CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 77 results for author: <span class="mathjax">Zvezdin, A K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Zvezdin%2C+A+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zvezdin, A K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zvezdin%2C+A+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zvezdin, A K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zvezdin%2C+A+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zvezdin%2C+A+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zvezdin%2C+A+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14576">arXiv:2404.14576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14576">pdf</a>, <a href="https://arxiv.org/format/2404.14576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Control of a ferrimagnet phase by a two-component magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ignatyeva%2C+D+O">Daria O. Ignatyeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gusev%2C+N+A">Nikolay A. Gusev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">Anatoly K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belotelov%2C+V+I">Vladimir I. Belotelov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14576v1-abstract-short" style="display: inline;"> We report a theoretical study of the phase diagram of a ferrimagnetic iron-garnet with uniaxial anisotropy near a magnetization compensation point in the presence of a two-component magnetic field. The study is performed based on a quasi-antiferromagnetic approximation. The number and stability of the equilibrium states of the Neel vector are analyzed using the effective energy function. It is sho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14576v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14576v1-abstract-full" style="display: none;"> We report a theoretical study of the phase diagram of a ferrimagnetic iron-garnet with uniaxial anisotropy near a magnetization compensation point in the presence of a two-component magnetic field. The study is performed based on a quasi-antiferromagnetic approximation. The number and stability of the equilibrium states of the Neel vector are analyzed using the effective energy function. It is shown that application of the small out-of-plane magnetic field in addition to the stronger in-plane magnetic field significantly changes the equilibrium states of a ferrimagnet. The possibilities to control the equilibrium Neel vector position and to switch between the monostable and bistable states by tuning the value and ratio of the in-plane and out-of-plane magnetic field components are demonstrated. This opens new possibilities for the utilization of ferrimagnets since the magnetic field could be changed much faster than the temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14576v1-abstract-full').style.display = 'none'; document.getElementById('2404.14576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05438">arXiv:2310.05438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05438">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2023.171323">10.1016/j.jmmm.2023.171323 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Micromagnetic textures in exchange coupled-ferromagnetic multiferroic films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gareeva%2C+Z+V">Z. V. Gareeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shulga%2C+N+V">N. V. Shulga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05438v1-abstract-short" style="display: inline;"> The development of new computing technologies has given a new stimulus in the study of multiferroics. The use of multiferroics allows the realization of competitive energy efficient scalable logic and storage devices. The low-power consumption in Magneto Electric-Spin Orbital logics and Magnetic Random Access Memory components is provided by magnetoelectric switching in multiferroic based systems&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05438v1-abstract-full').style.display = 'inline'; document.getElementById('2310.05438v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05438v1-abstract-full" style="display: none;"> The development of new computing technologies has given a new stimulus in the study of multiferroics. The use of multiferroics allows the realization of competitive energy efficient scalable logic and storage devices. The low-power consumption in Magneto Electric-Spin Orbital logics and Magnetic Random Access Memory components is provided by magnetoelectric switching in multiferroic based systems using a low-energy electric field. Our work concerns the modelling of the Magneto Electric-Spin Orbital elements with an emphasis on the magnetoelectric component and simulation of magnetization reversal processes in a model system. The use of the proposed approach makes it possible to analyze the influence of dimensional factors (film thicknesses, transverse dimensions, sample shape) affecting the magnetic states of multiferroic nanoelements; taking into interfacial interactions (magnetic anisotropy and interlayer exchange); energy-efficient external influences that allow switching magnetic states using magnetic and electric fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05438v1-abstract-full').style.display = 'none'; document.getElementById('2310.05438v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> A.m </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Magnetism and Magnetic Materials, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02971">arXiv:2305.02971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02971">pdf</a>, <a href="https://arxiv.org/ps/2305.02971">ps</a>, <a href="https://arxiv.org/format/2305.02971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.094439">10.1103/PhysRevB.108.094439 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective rectification of THz electromagnetic fields in a ferrimagnetic iron garnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Blank%2C+T+G+H">T. G. H. Blank</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mashkovich%2C+E+A">E. A. Mashkovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grishunin%2C+K+A">K. A. Grishunin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schippers%2C+C">C. Schippers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Logunov%2C+M+V">M. V. Logunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koopmans%2C+B">B. Koopmans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02971v1-abstract-short" style="display: inline;"> It is found that single-cycle THz electromagnetic fields efficiently excite a GHz spin resonance mode in ferrimagnetic Tm$_3$Fe$_5$O$_{12}$, despite the near absence of GHz spectral components in the exciting THz pulse. By analyzing how the efficiency of excitation depends on the orientation and strength of the THz electric field, we show that it can be explained in terms of the nonlinear THz inve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02971v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02971v1-abstract-full" style="display: none;"> It is found that single-cycle THz electromagnetic fields efficiently excite a GHz spin resonance mode in ferrimagnetic Tm$_3$Fe$_5$O$_{12}$, despite the near absence of GHz spectral components in the exciting THz pulse. By analyzing how the efficiency of excitation depends on the orientation and strength of the THz electric field, we show that it can be explained in terms of the nonlinear THz inverse Cotton-Mouton effect. Here, the THz electric field gets effectively rectified and acts on the ferrimagnetic spins as a uni-polar effective magnetic field pulse. This interpretation is confirmed by a theoretical model based on the phenomenological analysis of the effective magnetic field, combined with the equations of motion derived from the effective Lagrangian for a ferrimagnet. Moreover, by using the outcome of two-dimensional THz spectroscopy, we conjecture a quantum-mechanical interpretation of the observed effect in terms of stimulated Raman scattering of THz photons by the crystal-field split f-f electronic transitions of Tm$^{3+}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02971v1-abstract-full').style.display = 'none'; document.getElementById('2305.02971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 094439 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07532">arXiv:2212.07532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07532">pdf</a>, <a href="https://arxiv.org/ps/2212.07532">ps</a>, <a href="https://arxiv.org/format/2212.07532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.026902">10.1103/PhysRevLett.131.026902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional THz spectroscopy of nonlinear phononics in the topological insulator $\mathrm{MnBi}_2\mathrm{Te}_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Blank%2C+T+G+H">T. G. H. Blank</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grishunin%2C+K+A">K. A. Grishunin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hai%2C+N+T">N. T. Hai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J+C">J. C. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+S+-">S. -H. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J+-+A">J. -C. A. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07532v1-abstract-short" style="display: inline;"> The interaction of a single-cycle THz electric field with the topological insulator $\mathrm{MnBi}_2\mathrm{Te}_4$ triggers strongly anharmonic lattice dynamics, promoting fully coherent energy transfer between the otherwise non-interacting Raman-active $E_g$ and infrared (IR)-active $E_u$ phononic modes. Two-dimensional (2D) THz spectroscopy combined with modeling based on the classical equations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07532v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07532v1-abstract-full" style="display: none;"> The interaction of a single-cycle THz electric field with the topological insulator $\mathrm{MnBi}_2\mathrm{Te}_4$ triggers strongly anharmonic lattice dynamics, promoting fully coherent energy transfer between the otherwise non-interacting Raman-active $E_g$ and infrared (IR)-active $E_u$ phononic modes. Two-dimensional (2D) THz spectroscopy combined with modeling based on the classical equations of motion and symmetry analysis reveals the multi-stage process underlying the excitation of the Raman-active $E_g$ phonon. In this process, the THz electric field first prepares a coherent IR-active $E_u$ phononic state and subsequently interacts with this state to efficiently excite the $E_g$ phonon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07532v1-abstract-full').style.display = 'none'; document.getElementById('2212.07532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 026902 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00085">arXiv:2212.00085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.00085">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unconventional spin dynamics in the non-collinear phase of a ferrimagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krichevsky%2C+D+M">D. M. Krichevsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gusev%2C+N+A">N. A. Gusev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ignatyeva%2C+D+O">D. O. Ignatyeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prisyazhnyuk%2C+A+V">A. V. Prisyazhnyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Semuk%2C+E+Y">E. Yu. Semuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polulyakh%2C+S+N">S. N. Polulyakh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berzhansky%2C+V+N">V. N. Berzhansky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belotelov%2C+V+I">V. I. Belotelov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00085v2-abstract-short" style="display: inline;"> Ferrimagnets containing several partially compensated magnetic sublattices are considered the most promising materials for all-optical data storage and for ultrafast communications based on spin waves. There are two magnetic phases of the ferrimagnets: collinear and non-collinear ones. Up to now spin dynamics in ferrimagnets has been studied mostly in the collinear state without paying much attent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00085v2-abstract-full').style.display = 'inline'; document.getElementById('2212.00085v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00085v2-abstract-full" style="display: none;"> Ferrimagnets containing several partially compensated magnetic sublattices are considered the most promising materials for all-optical data storage and for ultrafast communications based on spin waves. There are two magnetic phases of the ferrimagnets: collinear and non-collinear ones. Up to now spin dynamics in ferrimagnets has been studied mostly in the collinear state without paying much attention to the kind of the magnetic phase. Here we investigate laser induced ultrafast spin dynamics in a rare-earth iron garnet film in the noncollinear phase as well. We identify a crucial influence of the magnetic phase on the excited spin modes which allowed us to discover several prominent effects previously overlooked. In particular, the non-collinearity makes the quasi-antiferromagnetic mode sensitive to the external magnetic field and brings its frequency close to the frequency of the quasiferromagnetic mode. The latter maximizes near the magnetization compensation point and vanishes towards the collinear phase. Spectacularly, at the phase transition the quasiferromagnetic mode becomes soft and its amplitude significantly increases reaching 7掳. This opens new opportunities for the ultrafast control of spins in ferrimagnets for nonthermal data storage and data processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00085v2-abstract-full').style.display = 'none'; document.getElementById('2212.00085v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03931">arXiv:2202.03931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.03931">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Emergence of Ferromagnetism in Antiferromagnetic FeRh in High Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dolgikh%2C+I+A">I. A. Dolgikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blank%2C+T+G+H">T. G. H. Blank</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buzdakov%2C+A+G">A. G. Buzdakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakara%2C+K+H">K. H. Prabhakara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">S. K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">R. Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koplak%2C+O+V">O. V. Koplak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mentink%2C+J+H">J. H. Mentink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianen%2C+P+C+M">P. C. M. Christianen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03931v4-abstract-short" style="display: inline;"> Ultrafast heating of FeRh by a femtosecond laser pulse launches a magneto-structural phase transition from an antiferromagnetic to a ferromagnetic state. Aiming to reveal the ultrafast kinetics of this transition, we studied magnetization dynamics with the help of the magneto-optical Kerr effect in a broad range of temperatures (from 4 K to 400 K) and magnetic fields (up to 25 T). Three different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03931v4-abstract-full').style.display = 'inline'; document.getElementById('2202.03931v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03931v4-abstract-full" style="display: none;"> Ultrafast heating of FeRh by a femtosecond laser pulse launches a magneto-structural phase transition from an antiferromagnetic to a ferromagnetic state. Aiming to reveal the ultrafast kinetics of this transition, we studied magnetization dynamics with the help of the magneto-optical Kerr effect in a broad range of temperatures (from 4 K to 400 K) and magnetic fields (up to 25 T). Three different types of ultrafast magnetization dynamics were observed and, using a numerically calculated H-T phase diagram, the differences were explained by different initial states of FeRh corresponding to a (i) collinear antiferromagnetic, (ii) canted antiferromagnetic and (iii) ferromagnetic alignment of spins. We argue that ultrafast heating of FeRh in the canted antiferromagnetic phase launches practically the fastest possible emergence of magnetization in this material. The magnetization emerges on a time scale of 2 ps, which corresponds to the earlier reported time-scale of the structural changes during the phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03931v4-abstract-full').style.display = 'none'; document.getElementById('2202.03931v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.10186">arXiv:2111.10186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.10186">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abk1121">10.1126/science.abk1121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Terahertz-Light Driven Coupling of Antiferromagnetic Spins to Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mashkovich%2C+E+A">Evgeny A. Mashkovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grishunin%2C+K+A">Kirill A. Grishunin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dubrovin%2C+R+M">Roman M. Dubrovin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">Anatoly K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pisarev%2C+R+V">Roman V. Pisarev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">Alexey V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.10186v3-abstract-short" style="display: inline;"> Understanding spin-lattice coupling represents a key challenge in modern condensed matter physics, with crucial importance and implications for ultrafast and 2D-magnetism. The efficiency of angular momentum and energy transfer between spins and the lattice imposes fundamental speed limits on the ability to control spins in spintronics, magnonics and magnetic data storage. We report on an efficient&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10186v3-abstract-full').style.display = 'inline'; document.getElementById('2111.10186v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.10186v3-abstract-full" style="display: none;"> Understanding spin-lattice coupling represents a key challenge in modern condensed matter physics, with crucial importance and implications for ultrafast and 2D-magnetism. The efficiency of angular momentum and energy transfer between spins and the lattice imposes fundamental speed limits on the ability to control spins in spintronics, magnonics and magnetic data storage. We report on an efficient nonlinear mechanism of spin-lattice coupling driven by THz light pulses. A nearly single-cycle THz pulse resonantly interacts with a coherent magnonic state in the antiferromagnet CoF2 and excites the Raman-active THz phonon. The results reveal the unique functionality of antiferromagnets allowing ultrafast spin-lattice coupling using light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10186v3-abstract-full').style.display = 'none'; document.getElementById('2111.10186v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04428">arXiv:2107.04428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04428">pdf</a>, <a href="https://arxiv.org/format/2107.04428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.115168">10.1103/PhysRevB.104.115168 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sample-dependent Dirac point gap in MnBi$_2$Te$_4$ and its response to the applied surface charge: a combined photoemission and ab initio study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shikin%2C+A+M">A. M. Shikin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Estyunin%2C+D+A">D. A. Estyunin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaitsev%2C+N+L">N. L. Zaitsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glazkova%2C+D">D. Glazkova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klimovskikh%2C+I+I">I. I. Klimovskikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filnov%2C+S">S. Filnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rybkin%2C+A+G">A. G. Rybkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schwier%2C+E+F">E. F. Schwier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+S">S. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimura%2C+A">A. Kimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mamedov%2C+N">N. Mamedov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aliev%2C+Z">Z. Aliev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babanly%2C+M+B">M. B. Babanly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kokh%2C+K">K. Kokh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tereshchenko%2C+O+E">O. E. Tereshchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otrokov%2C+M+M">M. M. Otrokov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chulkov%2C+E+V">E. V. Chulkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04428v1-abstract-short" style="display: inline;"> Recently discovered intrinsic antiferromagnetic topological insulator MnBi$_2$Te$_4$ presents an exciting platform for realization of the quantum anomalous Hall effect and a number of related phenomena at elevated temperatures. An important characteristic making this material attractive for applications is its predicted large magnetic gap at the Dirac point (DP). However, while the early experimen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04428v1-abstract-full').style.display = 'inline'; document.getElementById('2107.04428v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04428v1-abstract-full" style="display: none;"> Recently discovered intrinsic antiferromagnetic topological insulator MnBi$_2$Te$_4$ presents an exciting platform for realization of the quantum anomalous Hall effect and a number of related phenomena at elevated temperatures. An important characteristic making this material attractive for applications is its predicted large magnetic gap at the Dirac point (DP). However, while the early experimental measurements reported on large DP gaps, a number of recent studies claimed to observe a gapless dispersion of the MnBi$_2$Te$_4$ Dirac cone. Here, using micro($渭$)-laser angle-resolved photoemission spectroscopy, we study the electronic structure of 15 different MnBi$_2$Te$_4$ samples, grown by two different chemists groups. Based on the careful energy distribution curves analysis, the DP gaps between 15 and 65 meV are observed, as measured below the N茅el temperature at about 10-16 K. At that, roughly half of the studied samples show the DP gap of about 30 meV, while for a quarter of the samples the gaps are in the 50 to 60 meV range. Summarizing the results of both our and other groups, in the currently available MnBi$_2$Te$_4$ samples the DP gap can acquire an arbitrary value between a few and several tens of meV. Further, based on the density functional theory, we discuss a possible factor that might contribute to the reduction of the DP gap size, which is the excess surface charge that can appear due to various defects in surface region. We demonstrate that the DP gap is influenced by the applied surface charge and even can be closed, which can be taken advantage of to tune the MnBi$_2$Te$_4$ DP gap size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04428v1-abstract-full').style.display = 'none'; document.getElementById('2107.04428v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 115168 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13129">arXiv:2103.13129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.13129">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2021.168167">10.1016/j.jmmm.2021.168167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-dimensional optomagnonic microcavities for selective excitation of perpendicular standing spin waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ozerov%2C+V+A">V. A. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sylgacheva%2C+D+A">D. A. Sylgacheva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kozhaev%2C+M+A">M. A. Kozhaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikhailova%2C+T">T. Mikhailova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berzhansky%2C+V+N">V. N. Berzhansky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamidi%2C+M">Mehri Hamidi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belotelov%2C+V+I">V. I. Belotelov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13129v1-abstract-short" style="display: inline;"> Here we propose a method of the excitation of perpendicular standing spin waves (PSSWs) of different orders in an optomagnonic microcavity by ultrashort laser pulses. The microcavity is formed by a magnetic dielectric film surrounded by dielectric non-magnetic Bragg mirrors. Optical cavity modes in the magnetic layer provide concentration and strongly non-uniform distribution of the optical power&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13129v1-abstract-full').style.display = 'inline'; document.getElementById('2103.13129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13129v1-abstract-full" style="display: none;"> Here we propose a method of the excitation of perpendicular standing spin waves (PSSWs) of different orders in an optomagnonic microcavity by ultrashort laser pulses. The microcavity is formed by a magnetic dielectric film surrounded by dielectric non-magnetic Bragg mirrors. Optical cavity modes in the magnetic layer provide concentration and strongly non-uniform distribution of the optical power over the layer thickness and therefore induce the effective field of the inverse Faraday effect also spatially non-uniform. It results in excitation of PSSWs. PSSWs whose wavevector is closest to the wavevector characterizing distribution of the inverse Faraday effect field are excited most efficiently. Consequently, a key advantage of this approach is a selectivity of the PSSW excitation which allows to launch PSSWs of required orders only. All-optical operation of the optomagnonic cavities opens new possibilities for their applications for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13129v1-abstract-full').style.display = 'none'; document.getElementById('2103.13129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05083">arXiv:2103.05083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.05083">pdf</a>, <a href="https://arxiv.org/ps/2103.05083">ps</a>, <a href="https://arxiv.org/format/2103.05083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.024419">10.1103/PhysRevB.104.024419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excitation and Detection of THz Coherent Spin Waves in Antiferromagnetic $\mathrm{伪-Fe_2O_3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grishunin%2C+K">K. Grishunin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mashkovich%2C+E+A">E. A. Mashkovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balbashov%2C+A+M">A. M. Balbashov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05083v1-abstract-short" style="display: inline;"> The efficiency of ultrafast excitation of spins in antiferromagnetic $\mathrm{伪-Fe_{2}O_{3}}$ using nearly single-cycle THz pulse is studied as a function of the polarization of the THz pulse and the sample temperature. Above the Morin point the most efficient excitation is achieved when the magnetic field of the THz pulse is perpendicular to the antiferromagnetically coupled spins. Using the expe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05083v1-abstract-full').style.display = 'inline'; document.getElementById('2103.05083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05083v1-abstract-full" style="display: none;"> The efficiency of ultrafast excitation of spins in antiferromagnetic $\mathrm{伪-Fe_{2}O_{3}}$ using nearly single-cycle THz pulse is studied as a function of the polarization of the THz pulse and the sample temperature. Above the Morin point the most efficient excitation is achieved when the magnetic field of the THz pulse is perpendicular to the antiferromagnetically coupled spins. Using the experimental results and equations of motion for spins, we show that the mechanism of the spin excitation above and below the Morin point relies on magnetic-dipole interaction of the THz magnetic field with spins and the efficiency of the coupling is proportional to the time derivative of the magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05083v1-abstract-full').style.display = 'none'; document.getElementById('2103.05083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 024419 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.04105">arXiv:2103.04105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.04105">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2020.166876">10.1016/j.jmmm.2020.166876 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalies in the dynamics of ferrimagnets near the angular momentum compensation point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gareeva%2C+Z+V">Z. V. Gareeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.04105v1-abstract-short" style="display: inline;"> In this paper, we elaborate analytical theory of domain wall dynamics close to the angular momentum compensation point based on non-linear dynamic equations derived from the effective Lagrangian of a ferrimagnet. Analysis of the precession angle and domain wall velocity oscillations in post Walker regime in a ferrimagnet is performed. In the framework of the proposed model, we explore dynamic proc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.04105v1-abstract-full').style.display = 'inline'; document.getElementById('2103.04105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.04105v1-abstract-full" style="display: none;"> In this paper, we elaborate analytical theory of domain wall dynamics close to the angular momentum compensation point based on non-linear dynamic equations derived from the effective Lagrangian of a ferrimagnet. Analysis of the precession angle and domain wall velocity oscillations in post Walker regime in a ferrimagnet is performed. In the framework of the proposed model, we explore dynamic processes in the Walker and post Walker regimes. We show that although spin oscillations quench the dynamics of domain walls near the Walker breakdown field, a further increase of the driving magnetic field increases domain wall speed and mobility. An anomalous behavior of domain wall dynamic properties near the angular momentum compensation point in ferrimagnets is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.04105v1-abstract-full').style.display = 'none'; document.getElementById('2103.04105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JMMM 509 (2020) 166876 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02449">arXiv:2103.02449</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.02449">pdf</a>, <a href="https://arxiv.org/ps/2103.02449">ps</a>, <a href="https://arxiv.org/format/2103.02449">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.037203">10.1103/PhysRevLett.127.037203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> THz Field-induced Spin Dynamics in Ferrimagnetic Iron Garnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Blank%2C+T+G+H">T. G. H. Blank</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grishunin%2C+K+A">K. A. Grishunin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mashkovich%2C+E+A">E. A. Mashkovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Logunov%2C+M+V">M. V. Logunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02449v1-abstract-short" style="display: inline;"> THz magnetization dynamics is excited in ferrimagnetic thulium iron garnet with a picosecond, single-cycle magnetic field pulse and seen as a high-frequency modulation of the magneto-optical Faraday effect. Data analysis combined with numerical modelling and evaluation of the effective Lagrangian allow us to conclude that the dynamics corresponds to the exchange mode excited by Zeeman interaction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02449v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02449v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02449v1-abstract-full" style="display: none;"> THz magnetization dynamics is excited in ferrimagnetic thulium iron garnet with a picosecond, single-cycle magnetic field pulse and seen as a high-frequency modulation of the magneto-optical Faraday effect. Data analysis combined with numerical modelling and evaluation of the effective Lagrangian allow us to conclude that the dynamics corresponds to the exchange mode excited by Zeeman interaction of the THz field with the antiferromagnetically coupled spins. We argue that THz-pump IR-probe experiments on ferrimagnets offer a unique tool for quantitative studies of dynamics and mechanisms to control antiferromagnetically coupled spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02449v1-abstract-full').style.display = 'none'; document.getElementById('2103.02449v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 037203 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05659">arXiv:2012.05659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.05659">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ac0dd6">10.1088/1361-648X/ac0dd6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiferroic order parameters in rhombic antiferromagnets. RCrO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gareeva%2C+Z+V">Z. V. Gareeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+M">X. M. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05659v3-abstract-short" style="display: inline;"> In this paper, we explore magneteoelectricity of rare earth orthochromites from the symmetry point of view. We determine the principal structural order parameters and find their couplings with ferroelectric and magnetic orderings. Our calculations showed that electric dipole moments emerge in the vicinity of Cr3+ ions in the unit cell of RCrO3 due to the displacements of oxygen ions from their hig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05659v3-abstract-full').style.display = 'inline'; document.getElementById('2012.05659v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05659v3-abstract-full" style="display: none;"> In this paper, we explore magneteoelectricity of rare earth orthochromites from the symmetry point of view. We determine the principal structural order parameters and find their couplings with ferroelectric and magnetic orderings. Our calculations showed that electric dipole moments emerge in the vicinity of Cr3+ ions in the unit cell of RCrO3 due to the displacements of oxygen ions from their highly symmetric positions in the parent perovskite phase (structural instability). We find that the electric dipole moments are arranged in an antiferroelectric mode, so, in essence, RCrO3 are antiferroelectric materials. By classifying the order parameters according to the irreducible representations of the RCrO3 symmetry group (D2h16), we determine the possible couplings between distortive, ferroelectric and magnetic orderings and explore the emerging magnetoelectric structures in these terms. Our analysis makes it possible to explain experimentally observed polarization reversal and the concomitant reorientation of spins in a series of RCrO3 compounds and to predict the possible scenarios of phase transitions in RCrO3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05659v3-abstract-full').style.display = 'none'; document.getElementById('2012.05659v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02770">arXiv:2011.02770</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.02770">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Nanophotonic structures with optical surface modes for tunable spin current generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shilina%2C+P+V">P. V. Shilina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ignatyeva%2C+D+O">D. O. Ignatyeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kapralov%2C+P+O">P. O. Kapralov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sekatskii%2C+S+K">S. K. Sekatskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nur-E-Alam%2C+M">M. Nur-E-Alam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vasiliev%2C+M">M. Vasiliev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alameh%2C+K">K. Alameh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Achanta%2C+V+G">V. G. Achanta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Y. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamidi%2C+S+M">S. M. Hamidi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belotelov%2C+V+I">V. I. Belotelov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02770v2-abstract-short" style="display: inline;"> Heat generated by spin currents in spintronics-based devices is typically much less than that generated by charge current flows in conventional electronic devices. However, the conventional approaches for excitation of spin currents based on spin-pumping and spin Hall effect are limited in efficiency which restricts their application for viable spintronic devices. We propose a novel type of photon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02770v2-abstract-full').style.display = 'inline'; document.getElementById('2011.02770v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02770v2-abstract-full" style="display: none;"> Heat generated by spin currents in spintronics-based devices is typically much less than that generated by charge current flows in conventional electronic devices. However, the conventional approaches for excitation of spin currents based on spin-pumping and spin Hall effect are limited in efficiency which restricts their application for viable spintronic devices. We propose a novel type of photonic-crystal (PC) based structures for efficient and tunable optically-induced spin current generation via the Spin Seebeck and inverse spin Hall effects. It is experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation and provides its tunability by modifying light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to spin current. Importantly, high efficiency becomes accessible even for ultra-thin SOC layers. Moreover, surface patterning of the PC-based spintronic nanostructure allows local generation of spin currents at the pattern scales rather than diameter of the laser beam. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02770v2-abstract-full').style.display = 'none'; document.getElementById('2011.02770v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.16237">arXiv:2010.16237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.16237">pdf</a>, <a href="https://arxiv.org/format/2010.16237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/S.A.I.ence50533.2020.9303219">10.1109/S.A.I.ence50533.2020.9303219 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Learning phase transitions in ferrimagnetic GdFeCo alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Koritsky%2C+N+A">N. A. Koritsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solov%27yov%2C+S+V">S. V. Solov&#39;yov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A+K">A. K. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.16237v2-abstract-short" style="display: inline;"> We present results on the identification of phase transitions in ferrimagnetic GdFeCo alloys using machine learning. The approach for finding phase transitions in the system is based on the `learning by confusion&#39; scheme, which allows one to characterize phase transitions using a universal $W$-shape. By applying the `learning by confusion&#39; scheme, we obtain 2D $W$-a shaped surface that characteriz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.16237v2-abstract-full').style.display = 'inline'; document.getElementById('2010.16237v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.16237v2-abstract-full" style="display: none;"> We present results on the identification of phase transitions in ferrimagnetic GdFeCo alloys using machine learning. The approach for finding phase transitions in the system is based on the `learning by confusion&#39; scheme, which allows one to characterize phase transitions using a universal $W$-shape. By applying the `learning by confusion&#39; scheme, we obtain 2D $W$-a shaped surface that characterizes a triple phase transition point of the GdFeCo alloy. We demonstrate that our results are in the perfect agreement with the procedure of the numerical minimization of the thermodynamical potential, yet our machine-learning-based scheme has the potential to provide a speedup in the task of the phase transition identification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.16237v2-abstract-full').style.display = 'none'; document.getElementById('2010.16237v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures; Published in IEEE Xplore</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the 2020 Science and Artificial Intelligence conference (Novosibirsk-online, November 14-15, 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.05357">arXiv:2004.05357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.05357">pdf</a>, <a href="https://arxiv.org/ps/2004.05357">ps</a>, <a href="https://arxiv.org/format/2004.05357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-020-00263-9">10.1038/s41535-020-00263-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual magnetoelectric effect in paramagnetic rare-earth langasite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Weymann%2C+L">L. Weymann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergen%2C+L">L. Bergen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kain%2C+T">Th. Kain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pimenov%2C+A">Anna Pimenov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shuvaev%2C+A">A. Shuvaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Constable%2C+E">E. Constable</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szaller%2C+D">D. Szaller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pimenov%2C+A">A. Pimenov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mill%2C+B+V">B. V. Mill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuzmenko%2C+A+M">A. M. Kuzmenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivanov%2C+V+Y">V. Yu. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kostyuchenko%2C+N+V">N. V. Kostyuchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popov%2C+A+I">A. I. Popov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukhin%2C+A+A">A. A. Mukhin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mostovoy%2C+M">M. Mostovoy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.05357v1-abstract-short" style="display: inline;"> Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed matter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.05357v1-abstract-full').style.display = 'inline'; document.getElementById('2004.05357v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.05357v1-abstract-full" style="display: none;"> Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed matter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linear magnetoelectric (ME) effect - the electric polarization proportional to the applied magnetic field and the magnetization induced by the electric field. Here, we report the experimental study of the holmium-doped langasite, Ho$_{x}$La$_{3-x}$Ga$_5$SiO$_{14}$, showing a puzzling combination of linear and highly non-linear ME responses in the disordered paramagnetic state: its electric polarization grows linearly with the magnetic field but oscillates many times upon rotation of the magnetic field vector. We propose a simple phenomenological Hamiltonian describing this unusual behavior and derive it microscopically using the coupling of magnetic multipoles of the rare-earth ions to the electric field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.05357v1-abstract-full').style.display = 'none'; document.getElementById('2004.05357v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 5, 61 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.06799">arXiv:2001.06799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.06799">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast kinetics of the antiferromagnetic-ferromagnetic phase transition in FeRh </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">R. Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mentink%2C+J+H">J. H. Mentink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikhaylovskiy%2C+R+V">R. V. Mikhaylovskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blank%2C+T+G+H">T. G. H. Blank</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">S. K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.06799v4-abstract-short" style="display: inline;"> Understanding how fast short-range interactions build up long-range order is one of the most intriguing topics in condensed matter physics. FeRh is a test specimen for studying this problem in magnetism, where the microscopic spin-spin exchange interaction is ultimately responsible for either ferro- or antiferromagnetic macroscopic order. Femtosecond laser excitation can induce ferromagnetism in a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06799v4-abstract-full').style.display = 'inline'; document.getElementById('2001.06799v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.06799v4-abstract-full" style="display: none;"> Understanding how fast short-range interactions build up long-range order is one of the most intriguing topics in condensed matter physics. FeRh is a test specimen for studying this problem in magnetism, where the microscopic spin-spin exchange interaction is ultimately responsible for either ferro- or antiferromagnetic macroscopic order. Femtosecond laser excitation can induce ferromagnetism in antiferromagnetic FeRh, but the mechanism and dynamics of this transition are topics of intense debates. Employing double-pump THz emission spectroscopy has enabled us to dramatically increase the temporal detection window of THz emission probes of transient states without sacrificing any loss of resolution or sensitivity. It allows us to study the kinetics of emergent ferromagnetism from the femtosecond up to the nanosecond timescales in FeRh/Pt bilayers. Our results strongly suggest a latency period between the initial pump-excitation and the emission of THz radiation by ferromagnetic nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06799v4-abstract-full').style.display = 'none'; document.getElementById('2001.06799v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages total, 8 figures in main text, 7 figures in supplementary</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.06255">arXiv:2001.06255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.06255">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1174-7">10.1038/s41586-019-1174-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temporal and spectral fingerprints of ultrafast all-coherent spin switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schlauderer%2C+S">S. Schlauderer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lange%2C+C">C. Lange</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baierl%2C+S">S. Baierl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ebnet%2C+T">T. Ebnet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmid%2C+C+P">C. P. Schmid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valovcin%2C+D+C">D. C. Valovcin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikhaylovskiy%2C+R+V">R. V. Mikhaylovskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huber%2C+R">R. Huber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.06255v1-abstract-short" style="display: inline;"> Future information technology demands ultimately fast, low-loss quantum control. Intense light fields have facilitated important milestones, such as inducing novel states of matter, accelerating electrons ballistically, or coherently flipping the valley pseudospin. These dynamics leave unique signatures, such as characteristic bandgaps or high-order harmonic radiation. The fastest and least dissip&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06255v1-abstract-full').style.display = 'inline'; document.getElementById('2001.06255v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.06255v1-abstract-full" style="display: none;"> Future information technology demands ultimately fast, low-loss quantum control. Intense light fields have facilitated important milestones, such as inducing novel states of matter, accelerating electrons ballistically, or coherently flipping the valley pseudospin. These dynamics leave unique signatures, such as characteristic bandgaps or high-order harmonic radiation. The fastest and least dissipative way of switching the technologically most important quantum attribute - the spin - between two states separated by a potential barrier is to trigger an all-coherent precession. Pioneering experiments and theory with picosecond electric and magnetic fields have suggested this possibility, yet observing the actual dynamics has remained out of reach. Here, we show that terahertz (1 THz = 10$^{12}$ Hz) electromagnetic pulses allow coherent navigation of spins over a potential barrier and we reveal the corresponding temporal and spectral fingerprints. This goal is achieved by coupling spins in antiferromagnetic TmFeO$_{3}$ with the locally enhanced THz electric field of custom-tailored antennas. Within their duration of 1 ps, the intense THz pulses abruptly change the magnetic anisotropy and trigger a large-amplitude ballistic spin motion. A characteristic phase flip, an asymmetric splitting of the magnon resonance, and a long-lived offset of the Faraday signal are hallmarks of coherent spin switching into adjacent potential minima, in agreement with a numerical simulation. The switchable spin states can be selected by an external magnetic bias. The low dissipation and the antenna&#39;s sub-wavelength spatial definition could facilitate scalable spin devices operating at THz rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06255v1-abstract-full').style.display = 'none'; document.getElementById('2001.06255v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a post-peer-review, pre-copyedit version of an article published in Nature. The final authenticated version is available online at https://www.nature.com/articles/s41586-019-1174-7. 