2C+A">Armin Kleibert</a>, <a href="/search/?searchtype=author&amp;query=Rethfeld%2C+B">Baerbel Rethfeld</a>, <a href="/search/?searchtype=author&amp;query=Saitoh%2C+E">Eiji Saitoh</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.11009v2-abstract-short" style="display: inline;"> We demonstrate how the antiferromagnetic order in heterostructures of NiO/Pt thin films can be modified by optical pulses. We irradiate our samples with laser light and identify an optically induced creation of antiferromagnetic domains by imaging the created domain structure utilizing the X-ray magnetic linear dichroism effect. We study the effect of different laser polarizations on the domain fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11009v2-abstract-full').style.display = 'inline'; document.getElementById('2210.11009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.11009v2-abstract-full" style="display: none;"> We demonstrate how the antiferromagnetic order in heterostructures of NiO/Pt thin films can be modified by optical pulses. We irradiate our samples with laser light and identify an optically induced creation of antiferromagnetic domains by imaging the created domain structure utilizing the X-ray magnetic linear dichroism effect. We study the effect of different laser polarizations on the domain formation and identify a polarization-independent creation of 180掳 domain walls and domains with 180掳 different N茅el vector orientation. By varying the irradiation parameters, we determine the switching mechanism to be thermally induced and demonstrate the reversibility. We thus demonstrate experimentally the possibility to optically create antiferromagnetic domains, an important step towards future functionalization of all optical switching mechanisms in antiferromagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11009v2-abstract-full').style.display = 'none'; document.getElementById('2210.11009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Funct. Mater. 2023, 2213536 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07502">arXiv:2206.07502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.07502">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Twisted light affects ultrafast demagnetization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Prinz%2C+E">Eva Prinz</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07502v1-abstract-short" style="display: inline;"> Irradiation with an ultrashort laser pulse can completely destroy the magnetic order of ferromagnetic thin films on the femtosecond timescale. This phenomenon holds great potential for ultrafast spintronics and information processing and is an active field of research. It is still an open question if the angular momentum of light can support this effect. While it has been shown that the spin of li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07502v1-abstract-full').style.display = 'inline'; document.getElementById('2206.07502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07502v1-abstract-full" style="display: none;"> Irradiation with an ultrashort laser pulse can completely destroy the magnetic order of ferromagnetic thin films on the femtosecond timescale. This phenomenon holds great potential for ultrafast spintronics and information processing and is an active field of research. It is still an open question if the angular momentum of light can support this effect. While it has been shown that the spin of light only has a negligible influence, we experimentally demonstrate the influence of ultrashort laser pulses with orbital angular momentum (OAM) on the magnetization dynamics of a thin nickel film. Our results reveal that the photonic OAM affects the demagnetization behavior within the first hundreds of femtoseconds depending on the handedness of the OAM with respect to the direction of the sample magnetization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07502v1-abstract-full').style.display = 'none'; document.getElementById('2206.07502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02686">arXiv:2205.02686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.02686">pdf</a>, <a href="https://arxiv.org/format/2205.02686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Indirect optical manipulation of the antiferromagnetic order of insulating NiO by ultrafast interfacial energy transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wust%2C+S">Stephan Wust</a>, <a href="/search/?searchtype=author&amp;query=Seibel%2C+C">Christopher Seibel</a>, <a href="/search/?searchtype=author&amp;query=Meer%2C+H">Hendrik Meer</a>, <a href="/search/?searchtype=author&amp;query=Herrgen%2C+P">Paul Herrgen</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+C">Christin Schmitt</a>, <a href="/search/?searchtype=author&amp;query=Baldrati%2C+L">Lorenzo Baldrati</a>, <a href="/search/?searchtype=author&amp;query=Ramos%2C+R">Rafael Ramos</a>, <a href="/search/?searchtype=author&amp;query=Kikkawa%2C+T">Takashi Kikkawa</a>, <a href="/search/?searchtype=author&amp;query=Saitoh%2C+E">Eiji Saitoh</a>, <a href="/search/?searchtype=author&amp;query=Gomonay%2C+O">Olena Gomonay</a>, <a href="/search/?searchtype=author&amp;query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/?searchtype=author&amp;query=Mokrousov%2C+Y">Yuriy Mokrousov</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+H+C">Hans Christian Schneider</a>, <a href="/search/?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a>, <a href="/search/?searchtype=author&amp;query=Rethfeld%2C+B">Baerbel Rethfeld</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02686v1-abstract-short" style="display: inline;"> We report the ultrafast, (sub)picosecond reduction of the antiferromagnetic order of the insulating NiO thin film in a Pt/NiO bilayer. This reduction of the antiferromagnetic order is not present in pure NiO thin films after a strong optical excitation. This ultrafast phenomenon is attributed to an ultrafast and highly efficient energy transfer from the optically excited electron system of the Pt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02686v1-abstract-full').style.display = 'inline'; document.getElementById('2205.02686v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02686v1-abstract-full" style="display: none;"> We report the ultrafast, (sub)picosecond reduction of the antiferromagnetic order of the insulating NiO thin film in a Pt/NiO bilayer. This reduction of the antiferromagnetic order is not present in pure NiO thin films after a strong optical excitation. This ultrafast phenomenon is attributed to an ultrafast and highly efficient energy transfer from the optically excited electron system of the Pt layer into the NiO spin system. We propose that this energy transfer is mediated by a stochastic exchange scattering of hot Pt electrons at the Pt/NiO interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02686v1-abstract-full').style.display = 'none'; document.getElementById('2205.02686v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13240">arXiv:2204.13240</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13240">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04501-x">10.1038/s41586-022-04501-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FAIR data enabling new horizons for materials research </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Scheffler%2C+M">Matthias Scheffler</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+M">Martin Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Bereau%2C+T">Tristan Bereau</a>, <a href="/search/?searchtype=author&amp;query=Bungartz%2C+H">Hans-Joachim Bungartz</a>, <a href="/search/?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/?searchtype=author&amp;query=Greiner%2C+M">Mark Greiner</a>, <a href="/search/?searchtype=author&amp;query=Gro%C3%9F%2C+A">Axel Gro脽</a>, <a href="/search/?searchtype=author&amp;query=Koch%2C+C+T">Christoph T. Koch</a>, <a href="/search/?searchtype=author&amp;query=Kremer%2C+K">Kurt Kremer</a>, <a href="/search/?searchtype=author&amp;query=Nagel%2C+W+E">Wolfgang E. Nagel</a>, <a href="/search/?searchtype=author&amp;query=Scheidgen%2C+M">Markus Scheidgen</a>, <a href="/search/?searchtype=author&amp;query=W%C3%B6ll%2C+C">Christof W枚ll</a>, <a href="/search/?searchtype=author&amp;query=Draxl%2C+C">Claudia Draxl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13240v1-abstract-short" style="display: inline;"> The prosperity and lifestyle of our society are very much governed by achievements in condensed matter physics, chemistry and materials science, because new products for sectors such as energy, the environment, health, mobility and information technology (IT) rely largely on improved or even new materials. Examples include solid-state lighting, touchscreens, batteries, implants, drug delivery and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13240v1-abstract-full').style.display = 'inline'; document.getElementById('2204.13240v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13240v1-abstract-full" style="display: none;"> The prosperity and lifestyle of our society are very much governed by achievements in condensed matter physics, chemistry and materials science, because new products for sectors such as energy, the environment, health, mobility and information technology (IT) rely largely on improved or even new materials. Examples include solid-state lighting, touchscreens, batteries, implants, drug delivery and many more. The enormous amount of research data produced every day in these fields represents a gold mine of the twenty-first century. This gold mine is, however, of little value if these data are not comprehensively characterized and made available. How can we refine this feedstock; that is, turn data into knowledge and value? For this, a FAIR (findable, accessible, interoperable and reusable) data infrastructure is a must. Only then can data be readily shared and explored using data analytics and artificial intelligence (AI) methods. Making data &#39;findable and AI ready&#39; (a forward-looking interpretation of the acronym) will change the way in which science is carried out today. In this Perspective, we discuss how we can prepare to make this happen for the field of materials science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13240v1-abstract-full').style.display = 'none'; document.getElementById('2204.13240v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 604, 635 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04780">arXiv:2112.04780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04780">pdf</a>, <a href="https://arxiv.org/format/2112.04780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Control of transport phenomena in magnetic heterostructures by wavelength modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Seibel%2C+C">Christopher Seibel</a>, <a href="/search/?searchtype=author&amp;query=Weber%2C+M">Marius Weber</a>, <a href="/search/?searchtype=author&amp;query=Stiehl%2C+M">Martin Stiehl</a>, <a href="/search/?searchtype=author&amp;query=Weber%2C+S+T">Sebastian T. Weber</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+H+C">Hans Christian Schneider</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Rethfeld%2C+B">Baerbel Rethfeld</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04780v1-abstract-short" style="display: inline;"> We demonstrate the tuneablity of the ultrafast energy flow in magnetic/non-magnetic bilayer structures by changing the wavelength of the optical excitation. This is achieved by an advanced description of the temperature based $渭$T-model that explicitly considers the wavelength- and layer-dependent absorption profile within multilayer structures. For the exemplary case of a Ni/Au bilayer, our simul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04780v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04780v1-abstract-full" style="display: none;"> We demonstrate the tuneablity of the ultrafast energy flow in magnetic/non-magnetic bilayer structures by changing the wavelength of the optical excitation. This is achieved by an advanced description of the temperature based $渭$T-model that explicitly considers the wavelength- and layer-dependent absorption profile within multilayer structures. For the exemplary case of a Ni/Au bilayer, our simulations predict that the energy flow from Ni to Au is reversed when changing the wavelength of the excitation from the infrared to the ultraviolet spectral range. These predictions are fully supported by characteristic signatures in the magneto-optical Kerr traces of the Ni/Au model system. Our results will open up new avenues to steer and control the energy transport in designed magnetic multilayer