CINXE.COM
ribbon category in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> ribbon category in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> ribbon category </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/9649/#Item_9" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="monoidal_categories">Monoidal categories</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+monoidal+category">enriched monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/tensor+category">tensor category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+diagram">string diagram</a>, <a class="existingWikiWord" href="/nlab/show/tensor+network">tensor network</a></p> </li> </ul> <p><strong>With braiding</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/balanced+monoidal+category">balanced monoidal category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twist">twist</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a></p> </li> </ul> <p><strong>With duals for objects</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+with+duals">category with duals</a> (list of them)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dualizable+object">dualizable object</a> (what they have)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/rigid+monoidal+category">rigid monoidal category</a>, a.k.a. <a class="existingWikiWord" href="/nlab/show/autonomous+category">autonomous category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pivotal+category">pivotal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spherical+category">spherical category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ribbon+category">ribbon category</a>, a.k.a. <a class="existingWikiWord" href="/nlab/show/tortile+category">tortile category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+closed+category">compact closed category</a></p> </li> </ul> <p><strong>With duals for morphisms</strong></p> <ul> <li> <p><span class="newWikiWord">monoidal dagger-category<a href="/nlab/new/monoidal+dagger-category">?</a></span></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+dagger-category">symmetric monoidal dagger-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dagger+compact+category">dagger compact category</a></p> </li> </ul> <p><strong>With traces</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/trace">trace</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/traced+monoidal+category">traced monoidal category</a></p> </li> </ul> <p><strong>Closed structure</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closed monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+closed+category">cartesian closed category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+category">closed category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/star-autonomous+category">star-autonomous category</a></p> </li> </ul> <p><strong>Special sorts of products</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semicartesian+monoidal+category">semicartesian monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+category+with+diagonals">monoidal category with diagonals</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multicategory">multicategory</a></p> </li> </ul> <p><strong>Semisimplicity</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/semisimple+category">semisimple category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fusion+category">fusion category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modular+tensor+category">modular tensor category</a></p> </li> </ul> <p><strong>Morphisms</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+functor">monoidal functor</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/lax+monoidal+functor">lax</a>, <a class="existingWikiWord" href="/nlab/show/oplax+monoidal+functor">oplax</a>, <a class="existingWikiWord" href="/nlab/show/strong+monoidal+functor">strong</a> <a class="existingWikiWord" href="/nlab/show/bilax+monoidal+functor">bilax</a>, <a class="existingWikiWord" href="/nlab/show/Frobenius+monoidal+functor">Frobenius</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/braided+monoidal+functor">braided monoidal functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+functor">symmetric monoidal functor</a></p> </li> </ul> <p><strong>Internal monoids</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+in+a+monoidal+category">monoid in a monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutative+monoid+in+a+symmetric+monoidal+category">commutative monoid in a symmetric monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module+over+a+monoid">module over a monoid</a></p> </li> </ul> <p><strong id="_examples">Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+monoidal+structure+on+presheaves">closed monoidal structure on presheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Day+convolution">Day convolution</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/coherence+theorem+for+monoidal+categories">coherence theorem for monoidal categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal Dold-Kan correspondence</a></p> </li> </ul> <p><strong>In higher category theory</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/braided+monoidal+2-category">braided monoidal 2-category</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+bicategory">monoidal bicategory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cartesian+bicategory">cartesian bicategory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+monoidal+n-category">k-tuply monoidal n-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/little+cubes+operad">little cubes operad</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2C1%29-category">monoidal (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+double+category">compact double category</a></p> </li> </ul> </div></div> <h4 id="knot_theory">Knot theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/knot+theory">knot theory</a></strong></p> <p><strong><a class="existingWikiWord" href="/nlab/show/knot">knot</a></strong>, <strong><a class="existingWikiWord" href="/nlab/show/link">link</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/isotopy">isotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/knot+complement">knot complement</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/knot+diagrams">knot diagrams</a>, <a class="existingWikiWord" href="/nlab/show/chord+diagram">chord diagram</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Reidemeister+move">Reidemeister move</a></p> </li> </ul> <p><strong>Examples/classes:</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/trefoil+knot">trefoil knot</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/torus+knot">torus knot</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/singular+knot">singular knot</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hyperbolic+knot">hyperbolic knot</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Borromean+link">Borromean link</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead+link">Whitehead link</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hopf+link">Hopf link</a></p> </li> </ul> <p><strong>Types</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/prime+knot">prime knot</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mutant+knot">mutant knot</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/knot+invariants">knot invariants</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/crossing+number">crossing number</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bridge+number">bridge number</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unknotting+number">unknotting number</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/colorability">colorability</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/knot+group">knot group</a></p> </li> <li> <p><span class="newWikiWord">knot genus<a href="/nlab/new/knot+genus">?</a></span></p> </li> <li> <p>polynomial knot invariants</p> <p>(<a class="existingWikiWord" href="/nlab/show/quantum+observables">observables</a> of <a class="existingWikiWord" href="/nlab/show/non-perturbative+quantum+field+theory">non-perturbative</a> <a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a>)</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Jones+polynomial">Jones polynomial</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/HOMFLY+polynomial">HOMFLY polynomial</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Alexander+polynomial">Alexander polynomial</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Reshetikhin-Turaev+invariants">Reshetikhin-Turaev invariants</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Vassiliev+knot+invariants">Vassiliev knot invariants</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/quantum+observables">observables</a> of <a class="existingWikiWord" href="/nlab/show/perturbative+quantum+field+theory">pertrubative</a> <a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Khovanov+homology">Khovanov homology</a></p> </li> <li> <p><span class="newWikiWord">Kauffman bracket<a href="/nlab/new/Kauffman+bracket">?