32 pages, 4 Figures, 9 Extended Data Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature volume 569, pages 383-387(2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09863">arXiv:1908.09863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.09863">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.034053">10.1103/PhysRevApplied.13.034053 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual Field Dependence of Anomalous Hall Effect in Ta/TbFeCo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Davydova%2C+M+D">M. D. Davydova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jong-Ching Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ciou%2C+S">Sheng-Zhe Ciou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiou%2C+Y">Yi-Ru Chiou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skirdkov%2C+P+N">P. N. Skirdkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+L">Lin-Xiu Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Te-Ho Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhatt%2C+R+C">Ramesh Chandra Bhatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09863v1-abstract-short" style="display: inline;"> Experimental studies of anomalous Hall effect are performed for thin filmed Ta/TbFeCo in a wide range of temperatures and magnetic fields up to 3 T. While far from the compensation temperature (TM=277 K) the field dependence has a conventional shape of a single hysteresis loop, just below the compensation point the dependence is anomalous having the shape of a triple hysteresis. To understand this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09863v1-abstract-full').style.display = 'inline'; document.getElementById('1908.09863v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09863v1-abstract-full" style="display: none;"> Experimental studies of anomalous Hall effect are performed for thin filmed Ta/TbFeCo in a wide range of temperatures and magnetic fields up to 3 T. While far from the compensation temperature (TM=277 K) the field dependence has a conventional shape of a single hysteresis loop, just below the compensation point the dependence is anomalous having the shape of a triple hysteresis. To understand this behavior, we experimentally reveal the magnetic phase diagram and theoretically analyze it in terms of spin-reorientation phase transitions. We show that one should expect anomalous hysteresis loops below the compensation point if in the vicinity of it the magnetic anisotropy is dominated by FeCo sublattice due to interaction with Ta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09863v1-abstract-full').style.display = 'none'; document.getElementById('1908.09863v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 034053 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.07941">arXiv:1903.07941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.07941">pdf</a>, <a href="https://arxiv.org/ps/1903.07941">ps</a>, <a href="https://arxiv.org/format/1903.07941">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.064409">10.1103/PhysRevB.100.064409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> H-T Phase Diagram of Rare-Earth -- Transition Metal Alloy in the Vicinity of the Compensation Point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Davydova%2C+M+D">M. D Davydova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Becker%2C+J">J. Becker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.07941v1-abstract-short" style="display: inline;"> Anomalous hysteresis loops of ferrimagnetic amorphous alloys in high magnetic field and in the vicinity of the compensation temperature have so far been explained by sample inhomogeneities. We obtain H-T magnetic phase diagram for ferrimagnetic GdFeCo alloy using a two-sublattice model in the paramagnetic rare-earth ion approximation and taking into account rare-earth (Gd) magnetic anisotropy. It&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.07941v1-abstract-full').style.display = 'inline'; document.getElementById('1903.07941v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.07941v1-abstract-full" style="display: none;"> Anomalous hysteresis loops of ferrimagnetic amorphous alloys in high magnetic field and in the vicinity of the compensation temperature have so far been explained by sample inhomogeneities. We obtain H-T magnetic phase diagram for ferrimagnetic GdFeCo alloy using a two-sublattice model in the paramagnetic rare-earth ion approximation and taking into account rare-earth (Gd) magnetic anisotropy. It is shown that if the magnetic anisotropy of the $f$-sublattice is larger than that of the $d$-sublattice, the tricritical point can be at higher temperature than the compensation point. The obtained phase diagram explains the observed anomalous hysteresis loops as a result of high-field magnetic phase transition, the order of which changes with temperature. It also implies that in the vicinity of the magnetic compensation point the shape of magnetic hysteresis loop is strongly temperature dependent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.07941v1-abstract-full').style.display = 'none'; document.getElementById('1903.07941v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 064409 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.04293">arXiv:1903.04293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.04293">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.174427">10.1103/PhysRevB.100.174427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Field Anomalies of Equilibrium and Ultrafast Magnetism in Rare-Earth-Transition Metal Ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pogrebna%2C+A">A. Pogrebna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakara%2C+K">K. Prabhakara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davydova%2C+M">M. Davydova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Becker%2C+J">J. Becker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirilyuk%2C+A">A. Kirilyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianen%2C+P+C+M">P. C. M. Christianen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.04293v1-abstract-short" style="display: inline;"> Magneto-optical spectroscopy in fields up to 30 Tesla reveals anomalies in the equilibrium and ultrafast magnetic properties of the ferrimagnetic rare-earth-transition metal alloy TbFeCo. In particular, in the vicinity of the magnetization compensation temperature, each of the magnetizations of the antiferromagnetically coupled Tb and FeCo sublattices show triple hysteresis loops. Contrary to stat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04293v1-abstract-full').style.display = 'inline'; document.getElementById('1903.04293v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.04293v1-abstract-full" style="display: none;"> Magneto-optical spectroscopy in fields up to 30 Tesla reveals anomalies in the equilibrium and ultrafast magnetic properties of the ferrimagnetic rare-earth-transition metal alloy TbFeCo. In particular, in the vicinity of the magnetization compensation temperature, each of the magnetizations of the antiferromagnetically coupled Tb and FeCo sublattices show triple hysteresis loops. Contrary to state-of-the-art theory, which explains such loops by sample inhomogeneities, here we show that they are an intrinsic property of the rare-earth ferrimagnets. Assuming that the rare-earth ions are paramagnetic and have a non-zero orbital momentum in the ground state and, therefore, a large magnetic anisotropy, we are able to reproduce the experimentally observed behavior in equilibrium. The same theory is also able to describe the experimentally observed critical slowdown of the spin dynamics in the vicinity of the magnetization compensation temperature, emphasizing the role played by the orbital momentum in static and ultrafast magnetism of ferrimagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04293v1-abstract-full').style.display = 'none'; document.getElementById('1903.04293v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 174427 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03072">arXiv:1901.03072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03072">pdf</a>, <a href="https://arxiv.org/format/1901.03072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast magnetization dynamics in uniaxial ferrimagnets with compensation point. GdFeCo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Davydova%2C+M+D">M. D. Davydova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03072v2-abstract-short" style="display: inline;"> We derive an effective Lagrangian in the quasi-antiferromagnetic approximation that allows to describe the magnetization dynamics for uniaxial f-d (rare-earth - transition metal) ferrimagnet near the magnetization compensation point in the presence of external magnetic field. We perform calculations for the parameters of GdFeCo, a metallic ferrimagnet with compensation point that is one of the mos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03072v2-abstract-full').style.display = 'inline'; document.getElementById('1901.03072v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03072v2-abstract-full" style="display: none;"> We derive an effective Lagrangian in the quasi-antiferromagnetic approximation that allows to describe the magnetization dynamics for uniaxial f-d (rare-earth - transition metal) ferrimagnet near the magnetization compensation point in the presence of external magnetic field. We perform calculations for the parameters of GdFeCo, a metallic ferrimagnet with compensation point that is one of the most promising materials in ultrafast magnetism. Using the developed approach, we find the torque that acts on the magnetization due to ultrafast demagnetization pulse that can be caused either by ultrashort laser or electrical current pulse. We show that the torque is non-zero only in the non-collinear magnetic phase that can be acquired by applying external magnetic field to the material. The coherent response of magnetization dynamics amplitude and its timescale exhibits critical behavior near certain values of the magnetic field corresponding to a spin-flop like phase transition. Understanding the underlying mechanisms for these effects opens the way to efficient control of the amplitude and the timescales of the spin dynamics, which is one of the central problems in the field of ultrafast magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03072v2-abstract-full').style.display = 'none'; document.getElementById('1901.03072v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.13344">arXiv:1810.13344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.13344">pdf</a>, <a href="https://arxiv.org/format/1810.13344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1515/nanoph-2018-0187">10.1515/nanoph-2018-0187 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transverse Magneto-Optical Kerr Effect at Narrow Optical Resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Borovkova%2C+O+V">O. V. Borovkova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spitzer%2C+F">F. Spitzer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belotelov%2C+V+I">V. I. Belotelov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akimov%2C+I+A">I. A. Akimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poddubny%2C+A+N">A. N. Poddubny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karczewski%2C+G">G. Karczewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiater%2C+M">M. Wiater</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wojtowicz%2C+T">T. Wojtowicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yakovlev%2C+D+R">D. R. Yakovlev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bayer%2C+M">M. Bayer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.13344v1-abstract-short" style="display: inline;"> Magneto-optical spectroscopy based on the transverse magneto-optical Kerr effect (TMOKE) is a sensitive method for investigation of magnetically-ordered media. However, in magnetic materials the optical transitions are usually characterized by spectrally broad resonances with widths considerably exceeding the Zeeman splitting in the magnetic field. Here we investigate experimentally and theoretica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13344v1-abstract-full').style.display = 'inline'; document.getElementById('1810.13344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.13344v1-abstract-full" style="display: none;"> Magneto-optical spectroscopy based on the transverse magneto-optical Kerr effect (TMOKE) is a sensitive method for investigation of magnetically-ordered media. However, in magnetic materials the optical transitions are usually characterized by spectrally broad resonances with widths considerably exceeding the Zeeman splitting in the magnetic field. Here we investigate experimentally and theoretically the TMOKE in the vicinity of relatively narrow optical resonances provided by confined quantum systems. For experimental demonstration we use the exciton resonance in a (Cd,Mn)Te diluted magnetic semiconductor quantum well, where the strong exchange interaction with magnetic ions enables the giant Zeeman splitting of exciton spin states $螖$ in magnetic fields of a few Tesla. In the weak coupling regime, when the splitting $螖$ is smaller than the spectral broadening of the optical transitions $螕$, the TMOKE magnitude grows linearly with the increase of the Zeeman splitting and its spectrum has an S-shape, which remains virtually unchanged in this range. In the strong coupling regime ($螖&gt;螕$) the TMOKE magnitude saturates, while its spectrum is strongly modified resulting in the appearance of two separate peaks. The TMOKE is sensitive not only to the sample