for ultrafast spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04780v1-abstract-full').style.display = 'none'; document.getElementById('2112.04780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages (+3 pages supplemental), 5 figures (+1 figure in supplemental)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11877">arXiv:2111.11877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.11877">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac5c17">10.1088/1367-2630/ac5c17 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic and mesoscopic structure of Dy-based surface alloys on noble metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mousavion%2C+S">Sina Mousavion</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+K+M">Ka Man Yu</a>, <a href="/search/?searchtype=author&amp;query=Maniraj%2C+M">Mahalingam Maniraj</a>, <a href="/search/?searchtype=author&amp;query=Lyu%2C+L">Lu Lyu</a>, <a href="/search/?searchtype=author&amp;query=Knippertz%2C+J">Johannes Knippertz</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11877v2-abstract-short" style="display: inline;"> Surface alloys are a highly tunable class of low dimensional materials with the opportunity to tune and control the spin and charge carrier functionalities on the nanoscale. Here, we focus on the atomic and mesoscopic structural details of three distinctive binary rare-earth-noble metals (RE/NM) surface alloys by employing scanning tunneling microscopy (STM) and low energy electron diffraction (LE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11877v2-abstract-full').style.display = 'inline'; document.getElementById('2111.11877v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11877v2-abstract-full" style="display: none;"> Surface alloys are a highly tunable class of low dimensional materials with the opportunity to tune and control the spin and charge carrier functionalities on the nanoscale. Here, we focus on the atomic and mesoscopic structural details of three distinctive binary rare-earth-noble metals (RE/NM) surface alloys by employing scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Using Dysprosium as the guest element on fcc(111) noble metal substrates, we identify the formation of non-commensurate surface alloy superstructures which exhibit homogeneous moir茅 patterns for DyCu2/Cu (111) and DyAu2/Au(111), while an inhomogeneous one is found for DyAg2/Ag(111). The variations in the local structure are analyzed for all three surface alloys and the observed differences are discussed in the light of the lattice mismatches of the alloy layer with respect to the underlying substrate. For the particularly intriguing case of a Dy-Ag surface alloy, the surface alloy layer does not show a uniform long-range periodic structure, but consists of local hexagonal tiles separated by extended domain walls. These domain walls exist to relief the in-plane strain within the DyAg2 surface alloy layer. Our findings clearly demonstrate that surface alloying is an intriguing tool to tailor both the local atomic, but also the mesoscopic moir茅 structures of metallic heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11877v2-abstract-full').style.display = 'none'; document.getElementById('2111.11877v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.14277">arXiv:2107.14277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.14277">pdf</a>, <a href="https://arxiv.org/format/2107.14277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.1c06586">10.1021/acsnano.1c06586 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy and Momentum Distribution of Surface Plasmon-induced Hot Carriers Isolated via Spatiotemporal Separation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hartelt%2C+M">Michael Hartelt</a>, <a href="/search/?searchtype=author&amp;query=Terekhin%2C+P+N">Pavel N. Terekhin</a>, <a href="/search/?searchtype=author&amp;query=Eul%2C+T">Tobias Eul</a>, <a href="/search/?searchtype=author&amp;query=Mahro%2C+A">Anna-Katharina Mahro</a>, <a href="/search/?searchtype=author&amp;query=Frisch%2C+B">Benjamin Frisch</a>, <a href="/search/?searchtype=author&amp;query=Prinz%2C+E">Eva Prinz</a>, <a href="/search/?searchtype=author&amp;query=Rethfeld%2C+B">Baerbel Rethfeld</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.14277v1-abstract-short" style="display: inline;"> Understanding the differences between photon-induced and plasmon-induced hot electrons is essential for the construction of devices for plasmonic energy conversion. The mechanism of the plasmonic enhancement in photochemistry, photocatalysis, and light-harvesting and especially the role of hot carriers is still heavily discussed. The question remains, if plasmon-induced and photon-induced hot carr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.14277v1-abstract-full').style.display = 'inline'; document.getElementById('2107.14277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.14277v1-abstract-full" style="display: none;"> Understanding the differences between photon-induced and plasmon-induced hot electrons is essential for the construction of devices for plasmonic energy conversion. The mechanism of the plasmonic enhancement in photochemistry, photocatalysis, and light-harvesting and especially the role of hot carriers is still heavily discussed. The question remains, if plasmon-induced and photon-induced hot carriers are fundamentally different, or if plasmonic enhancement is only an effect of field concentration producing these carriers in greater numbers. For the bulk plasmon resonance, a fundamental difference is known, yet for the technologically important surface plasmons this is far from being settled. The direct imaging of surface plasmon-induced hot carriers could provide essential insight, but the separation of the influence of driving laser, field-enhancement, and fundamental plasmon decay has proven to be difficult. Here, we present an approach using a two-color femtosecond pump-probe scheme in time-resolved 2-photon-photoemission (tr-2PPE), supported by a theoretical analysis of the light and plasmon energy flow. We separate the energy and momentum distribution of the plasmon-induced hot electrons from the one of photoexcited electrons by following the spatial evolution of photoemitted electrons with energy-resolved Photoemission Electron Microscopy (PEEM) and Momentum Microscopy during the propagation of a Surface Plasmon Polariton (SPP) pulse along a gold surface. With this scheme, we realize a direct experimental access to plasmon-induced hot electrons. We find a plasmonic enhancement towards high excitation energies and small in-plane momenta, which suggests a fundamentally different mechanism of hot electron generation, as previously unknown for surface plasmons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.14277v1-abstract-full').style.display = 'none'; document.getElementById('2107.14277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 2021, 15, 12, 19559-19569 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05584">arXiv:2103.05584</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.05584">pdf</a>, <a href="https://arxiv.org/format/2103.05584">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.196405">10.1103/PhysRevLett.127.196405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopic evidence for a new type of surface resonance at noble metal surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Eul%2C+T">Tobias Eul</a>, <a href="/search/?searchtype=author&amp;query=Braun%2C+J">J眉rgen Braun</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Ebert%2C+H">Hubert Ebert</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05584v2-abstract-short" style="display: inline;"> We investigate the surface- and bulk-like properties of the pristine (110)-surface of silver using threshold photoemission by excitation with light of 5.9 eV. Using a momentum microscope, we identified two distinct transitions along the $\overline螕\,\overline{\textrm{Y}}$-direction of the crystal. The first one is a so far unknown surface resonance for the (110) noble metal surface, exhibiting an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05584v2-abstract-full').style.display = 'inline'; document.getElementById('2103.05584v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05584v2-abstract-full" style="display: none;"> We investigate the surface- and bulk-like properties of the pristine (110)-surface of silver using threshold photoemission by excitation with light of 5.9 eV. Using a momentum microscope, we identified two distinct transitions along the $\overline螕\,\overline{\textrm{Y}}$-direction of the crystal. The first one is a so far unknown surface resonance for the (110) noble metal surface, exhibiting an exceptionally large bulk character, that has so far been elusive in surface sensitive experiments. The second one stems from the well known bulk-like Mahan cone oriented along the $螕L$-direction inside the crystal but projected onto the (110)-surface cut. The existence of the new state is confirmed by photocurrent calculations and its character analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05584v2-abstract-full').style.display = 'none'; document.getElementById('2103.05584v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 196405 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06033">arXiv:2102.06033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.06033">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c00625">10.1021/acs.nanolett.1c00625 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Functional meta lenses for compound plasmonic vortex field generation and control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Prinz%2C+E">Eva Prinz</a>, <a href="/search/?searchtype=author&amp;query=Spektor%2C+G">Grisha Spektor</a>, <a href="/search/?searchtype=author&amp;query=Hartelt%2C+M">Michael Hartelt</a>, <a href="/search/?searchtype=author&amp;query=Mahro%2C+A">Anna-Katharina Mahro</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Orenstein%2C+M">Meir Orenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06033v1-abstract-short" style="display: inline;"> Surface plasmon polaritons carrying orbital angular momentum are of great fundamental and applied interest. However, common approaches for their generation are restricted to having a weak dependence on the properties of the plasmon-generating illumination, providing a limited degree of control over the amount of delivered orbital angular momentum. Here we experimentally show that by tailoring loca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06033v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06033v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06033v1-abstract-full" style="display: none;"> Surface plasmon polaritons carrying orbital angular momentum are of great fundamental and applied interest. However, common approaches for their generation are restricted to having a weak dependence on the properties of the plasmon-generating illumination, providing a limited degree of control over the amount of delivered orbital angular momentum. Here we experimentally show that by tailoring local and global geometries of vortex generators, a change in circular polarization handedness of light imposes arbitrary large switching in the delivered plasmonic angular momentum. Using time-resolved photoemission electron microscopy we demonstrate pristine control over the generation and rotation direction of high-order plasmonic vortices. We generalize our approach to create complex topological fields and exemplify it by studying and controlling a &#34;bright vortex&#34;, exhibiting the breakdown of a high-order vortex into a mosaic of unity-order vortices while maintaining the overall angular momentum density. Our results provide tools for plasmonic manipulation and could be utilized in lab-on-a-chip devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06033v1-abstract-full').style.display = 'none'; document.getElementById('2102.06033v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 2021, 21, 9, 3941-3946 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.03567">arXiv:2101.03567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.03567">pdf</a>, <a href="https://arxiv.org/format/2101.03567">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.104308">10.1103/PhysRevB.104.104308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adsorption-induced modification of the hot electron lifetime in a Pb/Ag111 quantum well system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Haag%2C+F">Florian Haag</a>, <a href="/search/?searchtype=author&amp;query=Eul%2C+T">Tobias Eul</a>, <a href="/search/?searchtype=author&amp;query=Grad%2C+L">Lisa