</a></span></p> </li> </ul> <p><a class="existingWikiWord" href="/nlab/show/link+invariants">link invariants</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Milnor+mu-bar+invariants">Milnor mu-bar invariants</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/linking+number">linking number</a></p> </li> </ul> <p><strong>Related concepts:</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Vassiliev+skein+relation">Vassiliev skein relation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Seifert+surface">Seifert surface</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/virtual+knot+theory">virtual knot theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dehn+surgery">Dehn surgery</a>, <a class="existingWikiWord" href="/nlab/show/Kirby+calculus">Kirby calculus</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/volume+conjecture">volume conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/arithmetic+topology">arithmetic topology</a></p> </li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/knot+theory">knot theory</a></div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#relation_to_tangles'>Relation to tangles</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A <strong>ribbon category</strong> [<a href="#ReshetikhinTuraev90">Reshetikhin & Turaev (1990)</a>] (also called a <strong>tortile category</strong> [<a href="#JoyalStreet93">Joyal & Street (1993)</a>, <a href="#Shum94">Shum 1994</a>, <a href="#Selinger11">Selinger 2011 §4.7</a>] or <strong>balanced rigid braided tensor category</strong>) is a <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>𝒞</mi><mo>,</mo><mo>⊗</mo><mo>,</mo><mi>𝟙</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>l</mi><mo>,</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\mathcal{C}, \otimes, \mathbb{1}, \alpha, l, r)</annotation></semantics></math> equipped with <a class="existingWikiWord" href="/nlab/show/braiding">braiding</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi><mo>=</mo><mo stretchy="false">{</mo><msub><mi>β</mi> <mrow><mi>X</mi><mo>,</mo><mi>Y</mi></mrow></msub><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\beta=\{\beta_{X,Y}\}</annotation></semantics></math>, twist <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>θ</mi><mo>=</mo><mo stretchy="false">{</mo><msub><mi>θ</mi> <mi>X</mi></msub><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\theta=\{\theta_X\}</annotation></semantics></math> and duality <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo>∨</mo><mo>,</mo><mi>b</mi><mo>,</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\vee, b, d)</annotation></semantics></math> that satisfy some compatibility conditions.</p> <h2 id="definition">Definition</h2> <p>Recall that:</p> <p> <div class='num_defn' id='BraidedMonoidalCategory'> <h6>Definition</h6> <p>A <strong><a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a></strong> is a <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> equipped with a <a class="existingWikiWord" href="/nlab/show/braiding">braiding</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi></mrow><annotation encoding="application/x-tex">\beta</annotation></semantics></math>, which is a <a class="existingWikiWord" href="/nlab/show/natural+isomorphism">natural isomorphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>β</mi> <mrow><mi>X</mi><mo>,</mo><mi>Y</mi></mrow></msub><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>⊗</mo><mi>Y</mi><mo>→</mo><mi>Y</mi><mo>⊗</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">\beta_{X,Y}\colon X \otimes Y \to Y \otimes X</annotation></semantics></math> obeying the <a class="existingWikiWord" href="/nlab/show/hexagon+identities">hexagon identities</a>.</p> </div> </p> <p> <div class='num_defn' id='RigidMonoidalCategory'> <h6>Definition</h6> <p>A <strong><a class="existingWikiWord" href="/nlab/show/rigid+monoidal+category">rigid monoidal category</a></strong> is a <a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a> (Def. <a class="maruku-ref" href="#BraidedMonoidalCategory"></a>) where for every <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, there exist objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>X</mi> <mo>∨</mo></msup></mrow><annotation encoding="application/x-tex">X^{\vee}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><msup><mo></mo><mo>∨</mo></msup></mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">{^{\vee}}X</annotation></semantics></math> (called its <a class="existingWikiWord" href="/nlab/show/dualisable+object">right and left