CINXE.COM
Logical matrix - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Logical matrix - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"71c5055d-bd83-4501-9ce0-c42592936bbd","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Logical_matrix","wgTitle":"Logical matrix","wgCurRevisionId":1256839045,"wgRevisionId":1256839045,"wgArticleId":4109196,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Commons category link is on Wikidata","Pages that use a deprecated format of the math tags","Boolean algebra","Matrices"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Logical_matrix","wgRelevantArticleId":4109196,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1994977","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Logical matrix - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Logical_matrix"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Logical_matrix&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Logical_matrix"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Logical_matrix rootpage-Logical_matrix skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Logical+matrix" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Logical+matrix" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Logical+matrix" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Logical+matrix" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Matrix_representation_of_a_relation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Matrix_representation_of_a_relation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Matrix representation of a relation</span> </div> </a> <button aria-controls="toc-Matrix_representation_of_a_relation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Matrix representation of a relation subsection</span> </button> <ul id="toc-Matrix_representation_of_a_relation-sublist" class="vector-toc-list"> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Other_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Other examples</span> </div> </a> <ul id="toc-Other_examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Some_properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Some_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Some properties</span> </div> </a> <ul id="toc-Some_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lattice" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lattice"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Lattice</span> </div> </a> <ul id="toc-Lattice-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Logical_vectors" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Logical_vectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Logical vectors</span> </div> </a> <ul id="toc-Logical_vectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Row_and_column_sums" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Row_and_column_sums"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Row and column sums</span> </div> </a> <ul id="toc-Row_and_column_sums-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Logical matrix</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 20 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-20" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">20 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B5%D9%81%D9%88%D9%81%D8%A9_%D9%85%D9%86%D8%B7%D9%82%D9%8A%D8%A9" title="مصفوفة منطقية – Arabic" lang="ar" hreflang="ar" data-title="مصفوفة منطقية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CF%85%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CF%80%CE%AF%CE%BD%CE%B1%CE%BA%CE%B1%CF%82" title="Δυαδικός πίνακας – Greek" lang="el" hreflang="el" data-title="Δυαδικός πίνακας" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Matriz_booleana" title="Matriz booleana – Spanish" lang="es" hreflang="es" data-title="Matriz booleana" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A7%D8%AA%D8%B1%DB%8C%D8%B3_%D9%85%D9%86%D8%B7%D9%82%DB%8C" title="ماتریس منطقی – Persian" lang="fa" hreflang="fa" data-title="ماتریس منطقی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Matrice_binaire" title="Matrice binaire – French" lang="fr" hreflang="fr" data-title="Matrice binaire" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9D%B4%EC%A7%84_%ED%96%89%EB%A0%AC" title="이진 행렬 – Korean" lang="ko" hreflang="ko" data-title="이진 행렬" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Matrice_binaria" title="Matrice binaria – Italian" lang="it" hreflang="it" data-title="Matrice binaria" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%91%D1%83%D0%BB%D1%8C_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0%D1%81%D1%8B" title="Буль матрицасы – Kazakh" lang="kk" hreflang="kk" data-title="Буль матрицасы" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Binaire_matrix" title="Binaire matrix – Dutch" lang="nl" hreflang="nl" data-title="Binaire matrix" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Macierz_logiczna" title="Macierz logiczna – Polish" lang="pl" hreflang="pl" data-title="Macierz logiczna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Matriz_booliana" title="Matriz booliana – Portuguese" lang="pt" hreflang="pt" data-title="Matriz booliana" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BD%D0%B0%D1%80%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0" title="Бинарная матрица – Russian" lang="ru" hreflang="ru" data-title="Бинарная матрица" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Binarna_matrika" title="Binarna matrika – Slovenian" lang="sl" hreflang="sl" data-title="Binarna matrika" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%91%D1%83%D0%BB%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0" title="Булова матрица – Serbian" lang="sr" hreflang="sr" data-title="Булова матрица" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Bin%C3%A4r_matris" title="Binär matris – Swedish" lang="sv" hreflang="sv" data-title="Binär matris" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AE%B0%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95_%E0%AE%85%E0%AE%A3%E0%AE%BF" title="தருக்க அணி – Tamil" lang="ta" hreflang="ta" data-title="தருக்க அணி" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A1%E0%B8%97%E0%B8%A3%E0%B8%B4%E0%B8%81%E0%B8%8B%E0%B9%8C%E0%B9%80%E0%B8%8A%E0%B8%B4%E0%B8%87%E0%B8%95%E0%B8%A3%E0%B8%A3%E0%B8%81%E0%B8%B0" title="เมทริกซ์เชิงตรรกะ – Thai" lang="th" hreflang="th" data-title="เมทริกซ์เชิงตรรกะ" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%91%D1%96%D0%BD%D0%B0%D1%80%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%8F" title="Бінарна матриця – Ukrainian" lang="uk" hreflang="uk" data-title="Бінарна матриця" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%82%8F%E8%BC%AF%E7%9F%A9%E9%99%A3" title="邏輯矩陣 – Cantonese" lang="yue" hreflang="yue" data-title="邏輯矩陣" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%82%8F%E8%BC%AF%E7%9F%A9%E9%99%A3" title="邏輯矩陣 – Chinese" lang="zh" hreflang="zh" data-title="邏輯矩陣" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1994977#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Logical_matrix" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Logical_matrix" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Logical_matrix"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Logical_matrix&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Logical_matrix&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Logical_matrix"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Logical_matrix&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Logical_matrix&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Logical_matrix" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Logical_matrix" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Logical_matrix&oldid=1256839045" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Logical_matrix&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Logical_matrix&id=1256839045&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLogical_matrix"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLogical_matrix"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Logical_matrix&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Logical_matrix&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Binary_matrix" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1994977" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Matrix of binary truth values</div> <p>A <b>logical matrix</b>, <b>binary matrix</b>, <b>relation matrix</b>, <b>Boolean matrix</b>, or <b>(0, 1)-matrix</b> is a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> with entries from the <a href="/wiki/Boolean_domain" title="Boolean domain">Boolean domain</a> <span class="texhtml"><b>B</b> = {0, 1}.