Grad</a>, <a href="/search/?searchtype=author&amp;query=Haag%2C+N">Norman Haag</a>, <a href="/search/?searchtype=author&amp;query=Knippertz%2C+J">Johannes Knippertz</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.03567v1-abstract-short" style="display: inline;"> The interfacial band structures of multilayer systems play a crucial role for the ultrafast charge and spin carrier dynamics at interfaces. Here, we study the energy- and momentum-dependent quasiparticle lifetimes of excited states of a lead monolayer film on Ag(111) prior and after the adsorption of a monolayer of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA). Using time-resolved two-phot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03567v1-abstract-full').style.display = 'inline'; document.getElementById('2101.03567v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.03567v1-abstract-full" style="display: none;"> The interfacial band structures of multilayer systems play a crucial role for the ultrafast charge and spin carrier dynamics at interfaces. Here, we study the energy- and momentum-dependent quasiparticle lifetimes of excited states of a lead monolayer film on Ag(111) prior and after the adsorption of a monolayer of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA). Using time-resolved two-photon momentum microscopy, we show that the electron dynamics of the bare Pb/Ag(111) bilayer system is dominated by isotropic intraband scattering processes within the quantum well state as well as interband scattering processes from the QWS into the Pb sideband. After the adsorption of PTCDA on the Pb monolayer, the interband scattering is suppressed and the electron dynamics is solely determined by intraband or inelastic scattering processes. Our findings hence uncover a new possibility to selectively tune and control scattering processes of quantum well systems by the adsorption of organic molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03567v1-abstract-full').style.display = 'none'; document.getElementById('2101.03567v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 104308 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05833">arXiv:2012.05833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.05833">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abg5571">10.1126/sciadv.abg5571 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital angular momentum multiplication in plasmonic vortex cavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Spektor%2C+G">Grisha Spektor</a>, <a href="/search/?searchtype=author&amp;query=Prinz%2C+E">Eva Prinz</a>, <a href="/search/?searchtype=author&amp;query=Hartelt%2C+M">Michael Hartelt</a>, <a href="/search/?searchtype=author&amp;query=Mahro%2C+A">Anna-Katharina Mahro</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Orenstein%2C+M">Meir Orenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05833v1-abstract-short" style="display: inline;"> Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05833v1-abstract-full').style.display = 'inline'; document.getElementById('2012.05833v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05833v1-abstract-full" style="display: none;"> Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatio-temporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved Photoemission Electron Microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices, could miniaturize pump-probe-like quantum initialization schemes, increase the torque exerted by plasmonic tweezers and potentially achieve vortex lattice cavities with dynamically evolving topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05833v1-abstract-full').style.display = 'none'; document.getElementById('2012.05833v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv. 2021; 7 : eabg5571 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14584">arXiv:2009.14584</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14584">pdf</a>, <a href="https://arxiv.org/format/2009.14584">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/abc7b6">10.1088/1674-1056/abc7b6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Progress on band structure engineering of twisted bilayer and two-dimensional moir茅 heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yao%2C+W">Wei Yao</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+S">Shuyun Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14584v1-abstract-short" style="display: inline;"> Artificially constructed van der Waals heterostructures (vdWHs) provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics. Two methods for building vdWHs have been developed: stacking two-dimensional (2D) materials into a bilayer structure with different lattice constants, or with different orientations. The interlayer coupling stemming from commensurate or inc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14584v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14584v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14584v1-abstract-full" style="display: none;"> Artificially constructed van der Waals heterostructures (vdWHs) provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics. Two methods for building vdWHs have been developed: stacking two-dimensional (2D) materials into a bilayer structure with different lattice constants, or with different orientations. The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states. In this article, we review a series of novel quantum states discovered in two model vdWH systems -- graphene/hexagonal boron nitride (hBN) hetero-bilayer and twisted bilayer graphene (tBLG), and discuss how the electronic structures are modified by such stacking and twisting. We also provide perspectives for future studies on hetero-bilayer materials, from which an expansion of 2D material phase library is expected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14584v1-abstract-full').style.display = 'none'; document.getElementById('2009.14584v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Chin. Phys. B for Topical Review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.14044">arXiv:2004.14044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.14044">pdf</a>, <a href="https://arxiv.org/format/2004.14044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.165422">10.1103/PhysRevB.101.165422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of an Atomic Crystal in the Band Structure of a Molecular Thin Film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Haag%2C+N">Norman Haag</a>, <a href="/search/?searchtype=author&amp;query=L%C3%BCftner%2C+D">Daniel L眉ftner</a>, <a href="/search/?searchtype=author&amp;query=Seidel%2C+J">Johannes Seidel</a>, <a href="/search/?searchtype=author&amp;query=Kelly%2C+L+L">Leah L. Kelly</a>, <a href="/search/?searchtype=author&amp;query=Zamborlini%2C+G">Giovanni Zamborlini</a>, <a href="/search/?searchtype=author&amp;query=Jugovac%2C+M">Matteo Jugovac</a>, <a href="/search/?searchtype=author&amp;query=Feyer%2C+V">Vitaliy Feyer</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Puschnig%2C+P">Peter Puschnig</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.14044v1-abstract-short" style="display: inline;"> Transport phenomena in molecular materials are intrinsically linked to the orbital character and the degree of localization of the valence states. Here, we combine angle-resolved photoemission with photoemission tomography to determine the spatial distribution of all molecular states of the valence band structure of a C$_{60}$ thin film. While the two most frontier valence states exhibit a strong&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.14044v1-abstract-full').style.display = 'inline'; document.getElementById('2004.14044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.14044v1-abstract-full" style="display: none;"> Transport phenomena in molecular materials are intrinsically linked to the orbital character and the degree of localization of the valence states. Here, we combine angle-resolved photoemission with photoemission tomography to determine the spatial distribution of all molecular states of the valence band structure of a C$_{60}$ thin film. While the two most frontier valence states exhibit a strong band dispersion, the states at larger binding energies are characterized by distinct emission patterns in energy and momentum space. Our findings demonstrate the formation of an atomic crystal-like band structure in a molecular solid with delocalized $蟺$-like valence states and strongly localized $蟽$-states at larger binding energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.14044v1-abstract-full').style.display = 'none'; document.getElementById('2004.14044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 165422 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.04576">arXiv:2002.04576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.04576">pdf</a>, <a href="https://arxiv.org/format/2002.04576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.elspec.2021.147110">10.1016/j.elspec.2021.147110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast charge carrier separation in Potassium-intercalated endohedral metallofullerene Sc$_3$N@C$_{80}$ thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Emmerich%2C+S">Sebastian Emmerich</a>, <a href="/search/?searchtype=author&amp;query=Hedwig%2C+S">Sebastian Hedwig</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.04576v1-abstract-short" style="display: inline;"> Molecular materials have emerged as highly tunable materials for photovoltaic and light-harvesting applications. The most severe challenge of this class of materials is the trapping of charge carriers in bound electron-hole pairs, which severely limits the free charge carrier generation. Here, we demonstrate a significant modification of the exciton dynamics of thin films of endohedral metallofull&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04576v1-abstract-full').style.display = 'inline'; document.getElementById('2002.04576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.04576v1-abstract-full" style="display: none;"> Molecular materials have emerged as highly tunable materials for photovoltaic and light-harvesting applications. The most severe challenge of this class of materials is the trapping of charge carriers in bound electron-hole pairs, which severely limits the free charge carrier generation. Here, we demonstrate a significant modification of the exciton dynamics of thin films of endohedral metallofullerene complexes upon alkali metal intercalation. For the exemplary case of Sc$_3$N@C$_{80}$ thin films, we show that potassium intercalation results in an additional relaxation channel for the optically excited charge-transfer excitons that prevents the trapping of excitons in a long-lived Frenkel exciton-like state. Instead, K intercalation leads to an ultrafast exciton dissociation coinciding most likely with the generation of free charge carriers. In this way, we propose alkali metal doping of molecular films as a novel approach to enhance the light to-charge carrier conversion efficiency in photovoltaic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04576v1-abstract-full').style.display = 'none'; document.getElementById('2002.04576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Electron. Spectros. Relat. Phenomena 252, 147110 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.04297">arXiv:2002.04297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.04297">pdf</a>, <a href="https://arxiv.org/format/2002.04297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.0c08011">10.1021/acs.jpcc.0c08011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast charge-transfer exciton dynamics in C$_{60}$ thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Emmerich%2C+S">Sebastian Emmerich</a>, <a href="/search/?searchtype=author&amp;query=Hedwig%2C+S">Sebastian Hedwig</a>, <a href="/search/?searchtype=author&amp;query=Arnoldi%2C+B">Benito Arnoldi</a>, <a href="/search/?searchtype=author&amp;query=St%C3%B6ckl%2C+J">Johannes St枚ckl</a>, <a href="/search/?searchtype=author&amp;query=Haag%2C+F">Florian Haag</a>, <a href="/search/?searchtype=author&amp;query=Hemm%2C+R">Ralf Hemm</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Mathias%2C+S">Stefan Mathias</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.04297v1-abstract-short" style="display: inline;"> The high flexibility of organic molecules offers great potential for designing the optical properties of light-active materials for the next generation of optoelectronic and photonic applications. However, despite successful implementations of molecular materials in todays&#39; display and photovoltaic