dual</a>) and associated morphisms</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>b</mi> <mi>X</mi></msub><mo>:</mo><mi>𝟙</mi><mo>→</mo><msup><mi>X</mi> <mo>∨</mo></msup><mo>⊗</mo><mi>X</mi><mo>,</mo><msub><mi>d</mi> <mi>X</mi></msub><mo>:</mo><mi>X</mi><mo>⊗</mo><msup><mi>X</mi> <mo>∨</mo></msup><mo>→</mo><mi>𝟙</mi></mrow><annotation encoding="application/x-tex">b_X:\mathbb{1}\to X^{\vee}\otimes X, d_X: X\otimes X^{\vee}\to \mathbb{1}</annotation></semantics></math></div><div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>b</mi> <mi>X</mi></msub><mo>:</mo><mi>𝟙</mi><mo>→</mo><mi>X</mi><mo>⊗</mo><mrow><msup><mo></mo><mo>∨</mo></msup></mrow><mi>X</mi><mo>,</mo><msub><mi>d</mi> <mi>X</mi></msub><mo>:</mo><mrow><msup><mo></mo><mo>∨</mo></msup></mrow><mi>X</mi><mo>⊗</mo><mi>X</mi><mo>→</mo><mi>𝟙</mi></mrow><annotation encoding="application/x-tex">b_X:\mathbb{1}\to X\otimes {^{\vee}}X, d_X: {^{\vee}}X\otimes X\to \mathbb{1}</annotation></semantics></math></div> <p>obeying the <a class="existingWikiWord" href="/nlab/show/zig-zag+identities">zig-zag identities</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>d</mi> <mi>X</mi></msub><mo>⊗</mo><msub><mtext>id</mtext> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>∘</mo><mo stretchy="false">(</mo><msub><mtext>id</mtext> <mi>X</mi></msub><mo>⊗</mo><msub><mi>b</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mtext>id</mtext> <mi>X</mi></msub><mo>,</mo></mrow><annotation encoding="application/x-tex">(d_X\otimes \text{id}_X)\circ (\text{id}_X\otimes b_{X})=\text{id}_{X},</annotation></semantics></math></div><div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mtext>id</mtext> <mrow><msup><mi>X</mi> <mo>∨</mo></msup></mrow></msub><mo>⊗</mo><msub><mi>d</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>∘</mo><mo stretchy="false">(</mo><msub><mi>b</mi> <mi>X</mi></msub><mo>⊗</mo><msub><mtext>id</mtext> <mrow><msup><mi>X</mi> <mo>∨</mo></msup></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mtext>id</mtext> <mrow><msup><mi>X</mi> <mo>∨</mo></msup></mrow></msub><mo>.</mo></mrow><annotation encoding="application/x-tex">(\text{id}_{X^{\vee}}\otimes d_{X})\circ ( b_{X}\otimes \text{id}_{X^{\vee}})=\text{id}_{X^{\vee}}.</annotation></semantics></math></div> <p></p> </div> </p> <p>Now:</p> <p> <div class='num_defn'> <h6>Definition</h6> <p>A <strong>twist</strong> on rigid braided monoidal category (Def. <a class="maruku-ref" href="#RigidMonoidalCategory"></a>) is a <a class="existingWikiWord" href="/nlab/show/natural+isomorphism">natural isomorphism</a> from the <a class="existingWikiWord" href="/nlab/show/identity+functor">identity functor</a> to itself, with components <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>θ</mi> <mi>X</mi></msub><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">\theta_X \colon X \to X</annotation></semantics></math> for which</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>θ</mi> <mrow><mi>X</mi><mo>⊗</mo><mi>Y</mi></mrow></msub><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><msub><mi>β</mi> <mrow><mi>Y</mi><mo>,</mo><mi>X</mi></mrow></msub><mo>∘</mo><msub><mi>β</mi> <mrow><mi>X</mi><mo>,</mo><mi>Y</mi></mrow></msub><mo>∘</mo><msub><mi>θ</mi> <mi>X</mi></msub><mo>⊗</mo><msub><mi>θ</mi> <mi>Y</mi></msub><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \theta_{X\otimes Y} \;=\; \beta_{Y,X} \circ \beta_{X,Y} \circ \theta_{X}\otimes \theta_{Y} \,, </annotation></semantics></math></div><div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>θ</mi> <mi>𝟙</mi></msub><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mi mathvariant="normal">id</mi><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \theta_{\mathbb{1}} \;=\; \mathrm{id} \,, </annotation></semantics></math></div><div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>θ</mi> <mrow><msup><mi>X</mi> <mo>∨</mo></msup></mrow></msub><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><msubsup><mi>θ</mi> <mi>X</mi> <mo>∨</mo></msubsup><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \theta_{X^{\vee}} \;=\; \theta_{X}^{\vee} \,. </annotation></semantics></math></div> <p>A <strong>ribbon category</strong> (<em>tortile category</em>) is a rigid braided monoidal category equipped with such a twist.</p> </div> (e.g. <a href="#Shum94">Shum 1994 Def. 1.3</a>).</p> <p>A <a class="existingWikiWord" href="/nlab/show/functor">functor</a> between ribbon categories is a <strong>ribbon functor</strong> (<em>tortile functor</em>) if it preserves all this structure up to <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a>.