</span> Such a matrix can be used to represent a <a href="/wiki/Binary_relation" title="Binary relation">binary relation</a> between a pair of <a href="/wiki/Finite_set" title="Finite set">finite sets</a>. It is an important tool in <a href="/wiki/Combinatorial_mathematics" class="mw-redirect" title="Combinatorial mathematics">combinatorial mathematics</a> and <a href="/wiki/Theoretical_computer_science" title="Theoretical computer science">theoretical computer science</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Matrix_representation_of_a_relation">Matrix representation of a relation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=1" title="Edit section: Matrix representation of a relation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <i>R</i> is a <a href="/wiki/Binary_relation" title="Binary relation">binary relation</a> between the finite <a href="/wiki/Indexed_set" class="mw-redirect" title="Indexed set">indexed sets</a> <i>X</i> and <i>Y</i> (so <span class="texhtml"> <i>R</i> ⊆ <i>X</i> ×<i>Y</i></span>), then <i>R</i> can be represented by the logical matrix <i>M</i> whose row and column indices index the elements of <i>X</i> and <i>Y</i>, respectively, such that the entries of <i>M</i> are defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{i,j}={\begin{cases}1&(x_{i},y_{j})\in R,\\0&(x_{i},y_{j})\not \in R.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <mi>R</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>∉</mo> <mi>R</mi> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{i,j}={\begin{cases}1&(x_{i},y_{j})\in R,\\0&(x_{i},y_{j})\not \in R.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41ca05acfcf752dc2c06f4c16e42c69c30885a14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.326ex; height:6.176ex;" alt="{\displaystyle m_{i,j}={\begin{cases}1&(x_{i},y_{j})\in R,\\0&(x_{i},y_{j})\not \in R.\end{cases}}}"></span></dd></dl> <p>In order to designate the row and column numbers of the matrix, the sets <i>X</i> and <i>Y</i> are indexed with positive <a href="/wiki/Integer" title="Integer">integers</a>: <i>i</i> ranges from 1 to the <a href="/wiki/Cardinality" title="Cardinality">cardinality</a> (size) of <i>X</i>, and <i>j</i> ranges from 1 to the cardinality of <i>Y</i>. See the article on <a href="/wiki/Indexed_set" class="mw-redirect" title="Indexed set">indexed sets</a> for more detail. </p> <div class="mw-heading mw-heading3"><h3 id="Example">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=2" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The binary relation <i>R</i> on the set <span class="texhtml">{1, 2, 3, 4}</span> is defined so that <i>aRb</i> holds if and only if <i>a</i> <a href="/wiki/Divides" class="mw-redirect" title="Divides">divides</a> <i>b</i> evenly, with no remainder. For example, 2<i>R</i>4 holds because 2 divides 4 without leaving a remainder, but 3<i>R</i>4 does not hold because when 3 divides 4, there is a remainder of 1. The following set is the set of pairs for which the relation <i>R</i> holds. </p> <dl><dd>{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}.</dd></dl> <p>The corresponding representation as a logical matrix is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&1&1&1\\0&1&0&1\\0&0&1&0\\0&0&0&1\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&1&1&1\\0&1&0&1\\0&0&1&0\\0&0&0&1\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a94f56e692dc674073b8b46436b13d96c0b8b7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:17.083ex; height:12.509ex;" alt="{\displaystyle {\begin{pmatrix}1&1&1&1\\0&1&0&1\\0&0&1&0\\0&0&0&1\end{pmatrix}},}"></span></dd></dl> <p>which includes a diagonal of ones, since each number divides itself. </p> <div class="mw-heading mw-heading2"><h2 id="Other_examples">Other examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=3" title="Edit section: Other examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>A <a href="/wiki/Permutation_matrix" title="Permutation matrix">permutation matrix</a> is a (0, 1)-matrix, all of whose columns and rows each have exactly one nonzero element. <ul><li>A <a href="/wiki/Costas_array" title="Costas array">Costas array</a> is a special case of a permutation matrix.</li></ul></li> <li>An <a href="/wiki/Incidence_matrix" title="Incidence matrix">incidence matrix</a> in <a href="/wiki/Combinatorics" title="Combinatorics">combinatorics</a> and <a href="/wiki/Finite_geometry" title="Finite geometry">finite geometry</a> has ones to indicate incidence between points (or vertices) and lines of a geometry, blocks of a <a href="/wiki/Block_design" title="Block design">block design</a>, or edges of a <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">graph</a>.</li> <li>A <a href="/wiki/Design_matrix" title="Design matrix">design matrix</a> in <a href="/wiki/Analysis_of_variance" title="Analysis of variance">analysis of variance</a> is a (0, 1)-matrix with constant row sums.</li> <li>A logical matrix may represent an <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> in <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a>: non-<a href="/wiki/Symmetric_matrix" title="Symmetric matrix">symmetric</a> matrices correspond to <a href="/wiki/Directed_graph" title="Directed graph">directed graphs</a>, symmetric matrices to ordinary <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">graphs</a>, and a 1 on the diagonal corresponds to a <a href="/wiki/Loop_(graph_theory)" title="Loop (graph theory)">loop</a> at the corresponding vertex.</li> <li>The <a href="/wiki/Biadjacency_matrix" class="mw-redirect" title="Biadjacency matrix">biadjacency matrix</a> of a simple, undirected <a href="/wiki/Bipartite_graph" title="Bipartite graph">bipartite graph</a> is a (0, 1)-matrix, and any (0, 1)-matrix arises in this way.</li> <li>The <a href="/wiki/Prime_factor" class="mw-redirect" title="Prime factor">prime factors</a> of a list of <i>m</i> <a href="/wiki/Square-free_integer" title="Square-free integer">square-free</a>, <a href="/wiki/Smooth_number" title="Smooth number"><i>n</i>-smooth</a> numbers can be described as an <i>m</i> × π(<i>n</i>) (0, 1)-matrix, where π is the <a href="/wiki/Prime-counting_function" title="Prime-counting function">prime-counting function</a>, and <i>a</i><sub><i>ij</i></sub> is 1 if and only if the <i>j</i>th prime divides the <i>i</i>th number. This representation is useful in the <a href="/wiki/Quadratic_sieve" title="Quadratic sieve">quadratic sieve</a> factoring algorithm.</li> <li>A <a href="/wiki/Raster_graphics" title="Raster graphics">bitmap image</a> containing <a href="/wiki/Pixel" title="Pixel">pixels</a> in only two colors can be represented as a (0, 1)-matrix in which the zeros represent pixels of one color and the ones represent pixels of the other color.</li> <li>A binary matrix can be used to check the game rules in the game of <a href="/wiki/Go_(game)" title="Go (game)">Go</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Four-valued_logic#Matrix_transitions" title="Four-valued logic">four valued logic</a> of two bits, transformed by 2x2 logical matrices, forms a <a href="/wiki/Transition_system" title="Transition system">transition system</a>.</li> <li>A <a href="/wiki/Recurrence_plot" title="Recurrence plot">recurrence plot</a> and its variants are matrices that shows which pairs of points are closer than a certain vicinity threshold in a <a href="/wiki/Phase_space" title="Phase space">phase space</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Some_properties">Some properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=4" title="Edit section: Some properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Matrix_multiply.