CINXE.COM
multicategory in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> multicategory in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> multicategory </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/17607/#Item_2" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="monoidal_categories">Monoidal categories</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+monoidal+category">enriched monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/tensor+category">tensor category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+diagram">string diagram</a>, <a class="existingWikiWord" href="/nlab/show/tensor+network">tensor network</a></p> </li> </ul> <p><strong>With braiding</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/balanced+monoidal+category">balanced monoidal category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twist">twist</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a></p> </li> </ul> <p><strong>With duals for objects</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+with+duals">category with duals</a> (list of them)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dualizable+object">dualizable object</a> (what they have)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/rigid+monoidal+category">rigid monoidal category</a>, a.k.a. <a class="existingWikiWord" href="/nlab/show/autonomous+category">autonomous category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pivotal+category">pivotal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spherical+category">spherical category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ribbon+category">ribbon category</a>, a.k.a. <a class="existingWikiWord" href="/nlab/show/tortile+category">tortile category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+closed+category">compact closed category</a></p> </li> </ul> <p><strong>With duals for morphisms</strong></p> <ul> <li> <p><span class="newWikiWord">monoidal dagger-category<a href="/nlab/new/monoidal+dagger-category">?</a></span></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+dagger-category">symmetric monoidal dagger-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dagger+compact+category">dagger compact category</a></p> </li> </ul> <p><strong>With traces</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/trace">trace</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/traced+monoidal+category">traced monoidal category</a></p> </li> </ul> <p><strong>Closed structure</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closed monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+closed+category">cartesian closed category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+category">closed category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/star-autonomous+category">star-autonomous category</a></p> </li> </ul> <p><strong>Special sorts of products</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semicartesian+monoidal+category">semicartesian monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+category+with+diagonals">monoidal category with diagonals</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multicategory">multicategory</a></p> </li> </ul> <p><strong>Semisimplicity</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/semisimple+category">semisimple category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fusion+category">fusion category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modular+tensor+category">modular tensor category</a></p> </li> </ul> <p><strong>Morphisms</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+functor">monoidal functor</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/lax+monoidal+functor">lax</a>, <a class="existingWikiWord" href="/nlab/show/oplax+monoidal+functor">oplax</a>, <a class="existingWikiWord" href="/nlab/show/strong+monoidal+functor">strong</a> <a class="existingWikiWord" href="/nlab/show/bilax+monoidal+functor">bilax</a>, <a class="existingWikiWord" href="/nlab/show/Frobenius+monoidal+functor">Frobenius</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/braided+monoidal+functor">braided monoidal functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+functor">symmetric monoidal functor</a></p> </li> </ul> <p><strong>Internal monoids</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+in+a+monoidal+category">monoid in a monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutative+monoid+in+a+symmetric+monoidal+category">commutative monoid in a symmetric monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module+over+a+monoid">module over a monoid</a></p> </li> </ul> <p><strong id="_examples">Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+monoidal+structure+on+presheaves">closed monoidal structure on presheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Day+convolution">Day convolution</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/coherence+theorem+for+monoidal+categories">coherence theorem for monoidal categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal Dold-Kan correspondence</a></p> </li> </ul> <p><strong>In higher category theory</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/braided+monoidal+2-category">braided monoidal 2-category</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+bicategory">monoidal bicategory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cartesian+bicategory">cartesian bicategory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+monoidal+n-category">k-tuply