surface but can be used to probe the confined electronic states in depth if the upper layer is sufficiently transparent. Our results demonstrate that TMOKE of spectrally narrow resonances serves as a versatile tool for probing the charge and spin structure of electronic states in various confined quantum systems and can be used for spin tomography in combination with the conventional polar Kerr effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13344v1-abstract-full').style.display = 'none'; document.getElementById('1810.13344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05936">arXiv:1805.05936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.05936">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/PRJ.6.001079">10.1364/PRJ.6.001079 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control of phase of the magnetization precession excited by circularly polarized fs-laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chernov%2C+A+I">Alexander I. Chernov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kozhaev%2C+M+A">Mikhail A. Kozhaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaposhnikov%2C+A+N">Alexander N. Shaposhnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokopov%2C+A+R">Anatoly R. Prokopov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berzhansky%2C+V+N">Vladimir N. Berzhansky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">Anatoly K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belotelov%2C+V+I">Vladimir I. Belotelov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05936v1-abstract-short" style="display: inline;"> The inverse Faraday effect induced in magnetic films by ultrashort laser pulses allows excitation and control of spins at GHz and sub-THz frequencies. Frequency of the excited magnetization precession is easily tunable by the external magnetic field. On the other hand, phase of the precession hardly depends on magnetic field. Here we demonstrate an approach for the control of the precession phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05936v1-abstract-full').style.display = 'inline'; document.getElementById('1805.05936v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05936v1-abstract-full" style="display: none;"> The inverse Faraday effect induced in magnetic films by ultrashort laser pulses allows excitation and control of spins at GHz and sub-THz frequencies. Frequency of the excited magnetization precession is easily tunable by the external magnetic field. On the other hand, phase of the precession hardly depends on magnetic field. Here we demonstrate an approach for the control of the precession phase by variation of the incidence angle of the laser pulses. In particular, theoretical consideration states that the phase increases with increase of the incidence angle and for small angles this relation is a direct proportionality. Experimental studies confirm this conclusion and provide shift of phase by about 4 deg. for the declination of the incidence angle by 15 deg. from the normal. This study provides a simple way for additional manipulation with optically excited magnetization dynamics, which is of importance for different spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05936v1-abstract-full').style.display = 'none'; document.getElementById('1805.05936v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photon. Res. 6(11), 1079-1083 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05822">arXiv:1805.05822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.05822">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.44.000331">10.1364/OL.44.000331 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optically Pumped Floquet States of Magnetization in Ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Savochkin%2C+I+V">I. V. Savochkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belotelov%2C+V+I">V. I. Belotelov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05822v1-abstract-short" style="display: inline;"> Floquet states have been subject of great research interest since Zel&#39;dovich&#39;s pioneering work on the quasienergy of a quantum system subject to a temporally periodic action. Nowadays periodic modulation of the system Hamiltonian is mostly achieved by microwaves leading to novel exciting phenomena in condensed matter physics: Floquet topological insulators, chiral edge states etc. On the other han&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05822v1-abstract-full').style.display = 'inline'; document.getElementById('1805.05822v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05822v1-abstract-full" style="display: none;"> Floquet states have been subject of great research interest since Zel&#39;dovich&#39;s pioneering work on the quasienergy of a quantum system subject to a temporally periodic action. Nowadays periodic modulation of the system Hamiltonian is mostly achieved by microwaves leading to novel exciting phenomena in condensed matter physics: Floquet topological insulators, chiral edge states etc. On the other hand, nonthermal optical control of magnetization at picosecond time scales is currently a highly appealing research topic for potential applications in magnetic data storage. Here we combine these two concepts to investigate Floquet states in the system of exchange-coupled spins in a ferromagnet. We periodically perturb the magnetization of an iron-garnet film by a train of circularly-polarized femtosecond laser pulses hitting the sample at 1 GHz repetition rate and monitor the magnetization dynamics behaving like a Floquet state. An external magnetic field allows tuning of the Floquet states leading to a pronounced increase of the precession amplitude by one order of magnitude at the center of the Brillouin zone, i.e. when the precession frequency is a multiple of the laser pulse repetition rate. Floquet states might potentially allow for parametric generation of magnetic oscillations. The observed phenomena expand the capabilities of coherent ultrafast optical control of magnetization and pave a way for their application in quantum computation or data processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05822v1-abstract-full').style.display = 'none'; document.getElementById('1805.05822v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.02021">arXiv:1805.02021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.02021">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-08458-w">10.1038/s41467-019-08458-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selection Rules for All-Optical Magnetic Recording in Iron Garnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stupakiewicz%2C+A">A. Stupakiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szerenos%2C+K">K. Szerenos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davydova%2C+M+D">M. D. Davydova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirilyuk%2C+A">A. Kirilyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.02021v1-abstract-short" style="display: inline;"> Finding an electronic transition a subtle excitation of which can launch dramatic changes of electric, optical or magnetic properties of media is one of the long-standing dreams in the field of photo-induced phase transitions [1-5]. Therefore the discovery of the magnetization switching only by a femtosecond laser pulse [6-10] triggered intense discussions about mechanisms responsible for these la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02021v1-abstract-full').style.display = 'inline'; document.getElementById('1805.02021v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.02021v1-abstract-full" style="display: none;"> Finding an electronic transition a subtle excitation of which can launch dramatic changes of electric, optical or magnetic properties of media is one of the long-standing dreams in the field of photo-induced phase transitions [1-5]. Therefore the discovery of the magnetization switching only by a femtosecond laser pulse [6-10] triggered intense discussions about mechanisms responsible for these laser-induced changes. Here we report the experimentally revealed selection rules on polarization and wavelengths of ultrafast photo-magnetic recording in Co-doped garnet film and identify the workspace of the parameters (magnetic damping, wavelength and polarization of light) allowing this effect. The all-optical magnetic switching under both single pulse and multiple-pulse sequences can be achieved at room temperature, in narrow spectral ranges with light polarized either along &lt;110&gt; or &lt;100&gt; crystallographic axes of the garnet. The revealed selection rules indicate that the excitations responsible for the coupling of light to spins are d-electron transitions in octahedral and tetrahedral Co-sublattices, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02021v1-abstract-full').style.display = 'none'; document.getElementById('1805.02021v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.09183">arXiv:1708.09183</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.09183">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.201602327">10.1002/adma.201602327 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain and Magnetic Field Induced Spin-Structure Transitions in Multiferroic BiFeO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Agbelele%2C+A">A. Agbelele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sando%2C+D">D. Sando</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Toulouse%2C+C">C. Toulouse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paillard%2C+C">C. Paillard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruffer%2C+R">R. Ruffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popkov%2C+A+F">A. F. Popkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carretero%2C+C">C. Carretero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rovillain%2C+P">P. Rovillain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Breton%2C+J+-+L">J. -M. Le Breton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dkhil%2C+B">B. Dkhil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cazayous%2C+M">M. Cazayous</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallais%2C+Y">Y. Gallais</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Measson%2C+M+-">M. -A. Measson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sacuto%2C+A">A. Sacuto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barthelemy%2C+A">A. Barthelemy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juraszek%2C+J">J. Juraszek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bibes%2C+M">M. Bibes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.09183v1-abstract-short" style="display: inline;"> The magnetic-field-dependent spin ordering of strained BiFeO3 films is determined using nuclear resonant scattering and Raman spectroscopy. The critical field required to destroy the cycloidal modulation of the Fe spins is found to be significantly lower than in the bulk, with appealing implications for field-controlled spintronic and magnonic devices. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.09183v1-abstract-full" style="display: none;"> The magnetic-field-dependent spin ordering of strained BiFeO3 films is determined using nuclear resonant scattering and Raman spectroscopy. The critical field required to destroy the cycloidal modulation of the Fe spins is found to be significantly lower than in the bulk, with appealing implications for field-controlled spintronic and magnonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.09183v1-abstract-full').style.display = 'none'; document.getElementById('1708.09183v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Work supported by ERC Consolidator grant MINT (Contract No. 615759)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 29, 1602327 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.08798">arXiv:1707.08798</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.08798">pdf</a>, <a href="https://arxiv.org/format/1707.08798">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.245407">10.1103/PhysRevB.97.245407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchrotron radiation induced magnetization in magnetically-doped and pristine topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shikin%2C+A+M">A. M. Shikin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sostina%2C+D+M">D. M. Sostina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rybkina%2C+A+A">A. A. Rybkina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voroshnin%2C+V+Y">V. Yu. Voroshnin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klimovskikh%2C+I+I">I. I. Klimovskikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rybkin%2C+A+G">A. G. Rybkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Estyunin%2C+D+A">D. A. Estyunin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kokh%2C+K+A">K. A. Kokh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tereshchenko%2C+O+E">O. E. Tereshchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petaccia%2C+L">L. Petaccia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Santo%2C+G">G. Di Santo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skirdkov%2C+P+N">P. N. Skirdkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimura%2C+A">A. Kimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chulkov%2C+E+V">E. V. Chulkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krasovskii%2C+E+E">E. E. Krasovskii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.08798v1-abstract-short" style="display: inline;"> Quantum mechanics postulates that any measurement influences the state of the investigated system. Here, by means of angle-, spin-, and time-resolved photoemission experiments and ab initio calculations we demonstrate how non-equal depopulation of the Dirac cone (DC) states with opposite momenta in V-doped and pristine topological insulators (TIs) created by a photoexcitation by linearly polarized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08798v1-abstract-full').style.display = 'inline'; document.getElementById('1707.08798v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.08798v1-abstract-full" style="display: none;"> Quantum mechanics postulates that any measurement influences the state of the investigated system. Here, by means of angle-, spin-, and time-resolved photoemission experiments and ab initio calculations we demonstrate how non-equal depopulation of the Dirac cone (DC) states with opposite momenta in V-doped and pristine topological insulators (TIs) created by a photoexcitation by linearly polarized synchrotron radiation (SR) is followed by the hole-generated uncompensated spin accumulation and the SR-induced magnetization via the spin-torque effect. We show that the photoexcitation of the DC is asymmetric, that it varies with the photon energy, and that it practically does not change during the relaxation. We find a relation between the photoexcitation asymmetry, the generated spin accumulation and the induced spin polarization of the DC and V 3d states. Experimentally the SR-generated in-plane and out-of-plane magnetization is confirmed by the $k_{\parallel}$-shift of the DC position and by the splitting of the states at the Dirac point even above the Curie temperature. Theoretical predictions and estimations of the measurable physical quantities substantiate the experimental results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08798v1-abstract-full').style.display = 'none'; document.getElementById('1707.08798v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 245407 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.01502">arXiv:1703.01502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.01502">pdf</a>, <a href="https://arxiv.org/format/1703.01502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of domain walls in weak ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.01502v1-abstract-short" style="display: inline;"> It is shown that the total set of equations, which determines the dynamics of the domain bounds (DB) in a weak