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Matrix_multiply.png/220px-Matrix_multiply.png" decoding="async" width="220" height="391" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Matrix_multiply.png/330px-Matrix_multiply.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Matrix_multiply.png/440px-Matrix_multiply.png 2x" data-file-width="600" data-file-height="1065" /></a><figcaption>Multiplication of two logical matrices using <a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a>.</figcaption></figure> <p>The matrix representation of the <a href="/wiki/Equality_(mathematics)" title="Equality (mathematics)">equality relation</a> on a finite set is the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> <i>I</i>, that is, the matrix whose entries on the diagonal are all 1, while the others are all 0. More generally, if relation <i>R</i> satisfies <span class="texhtml">I ⊆ <i>R</i>,</span> then <i>R</i> is a <a href="/wiki/Reflexive_relation" title="Reflexive relation">reflexive relation</a>. </p><p>If the Boolean domain is viewed as a <a href="/wiki/Semiring" title="Semiring">semiring</a>, where addition corresponds to <a href="/wiki/Logical_OR" class="mw-redirect" title="Logical OR">logical OR</a> and multiplication to <a href="/wiki/Logical_AND" class="mw-redirect" title="Logical AND">logical AND</a>, the matrix representation of the <a href="/wiki/Composition_of_relations" title="Composition of relations">composition</a> of two relations is equal to the <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">matrix product</a> of the matrix representations of these relations. This product can be computed in <a href="/wiki/Expected_value" title="Expected value">expected</a> time O(<i>n</i><sup>2</sup>).<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Frequently, operations on binary matrices are defined in terms of <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">modular arithmetic</a> mod 2—that is, the elements are treated as elements of the <a href="/wiki/Galois_field" class="mw-redirect" title="Galois field">Galois field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {GF}}(2)=\mathbb {Z} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">G</mi> <mi mathvariant="bold">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {GF}}(2)=\mathbb {Z} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e702f9fe14d00165f436bc1b2694108ae2c76af9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.458ex; height:2.843ex;" alt="{\displaystyle {\mathbf {GF}}(2)=\mathbb {Z} _{2}}"></span>. They arise in a variety of representations and have a number of more restricted special forms. They are applied e.g. in <a href="/wiki/XOR-satisfiability" class="mw-redirect" title="XOR-satisfiability">XOR-satisfiability</a>. </p><p>The number of distinct <i>m</i>-by-<i>n</i> binary matrices is equal to 2<sup><i>mn</i></sup>, and is thus finite. </p> <div class="mw-heading mw-heading2"><h2 id="Lattice">Lattice</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=5" title="Edit section: Lattice"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <i>n</i> and <i>m</i> be given and let <i>U</i> denote the set of all logical <i>m</i> × <i>n</i> matrices. Then <i>U</i> has a <a href="/wiki/Partial_order" class="mw-redirect" title="Partial order">partial order</a> given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall A,B\in U,\quad A\leq B\quad {\text{when}}\quad \forall i,j\quad A_{ij}=1\implies B_{ij}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>U</mi> <mo>,</mo> <mspace width="1em" /> <mi>A</mi> <mo>≤<!-- ≤ --></mo> <mi>B</mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>when</mtext> </mrow> <mspace width="1em" /> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mspace width="1em" /> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall A,B\in U,\quad A\leq B\quad {\text{when}}\quad \forall i,j\quad A_{ij}=1\implies B_{ij}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/509a9f78665a7d1f540caf02a5febdf90e274cef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:58.785ex; height:2.843ex;" alt="{\displaystyle \forall A,B\in U,\quad A\leq B\quad {\text{when}}\quad \forall i,j\quad A_{ij}=1\implies B_{ij}=1.}"></span></dd></dl> <p>In fact, <i>U</i> forms a <a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a> with the operations <a href="/wiki/And_(logic)" class="mw-redirect" title="And (logic)">and</a> & <a href="/wiki/Or_(logic)" class="mw-redirect" title="Or (logic)">or</a> between two matrices applied component-wise. The complement of a logical matrix is obtained by swapping all zeros and ones for their opposite. </p><p>Every logical matrix <span class="texhtml"><i>A</i> = (<i>A</i><sub><i>ij</i></sub>)</span> has a transpose <span class="texhtml"><i>A</i><sup>T</sup> = (<i>A</i><sub><i>ji</i></sub>).</span> Suppose <i>A</i> is a logical matrix with no columns or rows identically zero. Then the matrix product, using Boolean arithmetic, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\operatorname {T} }A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\operatorname {T} }A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e20f715e82efaa5a6a003d473dafd5aaf571a1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.905ex; height:2.676ex;" alt="{\displaystyle A^{\operatorname {T} }A}"></span> contains the <i>m</i> × <i>m</i> <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>, and the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AA^{\operatorname {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AA^{\operatorname {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa56784c4ea69edef14db6d00cb3b93f661986a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.905ex; height:2.676ex;" alt="{\displaystyle AA^{\operatorname {T} }}"></span> contains the <i>n</i> × <i>n</i> identity. </p><p>As a mathematical structure, the Boolean algebra <i>U</i> forms a <a href="/wiki/Lattice_(order)" title="Lattice (order)">lattice</a> ordered by <a href="/wiki/Inclusion_(logic)" title="Inclusion (logic)">inclusion</a>; additionally it is a multiplicative lattice due to matrix multiplication. </p><p>Every logical matrix in <i>U</i> corresponds to a binary relation. These listed operations on <i>U</i>, and ordering, correspond to a <a href="/wiki/Algebraic_logic#Calculus_of_relations" title="Algebraic logic">calculus of relations</a>, where the matrix multiplication represents <a href="/wiki/Composition_of_relations" title="Composition of relations">composition of relations</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Logical_vectors">Logical vectors</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=6" title="Edit section: Logical vectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="floatright" style="font-size:90%"> <caption style="background:#cee0f2; padding:0.2em 0.4em 0.2em; text-align:center; font-size:130%; line-height:1.2em; font-weight: bold">Group-like structures </caption> <tbody><tr> <th> </th> <th><a href="/wiki/Total_function" class="mw-redirect" title="Total function">Total</a> </th> <th><a href="/wiki/Associative_property" title="Associative property">Associative</a> </th> <th><a href="/wiki/Identity_element" title="Identity element">Identity</a> </th> <th><a href="/wiki/Quasigroup" title="Quasigroup"><style data-mw-deduplicate="TemplateStyles:r1038841319">'"`UNIQ--templatestyles-00000016-QINU`"'</style><span class="rt-commentedText tooltip tooltip-dotted" title="Here, divisibility refers specifically to the quasigroup axioms">Divisible</span></a> </th> <th><a href="/wiki/Commutative_property" title="Commutative property">Commutative</a> </th></tr> <tr> <th><a href="/wiki/Partial_groupoid" title="Partial groupoid">Partial magma</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th><a href="/wiki/Semigroupoid" title="Semigroupoid">Semigroupoid</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th><a href="/wiki/Category_(mathematics)" title="Category (mathematics)">Small category</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th><a href="/wiki/Groupoid" title="Groupoid">Groupoid</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th>Commutative <a href="/wiki/Groupoid" title="Groupoid">groupoid</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required </td></tr> <tr> <th><a