monoidal n-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/little+cubes+operad">little cubes operad</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2C1%29-category">monoidal (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+double+category">compact double category</a></p> </li> </ul> </div></div> <h4 id="category_theory">Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></p> <h2 id="sidebar_concepts">Concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> </li> </ul> <h2 id="sidebar_universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a>/<a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>/<a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">monadicity theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+lifting+theorem">adjoint lifting theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freyd-Mitchell+embedding+theorem">Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+type+theory+and+category+theory">relation between type theory and category theory</a></p> </li> </ul> <h2 id="sidebar_extensions">Extensions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> </ul> <h2 id="sidebar_applications">Applications</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></li> </ul> <div> <p> <a href="/nlab/edit/category+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#in_components'>In components</a></li> <li><a href='#in_terms_of_cartesian_monads'>In terms of cartesian monads</a></li> </ul> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#relation_to_operads'>Relation to operads</a></li> <li><a href='#relation_to_monoidal_categories'>Relation to monoidal categories</a></li> <li><a href='#exponentiability'>Exponentiability</a></li> </ul> <li><a href='#examples_and_special_cases'>Examples and special cases</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>Recall that a <a class="existingWikiWord" href="/nlab/show/category">category</a> consists of a collection of <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> each having a single <a class="existingWikiWord" href="/nlab/show/object">object</a> as source or input, and a single object as target or output, together with laws for composition and identity obeying associativity and identity axioms. A <em>multicategory</em> is like a category, except that one allows multiple inputs and a single output.</p> <p>Another term for <em>multicategory</em> is <em>coloured <a class="existingWikiWord" href="/nlab/show/operad">operad</a></em>.</p> <h2 id="definition">Definition</h2> <h3 id="in_components">In components</h3> <p>A <strong>multicategory</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> consists of</p> <ul> <li>A collection of <em>objects</em>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">C_0</annotation></semantics></math>.</li> <li>A collection of <em>multimorphisms</em>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">C_1</annotation></semantics></math>.</li> <li>A source map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi><mo>:</mo><msub><mi>C</mi> <mn>1</mn></msub><mo>→</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>*</mo></mrow><annotation encoding="application/x-tex">s: C_1 \to (C_0)*</annotation></semantics></math> to the collection of finite, possibly empty <a class="existingWikiWord" href="/nlab/show/list">list</a>s of objects (where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>C</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>*</mo></mrow><annotation encoding="application/x-tex">(C_0)*</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/free+monoid">free monoid</a> generated by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">C_0</annotation></semantics></math>), and a target map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>t</mi><mo>:</mo><msub><mi>C</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">t: C_1 \to C_0</annotation></semantics></math>. We write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><msub><mi>c</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>c</mi> <mi>n</mi></msub><mo>→</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">f: c_1, \ldots, c_n \to c</annotation></semantics></math> to indicate the source and target of a multimorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>.</li> <li>Identity and composition laws. The identity law is a map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mo lspace="verythinmathspace" rspace="0em">−</mo></msub><mo>:</mo><msub><mi>C</mi> <mn>0</mn></msub><mo>→</mo><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">1_{-}: C_0 \to C_1</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mi>c</mi></msub><mo>:</mo><mi>c</mi><mo>→</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">1_c: c \to c</annotation></semantics></math>. The composition law assigns, to each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><msub><mi>c</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>c</mi> <mi>n</mi></msub><mo>→</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">f: c_1, \ldots, c_n \to c</annotation></semantics></math> together with an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-tuple <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">⟨</mo><msub><mi>f</mi> <mi>i</mi></msub><mo>:</mo><msub><mover><mi>c</mi><mo stretchy="false">→</mo></mover> <mi>i</mi></msub><mo>→</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>:</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>…</mi><mo>,</mo><mi>n</mi><mo stretchy="false">⟩</mo></mrow><annotation encoding="application/x-tex">\langle f_i: \vec{c}_i \to c_i: i = 1, \ldots, n \rangle</annotation></semantics></math>, a composite<div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>∘</mo><mo stretchy="false">(</mo><msub><mi>f</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>f</mi> <mi>n</mi></msub><mo stretchy="false">)</mo><mo>:</mo><msub><mover><mi>c</mi><mo stretchy="false">→</mo></mover> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mover><mi>c</mi><mo stretchy="false">→</mo></mover> <mi>n</mi></msub><mo>→</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">f \circ (f_1, \ldots, f_n): \vec{c}_1, \ldots, \vec{c}_n \to c</annotation></semantics></math></div> <p>where the source is obtained by concatenating lists in the evident way.