technology, many fundamental aspects of the light-to-charge conversion have still to be uncovered. H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04297v1-abstract-full').style.display = 'inline'; document.getElementById('2002.04297v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.04297v1-abstract-full" style="display: none;"> The high flexibility of organic molecules offers great potential for designing the optical properties of light-active materials for the next generation of optoelectronic and photonic applications. However, despite successful implementations of molecular materials in todays&#39; display and photovoltaic technology, many fundamental aspects of the light-to-charge conversion have still to be uncovered. Here, we focus on the ultrafast dynamics of optically excited excitons in C$_{60}$ thin films depending on the molecular coverage and the light-polarization of the optical excitons. Using time- and momentum-resolved photoemission with fs-XUV radiation, we follow the depopulation dynamics in the excited states while simultaneously monitoring the signatures of the excitonic charge character in the molecular valence states. Optical excitation with visible light results in the instantaneous formation of charge-transfer (CT) excitons, which transform stepwise into energetically lower Frenkel-like excitons. While the number and energetic position of energy levels within this cascade process are independent of the molecular coverage and the light polarization of the optical excitation, we find quantitative differences in the depopulation times and the optical excitation efficiency. Our comprehensive study reveals the crucial role of CT excitons for the excited state dynamics of homo-molecular fullerene materials and thin films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04297v1-abstract-full').style.display = 'none'; document.getElementById('2002.04297v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. C (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.04296">arXiv:2002.04296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.04296">pdf</a>, <a href="https://arxiv.org/format/2002.04296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Modification of the charge and magnetic order of a low dimensional ferromagnet by molecule-surface bonding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Seidel%2C+J">Johannes Seidel</a>, <a href="/search/?searchtype=author&amp;query=Walther%2C+E+S">Eva S. Walther</a>, <a href="/search/?searchtype=author&amp;query=Mousavion%2C+S">Sina Mousavion</a>, <a href="/search/?searchtype=author&amp;query=Jungkenn%2C+D">Dominik Jungkenn</a>, <a href="/search/?searchtype=author&amp;query=Franke%2C+M">Markus Franke</a>, <a href="/search/?searchtype=author&amp;query=Kelly%2C+L+L">Leah L. Kelly</a>, <a href="/search/?searchtype=author&amp;query=Alhassanat%2C+A">Ahmed Alhassanat</a>, <a href="/search/?searchtype=author&amp;query=Elmers%2C+H">Hans-Joachim Elmers</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Kumpf%2C+C">Christian Kumpf</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.04296v2-abstract-short" style="display: inline;"> The ability to design and control the spin and charge order of low dimensional materials on the molecular scale offers an intriguing pathway towards the miniaturization of spintronic technology towards the nanometer scale. In this work, we focus on the adsorption induced modifications of the magnetic and electronic properties of a low dimensional ferromagnetic surface alloy after the adsorption of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04296v2-abstract-full').style.display = 'inline'; document.getElementById('2002.04296v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.04296v2-abstract-full" style="display: none;"> The ability to design and control the spin and charge order of low dimensional materials on the molecular scale offers an intriguing pathway towards the miniaturization of spintronic technology towards the nanometer scale. In this work, we focus on the adsorption induced modifications of the magnetic and electronic properties of a low dimensional ferromagnetic surface alloy after the adsorption of the prototypical organic molecule perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). For this metal-organic interface, we observe the formation of a localized $蟽$-like bond between the functional molecular groups and the surface alloy atoms. This strong chemical bonding coincides with a lifting of the characteristic surface alloy band structure and a reduction of the magnitude of the local magnetic moments of the Dy atoms by 18%. We attribute both findings to a mixing of spin-degenerate molecular states with spin-split states of the Dy-Ag surface alloy via the sigma-like bonds between PTCDA and the Dy surface alloy atoms. Our findings clearly demonstrate the potential of tailored molecule-surface sigma-bonds to control not only the electronic but also the magnetic order of low dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04296v2-abstract-full').style.display = 'none'; document.getElementById('2002.04296v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.01831">arXiv:2002.01831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.01831">pdf</a>, <a href="https://arxiv.org/format/2002.01831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.075447">10.1103/PhysRevB.102.075447 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vertical bonding distances and interfacial band structure of PTCDA on a Sn-Ag surface alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Seidel%2C+J">Johannes Seidel</a>, <a href="/search/?searchtype=author&amp;query=Kelly%2C+L+L">Leah L. Kelly</a>, <a href="/search/?searchtype=author&amp;query=Franke%2C+M">Markus Franke</a>, <a href="/search/?searchtype=author&amp;query=Kumpf%2C+C">Christian Kumpf</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.01831v1-abstract-short" style="display: inline;"> Molecular materials enable a vast variety of functionalities for novel electronic and spintronic devices. The unique possibility to alter or substitute organic molecules or metallic substrates offers the opportunity to modify and optimize interfacial properties for almost any desired field of application. For this reason, we extend the successful approach to control molecular interfaces by surface&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.01831v1-abstract-full').style.display = 'inline'; document.getElementById('2002.01831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.01831v1-abstract-full" style="display: none;"> Molecular materials enable a vast variety of functionalities for novel electronic and spintronic devices. The unique possibility to alter or substitute organic molecules or metallic substrates offers the opportunity to modify and optimize interfacial properties for almost any desired field of application. For this reason, we extend the successful approach to control molecular interfaces by surface alloying. We present a comprehensive characterization of the structural and electronic properties of the interface formed between the prototypical molecule PTCDA and a Sn-Ag surface alloy grown on an Ag(111) single crystal surface. We monitor the changes of adsorption height of the surface alloy atoms and electronic valence band structure upon adsorption of one layer of PTCDA using the normal incidence x-ray standing wave technique in combination with momentum-resolved photoelectron spectroscopy. We find that the vertical buckling and the surface band structure of the SnAg$_2$ surface alloy is not altered by the adsorption of one layer of PTCDA, in contrast to our recent study of PTCDA on a PbAg$_2$ surface alloy [Phys. Rev. Lett. 117, 096805 (2016)] . In addition, the vertical adsorption geometry of PTCDA and the interfacial energy level alignment indicate the absence of any chemical interaction between the molecule and the surface alloy. We attribute the different interactions at these PTCDA/surface alloy interfaces to the presence or absence of local $蟽$-bonds between the PTCDA oxygen atoms and the surface atoms. Combining our findings with results from literature, we are able to propose an empiric rule for engineering the surface band structure of alloys by adsorption of organic molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.01831v1-abstract-full').style.display = 'none'; document.getElementById('2002.01831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 075447 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.03780">arXiv:1906.03780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.03780">pdf</a>, <a href="https://arxiv.org/format/1906.03780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Exchange Splitting of a Hybrid Surface State and Ferromagnetic Order in a 2D Surface Alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Seidel%2C+J">J. Seidel</a>, <a href="/search/?searchtype=author&amp;query=Buhl%2C+P+M">P. M. Buhl</a>, <a href="/search/?searchtype=author&amp;query=Mousavion%2C+S">S. Mousavion</a>, <a href="/search/?searchtype=author&amp;query=Dup%C3%A9%2C+B">B. Dup茅</a>, <a href="/search/?searchtype=author&amp;query=Walther%2C+E+S">E. S. Walther</a>, <a href="/search/?searchtype=author&amp;query=Medjanik%2C+K">K. Medjanik</a>, <a href="/search/?searchtype=author&amp;query=Vasilyev%2C+D">D. Vasilyev</a>, <a href="/search/?searchtype=author&amp;query=Babenkov%2C+S">S. Babenkov</a>, <a href="/search/?searchtype=author&amp;query=Ellguth%2C+M">M. Ellguth</a>, <a href="/search/?searchtype=author&amp;query=Maniraj%2C+M">M. Maniraj</a>, <a href="/search/?searchtype=author&amp;query=Sinova%2C+J">J. Sinova</a>, <a href="/search/?searchtype=author&amp;query=Sch%C3%B6nhense%2C+G">G. Sch枚nhense</a>, <a href="/search/?searchtype=author&amp;query=Elmers%2C+H+-">H. -J. Elmers</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">B. Stadtm眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.03780v4-abstract-short" style="display: inline;"> Surface alloys are highly flexible materials for tailoring the spin-dependent properties of surfaces. Here, we study the spin-dependent band structure of a DyAg$_2$ surface alloy formed on an Ag(111) crystal. We find a significant exchange spin-splitting of the localized Dy 4f states pointing to a ferromagnetic coupling between the localized Dy moments at $40\,$K. The magnetic coupling between the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03780v4-abstract-full').style.display = 'inline'; document.getElementById('1906.03780v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.03780v4-abstract-full" style="display: none;"> Surface alloys are highly flexible materials for tailoring the spin-dependent properties of surfaces. Here, we study the spin-dependent band structure of a DyAg$_2$ surface alloy formed on an Ag(111) crystal. We find a significant exchange spin-splitting of the localized Dy 4f states pointing to a ferromagnetic coupling between the localized Dy moments at $40\,$K. The magnetic coupling between these moments is mediated by an indirect, RKKY-like exchange coupling via the spin-polarized electrons of the hole-like Dy-Ag hybrid surface state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03780v4-abstract-full').style.display = 'none'; document.getElementById('1906.03780v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.11941">arXiv:1905.11941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.11941">pdf</a>, <a href="https://arxiv.org/format/1905.11941">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/d0nr00198h">10.1039/d0nr00198h <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broadband enhancement of the magneto-optical activity of hybrid Au loaded Bi:YIG </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pappas%2C+S+D">Spiridon D. Pappas</a>, <a href="/search/?searchtype=author&amp;query=Lang%2C+P">Philipp Lang</a>, <a href="/search/?searchtype=author&amp;query=Eul%2C+T">Tobias Eul</a>, <a href="/search/?searchtype=author&amp;query=Hartelt%2C+M">Michael Hartelt</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Papaioannou%2C+E+T">Evangelos Th. Papaioannou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.11941v1-abstract-short" style="display: inline;"> We unravel the underlying near-field mechanism of the enhancement of the magneto-optical activity of bismuth-substituted yttrium iron garnet films (Bi:YIG) loaded with gold nanoparticles. The experimental results show that the embedded gold nanoparticles lead to a broadband enhancement of the magneto-optical activity with respect to the activity of the bare Bi:YIG films. Full vectorial near- and f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11941v1-abstract-full').style.display = 'inline'; document.getElementById('1905.11941v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.11941v1-abstract-full" style="display: none;"> We unravel the underlying near-field mechanism of the enhancement of the magneto-optical activity of bismuth-substituted yttrium iron garnet films (Bi:YIG) loaded with gold nanoparticles. The experimental results show that the embedded gold nanoparticles lead to a broadband enhancement of the magneto-optical activity with respect to the activity of the bare Bi:YIG films. Full vectorial near- and far-field simulations demonstrate that this broadband enhancement is the result of a magneto-optically enabled cross-talking of orthogonal localized plasmon resonances. Our results pave the way to the on-demand design of the magneto-optical properties of hybrid magneto-plasmonic circuitry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11941v1-abstract-full').style.display = 'none'; document.getElementById('1905.11941v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages, 3 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Nanoscale, 2020, 12, 7309 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale, 2020, 12, 7309 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.01379">arXiv:1904.01379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.01379">pdf</a>, <a href="https://arxiv.org/format/1904.01379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Direct evidence for efficient ultrafast charge separation in epitaxial WS$_2$/graphene heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+S">S. Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/?searchtype=author&amp;query=Ch%C3%A1vez-Cervantes%2C+M">M. Ch谩vez-Cervantes</a>, <a href="/search/?searchtype=author&amp;query=Krause%2C+R">R. Krause</a>, <a href="/search/?searchtype=author&amp;query=Arnoldi%2C+B">B. Arnoldi</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">B. Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Forti%2C+S">S. Forti</a>, <a href="/search/?searchtype=author&amp;query=Fabbri%2C+F">F. Fabbri</a>, <a href="/search/?searchtype=author&amp;query=Coletti%2C+C">C. Coletti</a>, <a href="/search/?searchtype=author&amp;query=Gierz%2C+I">I. Gierz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.01379v1-abstract-short" style="display: inline;"> We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS$_2$ and graphene. This heterostructure combines the benefits of a direct gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01379v1-abstract-full').style.display = 'inline'; document.getElementById('1904.01379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.01379v1-abstract-full" style="display: none;"> We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS$_2$ and graphene. This heterostructure combines the benefits of a direct gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS$_2$, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS$_2$ layer. The resulting charge transfer state is found to have a lifetime of $\sim1$\,ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS$_2$ and graphene bands as revealed by high resolution ARPES. In combination with spin-selective excitation using circularly polarized light the investigated WS$_2$/graphene heterostructure might provide a new platform for efficient optical spin injection into graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01379v1-abstract-full').style.display = 'none'; document.getElementById('1904.01379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.05627">arXiv:1903.05627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.05627">pdf</a>, <a href="https://arxiv.org/ps/1903.05627">ps</a>, <a href="https://arxiv.org/format/1903.05627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.085434">10.1103/PhysRevB.98.085434 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adsorption induced pyramidal distortion of the tri-metallic nitride core inside the endohedral fullerene Sc$_3$N@C$_{80}$ on the Ag(111) surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Seidel%2C+J">J. Seidel</a>, <a href="/search/?searchtype=author&amp;query=Kelly%2C+L+L">L. L. Kelly</a>, <a href="/search/?searchtype=author&amp;query=Franke%2C+M">M. Franke</a>, <a href="/search/?searchtype=author&amp;query=van+Straaten%2C+G">G. van Straaten</a>, <a href="/search/?searchtype=author&amp;query=Kumpf%2C+C">C. Kumpf</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">M. Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">B. Stadtm眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.05627v1-abstract-short" style="display: inline;"> Our ability to understand and tailor metal-organic interfaces is mandatory to functionalize organic complexes for next generation electronic and spintronic devices. For magnetic data storage applications, metal-carrying organic molecules, so called single molecular magnets (SMM) are of particular interest as they yield the possibility to store information on the molecular scale. In this work, we f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05627v1-abstract-full').style.display = 'inline'; document.getElementById('1903.05627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.05627v1-abstract-full" style="display: none;"> Our ability to understand and tailor metal-organic interfaces is mandatory to functionalize organic complexes for next generation electronic and spintronic devices. For magnetic data storage applications, metal-carrying organic molecules, so called single molecular magnets (SMM) are of particular interest as they yield the possibility to store information on the molecular scale. In this work, we focus on the adsorption properties of the prototypical SMM Sc3N@C80 grown in a monolayer film on the Ag(111) substrate. We provide clear evidence of a pyramidal distortion of the otherwise planar Sc3N core inside the carbon cage upon the adsorption on the Ag(111) surface. This adsorption induced structural change of the Sc3N@C80 molecule can be correlated to a charge transfer from the substrate into the lowest unoccupied molecular orbital of Sc3N@C80, which significantly alters the charge density of the fullerene core. Our comprehensive characterization of the Sc3N@C80-Ag(111) interface hence reveals an indirect coupling mechanism between the Sc3N core of the fullerene molecule and the noble metal surface mediated via an interfacial charge transfer. Our work shows that such an indirect coupling between the encapsulated metal centers of SMM and metal surfaces can strongly affect the geometric structure of the metallic centers and thereby potentially also alters the magnetic properties of SMMs on surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05627v1-abstract-full').style.display = 'none'; document.getElementById('1903.05627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Copyright: https://journals.aps.org/authors/transfer-of-copyright-agreement; All copyrights by APS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 98, 085434 (2018); https://link.aps.org/doi/10.1103/PhysRevB.98.085434 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.05484">arXiv:1903.05484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.05484">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.205419">10.1103/PhysRevB.98.205419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structure and electronic properties of the ($\sqrt{3}\times \sqrt{3}$)$R30^{\circ}$ SnAu$_2$/Au(111) surface alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Maniraj%2C+M">M. Maniraj</a>, <a href="/search/?searchtype=author&amp;query=Jungkenn%2C+D">D. Jungkenn</a>, <a href="/search/?searchtype=author&amp;query=Shi%2C+W">W. Shi</a>, <a href="/search/?searchtype=author&amp;query=Emmerich%2C+S">S. Emmerich</a>, <a href="/search/?searchtype=author&amp;query=Lyu%2C+L">L. Lyu</a>, <a href="/search/?searchtype=author&amp;query=Kollamana%2C+J">J. Kollamana</a>, <a href="/search/?searchtype=author&amp;query=Wei%2C+Z">Z. Wei</a>, <a href="/search/?searchtype=author&amp;query=Yan%2C+B">B. Yan</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">M. Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Mathias%2C+S">S. Mathias</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">B. Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.05484v1-abstract-short" style="display: inline;"> We have investigated the atomic and electronic structure of the ($\sqrt{3}\times \sqrt{3}$)$R30^{\circ}$ SnAu$_2$/Au(111) surface alloy. Low energy electron diffraction and scanning tunneling microscopy measurements show that the native herringbone reconstruction of bare Au(111) surface remains intact after formation of a long range ordered ($\sqrt{3}\times \sqrt{3}$)$R30^{\circ}$ SnAu$_2$2/Au(111&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05484v1-abstract-full').style.display = 'inline'; document.getElementById('1903.05484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.05484v1-abstract-full" style="display: none;"> We have investigated the atomic and electronic structure of the ($\sqrt{3}\times \sqrt{3}$)$R30^{\circ}$ SnAu$_2$/Au(111) surface alloy. Low energy electron diffraction and scanning tunneling microscopy measurements show that the native herringbone reconstruction of bare Au(111) surface remains intact after formation of a long range ordered ($\sqrt{3}\times \sqrt{3}$)$R30^{\circ}$ SnAu$_2$2/Au(111) surface alloy. Angle-resolved photoemission and two-photon photoemission spectroscopy techniques reveal Rashba-type spin-split bands in the occupied valence band with comparable momentum space splitting as observed for the Au(111) surface state, but with a hole-like parabolic dispersion. Our experimental findings are compared with density functional theory (DFT) calculation that fully support our experimental findings. Taking advantage of the good agreement between our DFT calculations and the experimental results, we are able to extract that the occupied Sn-Au hybrid band is of (s, d)-orbital character while the unoccupied Sn-Au hybrid bands are of (p, d)-orbital character. Hence, we can conclude that the Rashba-type spin splitting of the hole-like Sn-Au hybrid surface state is caused by the significant mixing of Au d- to Sn s-states in conjunction with the strong atomic spin-orbit coupling of Au, i.e., of the substrate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05484v1-abstract-full').style.display = 'none'; document.getElementById('1903.05484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Copyright: https://journals.aps.org/authors/transfer-of-copyright-agreement; All copyrights by APS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 98, 205419 (2018); https://link.aps.org/doi/10.1103/PhysRevB.98.205419 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.05538">arXiv:1507.05538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.05538">pdf</a>, <a href="https://arxiv.org/format/1507.05538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.5b05279">10.1021/acs.nanolett.5b05279 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light localisation and magneto-optic enhancement in Ni anti-dot arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rollinger%2C+M">Markus Rollinger</a>, <a href="/search/?searchtype=author&amp;query=Thielen%2C+P">Philip Thielen</a>, <a href="/search/?searchtype=author&amp;query=Melander%2C+E">Emil Melander</a>, <a href="/search/?searchtype=author&amp;query=%C3%96stman%2C+E">Erik 脰stman</a>, <a href="/search/?searchtype=author&amp;query=Kapaklis%2C+V">Vassilios Kapaklis</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+B+O+M">Bj枚rn Obry Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Martin%2C+A">A. Garcia-Martin</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Papaioannou%2C+E+T">Evangelos Th. Papaioannou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.05538v3-abstract-short" style="display: inline;"> The excitation of surface plasmons in magnetic nano-structures can strongly influence their magneto-optical properties. Here, we use photoemission electron microscopy to map the spatial distribution of the electric near-field on a nano-patterned magnetic surface that supports plasmon polaritons. By using different photon energies and polarization states of the incident light we reveal that the ele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05538v3-abstract-full').style.display = 'inline'; document.getElementById('1507.05538v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.05538v3-abstract-full" style="display: none;"> The excitation of surface plasmons in magnetic nano-structures can strongly influence their magneto-optical properties. Here, we use photoemission electron microscopy to map the spatial distribution