href="/wiki/Magma_(algebra)" title="Magma (algebra)">Magma</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th>Commutative <a href="/wiki/Magma_(algebra)" title="Magma (algebra)">magma</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required </td></tr> <tr> <th><a href="/wiki/Quasigroup" title="Quasigroup">Quasigroup</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th>Commutative <a href="/wiki/Quasigroup" title="Quasigroup">quasigroup</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required </td></tr> <tr> <th><a href="/wiki/Unital_magma" class="mw-redirect" title="Unital magma">Unital magma</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th>Commutative <a href="/wiki/Unital_magma" class="mw-redirect" title="Unital magma">unital magma</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required </td></tr> <tr> <th><a href="/wiki/Loop_(algebra)" class="mw-redirect" title="Loop (algebra)">Loop</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th>Commutative <a href="/wiki/Loop_(algebra)" class="mw-redirect" title="Loop (algebra)">loop</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required </td></tr> <tr> <th><a href="/wiki/Semigroup" title="Semigroup">Semigroup</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th>Commutative <a href="/wiki/Semigroup" title="Semigroup">semigroup</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required </td></tr> <tr> <th>Associative <a href="/wiki/Quasigroup" title="Quasigroup">quasigroup</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th>Commutative-and-associative <a href="/wiki/Quasigroup" title="Quasigroup">quasigroup</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required </td></tr> <tr> <th><a href="/wiki/Monoid" title="Monoid">Monoid</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th><a href="/wiki/Commutative_monoid" class="mw-redirect" title="Commutative monoid">Commutative monoid</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required </td></tr> <tr> <th><a href="/wiki/Group_(mathematics)" title="Group (mathematics)">Group</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Unneeded </td></tr> <tr> <th><a href="/wiki/Abelian_group" title="Abelian group">Abelian group</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Required </td></tr></tbody></table> <p>If <i>m</i> or <i>n</i> equals one, then the <i>m</i> × <i>n</i> logical matrix (<i>m</i><sub><i>ij</i></sub>) is a <b>logical vector</b> or <a href="/wiki/Bit_string" class="mw-redirect" title="Bit string">bit string</a>. If <i>m</i> = 1, the vector is a row vector, and if <i>n</i> = 1, it is a column vector. In either case the index equaling 1 is dropped from denotation of the vector. </p><p>Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (P_{i}),\,i=1,2,\ldots ,m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (P_{i}),\,i=1,2,\ldots ,m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05b216556283ee364721493aa3eb7f22794aba66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.001ex; height:2.843ex;" alt="{\displaystyle (P_{i}),\,i=1,2,\ldots ,m}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (Q_{j}),\,j=1,2,\ldots ,n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (Q_{j}),\,j=1,2,\ldots ,n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a516bf4de94eb994f025d81bbd6289b13647fcb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.967ex; height:3.009ex;" alt="{\displaystyle (Q_{j}),\,j=1,2,\ldots ,n}"></span> are two logical vectors. The <a href="/wiki/Outer_product" title="Outer product">outer product</a> of <i>P</i> and <i>Q</i> results in an <i>m</i> × <i>n</i> <a href="/wiki/Rectangular_relation" class="mw-redirect" title="Rectangular relation">rectangular relation</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{ij}=P_{i}\land Q_{j}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{ij}=P_{i}\land Q_{j}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dc8068dddddb038b3e0cd7f87a86349c66c2bd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.885ex; height:2.843ex;" alt="{\displaystyle m_{ij}=P_{i}\land Q_{j}.}"></span></dd></dl> <p>A reordering of the rows and columns of such a matrix can assemble all the ones into a rectangular part of the matrix.<sup id="cite_ref-GS_4-0" class="reference"><a href="#cite_note-GS-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>Let <i>h</i> be the vector of all ones. Then if <i>v</i> is an arbitrary logical vector, the relation <i>R</i> = <i>v h</i><sup>T</sup> has constant rows determined by <i>v</i>. In the <a href="/wiki/Calculus_of_relations" class="mw-redirect" title="Calculus of relations">calculus of relations</a> such an <i>R</i> is called a vector.<sup id="cite_ref-GS_4-1" class="reference"><a href="#cite_note-GS-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> A particular instance is the universal relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle hh^{\operatorname {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle hh^{\operatorname {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4d71f316dfa762a0f53b7a506e52ea8f581038f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.097ex; height:2.676ex;" alt="{\displaystyle hh^{\operatorname {T} }}"></span>. </p><p>For a given relation <i>R</i>, a maximal rectangular relation contained in <i>R</i> is called a concept in <i>R</i>. Relations may be studied by decomposing into concepts, and then noting the <a href="/wiki/Heterogeneous_relation#Induced_concept_lattice" class="mw-redirect" title="Heterogeneous relation">induced concept lattice</a>. </p><p>Consider the table of group-like structures, where "unneeded" can be denoted 0, and "required" denoted by 1, forming a logical matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdcae6b33a27f86c7961318cd7ee3d789d3bcdd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.411ex; height:2.176ex;" alt="{\displaystyle R.}"></span> To calculate elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle RR^{\operatorname {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle RR^{\operatorname {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/729e235ef344bfc362fbf69f4424471c935d4bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.947ex; height:2.676ex;" alt="{\displaystyle RR^{\operatorname {T} }}"></span>, it is necessary to use the logical inner product of pairs of logical vectors in rows of this matrix. If this inner product is 0, then the rows are orthogonal. In fact, <a href="/wiki/Small_category" class="mw-redirect" title="Small category">small category</a> is orthogonal to <a href="/wiki/Quasigroup" title="Quasigroup">quasigroup</a>, and <a href="/wiki/Groupoid" title="Groupoid">groupoid</a> is orthogonal to <a href="/wiki/Magma_(algebra)" title="Magma (algebra)">magma</a>. Consequently there are zeros in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle RR^{\operatorname {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle RR^{\operatorname {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/729e235ef344bfc362fbf69f4424471c935d4bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.947ex; height:2.676ex;" alt="{\displaystyle RR^{\operatorname {T} }}"></span>, and it fails to be a <a href="/wiki/Universal_relation" class="mw-redirect" title="Universal relation">universal relation</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Row_and_column_sums">Row and column sums</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=7" title="Edit section: Row and column sums"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Adding up all the ones in a logical matrix may be accomplished in two ways: first summing the rows or first summing the columns. When the row sums are added, the sum is the same as when the column sums are added. In <a href="/wiki/Incidence_geometry" title="Incidence geometry">incidence geometry</a>, the matrix is interpreted as an <a href="/wiki/Incidence_matrix" title="Incidence matrix">incidence matrix</a> with the rows corresponding to "points" and the columns as "blocks" (generalizing lines made of points). A row sum is called its <i>point degree</i>, and a column sum is the <i>block degree</i>. The sum of point degrees equals the sum of block degrees.