</p> </li> </ul> <p>These operations are subject to <a class="existingWikiWord" href="/nlab/show/associativity">associativity</a> and <a class="existingWikiWord" href="/nlab/show/identity">identity</a> axioms which the reader can probably figure out, but see for example (<a href="#Leinster">Leinster, page 35 ff.</a>), for details.</p> <p>Many people (especially non-category theorists) use the word <em>multicategory</em> or the word <em>colored <a class="existingWikiWord" href="/nlab/show/operad">operad</a></em> to mean what we would call a <em><a class="existingWikiWord" href="/nlab/show/symmetric+multicategory">symmetric multicategory</a></em> / <em><a class="existingWikiWord" href="/nlab/show/symmetric+operad">symmetric operad</a></em>. These are multicategories equipped with an <a class="existingWikiWord" href="/nlab/show/action">action</a> of the <a class="existingWikiWord" href="/nlab/show/symmetric+group">symmetric group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>S</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">S_n</annotation></semantics></math> on the multimorphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>c</mi> <mi>n</mi></msub><mo>→</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">c_1, \ldots, c_n \to c</annotation></semantics></math> such that the composition is equivariant with respect to these actions.</p> <h3 id="in_terms_of_cartesian_monads">In terms of cartesian monads</h3> <p>An efficient abstract method for defining multicategories and related structures is through the formalism of <a class="existingWikiWord" href="/nlab/show/cartesian+monads">cartesian monads</a>. For ordinary categories, one uses the identity monad on <a class="existingWikiWord" href="/nlab/show/Set">Set</a>; for ordinary multicategories, one uses the <a class="existingWikiWord" href="/nlab/show/free+monoid">free monoid</a> monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>*</mo><mo>:</mo><mi>Set</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">(-)*: Set \to Set</annotation></semantics></math>. This is a special case of the yet more general notion of <a class="existingWikiWord" href="/nlab/show/generalized+multicategory">generalized multicategory</a>.</p> <p>We summarize here how the theory applies to the case of a <a class="existingWikiWord" href="/nlab/show/cartesian+monad">cartesian monad</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> on a category with <a class="existingWikiWord" href="/nlab/show/pullbacks">pullbacks</a>; see <a class="existingWikiWord" href="/nlab/show/generalized+multicategory">generalized multicategory</a> for the fully general context.</p> <ul> <li>First, a <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-span</strong> from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/span">span</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">T X</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>, that is, a diagram<div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>X</mi><mover><mo>←</mo><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow></mover><mi>P</mi><mover><mo>→</mo><mrow><msub><mi>p</mi> <mn>2</mn></msub></mrow></mover><mi>Y</mi></mrow><annotation encoding="application/x-tex">T X \stackrel{p_1}{\leftarrow} P \stackrel{p_2}{\to} Y</annotation></semantics></math></div> <p>A <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-span is often written as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mi>⇸</mi><mi>Y</mi></mrow><annotation encoding="application/x-tex">p: X &#8696; Y</annotation></semantics></math>.</p> </li> </ul> <p>When <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> is the free monoid monad on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math>, a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-span from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> to itself is called a <em>multigraph</em> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-spans are the 1-cells of a <a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a>. A 2-cell between <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-spans <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>e</mi><mo>,</mo><mi>f</mi><mo>:</mo><mi>X</mi><mi>⇸</mi><mi>Y</mi></mrow><annotation encoding="application/x-tex">e, f: X &#8696; Y</annotation></semantics></math> is a 2-cell between ordinary spans from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">T X</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>. To horizontally compose <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-spans <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>e</mi><mo>:</mo><mi>X</mi><mi>⇸</mi><mi>Y</mi></mrow><annotation encoding="application/x-tex">e: X &#8696; Y</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>Y</mi><mi>⇸</mi><mi>Z</mi></mrow><annotation encoding="application/x-tex">f: Y &#8696; Z</annotation></semantics></math>, take the ordinary span composite of</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>T</mi><mi>X</mi><mover><mo>←</mo><mrow><mi>m</mi><mi>X</mi></mrow></mover><msup><mi>T</mi> <mn>2</mn></msup><mi>X</mi><mover><mo>←</mo><mrow><mi>T</mi><msub><mi>e</mi> <mn>1</mn></msub></mrow></mover><mi>T</mi><mi>E</mi><mover><mo>→</mo><mrow><mi>T</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow></mover><mi>T</mi><mi>Y</mi><mo stretchy="false">)</mo><mo>∘</mo><mo stretchy="false">(</mo><mi>T</mi><mi>Y</mi><mover><mo>←</mo><mrow><msub><mi>f</mi> <mn>1</mn></msub></mrow></mover><mi>F</mi><mover><mo>→</mo><mrow><msub><mi>f</mi> <mn>2</mn></msub></mrow></mover><mi>Z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(T X \stackrel{m X}{\leftarrow} T^2 X \stackrel{T e_1}{\leftarrow} T E \stackrel{T e_2}{\to} T Y) \circ (T Y \stackrel{f_1}{\leftarrow} F \stackrel{f_2}{\to} Z)</annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>:</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>→</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">m: T^2 \to T</annotation></semantics></math> is the monad multiplication. The identity <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-span from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> to itself is the span</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>X</mi><mover><mo>←</mo><mrow><mi>u</mi><mi>X</mi></mrow></mover><mi>X</mi><mover><mo>→</mo><mrow><msub><mn>1</mn> <mi>X</mi></msub></mrow></mover><mi>X</mi></mrow><annotation encoding="application/x-tex">T X \stackrel{u X}{\leftarrow} X \stackrel{1_X}{\to} X</annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>u</mi><mo>:</mo><mi>I</mi><mo>→</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">u: I \to T</annotation></semantics></math> is the monad unit. The verification of the bicategory axioms uses the cartesianness of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> in concert with the corresponding axioms on the bicategory of spans.</p> </li> <li> <p>A <em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-multicategory</em> is defined to be a <a class="existingWikiWord" href="/nlab/show/monad">monad</a> in the bicategory of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-spans.</p> </li> </ul> <p>When <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> is the free monoid monad on sets, then a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-multicategory is a multicategory as defined above. For more examples and generalizations, see <a class="existingWikiWord" href="/nlab/show/generalized+multicategory">generalized multicategory</a>.</p> <h2 id="properties">Properties</h2> <h3 id="relation_to_operads">Relation to operads</h3> <p>A <a class="existingWikiWord" href="/nlab/show/nonpermutative+operad">nonpermutative</a> (or Stasheff-) <a class="existingWikiWord" href="/nlab/show/operad">operad</a> in <a class="existingWikiWord" href="/nlab/show/Set">Set</a> may be defined as an ordinary multicategory with exactly one object. Likewise, a <a class="existingWikiWord" href="/nlab/show/symmetric+operad">symmetric operad</a> in any <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> is equivalent to a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+category">enriched</a> multicategory with one object.</p> <p>More generally, the notion of <em>multi-colored <a class="existingWikiWord" href="/nlab/show/planar+operad">planar operad</a></em> is equivalent to that of multicategory, and the notion of <em>multi-colored <a class="existingWikiWord" href="/nlab/show/symmetric+operad">symmetric operad</a></em> is equivalent to that of <a class="existingWikiWord" href="/nlab/show/symmetric+multicategory">symmetric multicategory</a>.</p> <p>Fully generally, for each cartesian monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>, there is a corresponding notion of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-operad, namely a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-multicategory whose underlying <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-span has the form <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn><mi>⇸</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">1 &#8696; 1</annotation></semantics></math>.</p> <p>For example, in Batanin’s approach to (weak) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/infinity-category">categories</a>, a <a class="existingWikiWord" href="/nlab/show/globular+operad">globular operad</a> is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-operad, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> is the free (strict) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ω</mi></mrow><annotation encoding="application/x-tex">\omega</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/strict+omega-category">category</a> monad on the category of <a class="existingWikiWord" href="/nlab/show/globular+set">globular set</a>s.</p> <p>Ordinary (permutative/symmetric) operads, and their generalization to <a class="existingWikiWord" href="/nlab/show/symmetric+multicategory">symmetric multicategories</a>, can also be treated in the framework of <a class="existingWikiWord" href="/nlab/show/generalized+multicategories">generalized multicategories</a>, but they require a framework more general than that of cartesian monads.