</p> <h2 id="properties">Properties</h2> <h3 id="relation_to_tangles">Relation to tangles</h3> <p> <div class='num_prop' id='ShumTheorem'> <h6>Proposition</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/Shum%27s+theorem">Shum's theorem</a>)</strong> <br /> The <a class="existingWikiWord" href="/nlab/show/category+of+framed+oriented+tangles">category of framed oriented tangles</a> is <a class="existingWikiWord" href="/nlab/show/equivalence+of+categories">equivalently</a> the <a class="existingWikiWord" href="/nlab/show/free+construction">free</a> <a class="existingWikiWord" href="/nlab/show/ribbon+category">ribbon category</a> generated by a single <a class="existingWikiWord" href="/nlab/show/object">object</a>.</p> </div> (<a href="#Shum94">Shum 1994</a>, <a href="#Yetter01">Yetter 2001 Thm. 9.1</a>)</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/modular+tensor+category">modular tensor category</a></li> </ul> <h2 id="references">References</h2> <ul> <li id="ReshetikhinTuraev90"> <p><a class="existingWikiWord" href="/nlab/show/Nicolai+Reshetikhin">Nicolai Reshetikhin</a>, <a class="existingWikiWord" href="/nlab/show/Vladimir+Turaev">Vladimir Turaev</a>, <em>Ribbon graphs and their invariants derived from quantum groups</em>, Commun. Math. Phys. <strong>127</strong> 1 (1990) [<a href="https://doi.org/10.1007/BF02096491">doi:10.1007/BF02096491</a>]</p> </li> <li id="JoyalStreet93"> <p><a class="existingWikiWord" href="/nlab/show/Andr%C3%A9+Joyal">André Joyal</a>, <a class="existingWikiWord" href="/nlab/show/Ross+Street">Ross Street</a>, <em>Braided tensor categories</em>, Advances in Mathematics <strong>102</strong> (1993) 20–78 [<a href="https://doi.org/10.1006/aima.1993.1055">doi:10.1006/aima.1993.1055</a>]</p> </li> <li id="Turaev94"> <p><a class="existingWikiWord" href="/nlab/show/Vladimir+Turaev">Vladimir Turaev</a>, §I.1 in: <em>Quantum invariants of knots and 3-manifolds</em>, de Gruyter Studies in Mathematics <strong>18</strong>, de Gruyter & Co. (1994) [<a href="https://doi.org/10.1515/9783110435221">doi:10.1515/9783110435221</a>, <a href="https://www.maths.ed.ac.uk/~v1ranick/papers/turaev5.pdf">pdf</a>]</p> </li> <li id="Shum94"> <p><a class="existingWikiWord" href="/nlab/show/Mei+Chee+Shum">Mei Chee Shum</a>, <em>Tortile tensor categories</em>, Journal of Pure and Applied Algebra <strong>93</strong> 1 (1994) 57-110 [<a href="https://doi.org/10.1016/0022-4049(92)00039-T">10.1016/0022-4049(92)00039-T</a>]</p> </li> <li id="Yetter01"> <p><a class="existingWikiWord" href="/nlab/show/David+N.+Yetter">David N. Yetter</a>: <em>Functorial Knot Theory – Categories of Tangles, Coherence, Categorical Deformations, and Topological Invariants</em>, Series on Knots and Everything <strong>26</strong>, World Scientific (2001) [<a href="https://doi.org/10.1142/4542">doi:10.1142/4542</a>]</p> </li> <li id="Selinger11"> <p><a class="existingWikiWord" href="/nlab/show/Peter+Selinger">Peter Selinger</a>, §4.7 in: <em>A survey of graphical languages for monoidal categories</em>, Springer Lecture Notes in Physics <strong>813</strong> (2011) 289-355 [<a href="https://arxiv.org/abs/0908.3347">arXiv:0908.3347</a>, <a href="https://doi.org/10.1007/978-3-642-12821-9_4">doi:10.1007/978-3-642-12821-9_4</a>]</p> </li> </ul> <p>Lecture notes:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Daniel+Bump">Daniel Bump</a>: <em>Ribbon categories</em>, lecture 4 of <em><a href="http://sporadic.stanford.edu/quantum/">Quantum Groups</a></em> (2022) [slides: <a href="http://sporadic.stanford.edu/quantum/lecture4.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Bump-RibbonCategories.pdf" title="pdf">pdf</a>, notes: <a href="http://sporadic.stanford.edu/quantum/Lecture-10-13-22.pdf">pdf</a>]</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on August 31, 2024 at 19:41:12. See the <a href="/nlab/history/ribbon+category" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/ribbon+category" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/9649/#Item_9">Discuss</a><span class="backintime"><a href="/nlab/revision/ribbon+category/18" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/ribbon+category" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/ribbon+category" accesskey="S" class="navlink" id="history" rel="nofollow">History (18 revisions)</a> <a href="/nlab/show/ribbon+category/cite" style="color: black">Cite</a> <a href="/nlab/print/ribbon+category" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/ribbon+category" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>