<sup id="cite_ref-BJL_5-0" class="reference"><a href="#cite_note-BJL-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>An early problem in the area was "to find necessary and sufficient conditions for the existence of an <a href="/wiki/Incidence_structure" title="Incidence structure">incidence structure</a> with given point degrees and block degrees; or in matrix language, for the existence of a (0, 1)-matrix of type <i>v</i> × <i>b</i> with given row and column sums".<sup id="cite_ref-BJL_5-1" class="reference"><a href="#cite_note-BJL-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> This problem is solved by the <a href="/wiki/Gale%E2%80%93Ryser_theorem" title="Gale–Ryser theorem">Gale–Ryser theorem</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=8" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/List_of_matrices" class="mw-redirect" title="List of matrices">List of matrices</a></li> <li><a href="/wiki/De_Bruijn_torus" title="De Bruijn torus">Binatorix</a> (a binary De Bruijn torus)</li> <li><a href="/wiki/Bit_array" title="Bit array">Bit array</a></li> <li><a href="/wiki/Disjunct_matrix" title="Disjunct matrix">Disjunct matrix</a></li> <li><a href="/wiki/Redheffer_matrix" title="Redheffer matrix">Redheffer matrix</a></li> <li><a href="/wiki/Truth_table" title="Truth table">Truth table</a></li> <li><a href="/wiki/Three-valued_logic" title="Three-valued logic">Three-valued logic</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=9" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFPetersen2013" class="citation web cs1">Petersen, Kjeld (February 8, 2013). <a rel="nofollow" class="external text" href="http://senseis.xmp.net/?BinMatrix">"Binmatrix"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">August 11,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Binmatrix&rft.date=2013-02-08&rft.aulast=Petersen&rft.aufirst=Kjeld&rft_id=http%3A%2F%2Fsenseis.xmp.net%2F%3FBinMatrix&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'NeilO'Neil1973" class="citation journal cs1">O'Neil, Patrick E.; <a href="/wiki/Elizabeth_O%27Neil" title="Elizabeth O'Neil">O'Neil, Elizabeth J.</a> (1973). "A Fast Expected Time Algorithm for Boolean Matrix Multiplication and Transitive Closure". <i><a href="/wiki/Information_and_Control" class="mw-redirect" title="Information and Control">Information and Control</a></i>. <b>22</b> (2): 132–8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0019-9958%2873%2990228-3">10.1016/s0019-9958(73)90228-3</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Information+and+Control&rft.atitle=A+Fast+Expected+Time+Algorithm+for+Boolean+Matrix+Multiplication+and+Transitive+Closure&rft.volume=22&rft.issue=2&rft.pages=132-8&rft.date=1973&rft_id=info%3Adoi%2F10.1016%2Fs0019-9958%2873%2990228-3&rft.aulast=O%27Neil&rft.aufirst=Patrick+E.&rft.au=O%27Neil%2C+Elizabeth+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span> — The algorithm relies on addition being <a href="/wiki/Idempotent" class="mw-redirect" title="Idempotent">idempotent</a>, cf. p.134 (bottom).</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCopilowish1948" class="citation journal cs1"><a href="/wiki/Irving_Copilowish" class="mw-redirect" title="Irving Copilowish">Copilowish, Irving</a> (December 1948). "Matrix development of the calculus of relations". <i><a href="/wiki/Journal_of_Symbolic_Logic" title="Journal of Symbolic Logic">Journal of Symbolic Logic</a></i>. <b>13</b> (4): 193–203. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2267134">10.2307/2267134</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2267134">2267134</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Symbolic+Logic&rft.atitle=Matrix+development+of+the+calculus+of+relations&rft.volume=13&rft.issue=4&rft.pages=193-203&rft.date=1948-12&rft_id=info%3Adoi%2F10.2307%2F2267134&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2267134%23id-name%3DJSTOR&rft.aulast=Copilowish&rft.aufirst=Irving&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></span> </li> <li id="cite_note-GS-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-GS_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GS_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt2013" class="citation book cs1"><a href="/wiki/Gunther_Schmidt" title="Gunther Schmidt">Schmidt, Gunther</a> (2013). "6: Relations and Vectors". <i>Relational Mathematics</i>. Cambridge University Press. p. 91. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511778810">10.1017/CBO9780511778810</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-511-77881-0" title="Special:BookSources/978-0-511-77881-0"><bdi>978-0-511-77881-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=6%3A+Relations+and+Vectors&rft.btitle=Relational+Mathematics&rft.pages=91&rft.pub=Cambridge+University+Press&rft.date=2013&rft_id=info%3Adoi%2F10.1017%2FCBO9780511778810&rft.isbn=978-0-511-77881-0&rft.aulast=Schmidt&rft.aufirst=Gunther&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></span> </li> <li id="cite_note-BJL-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-BJL_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BJL_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">E.g., see <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBethJungnickelLenz1999" class="citation encyclopaedia cs1">Beth, Thomas; <a href="/wiki/Dieter_Jungnickel" title="Dieter Jungnickel">Jungnickel, Dieter</a>; <a href="/wiki/Hanfried_Lenz" title="Hanfried Lenz">Lenz, Hanfried</a> (1999). "I. Examples and basic definitions". <i>Design Theory</i>. <i>Encyclopedia of Mathematics and its Applications</i>. Vol. 69 (2nd ed.). <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. p. 18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511549533.001">10.1017/CBO9780511549533.001</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-44432-3" title="Special:BookSources/978-0-521-44432-3"><bdi>978-0-521-44432-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Design+Theory&rft.btitle=Encyclopedia+of+Mathematics+and+its+Applications&rft.pages=18&rft.edition=2nd&rft.pub=Cambridge+University+Press&rft.date=1999&rft_id=info%3Adoi%2F10.1017%2FCBO9780511549533.001&rft.isbn=978-0-521-44432-3&rft.aulast=Beth&rft.aufirst=Thomas&rft.au=Jungnickel%2C+Dieter&rft.au=Lenz%2C+Hanfried&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=10" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrualdi2006" class="citation encyclopaedia cs1"><a href="/wiki/Richard_A._Brualdi" title="Richard A. Brualdi">Brualdi, Richard A.</a> (2006). "Combinatorial Matrix Classes". <i>Encyclopedia of Mathematics and its Applications</i>. Vol. 108. Cambridge University Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511721182">10.1017/CBO9780511721182</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-86565-4" title="Special:BookSources/978-0-521-86565-4"><bdi>978-0-521-86565-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Combinatorial+Matrix+Classes&rft.btitle=Encyclopedia+of+Mathematics+and+its+Applications&rft.pub=Cambridge+University+Press&rft.date=2006&rft_id=info%3Adoi%2F10.1017%2FCBO9780511721182&rft.isbn=978-0-521-86565-4&rft.aulast=Brualdi&rft.aufirst=Richard+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrualdiRyser1991" class="citation encyclopaedia cs1">Brualdi, Richard A.; Ryser, Herbert J. (1991). "Combinatorial Matrix Theory". <i>Encyclopedia of Mathematics and its Applications</i>. Vol. 39. Cambridge University Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9781107325708">10.1017/CBO9781107325708</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-32265-0" title="Special:BookSources/0-521-32265-0"><bdi>0-521-32265-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Combinatorial+Matrix+Theory&rft.btitle=Encyclopedia+of+Mathematics+and+its+Applications&rft.pub=Cambridge+University+Press&rft.date=1991&rft_id=info%3Adoi%2F10.1017%2FCBO9781107325708&rft.isbn=0-521-32265-0&rft.aulast=Brualdi&rft.aufirst=Richard+A.&rft.au=Ryser%2C+Herbert+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBotha2013" class="citation cs2"><a href="/wiki/Leslie_Hogben" title="Leslie Hogben">Botha, J.D.