</p> <h3 id="relation_to_monoidal_categories">Relation to monoidal categories</h3> <p>There is a <a class="existingWikiWord" href="/nlab/show/faithful+functor">faithful functor</a> from <a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a> to <a class="existingWikiWord" href="/nlab/show/multicategories">multicategories</a>, given by forming <a class="existingWikiWord" href="/nlab/show/representable+multicategories">represented multicategories</a>. Conversely, to any multicategory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> there is an associated (strict) monoidal category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F(C)</annotation></semantics></math>, whose objects (respectively, arrows) are <a class="existingWikiWord" href="/nlab/show/lists">lists</a> of objects (respectively, arrows) of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, and where the tensor product in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F(C)</annotation></semantics></math> is given by concatenation.</p> <h3 id="exponentiability">Exponentiability</h3> <p>A multicategory is <a class="existingWikiWord" href="/nlab/show/exponentiable+object">exponentiable</a> if and only if it is <a class="existingWikiWord" href="/nlab/show/promonoidal+category">promonoidal</a> (Proposition 2.8 of <a href="#Pisani14">Pisani 2014</a>). In particular, <a class="existingWikiWord" href="/nlab/show/representable+multicategories">representable multicategories</a> and <a class="existingWikiWord" href="/nlab/show/sequential+multicategories">sequential multicategories</a> are exponentiable. This gives an abstract construction of the <a class="existingWikiWord" href="/nlab/show/Day+convolution">Day convolution</a> tensor product on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[C, D]</annotation></semantics></math> for any <a class="existingWikiWord" href="/nlab/show/promonoidal+category">promonoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> and any <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math>: it is precisely the (representable) multicategory structure on the functor multicategory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>D</mi> <mi>C</mi></msup></mrow><annotation encoding="application/x-tex">D^C</annotation></semantics></math>.</p> <h2 id="examples_and_special_cases">Examples and special cases</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/permutative+categories">permutative categories</a> with multi-linear functors between them form a multicategory <a class="existingWikiWord" href="/nlab/show/PermCat">PermCat</a></li> </ul> <p>See also the examples at <em><a class="existingWikiWord" href="/nlab/show/operad">operad</a></em>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/multimorphism">multimorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multifunctor">multifunctor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/polycategory">polycategory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/properad">properad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fibration+of+multicategories">fibration of multicategories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+multicategory">symmetric multicategory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+multicategory">cartesian multicategory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequential+multicategory">sequential multicategory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+multicategory">generalized multicategory</a>, <a class="existingWikiWord" href="/nlab/show/operad">operad</a></p> </li> </ul> <h2 id="references">References</h2> <p>Multicategories were introduced in:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Joachim+Lambek">Joachim Lambek</a>, <em>Deductive systems and categories II. Standard constructions and closed categories</em>, Category Theory, Homology Theory and their Applications I: Proceedings of the Conference held at the Seattle Research Center of the Battelle Memorial Institute, June 24–July 19, 1968 Volume One. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.</li> </ul> <p>and developed further in:</p> <ul> <li>Joachim Lambek, <em>Multicategories revisited</em>, Contemp. Math 92 (1989): 217-239.</li> </ul> <p>See also:</p> <ul id="Leinster"> <li><a class="existingWikiWord" href="/nlab/show/Tom+Leinster">Tom Leinster</a>, <em>Higher operads, higher categories</em>, London Math. Soc. Lec. Note Series <strong>298</strong>, <a href="http://arxiv.org/abs/math.CT/0305049">math.CT/0305049</a></li> </ul> <ul> <li id="Pisani14"><a class="existingWikiWord" href="/nlab/show/Claudio+Pisani">Claudio Pisani</a>, <em>Sequential multicategories</em>, Theory and Applications of Categories 29.19 (2014), <a href="https://arxiv.org/abs/1402.0253">arXiv:1402.0253</a></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on September 27, 2024 at 08:38:48. See the <a href="/nlab/history/multicategory" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/multicategory" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/17607/#Item_2">Discuss</a><span class="backintime"><a href="/nlab/revision/multicategory/34" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/multicategory" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/multicategory" accesskey="S" class="navlink" id="history" rel="nofollow">History (34 revisions)</a> <a href="/nlab/show/multicategory/cite" style="color: black">Cite</a> <a href="/nlab/print/multicategory" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/multicategory" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>