of the electric near-field on a nano-patterned magnetic surface that supports plasmon polaritons. By using different photon energies and polarization states of the incident light we reveal that the electric near-field is either concentrated in spots forming a hexagonal lattice with the same symmetry as the Ni nano-pattern or in stripes oriented along the $螕$-K direction of the lattice and perpendicular to the polarization direction. We show that the polarization-dependent near-field enhancement on the patterned surface is directly correlated to both the excitation of surface plasmon polaritons on the patterned surface as well as the enhancement of the polar magneto-optical Kerr effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05538v3-abstract-full').style.display = 'none'; document.getElementById('1507.05538v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Nano Lett. 2016, 16, 2432-2438 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.01971">arXiv:1504.01971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.01971">pdf</a>, <a href="https://arxiv.org/format/1504.01971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms10167">10.1038/ncomms10167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological States on the Gold Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Haag%2C+N">Norman Haag</a>, <a href="/search/?searchtype=author&amp;query=Jakobs%2C+S">Sebastian Jakobs</a>, <a href="/search/?searchtype=author&amp;query=Seidel%2C+J">Johannes Seidel</a>, <a href="/search/?searchtype=author&amp;query=Jungkenn%2C+D">Dominik Jungkenn</a>, <a href="/search/?searchtype=author&amp;query=Mathias%2C+S">Stefan Mathias</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.01971v1-abstract-short" style="display: inline;"> Gold surfaces host special electronic states that have been understood as a prototype of Shockley surface states (SSs). These SSs are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy. We find that these Shockley SSs can be reinterpreted as topologically derived surface states (TDSSs) of a topological insulator (T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01971v1-abstract-full').style.display = 'inline'; document.getElementById('1504.01971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.01971v1-abstract-full" style="display: none;"> Gold surfaces host special electronic states that have been understood as a prototype of Shockley surface states (SSs). These SSs are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy. We find that these Shockley SSs can be reinterpreted as topologically derived surface states (TDSSs) of a topological insulator (TI), a recently discovered quantum state. Based on band structure calculations, the Z2 topological invariant can be well defined to characterize the nontrivial features of gold that we detect by ARPES. The same TDSSs are also recognized on surfaces of other well-known noble metals (e.g., silver, copper, platinum, and palladium). Besides providing a new understanding of noble metal SSs, finding topological states on late transition metals provokes interesting questions on the role of topological effects in surface-related processes, such as adsorption and catalysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01971v1-abstract-full').style.display = 'none'; document.getElementById('1504.01971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Commun. 6, 10167 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.0784">arXiv:1403.0784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.0784">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.1253493">10.1126/science.1253493 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-optical control of ferromagnetic thin films and nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lambert%2C+C">Charles-Henri Lambert</a>, <a href="/search/?searchtype=author&amp;query=Mangin%2C+S">Stephane Mangin</a>, <a href="/search/?searchtype=author&amp;query=Varaprasad%2C+B+S+D+C+S">B. S. D. Ch. S. Varaprasad</a>, <a href="/search/?searchtype=author&amp;query=Takahashi%2C+Y+K">Y. K. Takahashi</a>, <a href="/search/?searchtype=author&amp;query=Hehn%2C+M">M. Hehn</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">M. Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Malinowski%2C+G">G. Malinowski</a>, <a href="/search/?searchtype=author&amp;query=Hono%2C+K">K. Hono</a>, <a href="/search/?searchtype=author&amp;query=Fainman%2C+Y">Y. Fainman</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.0784v1-abstract-short" style="display: inline;"> The interplay of light and magnetism has been a topic of interest since the original observations of Faraday and Kerr where magnetic materials affect the light polarization. While these effects have historically been exploited to use light as a probe of magnetic materials there is increasing research on using polarized light to alter or manipulate magnetism. For instance deterministic magnetic swi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.0784v1-abstract-full').style.display = 'inline'; document.getElementById('1403.0784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.0784v1-abstract-full" style="display: none;"> The interplay of light and magnetism has been a topic of interest since the original observations of Faraday and Kerr where magnetic materials affect the light polarization. While these effects have historically been exploited to use light as a probe of magnetic materials there is increasing research on using polarized light to alter or manipulate magnetism. For instance deterministic magnetic switching without any applied magnetic fields using laser pulses of the circular polarized light has been observed for specific ferrimagnetic materials. Here we demonstrate, for the first time, optical control of ferromagnetic materials ranging from magnetic thin films to multilayers and even granular films being explored for ultra-high-density magnetic recording. Our finding shows that optical control of magnetic materials is a much more general phenomenon than previously assumed. These results challenge the current theoretical understanding and will have a major impact on data memory and storage industries via the integration of optical control of ferromagnetic bits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.0784v1-abstract-full').style.display = 'none'; document.getElementById('1403.0784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.5436">arXiv:1209.5436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.5436">pdf</a>, <a href="https://arxiv.org/format/1209.5436">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.184418">10.1103/PhysRevB.87.184418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural, chemical and electronic properties of the Co2MnSi(001)/MgO interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fetzer%2C+R">Roman Fetzer</a>, <a href="/search/?searchtype=author&amp;query=W%7F%C3%BCstenberg%2C+J">Jan-Peter W眉stenberg</a>, <a href="/search/?searchtype=author&amp;query=Taira%2C+T">Tomoyuki Taira</a>, <a href="/search/?searchtype=author&amp;query=Uemura%2C+T">Tetsuya Uemura</a>, <a href="/search/?searchtype=author&amp;query=Yamamoto%2C+M">Masafumi Yamamoto</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.5436v1-abstract-short" style="display: inline;"> The performance of advanced magnetic tunnel junctions build of ferromagnetic (FM) electrodes and MgO as insulating barrier depends decisively on the properties of the FM/insulator interface. Here, we investigate interface formation between the half-metallic compound Co2MnSi (CMS) and MgO by means of Auger electron spectroscopy, low energy electron diffraction and low energy photoemission. The stud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5436v1-abstract-full').style.display = 'inline'; document.getElementById('1209.5436v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.5436v1-abstract-full" style="display: none;"> The performance of advanced magnetic tunnel junctions build of ferromagnetic (FM) electrodes and MgO as insulating barrier depends decisively on the properties of the FM/insulator interface. Here, we investigate interface formation between the half-metallic compound Co2MnSi (CMS) and MgO by means of Auger electron spectroscopy, low energy electron diffraction and low energy photoemission. The studies are performed for different annealing temperatures TA and MgO layer coverages (4, 6, 10, 20 and 50 ML). Thin MgO top layers (t_MgO&lt;=10 ML) show distinct surface crystalline distortions, which can only be partly healed out by annealing and furthermore lead to distinct adsorption of carbon species after the MgO surface is exposed to air. For t_MgO&gt; 10 ML the MgO layer surface exhibits clearly improved crystalline structure and hence only marginal amounts of adsorbates. We attribute these findings to MgO misfit dislocations occurring at the interface, inducing further defects throughout the MgO layer for up to at least 10 ML. Furthermore, spin-polarized photoemission spectra of the CMS/MgO interface are obtained for MgO coverages up to 20 ML, showing a clear positive spin polarization near the Fermi energy in all cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5436v1-abstract-full').style.display = 'none'; document.getElementById('1209.5436v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be submitted to Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.4368">arXiv:1209.4368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.4368">pdf</a>, <a href="https://arxiv.org/format/1209.4368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Revealing the spin and symmetry properties of the buried Co2MnSi/MgO interface by low energy spin-resolved photoemission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fetzer%2C+R">Roman Fetzer</a>, <a href="/search/?searchtype=author&amp;query=L%7F%C3%B6sch%2C+M">Marcel L枚sch</a>, <a href="/search/?searchtype=author&amp;query=Ohdaira%2C+Y">Yusuke Ohdaira</a>, <a href="/search/?searchtype=author&amp;query=Naganuma%2C+H">Hiroshi Naganuma</a>, <a href="/search/?searchtype=author&amp;query=Oogane%2C+M">Mikihiko Oogane</a>, <a href="/search/?searchtype=author&amp;query=Ando%2C+Y">Yasuo Ando</a>, <a href="/search/?searchtype=author&amp;query=Taira%2C+T">Tomoyuki Taira</a>, <a href="/search/?searchtype=author&amp;query=Uemura%2C+T">Tetsuya Uemura</a>, <a href="/search/?searchtype=author&amp;query=Yamamoto%2C+M">Masafumi Yamamoto</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.4368v1-abstract-short" style="display: inline;"> We present a novel approach to study the spin and symmetry electronic properties of buried interfaces using low-energy spin-resolved photoemission spectroscopy. We show that this method is sensitive to interfaces buried below more than 20ML (~4nm) MgO, providing a powerful tool for the non-destructive characterization of spintronics interfaces. As a demonstration, we apply this technique to charac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.4368v1-abstract-full').style.display = 'inline'; document.getElementById('1209.4368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.4368v1-abstract-full" style="display: none;"> We present a novel approach to study the spin and symmetry electronic properties of buried interfaces using low-energy spin-resolved photoemission spectroscopy. We show that this method is sensitive to interfaces buried below more than 20ML (~4nm) MgO, providing a powerful tool for the non-destructive characterization of spintronics interfaces. As a demonstration, we apply this technique to characterize the Co2MnSi/MgO interface, a fundamental building block of state-of-the-art magnetic tunnel junctions based on Heusler compounds. We find that a surface state with 螖1 symmetry and minority spin character dominating the electronic structure of the bare Co2MnSi(100) surface is quenched at the Co2MnSi(100)/MgO interface. As a result, the interface spin-dependent electronic structure resembles the theoretically expected Co2MnSi bulk band structure, with majority spin electronic states of both 螖1 and 螖5 symmetry. Furthermore we find an additional thermally-induced contribution in the minority channel, mirroring the 螖1/螖5 asymmetry of the majority channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.4368v1-abstract-full').style.display = 'none'; document.getElementById('1209.4368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be submitted to Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.6978">arXiv:1206.6978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.6978">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4759109">10.1063/1.4759109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-induced magnetization reversal of high-anisotropy TbCo alloy films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alebrand%2C+S">Sabine Alebrand</a>, <a href="/search/?searchtype=author&amp;query=Gottwald%2C+M">Matthias Gottwald</a>, <a href="/search/?