</a> (2013), "31. Matrices over Finite Fields §31.3 Binary Matrices", in Hogben, Leslie (ed.), <i>Handbook of Linear Algebra (Discrete Mathematics and Its Applications)</i> (2nd ed.), Chapman & Hall/CRC, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1201%2Fb16113">10.1201/b16113</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-429-18553-3" title="Special:BookSources/978-0-429-18553-3"><bdi>978-0-429-18553-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=31.+Matrices+over+Finite+Fields+%C2%A731.3+Binary+Matrices&rft.btitle=Handbook+of+Linear+Algebra+%28Discrete+Mathematics+and+Its+Applications%29&rft.edition=2nd&rft.pub=Chapman+%26+Hall%2FCRC&rft.date=2013&rft_id=info%3Adoi%2F10.1201%2Fb16113&rft.isbn=978-0-429-18553-3&rft.aulast=Botha&rft.aufirst=J.D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKim1982" class="citation cs2"><a href="/wiki/Ki-Hang_Kim" title="Ki-Hang Kim">Kim, Ki Hang</a> (1982), <i>Boolean Matrix Theory and Applications</i>, Dekker, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8247-1788-9" title="Special:BookSources/978-0-8247-1788-9"><bdi>978-0-8247-1788-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Boolean+Matrix+Theory+and+Applications&rft.pub=Dekker&rft.date=1982&rft.isbn=978-0-8247-1788-9&rft.aulast=Kim&rft.aufirst=Ki+Hang&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRyser1957" class="citation journal cs1"><a href="/wiki/H._J._Ryser" title="H. J. Ryser">Ryser, H.J.</a> (1957). "Combinatorial properties of matrices of zeroes and ones". <i><a href="/wiki/Canadian_Journal_of_Mathematics" title="Canadian Journal of Mathematics">Canadian Journal of Mathematics</a></i>. <b>9</b>: 371–7.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Canadian+Journal+of+Mathematics&rft.atitle=Combinatorial+properties+of+matrices+of+zeroes+and+ones&rft.volume=9&rft.pages=371-7&rft.date=1957&rft.aulast=Ryser&rft.aufirst=H.J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRyser1960" class="citation journal cs1">Ryser, H.J. (1960). "Traces of matrices of zeroes and ones". <i>Canadian Journal of Mathematics</i>. <b>12</b>: 463–476. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4153%2FCJM-1960-040-0">10.4153/CJM-1960-040-0</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Canadian+Journal+of+Mathematics&rft.atitle=Traces+of+matrices+of+zeroes+and+ones&rft.volume=12&rft.pages=463-476&rft.date=1960&rft_id=info%3Adoi%2F10.4153%2FCJM-1960-040-0&rft.aulast=Ryser&rft.aufirst=H.J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRyser1960" class="citation journal cs1">Ryser, H.J. (1960). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/bull/1960-66-06/S0002-9904-1960-10494-6/S0002-9904-1960-10494-6.pdf">"Matrices of Zeros and Ones"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>. <b>66</b>: 442–464.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Mathematical+Society&rft.atitle=Matrices+of+Zeros+and+Ones&rft.volume=66&rft.pages=442-464&rft.date=1960&rft.aulast=Ryser&rft.aufirst=H.J.&rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fbull%2F1960-66-06%2FS0002-9904-1960-10494-6%2FS0002-9904-1960-10494-6.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFulkerson1960" class="citation journal cs1"><a href="/wiki/D._R._Fulkerson" title="D. R. Fulkerson">Fulkerson, D.R.</a> (1960). <a rel="nofollow" class="external text" href="https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-10/issue-3/Zero-one-matrices-with-zero-trace/pjm/1103038231.pdf">"Zero-one matrices with zero trace"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Pacific_Journal_of_Mathematics" title="Pacific Journal of Mathematics">Pacific Journal of Mathematics</a></i>. <b>10</b>: 831–6.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Pacific+Journal+of+Mathematics&rft.atitle=Zero-one+matrices+with+zero+trace&rft.volume=10&rft.pages=831-6&rft.date=1960&rft.aulast=Fulkerson&rft.aufirst=D.R.&rft_id=https%3A%2F%2Fprojecteuclid.org%2Fjournals%2Fpacific-journal-of-mathematics%2Fvolume-10%2Fissue-3%2FZero-one-matrices-with-zero-trace%2Fpjm%2F1103038231.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFulkersonRyser1961" class="citation journal cs1">Fulkerson, D.R.; Ryser, H.J. (1961). "Widths and heights of (0, 1)-matrices". <i>Canadian Journal of Mathematics</i>. <b>13</b>: 239–255. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4153%2FCJM-1961-020-3">10.4153/CJM-1961-020-3</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Canadian+Journal+of+Mathematics&rft.atitle=Widths+and+heights+of+%280%2C+1%29-matrices&rft.volume=13&rft.pages=239-255&rft.date=1961&rft_id=info%3Adoi%2F10.4153%2FCJM-1961-020-3&rft.aulast=Fulkerson&rft.aufirst=D.R.&rft.au=Ryser%2C+H.J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFord_Jr.Fulkerson2016" class="citation book cs1"><a href="/wiki/L._R._Ford_Jr." title="L. R. Ford Jr.">Ford Jr., L.R.</a>; Fulkerson, D.R. (2016) [1962]. <a rel="nofollow" class="external text" href="https://www.degruyter.com/document/doi/10.1515/9781400875184-004/html">"II. Feasibility Theorems and Combinatorial Applications §2.12 Matrices composed of 0's and 1's"</a>. <i>Flows in Networks</i>. <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>. pp. 79–91. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2F9781400875184-004">10.1515/9781400875184-004</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781400875184" title="Special:BookSources/9781400875184"><bdi>9781400875184</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0159700">0159700</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=II.+Feasibility+Theorems+and+Combinatorial+Applications+%C2%A72.12+Matrices+composed+of+0%27s+and+1%27s&rft.btitle=Flows+in+Networks&rft.pages=79-91&rft.pub=Princeton+University+Press&rft.date=2016&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0159700%23id-name%3DMR&rft_id=info%3Adoi%2F10.1515%2F9781400875184-004&rft.isbn=9781400875184&rft.aulast=Ford+Jr.&rft.aufirst=L.R.&rft.au=Fulkerson%2C+D.R.&rft_id=https%3A%2F%2Fwww.degruyter.com%2Fdocument%2Fdoi%2F10.1515%2F9781400875184-004%2Fhtml&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logical_matrix&action=edit&section=11" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Binary_matrix" class="extiw" title="commons:Category:Binary matrix">Binary matrix</a></span>.</div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Logical_matrix">"Logical matrix"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logical+matrix&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DLogical_matrix&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+matrix" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Matrix_classes" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Matrix_classes" title="Template:Matrix classes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Matrix_classes" title="Template talk:Matrix classes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Matrix_classes" title="Special:EditPage/Template:Matrix classes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Matrix_classes" style="font-size:114%;margin:0 4em"><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a> classes</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Explicitly constrained entries</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternant_matrix" title="Alternant matrix">Alternant</a></li> <li><a href="/wiki/Anti-diagonal_matrix" title="Anti-diagonal matrix">Anti-diagonal</a></li> <li><a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">Anti-Hermitian</a></li> <li><a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">Anti-symmetric</a></li> <li><a href="/wiki/Arrowhead_matrix" title="Arrowhead matrix">Arrowhead</a></li> <li><a href="/wiki/Band_matrix" title="Band matrix">Band</a></li> <li><a href="/wiki/Bidiagonal_matrix" title="Bidiagonal matrix">Bidiagonal</a></li> <li><a href="/wiki/Bisymmetric_matrix" title="Bisymmetric matrix">Bisymmetric</a></li> <li><a href="/wiki/Block-diagonal_matrix" class="mw-redirect" title="Block-diagonal matrix">Block-diagonal</a></li> <li><a href="/wiki/Block_matrix" title="Block matrix">Block</a></li> <li><a href="/wiki/Block_tridiagonal_matrix" class="mw-redirect" title="Block tridiagonal matrix">Block tridiagonal</a></li> <li><a href="/wiki/Boolean_matrix" title="Boolean matrix">Boolean</a></li> <li><a href="/wiki/Cauchy_matrix" title="Cauchy matrix">Cauchy</a></li> <li><a href="/wiki/Centrosymmetric_matrix" title="Centrosymmetric matrix">Centrosymmetric</a></li> <li><a href="/wiki/Conference_matrix" title="Conference matrix">Conference</a></li> <li><a href="/wiki/Complex_Hadamard_matrix" title="Complex Hadamard matrix">Complex Hadamard</a></li> <li><a href="/wiki/Copositive_matrix" title="Copositive matrix">Copositive</a></li> <li><a href="/wiki/Diagonally_dominant_matrix" title="Diagonally dominant matrix">Diagonally dominant</a></li> <li><a href="/wiki/Diagonal_matrix" title="Diagonal matrix">Diagonal</a></li> <li><a href="/wiki/DFT_matrix" title="DFT matrix">Discrete Fourier Transform</a></li> <li><a href="/wiki/Elementary_matrix" title="Elementary matrix">Elementary</a></li> <li><a href="/wiki/Equivalent_matrix" class="mw-redirect" title="Equivalent matrix">Equivalent</a></li> <li><a href="/wiki/Frobenius_matrix" title="Frobenius matrix">Frobenius</a></li> <li><a href="/wiki/Generalized_permutation_matrix" title="Generalized permutation matrix">Generalized permutation</a></li> <li><a href="/wiki/Hadamard_matrix" title="Hadamard matrix">Hadamard</a></li> <li><a href="/wiki/Hankel_matrix" title="Hankel matrix">Hankel</a></li> <li><a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian</a></li> <li><a href="/wiki/Hessenberg_matrix" title="Hessenberg matrix">Hessenberg</a></li> <li><a href="/wiki/Hollow_matrix" title="Hollow matrix">Hollow</a></li> <li><a href="/wiki/Integer_matrix" title="Integer matrix">Integer</a></li> <li><a class="mw-selflink selflink">Logical</a></li> <li><a href="/wiki/Matrix_unit" title="Matrix unit">Matrix unit</a></li> <li><a href="/wiki/Metzler_matrix" title="Metzler matrix">Metzler</a></li> <li><a href="/wiki/Moore_matrix" title="Moore matrix">Moore</a></li> <li><a href="/wiki/Nonnegative_matrix" title="Nonnegative matrix">Nonnegative</a></li> <li><a href="/wiki/Pentadiagonal_matrix" class="mw-redirect" title="Pentadiagonal matrix">Pentadiagonal</a></li> <li><a href="/wiki/Permutation_matrix" title="Permutation matrix">Permutation</a></li> <li><a href="/wiki/Persymmetric_matrix" title="Persymmetric matrix">Persymmetric</a></li> <li><a href="/wiki/Polynomial_matrix" title="Polynomial matrix">Polynomial</a></li> <li><a href="/wiki/Quaternionic_matrix" title="Quaternionic matrix">Quaternionic</a></li> <li><a href="/wiki/Signature_matrix" title="Signature matrix">Signature</a></li> <li><a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">Skew-Hermitian</a></li> <li><a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">Skew-symmetric</a></li> <li><a href="/wiki/Skyline_matrix" title="Skyline matrix">Skyline</a></li> <li><a href="/wiki/Sparse_matrix" title="Sparse matrix">Sparse</a></li> <li><a href="/wiki/Sylvester_matrix" title="Sylvester matrix">Sylvester</a></li> <li><a href="/wiki/Symmetric_matrix" title="Symmetric matrix">Symmetric</a></li> <li><a href="/wiki/Toeplitz_matrix" title="Toeplitz matrix">Toeplitz</a></li> <li><a href="/wiki/Triangular_matrix" title="Triangular matrix">Triangular</a></li> <li><a href="/wiki/Tridiagonal_matrix" title="Tridiagonal matrix">Tridiagonal</a></li> <li><a href="/wiki/Vandermonde_matrix" title="Vandermonde matrix">Vandermonde</a></li> <li><a href="/wiki/Walsh_matrix" title="Walsh matrix">Walsh</a></li> <li><a href="/wiki/Z-matrix_(mathematics)" title="Z-matrix (mathematics)">Z</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constant</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exchange_matrix" title="Exchange matrix">Exchange</a></li> <li><a href="/wiki/Hilbert_matrix" title="Hilbert matrix">Hilbert</a></li> <li><a href="/wiki/Identity_matrix" title="Identity matrix">Identity</a></li> <li><a href="/wiki/Lehmer_matrix" title="Lehmer matrix">Lehmer</a></li> <li><a href="/wiki/Matrix_of_ones" title="Matrix of ones">Of ones</a></li> <li><a href="/wiki/Pascal_matrix" title="Pascal matrix">Pascal</a></li> <li><a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli</a></li> <li><a href="/wiki/Redheffer_matrix" title="Redheffer matrix">Redheffer</a></li> <li><a href="/wiki/Shift_matrix" title="Shift matrix">Shift</a></li> <li><a href="/wiki/Zero_matrix" title="Zero matrix">Zero</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Conditions on <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalues or eigenvectors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Companion_matrix" title="Companion matrix">Companion</a></li> <li><a href="/wiki/Convergent_matrix" title="Convergent matrix">Convergent</a></li> <li><a href="/wiki/Defective_matrix" title="Defective matrix">Defective</a></li> <li><a href="/wiki/Definite_matrix" title="Definite matrix">Definite</a></li> <li><a href="/wiki/Diagonalizable_matrix" title="Diagonalizable matrix">Diagonalizable</a></li> <li><a href="/wiki/Hurwitz-stable_matrix" title="Hurwitz-stable matrix">Hurwitz-stable</a></li> <li><a href="/wiki/Positive-definite_matrix" class="mw-redirect" title="Positive-definite matrix">Positive-definite</a></li> <li><a href="/wiki/Stieltjes_matrix" title="Stieltjes matrix">Stieltjes</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Satisfying conditions on <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">products</a> or <a href="/wiki/Inverse_of_a_matrix" class="mw-redirect" title="Inverse of a matrix">inverses</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Matrix_congruence" title="Matrix congruence">Congruent</a></li> <li><a href="/wiki/Idempotent_matrix" title="Idempotent matrix">Idempotent</a> or <a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">Projection</a></li> <li><a href="/wiki/Invertible_matrix" title="Invertible matrix">Invertible</a></li> <li><a href="/wiki/Involutory_matrix" title="Involutory matrix">Involutory</a></li> <li><a href="/wiki/Nilpotent_matrix" title="Nilpotent matrix">Nilpotent</a></li> <li><a href="/wiki/Normal_matrix" title="Normal matrix">Normal</a></li> <li><a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">Orthogonal</a></li> <li><a href="/wiki/Unimodular_matrix" title="Unimodular matrix">Unimodular</a></li> <li><a href="/wiki/Unipotent" title="Unipotent">Unipotent</a></li> <li><a href="/wiki/Unitary_matrix" title="Unitary matrix">Unitary</a></li> <li><a href="/wiki/Totally_unimodular_matrix" class="mw-redirect" title="Totally unimodular matrix">Totally unimodular</a></li> <li><a href="/wiki/Weighing_matrix" title="Weighing matrix">Weighing</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">With specific applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjugate_matrix" title="Adjugate matrix">Adjugate</a></li> <li><a href="/wiki/Alternating_sign_matrix" title="Alternating sign matrix">Alternating sign</a></li> <li><a href="/wiki/Augmented_matrix" title="Augmented matrix">Augmented</a></li> <li><a href="/wiki/B%C3%A9zout_matrix" title="Bézout matrix">Bézout</a></li> <li><a href="/wiki/Carleman_matrix" title="Carleman matrix">Carleman</a></li> <li><a href="/wiki/Cartan_matrix" title="Cartan matrix">Cartan</a></li> <li><a href="/wiki/Circulant_matrix" title="Circulant matrix">Circulant</a></li> <li><a href="/wiki/Cofactor_matrix" class="mw-redirect" title="Cofactor matrix">Cofactor</a></li> <li><a href="/wiki/Commutation_matrix" title="Commutation matrix">Commutation</a></li> <li><a href="/wiki/Confusion_matrix" title="Confusion matrix">Confusion</a></li> <li><a href="/wiki/Coxeter_matrix" class="mw-redirect" title="Coxeter matrix">Coxeter</a></li> <li><a href="/wiki/Distance_matrix" title="Distance matrix">Distance</a></li> <li><a href="/wiki/Duplication_and_elimination_matrices" title="Duplication and elimination matrices">Duplication and elimination</a></li> <li><a href="/wiki/Euclidean_distance_matrix" title="Euclidean distance matrix">Euclidean distance</a></li> <li><a href="/wiki/Fundamental_matrix_(linear_differential_equation)" title="Fundamental matrix (linear differential equation)">Fundamental (linear differential equation)</a></li> <li><a href="/wiki/Generator_matrix" title="Generator matrix">Generator</a></li> <li><a href="/wiki/Gram_matrix" title="Gram matrix">Gram</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian</a></li> <li><a href="/wiki/Householder_transformation" title="Householder