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/?searchtype=author&amp;query=Steil%2C+D">Daniel Steil</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Lacour%2C+D">Daniel Lacour</a>, <a href="/search/?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Mangin%2C+S">St茅phane Mangin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.6978v1-abstract-short" style="display: inline;"> Magnetization reversal using circularly polarized light provides a new way to control magnetization without any external magnetic field and has the potential to revolutionize magnetic data storage. However, in order to reach ultra-high density data storage, high anisotropy media providing thermal stability are needed. Here, we evidence all-optical magnetization switching for different TbxCo1-x fer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.6978v1-abstract-full').style.display = 'inline'; document.getElementById('1206.6978v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.6978v1-abstract-full" style="display: none;"> Magnetization reversal using circularly polarized light provides a new way to control magnetization without any external magnetic field and has the potential to revolutionize magnetic data storage. However, in order to reach ultra-high density data storage, high anisotropy media providing thermal stability are needed. Here, we evidence all-optical magnetization switching for different TbxCo1-x ferrimagnetic alloy composition and demonstrate all-optical switching for films with anisotropy fields reaching 6 T corresponding to anisotropy constants of 3x106 ergs/cm3. Optical magnetization switching is observed only for alloys which compensation temperature can be reached through sample heating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.6978v1-abstract-full').style.display = 'none'; document.getElementById('1206.6978v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.6430">arXiv:1111.6430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.6430">pdf</a>, <a href="https://arxiv.org/ps/1111.6430">ps</a>, <a href="https://arxiv.org/format/1111.6430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.085121">10.1103/PhysRevB.85.085121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry breaking via orbital-dependent reconstruction of electronic structure in uniaxially strained NaFeAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/?searchtype=author&amp;query=He%2C+C">C. He</a>, <a href="/search/?searchtype=author&amp;query=Ye%2C+Z+R">Z. R. Ye</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+J">J. Jiang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+F">F. Chen</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+M">M. Xu</a>, <a href="/search/?searchtype=author&amp;query=Ge%2C+Q+Q">Q. Q. Ge</a>, <a href="/search/?searchtype=author&amp;query=Xie%2C+B+P">B. P. Xie</a>, <a href="/search/?searchtype=author&amp;query=Wei%2C+J">J. Wei</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Cui%2C+X+Y">X. Y. Cui</a>, <a href="/search/?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+J+P">J. P. Hu</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+D+L">D. L. Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.6430v1-abstract-short" style="display: inline;"> The superconductivity discovered in iron-pnictides is intimately related to a nematic ground state, where the C4 rotational symmetry is broken via the structural and magnetic transitions. We here study the nematicity in NaFeAs with the polarization dependent angle-resolved photoemission spectroscopy. A uniaxial strain was applied on the sample to overcome the twinning effect in the low temperature&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.6430v1-abstract-full').style.display = 'inline'; document.getElementById('1111.6430v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.6430v1-abstract-full" style="display: none;"> The superconductivity discovered in iron-pnictides is intimately related to a nematic ground state, where the C4 rotational symmetry is broken via the structural and magnetic transitions. We here study the nematicity in NaFeAs with the polarization dependent angle-resolved photoemission spectroscopy. A uniaxial strain was applied on the sample to overcome the twinning effect in the low temperature C2-symmetric state, and obtain a much simpler electronic structure than that of a twinned sample. We found the electronic structure undergoes an orbital-dependent reconstruction in the nematic state, primarily involving the dxy- and dyz-dominated bands. These bands strongly hybridize with each other, inducing a band splitting, while the dxz-dominated bands only exhibit an energy shift without any reconstruction. These findings suggest that the development of orbital-dependent spin polarization is likely the dominant force to drive the nematicity, while the ferro-orbital ordering between dxz and dyz orbitals can only play a minor role here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.6430v1-abstract-full').style.display = 'none'; document.getElementById('1111.6430v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 085121 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.5451">arXiv:1110.5451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.5451">pdf</a>, <a href="https://arxiv.org/ps/1110.5451">ps</a>, <a href="https://arxiv.org/format/1110.5451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.064407">10.1103/PhysRevB.85.064407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface spin polarization of the non-stoichiometric Heusler compound Co2Mn(alpha)Si </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=W%C3%BCstenberg%2C+J">Jan-Peter W眉stenberg</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Min%C3%A1r%2C+J">Jan Min谩r</a>, <a href="/search/?searchtype=author&amp;query=Braun%2C+J">J眉rgen Braun</a>, <a href="/search/?searchtype=author&amp;query=Ebert%2C+H">Hubert Ebert</a>, <a href="/search/?searchtype=author&amp;query=Ishikawa%2C+T">Takayuki Ishikawa</a>, <a href="/search/?searchtype=author&amp;query=Uemura%2C+T">Tetsuya Uemura</a>, <a href="/search/?searchtype=author&amp;query=Yamamoto%2C+M">Masafumi Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.5451v2-abstract-short" style="display: inline;"> Using a combined approach of spin-resolved photoemission spectroscopy, band structure and photoemission calculations we investigate the influence of bulk defects and surface states on the spin polarization of Co2Mn(alpha)Si thin films with bulk L21 order. We find that for Mn-poor alloys the spin polarization at EF is negative due to the presence of Co_Mn antisite and minority surface state contrib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.5451v2-abstract-full').style.display = 'inline'; document.getElementById('1110.5451v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.5451v2-abstract-full" style="display: none;"> Using a combined approach of spin-resolved photoemission spectroscopy, band structure and photoemission calculations we investigate the influence of bulk defects and surface states on the spin polarization of Co2Mn(alpha)Si thin films with bulk L21 order. We find that for Mn-poor alloys the spin polarization at EF is negative due to the presence of Co_Mn antisite and minority surface state contributions. In Mn-rich alloys, the suppression of Co(Mn) antisites leads to a positive spin polarization at the Fermi energy, and the influence of minority surface states on the photoelectron spin polarization is reduced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.5451v2-abstract-full').style.display = 'none'; document.getElementById('1110.5451v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.5170">arXiv:1108.5170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.5170">pdf</a>, <a href="https://arxiv.org/ps/1108.5170">ps</a>, <a href="https://arxiv.org/format/1108.5170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Driving Force of Ultrafast Magnetization Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mueller%2C+B+Y">Benedikt Y. Mueller</a>, <a href="/search/?searchtype=author&amp;query=Roth%2C+T">T. Roth</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">M. Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Rethfeld%2C+B">B. Rethfeld</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.5170v1-abstract-short" style="display: inline;"> Irradiating a ferromagnetic material with an ultrashort laser pulse leads to demagnetization on a femtosecond timescale. We implement Elliott-Yafet type spin-flip scattering, mediated by electron-electron and electron-phonon collisions, into the framework of a spin-resolved Boltzmann equation. Considering three mutually coupled reservoirs, (i) spin-up electrons, (ii) spin-down electrons and (iii)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.5170v1-abstract-full').style.display = 'inline'; document.getElementById('1108.5170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.5170v1-abstract-full" style="display: none;"> Irradiating a ferromagnetic material with an ultrashort laser pulse leads to demagnetization on a femtosecond timescale. We implement Elliott-Yafet type spin-flip scattering, mediated by electron-electron and electron-phonon collisions, into the framework of a spin-resolved Boltzmann equation. Considering three mutually coupled reservoirs, (i) spin-up electrons, (ii) spin-down electrons and (iii) phonons, we trace non-equilibrium electron distributions during and after laser excitation. We identify the driving force for ultrafast magnetization dynamics as the equilibration of temperatures and chemical potentials between the electronic subsystems. This principle can be used to easily predict the maximum quenching of magnetization upon ultrashort laser irradiation in any material, as we show for the example of 3d-ferromagnetic nickel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.5170v1-abstract-full').style.display = 'none'; document.getElementById('1108.5170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 82D40 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.4909">arXiv:0910.4909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.4909">pdf</a>, <a href="https://arxiv.org/ps/0910.4909">ps</a>, <a href="https://arxiv.org/format/0910.4909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Direct determination of the surface termination in full Heusler alloys by means of low energy electron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=W%C3%BCstenberg%2C+J">Jan-Peter W眉stenberg</a>, <a href="/search/?searchtype=author&amp;query=Ishikawa%2C+T">Takayuki Ishikawa</a>, <a href="/search/?searchtype=author&amp;query=Yamamoto%2C+M">Masafumi Yamamoto</a>, <a href="/search/?searchtype=author&amp;query=Herbort%2C+C">Christian Herbort</a>, <a href="/search/?searchtype=author&amp;query=Jourdan%2C+M">Martin Jourdan</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.4909v2-abstract-short" style="display: inline;"> The performance of Heusler based magnetoresistive multilayer devices depends crucially on the spin polarization and thus on the structural details of the involved surfaces. Using low energy electron diffraction (LEED), one can non-destructively distinguish between important surface terminations of Co2XY full-Heusler alloys. We present an analysis of the LEED patterns of the Y-Z ,the vacancy-Z, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.4909v2-abstract-full').style.display = 'inline'; document.getElementById('0910.4909v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.4909v2-abstract-full" style="display: none;"> The performance of Heusler based magnetoresistive multilayer devices depends crucially on the spin polarization and thus on the structural details of the involved surfaces. Using low energy electron diffraction (LEED), one can non-destructively distinguish between important surface terminations of Co2XY full-Heusler alloys. We present an analysis of the LEED patterns of the Y-Z ,the vacancy-Z, the Co and the disordered B2 and A2 terminations. As an example, we show that the surface geometries of bulk L21 ordered Co2MnSi and bulk B2 disordered Co2Cr0.6Fe0.4Al can be determined by comparing the experimental LEED patterns with the presented reference patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.4909v2-abstract-full').style.display = 'none'; document.getElementById('0910.4909v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Appl. Phys. Lett. 3 