transformation">Householder</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a></li> <li><a href="/wiki/Moment_matrix" title="Moment matrix">Moment</a></li> <li><a href="/wiki/Payoff_matrix" class="mw-redirect" title="Payoff matrix">Payoff</a></li> <li><a href="/wiki/Pick_matrix" class="mw-redirect" title="Pick matrix">Pick</a></li> <li><a href="/wiki/Random_matrix" title="Random matrix">Random</a></li> <li><a href="/wiki/Rotation_matrix" title="Rotation matrix">Rotation</a></li> <li><a href="/wiki/Routh%E2%80%93Hurwitz_matrix" title="Routh–Hurwitz matrix">Routh-Hurwitz</a></li> <li><a href="/wiki/Seifert_matrix" class="mw-redirect" title="Seifert matrix">Seifert</a></li> <li><a href="/wiki/Shear_matrix" class="mw-redirect" title="Shear matrix">Shear</a></li> <li><a href="/wiki/Similarity_matrix" class="mw-redirect" title="Similarity matrix">Similarity</a></li> <li><a href="/wiki/Symplectic_matrix" title="Symplectic matrix">Symplectic</a></li> <li><a href="/wiki/Totally_positive_matrix" title="Totally positive matrix">Totally positive</a></li> <li><a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in <a href="/wiki/Statistics" title="Statistics">statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Centering_matrix" title="Centering matrix">Centering</a></li> <li><a href="/wiki/Correlation_matrix" class="mw-redirect" title="Correlation matrix">Correlation</a></li> <li><a href="/wiki/Covariance_matrix" title="Covariance matrix">Covariance</a></li> <li><a href="/wiki/Design_matrix" title="Design matrix">Design</a></li> <li><a href="/wiki/Doubly_stochastic_matrix" title="Doubly stochastic matrix">Doubly stochastic</a></li> <li><a href="/wiki/Fisher_information_matrix" class="mw-redirect" title="Fisher information matrix">Fisher information</a></li> <li><a href="/wiki/Projection_matrix" title="Projection matrix">Hat</a></li> <li><a href="/wiki/Precision_(statistics)" title="Precision (statistics)">Precision</a></li> <li><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Stochastic</a></li> <li><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Transition</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency</a></li> <li><a href="/wiki/Biadjacency_matrix" class="mw-redirect" title="Biadjacency matrix">Biadjacency</a></li> <li><a href="/wiki/Degree_matrix" title="Degree matrix">Degree</a></li> <li><a href="/wiki/Edmonds_matrix" title="Edmonds matrix">Edmonds</a></li> <li><a href="/wiki/Incidence_matrix" title="Incidence matrix">Incidence</a></li> <li><a href="/wiki/Laplacian_matrix" title="Laplacian matrix">Laplacian</a></li> <li><a href="/wiki/Seidel_adjacency_matrix" title="Seidel adjacency matrix">Seidel adjacency</a></li> <li><a href="/wiki/Tutte_matrix" title="Tutte matrix">Tutte</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in science and engineering</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">Cabibbo–Kobayashi–Maskawa</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density</a></li> <li><a href="/wiki/Fundamental_matrix_(computer_vision)" title="Fundamental matrix (computer vision)">Fundamental (computer vision)</a></li> <li><a href="/wiki/Fuzzy_associative_matrix" title="Fuzzy associative matrix">Fuzzy associative</a></li> <li><a href="/wiki/Gamma_matrices" title="Gamma matrices">Gamma</a></li> <li><a href="/wiki/Gell-Mann_matrices" title="Gell-Mann matrices">Gell-Mann</a></li> <li><a href="/wiki/Hamiltonian_matrix" title="Hamiltonian matrix">Hamiltonian</a></li> <li><a href="/wiki/Irregular_matrix" title="Irregular matrix">Irregular</a></li> <li><a href="/wiki/Overlap_matrix" class="mw-redirect" title="Overlap matrix">Overlap</a></li> <li><a href="/wiki/S-matrix" title="S-matrix">S</a></li> <li><a href="/wiki/State-transition_matrix" title="State-transition matrix">State transition</a></li> <li><a href="/wiki/Substitution_matrix" title="Substitution matrix">Substitution</a></li> <li><a href="/wiki/Z-matrix_(chemistry)" title="Z-matrix (chemistry)">Z (chemistry)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related terms</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Jordan_normal_form" title="Jordan normal form">Jordan normal form</a></li> <li><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a></li> <li><a href="/wiki/Matrix_exponential" title="Matrix exponential">Matrix exponential</a></li> <li><a href="/wiki/Matrix_representation_of_conic_sections" title="Matrix representation of conic sections">Matrix representation of conic sections</a></li> <li><a href="/wiki/Perfect_matrix" title="Perfect matrix">Perfect matrix</a></li> <li><a href="/wiki/Pseudoinverse" class="mw-redirect" title="Pseudoinverse">Pseudoinverse</a></li> <li><a href="/wiki/Row_echelon_form" title="Row echelon form">Row echelon form</a></li> <li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></li> <li><a href="/wiki/List_of_matrices" class="mw-redirect" title="List of matrices">List of matrices</a></li> <li><a href="/wiki/Category:Matrices" title="Category:Matrices">Category:Matrices</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.canary‐6b6579db88‐g9xts Cached time: 20241128210545 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.463 seconds Real time usage: 0.616 seconds Preprocessor visited node count: 2439/1000000 Post‐expand include size: 84559/2097152 bytes Template argument size: 2358/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 54598/5000000 bytes Lua time usage: 0.263/10.000 seconds Lua memory usage: 5087529/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 457.679 1 -total 26.93% 123.254 1 Template:Reflist 24.20% 110.747 1 Template:Matrix_classes 23.74% 108.672 1 Template:Navbox 17.12% 78.355 1 Template:Cite_web 14.61% 66.853 1 Template:Short_description 9.86% 45.137 2 Template:Pagetype 9.23% 42.262 1 Template:Commons_category 8.89% 40.684 1 Template:Sister_project 8.54% 39.107 1 Template:Side_box --> <!-- Saved in parser cache with key enwiki:pcache:idhash:4109196-0!canonical and timestamp 20241128210545 and revision id 1256839045. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Logical_matrix&oldid=1256839045">https://en.wikipedia.org/w/index.php?title=Logical_matrix&oldid=1256839045</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Boolean_algebra" title="Category:Boolean algebra">Boolean algebra</a></li><li><a href="/wiki/Category:Matrices" title="Category:Matrices">Matrices</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li><li><a href="/wiki/Category:Pages_that_use_a_deprecated_format_of_the_math_tags" title="Category:Pages that use a deprecated format of the math tags">Pages that use a deprecated format of the math tags</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 November 2024, at 20:40<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Logical_matrix&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-78f4c97c5d-tlm6g","wgBackendResponseTime":148,"wgPageParseReport":{"limitreport":{"cputime":"0.463","walltime":"0.616","ppvisitednodes":{"value":2439,"limit":1000000},"postexpandincludesize":{"value":84559,"limit":2097152},"templateargumentsize":{"value":2358,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":54598,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 457.679 1 -total"," 26.93% 123.254 1 Template:Reflist"," 24.20% 110.747 1 Template:Matrix_classes"," 23.74% 108.672 1 Template:Navbox"," 17.12% 78.355 1 Template:Cite_web"," 14.61% 66.853 1 Template:Short_description"," 9.86% 45.137 2 Template:Pagetype"," 9.23% 42.262 1 Template:Commons_category"," 8.89% 40.684 1 Template:Sister_project"," 8.54% 39.107 1 Template:Side_box"]},"scribunto":{"limitreport-timeusage":{"value":"0.263","limit":"10.000"},"limitreport-memusage":{"value":5087529,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.canary-6b6579db88-g9xts","timestamp":"20241128210545","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Logical matrix","url":"https:\/\/en.wikipedia.org\/wiki\/Logical_matrix","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1994977","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1994977","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-02-17T21:34:08Z","dateModified":"2024-11-11T20:40:10Z","headline":"matrix with entries from the Boolean domain B = {0, 1}"}</script> </body> </html>