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0906.5104">arXiv:0906.5104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0906.5104">pdf</a>, <a href="https://arxiv.org/ps/0906.5104">ps</a>, <a href="https://arxiv.org/format/0906.5104">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.80.180407">10.1103/PhysRevB.80.180407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast demagnetization of ferromagnetic transition metals: The role of the Coulomb interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Krauss%2C+M">Michael Krauss</a>, <a href="/search/?searchtype=author&amp;query=Roth%2C+T">Tobias Roth</a>, <a href="/search/?searchtype=author&amp;query=Alebrand%2C+S">Sabine Alebrand</a>, <a href="/search/?searchtype=author&amp;query=Steil%2C+D">Daniel Steil</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">Mirko Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+H+C">Hans Christian Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0906.5104v1-abstract-short" style="display: inline;"> The Elliott-Yafet mechanism is arguably the most promising candidate to explain the ultrafast demagnetization dynamics in ferromagnetic transition metals on timescales on the order of 100 femtoseconds. So far, only electron-phonon scattering has been analyzed as the scattering process needed to account for the demagnetization due to the Elliott-Yafet mechanism. We show for the first time that th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.5104v1-abstract-full').style.display = 'inline'; document.getElementById('0906.5104v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0906.5104v1-abstract-full" style="display: none;"> The Elliott-Yafet mechanism is arguably the most promising candidate to explain the ultrafast demagnetization dynamics in ferromagnetic transition metals on timescales on the order of 100 femtoseconds. So far, only electron-phonon scattering has been analyzed as the scattering process needed to account for the demagnetization due to the Elliott-Yafet mechanism. We show for the first time that the electron-electron scattering contribution to the Elliott-Yafet mechanism has the potential to explain time-resolved magneto-optical Kerr effect measurements on thin magnetic cobalt and nickel films, without reference to a phononic &#34;spin bath.&#34; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.5104v1-abstract-full').style.display = 'none'; document.getElementById('0906.5104v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0609504">arXiv:cond-mat/0609504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0609504">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0609504">ps</a>, <a href="https://arxiv.org/format/cond-mat/0609504">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0022-3727/40/6/S05">10.1088/0022-3727/40/6/S05 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards a full Heusler alloy showing room temperature half-metallicity at the surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">M. Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=W%C3%BCstenberg%2C+J+-">J. -P. W眉stenberg</a>, <a href="/search/?searchtype=author&amp;query=Albaneda%2C+M+S">M. S谩nchez Albaneda</a>, <a href="/search/?searchtype=author&amp;query=Steeb%2C+F">F. Steeb</a>, <a href="/search/?searchtype=author&amp;query=Conca%2C+A">A. Conca</a>, <a href="/search/?searchtype=author&amp;query=Jourdan%2C+M">M. Jourdan</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0609504v1-abstract-short" style="display: inline;"> In this article we investigate the surface spin polarization in a 100 nm Co2Cr0.6Fe0.4Al (CCFA) film grown ex situ epitaxially on MgO(100) with a 10 nm Fe buffer layer by means of spin resolved photoemission. We show that a careful in situ preparation of the sample surface leads to values for the room temperature spin polarization up to 45% at the Fermi level. To our knowledge, this is the highe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0609504v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0609504v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0609504v1-abstract-full" style="display: none;"> In this article we investigate the surface spin polarization in a 100 nm Co2Cr0.6Fe0.4Al (CCFA) film grown ex situ epitaxially on MgO(100) with a 10 nm Fe buffer layer by means of spin resolved photoemission. We show that a careful in situ preparation of the sample surface leads to values for the room temperature spin polarization up to 45% at the Fermi level. To our knowledge, this is the highest value measured so far at the surface region of a full Heusler alloy at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0609504v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0609504v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures; submitted to J. Phys. D: Appl. Phys</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0607266">arXiv:cond-mat/0607266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0607266">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0607266">ps</a>, <a href="https://arxiv.org/format/cond-mat/0607266">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.97.236809">10.1103/PhysRevLett.97.236809 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-Well Wavefunction Localization and the Electron-Phonon Interaction in Thin Ag Nanofilms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mathias%2C+S">S. Mathias</a>, <a href="/search/?searchtype=author&amp;query=Wiesenmayer%2C+M">M. Wiesenmayer</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+M">M. Bauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0607266v2-abstract-short" style="display: inline;"> The electron-phonon interaction in thin Ag-nanofilms epitaxially grown on Cu(111) is investigated by temperature-dependent and angle-resolved photoemission from silver quantum-well states. Clear oscillations in the electron-phonon coupling parameter as a function of the silver film thickness are observed. Different from other thin film systems where quantum oscillations are related to the Fermi-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0607266v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0607266v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0607266v2-abstract-full" style="display: none;"> The electron-phonon interaction in thin Ag-nanofilms epitaxially grown on Cu(111) is investigated by temperature-dependent and angle-resolved photoemission from silver quantum-well states. Clear oscillations in the electron-phonon coupling parameter as a function of the silver film thickness are observed. Different from other thin film systems where quantum oscillations are related to the Fermi-level crossing of quantum-well states, we can identify a new mechanism behind these oscillations, based on the wavefunction localization of the quantum-well states in the film. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0607266v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0607266v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2006. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0606666">arXiv:cond-mat/0606666</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0606666">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0606666">ps</a>, <a href="https://arxiv.org/format/cond-mat/0606666">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.74.174426">10.1103/PhysRevB.74.174426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxial film growth and magnetic properties of Co_2FeSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schneider%2C+H">H. Schneider</a>, <a href="/search/?searchtype=author&amp;query=Jakob%2C+G">G. Jakob</a>, <a href="/search/?searchtype=author&amp;query=Kallmayer%2C+M">M. Kallmayer</a>, <a href="/search/?searchtype=author&amp;query=Elmers%2C+H+J">H. J. Elmers</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">M. Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Balke%2C+B">B. Balke</a>, <a href="/search/?searchtype=author&amp;query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Adrian%2C+H">H. Adrian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0606666v2-abstract-short" style="display: inline;"> We have grown thin films of the Heusler compound Co_2FeSi by RF magnetron sputtering. On (100)-oriented MgO substrates we find fully epitaxial (100)-oriented and L2_1 ordered growth. On Al_2O_3 (11-20) substrates, the film growth is (110)-oriented, and several in-plane epitaxial domains are observed. The temperature dependence of the electrical resistivity shows a power law with an exponent of 7&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0606666v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0606666v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0606666v2-abstract-full" style="display: none;"> We have grown thin films of the Heusler compound Co_2FeSi by RF magnetron sputtering. On (100)-oriented MgO substrates we find fully epitaxial (100)-oriented and L2_1 ordered growth. On Al_2O_3 (11-20) substrates, the film growth is (110)-oriented, and several in-plane epitaxial domains are observed. The temperature dependence of the electrical resistivity shows a power law with an exponent of 7/2 at low temperatures. Investigation of the bulk magnetic properties reveals an extrapolated saturation magnetization of 5.0 mu_B/fu at 0 K. The films on Al_2O_3 show an in-plane uniaxial anisotropy, while the epitaxial films are magnetically isotropic in the plane. Measurements of the X-ray magnetic circular dichroism of the films allowed us to determine element specific magnetic moments. Finally we have measured the spin polarization at the surface region by spin-resolved near-threshold photoemission and found it strongly reduced in contrast to the expected bulk value of 100%. Possible reasons for the reduced magnetization are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0606666v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0606666v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 74, 174426 (2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0606006">arXiv:cond-mat/0606006</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0606006">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0606006">ps</a>, <a href="https://arxiv.org/format/cond-mat/0606006">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2007.02.164">10.1016/j.jmmm.2007.02.164 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin- and time-resolved photoemission studies of thin Co2FeSi Heusler alloy films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=W%C3%BCstenberg%2C+J+-">J. -P. W眉stenberg</a>, <a href="/search/?searchtype=author&amp;query=Cinchetti%2C+M">M. Cinchetti</a>, <a href="/search/?searchtype=author&amp;query=Albaneda%2C+M+S">M. S谩nchez Albaneda</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+M">M. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">M. Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0606006v1-abstract-short" style="display: inline;"> We have studied the possibly half metallic Co2FeSi full Heusler alloy by means of spin- and time-resolved photoemission spectroscopy. For excitation, the second and fourth harmonic of femtosecond Ti:sapphire lasers were used, with photon energies of 3.1 eV and 5.9 eV, respectively. We compare the dependence of the measured surface spin polarization on the particular photoemission mechanism, i.e.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0606006v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0606006v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0606006v1-abstract-full" style="display: none;"> We have studied the possibly half metallic Co2FeSi full Heusler alloy by means of spin- and time-resolved photoemission spectroscopy. For excitation, the second and fourth harmonic of femtosecond Ti:sapphire lasers were used, with photon energies of 3.1 eV and 5.9 eV, respectively. We compare the dependence of the measured surface spin polarization on the particular photoemission mechanism, i.e. 1-photon-photoemission (1PPE) or 2-photon photoemission (2PPE). The observed differences in the spin polarization can be explained by a spin-dependent lifetime effect occurring in the 2-photon absorption process. The difference in escape depth of the two methods in this context suggests that the observed reduction of spin polarization (compared to the bulk) cannot be attributed just to the outermost surface layer but takes place at least 4-6 nm away from the surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0606006v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0606006v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures; submitted to Journal of Magnetism and Magnetic Materials</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10