ferromagnet, has the same type of specific solution as the well-known Walker&#39;s solution for ferromagnets. We calculated the functional dependence of the velocity of the DB on the magnetic field, which is described by the obtained solution. This function has a maximum at a finite field and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01502v1-abstract-full').style.display = 'inline'; document.getElementById('1703.01502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.01502v1-abstract-full" style="display: none;"> It is shown that the total set of equations, which determines the dynamics of the domain bounds (DB) in a weak ferromagnet, has the same type of specific solution as the well-known Walker&#39;s solution for ferromagnets. We calculated the functional dependence of the velocity of the DB on the magnetic field, which is described by the obtained solution. This function has a maximum at a finite field and a section of the negative differential mobility of the DB. According to the calculation, the maximum velocity $ c \approx 2 \times 10^6$ cm/sec in YFeO$_3$ is reached at $H_m \approx 4 \times 10^3$ Oe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01502v1-abstract-full').style.display = 'none'; document.getElementById('1703.01502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Soviet Journal of Experimental and Theoretical Physics Letters, 29, 553 (1979) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.05109">arXiv:1701.05109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.05109">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.7.021009">10.1103/PhysRevX.7.021009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excitation of magnon accumulation by laser clocking as a source of long-range spin waves in transparent magnetic films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=J%C3%A4ckl%2C+M">M. J盲ckl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belotelov%2C+V+I">V. I. Belotelov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akimov%2C+I+A">I. A. Akimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savochkin%2C+I+V">I. V. Savochkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yakovlev%2C+D+R">D. R. Yakovlev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bayer%2C+M">M. Bayer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.05109v1-abstract-short" style="display: inline;"> Optical tools are of great promise for generation of spin waves due to the possibility to manipulate on ultrashort time scales and to provide local excitation. However, a single laser pulse can inject spin waves only with a broad frequency spectrum, resulting in a short propagation distance and low amplitude. Here we excite a magnetic garnet film by a train of fs-laser pulses with 1 GHz repetition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.05109v1-abstract-full').style.display = 'inline'; document.getElementById('1701.05109v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.05109v1-abstract-full" style="display: none;"> Optical tools are of great promise for generation of spin waves due to the possibility to manipulate on ultrashort time scales and to provide local excitation. However, a single laser pulse can inject spin waves only with a broad frequency spectrum, resulting in a short propagation distance and low amplitude. Here we excite a magnetic garnet film by a train of fs-laser pulses with 1 GHz repetition rate so that pulse separation is smaller than decay time of the magnetic modes which allows to achieve collective photonic impact on magnetization. It establishes a quasi-stationary source of SWs, namely a coherent magnon accumulation (&#34;magnon cloud&#34;). This approach has several appealing features: (i) the source is tunable; (ii) the SW amplitude can be significantly enhanced; (iii) the spectrum of the generated SWs is quite narrow that provides longer propagation distance; (iv) the periodic pumping results in almost constant in time SW amplitude up to 100 um away from the source; and (v) the SW emission shows a pronounced directionality. These results expand the capabilities of ultrafast coherent optical control of magnetization and pave a way for applications in data processing, including the quantum regime. The quasi-stationary magnon accumulation might be also of interest for the problem of magnon Bose-Einstein condensate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.05109v1-abstract-full').style.display = 'none'; document.getElementById('1701.05109v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 7, 021009 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.08316">arXiv:1606.08316</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.08316">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Bubble Domain Blowing with Electric Probe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kulikova%2C+D+P">D. P. Kulikova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyatakov%2C+A+P">A. P. Pyatakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nikolaeva%2C+E+P">E. P. Nikolaeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sergeev%2C+A+S">A. S. Sergeev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kosykh%2C+T+B">T. B. Kosykh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyatakova%2C+Z+A">Z. A. Pyatakova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nikolaev%2C+A+V">A. V. Nikolaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.08316v2-abstract-short" style="display: inline;"> The problem of bubble domain generation is revisited from a new perspective that was opened by recent findings in the field of physics of magnetic skyrmions. The single bubble domain can be generated under the tip electrode touching the surface of dielectric iron garnet film by positive step-like voltage pulse and its equilibrium size can be increased with further rising of electric potential. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08316v2-abstract-full').style.display = 'inline'; document.getElementById('1606.08316v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.08316v2-abstract-full" style="display: none;"> The problem of bubble domain generation is revisited from a new perspective that was opened by recent findings in the field of physics of magnetic skyrmions. The single bubble domain can be generated under the tip electrode touching the surface of dielectric iron garnet film by positive step-like voltage pulse and its equilibrium size can be increased with further rising of electric potential. The theoretical analysis shows that the same mechanism can be used to stabilize the submicron bubbles topologically equivalent to the skyrmion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08316v2-abstract-full').style.display = 'none'; document.getElementById('1606.08316v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.05663">arXiv:1511.05663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.05663">pdf</a>, <a href="https://arxiv.org/format/1511.05663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin current and magnetization induced by circularly polarized synchrotron radiation in magnetically-doped topological insulator Bi$_{1.37}$V$_{0.03}$Sb$_{0.6}$Te$_2$Se </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shikin%2C+A+M">A. M. Shikin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rybkina%2C+A+A">A. A. Rybkina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klimovskikh%2C+I+I">I. I. Klimovskikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filianina%2C+M+V">M. V. Filianina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kokh%2C+K+A">K. A. Kokh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tereshchenko%2C+O+E">O. E. Tereshchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skirdkov%2C+P+N">P. N. Skirdkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.05663v1-abstract-short" style="display: inline;"> We propose a hole-induced mechanism of spin-polarized current generation by circularly polarized synchrotron radiation and corresponding induced magnetization in magnetically-doped topological insulators Bi$_{1.37}$V$_{0.03}$Sb$_{0.6}$Te$_2$Se. Considered spin-polarized current is generated due to the spin-dependent depopulation of the Dirac cone topological surface states at the Fermi level and s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05663v1-abstract-full').style.display = 'inline'; document.getElementById('1511.05663v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.05663v1-abstract-full" style="display: none;"> We propose a hole-induced mechanism of spin-polarized current generation by circularly polarized synchrotron radiation and corresponding induced magnetization in magnetically-doped topological insulators Bi$_{1.37}$V$_{0.03}$Sb$_{0.6}$Te$_2$Se. Considered spin-polarized current is generated due to the spin-dependent depopulation of the Dirac cone topological surface states at the Fermi level and subsequent compensation of the generated holes. We have found experimentally and theoretically a relation between the generated spin-polarized current and the shift of the electrochemical potential. The out-of-plane magnetization induced by circularly polarized synchrotron radiation and its inversion with switching the direction of circular polarization were experimentally shown and theoretically confirmed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05663v1-abstract-full').style.display = 'none'; document.getElementById('1511.05663v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.04624">arXiv:1511.04624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.04624">pdf</a>, <a href="https://arxiv.org/format/1511.04624">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.094435">10.1103/PhysRevB.93.094435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of the giant linear magnetoelectric effect in perovskite-like multiferroic BiFeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Popkov%2C+A+F">A. F. Popkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davydova%2C+M+D">M. D. Davydova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solov%27yov%2C+S+V">S. V. Solov&#39;yov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.04624v3-abstract-short" style="display: inline;"> In this article the mechanism of the linear magnetoelectric (ME) effect in the rhombohedral multiferroic BiFeO$_3$ is considered. The study is based on the symmetry approach of the GinzburgLandau type, in which polarization, antiferrodistortion, and antiferromagnetic momentum vectors are viewed as ordering parameters. We demonstrate that the linear ME effect in BFO is caused by reorientation of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04624v3-abstract-full').style.display = 'inline'; document.getElementById('1511.04624v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.04624v3-abstract-full" style="display: none;"> In this article the mechanism of the linear magnetoelectric (ME) effect in the rhombohedral multiferroic BiFeO$_3$ is considered. The study is based on the symmetry approach of the GinzburgLandau type, in which polarization, antiferrodistortion, and antiferromagnetic momentum vectors are viewed as ordering parameters. We demonstrate that the linear ME effect in BFO is caused by reorientation of the antiferrodistortion vector in either electric or magnetic field. The numerical estimations, which show quantitative agreement with the results of the recent measurements in film samples, have been performed. A possibility of significant enhancement of the magnetoelectric effect by applying an external static electric field has been investigated. The considered approach is promising for explaining the high values of the ME effect in composite films and heterostructures with BFO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04624v3-abstract-full').style.display = 'none'; document.getElementById('1511.04624v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures, submitted to Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 094435 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.01960">arXiv:1506.01960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.01960">pdf</a>, <a href="https://arxiv.org/format/1506.01960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.045419">10.1103/PhysRevB.92.045419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing magneto-dipolar interactions for synchronizing vortex based spin-torque nano-oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Araujo%2C+F+A">F. Abreu Araujo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belanovsky%2C+A+D">A. D. Belanovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skirdkov%2C+P+N">P. N. Skirdkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Locatelli%2C+N">N. Locatelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lebrun%2C+R">R. Lebrun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grollier%2C+J">J. Grollier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">V. Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Loubens%2C+G">G. de Loubens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klein%2C+O">O. Klein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.01960v1-abstract-short" style="display: inline;"> We report on a theoretical study about the magneto-dipolar coupling and synchronization between two vortex-based spin-torque nano-oscillators. In this work we study the dependence of the coupling efficiency on the relative magnetization parameters of the vortices in the system. For that purpose, we combine micromagnetic simulations, Thiele equation approach, and analytical macro-dipole approximati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.01960v1-abstract-full').style.display = 'inline'; document.getElementById('1506.01960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.01960v1-abstract-full" style="display: none;"> We report on a theoretical study about the magneto-dipolar coupling and synchronization between two vortex-based spin-torque nano-oscillators. In this work we study the dependence of the coupling efficiency on the relative magnetization parameters of the vortices in the system. For that purpose, we combine micromagnetic simulations, Thiele equation approach, and analytical macro-dipole approximation model to identify the optimized configuration for achieving phase-locking between neighboring oscillators. Notably, we compare vortices configurations with parallel (P) polarities and with opposite (AP) polarities. We demonstrate that the AP core configuration exhibits a coupling strength about three times larger than in the P core configuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.01960v1-abstract-full').style.display = 'none'; document.getElementById('1506.01960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 045419 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.05672">arXiv:1503.05672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.05672">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2014.11.035">10.1016/j.jmmm.2014.11.035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin flexoelectricity and chiral spin structures in magnetic films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pyatakov%2C+A+P">A. P. Pyatakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sergeev%2C+A+S">A. S. Sergeev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikailzade%2C+F+A">F. A. Mikailzade</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.05672v1-abstract-short" style="display: inline;"> In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.05672v1-abstract-full').style.display = 'inline'; document.getElementById('1503.05672v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.05672v1-abstract-full" style="display: none;"> In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism is discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models. The electric-field-induced creation of the single skyrmion is predicted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.05672v1-abstract-full').style.display = 'none'; document.getElementById('1503.05672v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.00089">arXiv:1503.00089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.00089">pdf</a>, <a href="https://arxiv.org/format/1503.00089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.094432">10.1103/PhysRevB.92.094432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large amplitude vortex gyration in Permalloy/Bi$_2$Se$_3$-like heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Skirdkov%2C+P+N">P. N. Skirdkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belanovsky%2C+A+D">A. D. Belanovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J+M">J. M. George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J+C">J. C. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">V. Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.00089v3-abstract-short" style="display: inline;"> We consider the excitation of large amplitude gyrotropic vortex core precession in a Permalloy nanodisk by the torques originating from the in-plane microwave current flowing along the interface of the Permalloy/Bi$_2$Se$_3$ heterostructures, in which the huge charge-to-spin conversion ratio is observed \cite{Mellnik-2014}. We consider analytically and by micromagnetic modelling the dependence of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.00089v3-abstract-full').style.display = 'inline'; document.getElementById('1503.00089v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.00089v3-abstract-full" style="display: none;"> We consider the excitation of large amplitude gyrotropic vortex core precession in a Permalloy nanodisk by the torques originating from the in-plane microwave current flowing along the interface of the Permalloy/Bi$_2$Se$_3$ heterostructures, in which the huge charge-to-spin conversion ratio is observed \cite{Mellnik-2014}. We consider analytically and by micromagnetic modelling the dependence of this excitation on the frequency and magnitude of the microwave current. The analogies of the vortex dynamics and the Landau phase transitions theory is demonstrated. These findings open the possibility to excite gyrotropic vortex motion with the current densities far lower than by any other means. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.00089v3-abstract-full').style.display = 'none'; document.getElementById('1503.00089v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 094432 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.0384">arXiv:1411.0384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.0384">pdf</a>, <a href="https://arxiv.org/format/1411.0384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.214427">10.1103/PhysRevB.90.214427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The symmetry and magnetoelectric effects in garnet crystals and films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Popov%2C+A+I">A. I. Popov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plokhov%2C+D+I">D. I. Plokhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.0384v1-abstract-short" style="display: inline;"> The magnetoelectricity of garnets is considered by means of a symmetry and quantum mechanical combined analysis. It is shown, that the magnetoelectric effect is not realized in most garnets although the necessary condition of the crystal magnetic structure antisymmetry in them is held at low temperatures. Nevertheless, the effect can be observed in some garnets as well as other odd effects, namely&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0384v1-abstract-full').style.display = 'inline'; document.getElementById('1411.0384v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.0384v1-abstract-full" style="display: none;"> The magnetoelectricity of garnets is considered by means of a symmetry and quantum mechanical combined analysis. It is shown, that the magnetoelectric effect is not realized in most garnets although the necessary condition of the crystal magnetic structure antisymmetry in them is held at low temperatures. Nevertheless, the effect can be observed in some garnets as well as other odd effects, namely, piezomagnetic effect, magnetic field evoked piezoelectric one, etc. It is also discovered that magnetic fields can induce specific antiferroelectric structures in garnet crystals and produce electric polarization in epitaxial films. The polarization can also be caused in a bulk crystal by an inhomogeneous magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0384v1-abstract-full').style.display = 'none'; document.getElementById('1411.0384v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.6741">arXiv:1404.6741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.6741">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/107/67002">10.1209/0295-5075/107/67002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dzyaloshinskii-Moriya-type interaction and Lifshitz invariant in Rashba 2D electron gas systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pyatakov%2C+A+P">Alexander P. Pyatakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">Anatoly K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.6741v1-abstract-short" style="display: inline;"> The origin of chiral magnetic structures in ultrathin films of magnetic metals is analyzed. It is shown that the Lifshitz-type invariant term in the macroscopic thermodynamic potential can be derived from spin-orbit Rashba Hamiltonian in two dimensional electron gas (2DEG). The former is the prerequisite for existence of spin cycloid, skyrmions and other chiral phenomena observed in thin films. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6741v1-abstract-full').style.display = 'inline'; document.getElementById('1404.6741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.6741v1-abstract-full" style="display: none;"> The origin of chiral magnetic structures in ultrathin films of magnetic metals is analyzed. It is shown that the Lifshitz-type invariant term in the macroscopic thermodynamic potential can be derived from spin-orbit Rashba Hamiltonian in two dimensional electron gas (2DEG). The former is the prerequisite for existence of spin cycloid, skyrmions and other chiral phenomena observed in thin films. The estimation of the period of spin cycloid gives the value of an order of 10 nm that agrees well with the results of scanning probe microscopy observation reported in the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6741v1-abstract-full').style.display = 'none'; document.getElementById('1404.6741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.6999">arXiv:1312.6999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.6999">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin structure of Graphene/Pt interface for spin current formation and induced magnetization in deposited (Ni-Fe)-nanodots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shikin%2C+A+M">A. M. Shikin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rybkina%2C+A+A">A. A. Rybkina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rybkin%2C+A+G">A. G. Rybkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klimovskikh%2C+I+I">I. I. Klimovskikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skirdkov%2C+P+N">P. N. Skirdkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.6999v1-abstract-short" style="display: inline;"> Spin electronic structure of graphene pi-states and Pt 5d-states for the Graphene/Pt interface has been investigated. Here, we report a large induced spin-orbit splitting (~70-100 meV) of graphene pi-states with formation of non-degenerated Dirac-cone spin states at the K-point of the BZ crossed with spin-polarized Pt 5d-states at Fermi level that opens up a possibility for creation of new spintro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.6999v1-abstract-full').style.display = 'inline'; document.getElementById('1312.6999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.6999v1-abstract-full" style="display: none;"> Spin electronic structure of graphene pi-states and Pt 5d-states for the Graphene/Pt interface has been investigated. Here, we report a large induced spin-orbit splitting (~70-100 meV) of graphene pi-states with formation of non-degenerated Dirac-cone spin states at the K-point of the BZ crossed with spin-polarized Pt 5d-states at Fermi level that opens up a possibility for creation of new spintronics devices. We propose to use this spin structure for formation of spin current with spin locked perpendicular to the momentum for induced remagnetization of the (Ni-Fe)-nanodots arranged atop the interface. Theoretical estimations of the spin current created at the Graphene/Pt interface and the induced intrinsic effective magnetic field leading to the in-plane remagnetization of the NiFe-nanodots due to spin-orbit torque effect are presented. By micromagnetic modeling based on experimentally observed spin-orbit splitting we demonstarte that the induced intrinsic magnetic field might be effectively used for magnetization swithching of the deposited (Ni-Fe)-nanodots. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.6999v1-abstract-full').style.display = 'none'; document.getElementById('1312.6999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.0229">arXiv:1311.0229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.0229">pdf</a>, <a href="https://arxiv.org/ps/1311.0229">ps</a>, <a href="https://arxiv.org/format/1311.0229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4883740">10.1063/1.4883740 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Domain wall displacement by remote spin-current injection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Skirdkov%2C+P+N">Petr N. Skirdkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">Konstantin A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belanovsky%2C+A+D">Anatoly D. Belanovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grollier%2C+J">Julie Grollier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+C+A">Caroline A. Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">Anatoly K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.0229v2-abstract-short" style="display: inline;"> We demonstrate numerically the ability to displace a magnetic domain wall by a remote spin current injection. We consider a long and narrow magnetic nanostripe with a single domain wall (DW). The spin-polarized current is injected perpendicularly to the plane of the film (CPP) through a small nanocontact which is located at certain distance from the domain wall initial position. We show theoretica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0229v2-abstract-full').style.display = 'inline'; document.getElementById('1311.0229v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.0229v2-abstract-full" style="display: none;"> We demonstrate numerically the ability to displace a magnetic domain wall by a remote spin current injection. We consider a long and narrow magnetic nanostripe with a single domain wall (DW). The spin-polarized current is injected perpendicularly to the plane of the film (CPP) through a small nanocontact which is located at certain distance from the domain wall initial position. We show theoretically that the DW motion can be initiated not only by conventional spin-transfer torque but also by indirect spin-torque, created by a remote spin-current injection and then transferred to the DW by the exchange-spring mechanism. An analytical description of this effect is proposed. This finding may lead to a solution of bottleneck problems of DW motion-based spintronic and neuromorphic devices with perpendicular spin-current injection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0229v2-abstract-full').style.display = 'none'; document.getElementById('1311.0229v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 104, 242401 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.3811">arXiv:1308.3811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.3811">pdf</a>, <a href="https://arxiv.org/format/1308.3811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Non-Adlerian synchronization of dipolar coupled vortex Spin-Torque Nano-Oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Belanovsky%2C+A+D">A. D. Belanovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Locatelli%2C+N">N. Locatelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skirdkov%2C+P+N">P. N. Skirdkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Araujo%2C+F+A">F. Abreu Araujo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grollier%2C+J">J. Grollier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">V. Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.3811v1-abstract-short" style="display: inline;"> We investigate analytically and numerically the synchronization dynamics of dipolarly coupled vortex based Spin-Torque Nano Oscillators (STNO) with different pillar diameters. We identify the critical interpillar distances on which synchronization occurs as a function of their diameter mismatch. We obtain numerically a phase diagram showing the transition between unsynchronized and synchronized st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.3811v1-abstract-full').style.display = 'inline'; document.getElementById('1308.3811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.3811v1-abstract-full" style="display: none;"> We investigate analytically and numerically the synchronization dynamics of dipolarly coupled vortex based Spin-Torque Nano Oscillators (STNO) with different pillar diameters. We identify the critical interpillar distances on which synchronization occurs as a function of their diameter mismatch. We obtain numerically a phase diagram showing the transition between unsynchronized and synchronized states and compare it to analytical predictions we make using Thiele approach. Our study demonstrates that for relatively small diameters differences the synchronization dynamics can be described qualitatively using Adler equation. However when the diameters difference increases significantly, the system becomes strongly non-Adlerian. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.3811v1-abstract-full').style.display = 'none'; document.getElementById('1308.3811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.3204">arXiv:1304.3204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1304.3204">pdf</a>, <a href="https://arxiv.org/ps/1304.3204">ps</a>, <a href="https://arxiv.org/format/1304.3204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.214413">10.1103/PhysRevB.87.214413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field induced phase transitions and phase diagrams in BiFeO_3-like multiferroics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gareeva%2C+Z+V">Z. V. Gareeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popkov%2C+A+F">A. F. Popkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soloviov%2C+S+V">S. V. Soloviov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.3204v1-abstract-short" style="display: inline;"> The incommensurate magnetic structures and phase diagrams of multiferroics has been explored on the basis of accurate micromagnetic analysis taking into account the spin flexoelecric interaction (Lifshitz invariant). The objects of the study are BiFeO_3-like single crystals and epitaxial films grown on the &lt;111&gt; substrates. The main control parameters are the magnetic field, the magnetic anisotrop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.3204v1-abstract-full').style.display = 'inline'; document.getElementById('1304.3204v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.3204v1-abstract-full" style="display: none;"> The incommensurate magnetic structures and phase diagrams of multiferroics has been explored on the basis of accurate micromagnetic analysis taking into account the spin flexoelecric interaction (Lifshitz invariant). The objects of the study are BiFeO_3-like single crystals and epitaxial films grown on the &lt;111&gt; substrates. The main control parameters are the magnetic field, the magnetic anisotropy, and the epitaxial strain in the case of films. We predict novel quasi-cycloidal structures induced by external magnetic field or by epitaxial strain in the BiFeO_3-films. Phase diagrams representing the regions of homogeneous magnetic states and incommensurate structures stability are constructed for the two essential geometries of magnetic field (magnetic field oriented parallel to the principal crystal axis C_3 and perpendicular to this direction C_3). It is shown that the direction of applied magnetic field substantially affects a set of magnetic phases, properties of incommensurate structures, character of phase transitions. Novel conical type of cycloidal ordering is revealed during the transition from incommensurate cycloidal structure into homogeneous magnetic state. Elaborated phase diagrams allow estimate appropriate combination of control parameters (magnetic field, magnetic anisotropy, exchange stiffness) required to the destruction of cycloidal ordering corresponding to the transition into homogeneous structure. The results show that the magnitude of critical magnetic field suppressing cycloid is lowered in multiferroics films comparing to single crystals, it can be also lowered by the selection of orientation of magnetic field. Our results can be useful for strain engineering of new multiferroic functional materials on demand. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.3204v1-abstract-full').style.display = 'none'; document.getElementById('1304.3204v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.2740">arXiv:1212.2740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.2740">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.214409">10.1103/PhysRevB.86.214409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-induced Polar Order at the N茅el Temperature of Chromium in Rare-earth Orthochromites: Interplay of Rare-earth and Cr Magnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rajeswaran%2C+B">B. Rajeswaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khomskii%2C+D+I">D. I. Khomskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+C+N+R">C. N. R. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sundaresan%2C+A">A. Sundaresan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.2740v1-abstract-short" style="display: inline;"> We report field-induced switchable polarization (P = 0.2 ~ 0.8 microC/cm2) below the N茅el temperature of chromium (TN Cr) in weakly ferromagnetic rareearth orthochromites, RCrO3 (R=rareearth) but only when the rareearth ion is magnetic. Intriguingly, the polarization in ErCrO3 (TC ~ 133 K) disappears at a spin reorientation (Morin) transition (TSR ~ 22 K) below which the weak ferromagnetism associ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.2740v1-abstract-full').style.display = 'inline'; document.getElementById('1212.2740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.2740v1-abstract-full" style="display: none;"> We report field-induced switchable polarization (P = 0.2 ~ 0.8 microC/cm2) below the N茅el temperature of chromium (TN Cr) in weakly ferromagnetic rareearth orthochromites, RCrO3 (R=rareearth) but only when the rareearth ion is magnetic. Intriguingly, the polarization in ErCrO3 (TC ~ 133 K) disappears at a spin reorientation (Morin) transition (TSR ~ 22 K) below which the weak ferromagnetism associated with the Cr sublattice also disappears, demonstrating the crucial role of weak ferromagnetism in inducing the polar order. Further, the polarization (P) is strongly influenced by applied magnetic field, indicating a strong magneto electric effect. We suggest that the polar order occurs in RCrO3, due to the combined effect of poling field that breaks the symmetry and the exchange field on R ion from Cr sublattice stabilizes the polar state. We propose that a similar mechanism could work in the isostructural rareearth orthoferrites, RFeO3 as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.2740v1-abstract-full').style.display = 'none'; document.getElementById('1212.2740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages (Manuscript(6 figures)+supplemental information(8 figures))</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 86,214409(2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.2403">arXiv:1211.2403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.2403">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2012.02.087">10.1016/j.jmmm.2012.02.087 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric polarization of magnetic textures: new horizons of micromagnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pyatakov%2C+A+P">A. P. Pyatakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meshkov%2C+G+A">G. A. Meshkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.2403v1-abstract-short" style="display: inline;"> A common scenario of magnetoelectric coupling in multiferroics is the electric polarization induced by spatially modulated spin structures. It is shown in this paper that the same mechanism works in magnetic dielectrics with inhomogeneous magnetization distribution: the domain walls and magnetic vortexes can be the sources of electric polarization. The electric field driven magnetic domain wall mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.2403v1-abstract-full').style.display = 'inline'; document.getElementById('1211.2403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.2403v1-abstract-full" style="display: none;"> A common scenario of magnetoelectric coupling in multiferroics is the electric polarization induced by spatially modulated spin structures. It is shown in this paper that the same mechanism works in magnetic dielectrics with inhomogeneous magnetization distribution: the domain walls and magnetic vortexes can be the sources of electric polarization. The electric field driven magnetic domain wall motion is observed in iron garnet films. The electric field induced nucleation of vortex state of magnetic nanodots is theoretically predicted and numerically simulated. From the practical point of view the electric field control of micromagnetic structures is promising for applications in low-power-consumption spintronic and magnonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.2403v1-abstract-full').style.display = 'none'; document.getElementById('1211.2403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated with the new experimental results version of the paper JMMM 324 (2012) 3551</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Magnetism and Magnetic Materials 324 (2012) 3551-3554 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.5499">arXiv:1202.5499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.5499">pdf</a>, <a href="https://arxiv.org/ps/1202.5499">ps</a>, <a href="https://arxiv.org/format/1202.5499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.100409">10.1103/PhysRevB.85.100409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Belanovsky%2C+A+D">A. D. Belanovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Locatelli%2C+N">N. Locatelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skirdkov%2C+P+N">P. N. Skirdkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Araujo%2C+F+A">F. Abreu Araujo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grollier%2C+J">J. Grollier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">V. Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.5499v1-abstract-short" style="display: inline;"> Phase locking dynamics of dipolarly coupled vortices excited by spin-polarized current in two identical nanopillars is studied as a function of the interpillar distance L. Numerical study and analytical model have proved the remarkable efficiency of magneto-static interaction to achieve phase locking. Investigating the dynamics in the transient regime towards phase locking, we extract the evolutio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.5499v1-abstract-full').style.display = 'inline'; document.getElementById('1202.5499v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.5499v1-abstract-full" style="display: none;"> Phase locking dynamics of dipolarly coupled vortices excited by spin-polarized current in two identical nanopillars is studied as a function of the interpillar distance L. Numerical study and analytical model have proved the remarkable efficiency of magneto-static interaction to achieve phase locking. Investigating the dynamics in the transient regime towards phase locking, we extract the evolution of the locking time 蟿, the coupling strength 渭 and the interaction energy W. Finally, we compare this coupling energy with the one obtained by simple model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.5499v1-abstract-full').style.display = 'none'; document.getElementById('1202.5499v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.0826">arXiv:1201.0826</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ferroelectricity at the N茅el Temperature of Chromium in Rare-earth Orthochromites: Interplay of Rare-earth and Cr Magnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rajeswaran%2C+B">B. Rajeswaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khomskii%2C+D+I">D. I. Khomskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+C+N+R">C. N. R. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sundaresan%2C+A">A. Sundaresan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.0826v6-abstract-short" style="display: inline;"> We report ferroelectricity with fairly large spontaneous polarization (P ~ 0.2 - 0.8 \muC/cm2) below the N茅el temperature of chromium (TNCr) in weakly ferromagnetic rare-earth orthochromites, RCrO3 (R=rare-earth) only when the rare-earth ion is magnetic. Intriguingly, the ferroelectricity in ErCrO3 (TC = 133 K) disappears at a spin-reorientation (Morin) transition (TSR ~ 22 K) below which the weak&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.0826v6-abstract-full').style.display = 'inline'; document.getElementById('1201.0826v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.0826v6-abstract-full" style="display: none;"> We report ferroelectricity with fairly large spontaneous polarization (P ~ 0.2 - 0.8 \muC/cm2) below the N茅el temperature of chromium (TNCr) in weakly ferromagnetic rare-earth orthochromites, RCrO3 (R=rare-earth) only when the rare-earth ion is magnetic. Intriguingly, the ferroelectricity in ErCrO3 (TC = 133 K) disappears at a spin-reorientation (Morin) transition (TSR ~ 22 K) below which the weak ferromagnetism associated with the Cr-sublattice also disappears, demonstrating the crucial role of weak ferromagnetism in inducing ferroelectricity. Further, the ferroelectric polarization (P) could be reversed by reversing the spontaneous magnetization (M) by changing the polarity of magnetic field, indicating a strong magnetoelectric effect. We suggest that the ferroelectricity occurs in RCrO3, due to the combined effect of poling field that breaks the symmetry and the exchange field on R-ion from Cr-sublattice stabilizes the polar state. We propose that a similar mechanism could work in the isostructural rare-earth orthoferrites, RFeO3 as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.0826v6-abstract-full').style.display = 'none'; document.getElementById('1201.0826v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The manuscript required many new experiments and updates and the spirit of the findings have taken an entirely different shape. The updated manuscript can be found at Phys. Rev. B 86, 214409 (2012) as well as in arXiv:1212.2740</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.1566">arXiv:1112.1566</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.1566">pdf</a>, <a href="https://arxiv.org/ps/1112.1566">ps</a>, <a href="https://arxiv.org/format/1112.1566">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.081401">10.1103/PhysRevB.85.081401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pohl%2C+M">M. Pohl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belotelov%2C+V+I">V. I. Belotelov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akimov%2C+I+A">I. A. Akimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kasture%2C+S">S. Kasture</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vengurlekar%2C+A+S">A. S. Vengurlekar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gopal%2C+A+V">A. V. Gopal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yakovlev%2C+D+R">D. R. Yakovlev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bayer%2C+M">M. Bayer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.1566v1-abstract-short" style="display: inline;"> We demonstrate that the dispersion of surface plasmon polaritons in a periodically perforated gold film can be efficiently manipulated by femtosecond laser pulses with the wavelengths far from the intrinsic resonances of gold. Using a time- and frequency- resolved pump-probe technique we observe shifting of the plasmon polariton resonances with response times from 200 to 800 fs depending on the pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.1566v1-abstract-full').style.display = 'inline'; document.getElementById('1112.1566v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.1566v1-abstract-full" style="display: none;"> We demonstrate that the dispersion of surface plasmon polaritons in a periodically perforated gold film can be efficiently manipulated by femtosecond laser pulses with the wavelengths far from the intrinsic resonances of gold. Using a time- and frequency- resolved pump-probe technique we observe shifting of the plasmon polariton resonances with response times from 200 to 800 fs depending on the probe photon energy, through which we obtain comprehensive insight into the electron dynamics in gold. We show that Wood anomalies in the optical spectra provide pronounced resonances in differential transmission and reflection with magnitudes up to 3% for moderate pump fluences of 0.5 mJ/cm^2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.1566v1-abstract-full').style.display = 'none'; document.getElementById('1112.1566v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.0681">arXiv:1112.0681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.0681">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.155133">10.1103/PhysRevB.86.155133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inverse Transverse Magneto-Optical Kerr Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Belotelov%2C+V+I">V. I. Belotelov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.0681v1-abstract-short" style="display: inline;"> It is demonstrated that a static in-plane magnetic field is generated in a ferromagnetic film by p-polarised light obliquely incident on the film. This phenomenon can be called inverse transverse magneto-optical Kerr effect. The femtosecond laser pulse of peak intensity of 500 W/渭m2 generates in nickel an effective magnetic field of about 100 Oe. The value of the effective magnetic field can be in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.0681v1-abstract-full').style.display = 'inline'; document.getElementById('1112.0681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.0681v1-abstract-full" style="display: none;"> It is demonstrated that a static in-plane magnetic field is generated in a ferromagnetic film by p-polarised light obliquely incident on the film. This phenomenon can be called inverse transverse magneto-optical Kerr effect. The femtosecond laser pulse of peak intensity of 500 W/渭m2 generates in nickel an effective magnetic field of about 100 Oe. The value of the effective magnetic field can be increased by more than an order of magnitude at the surface plasmon polariton resonance excited in smooth metal dielectric structures or in plasmonic crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.0681v1-abstract-full').style.display = 'none'; document.getElementById('1112.0681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.1460">arXiv:1108.1460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.1460">pdf</a>, <a href="https://arxiv.org/format/1108.1460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.224436">10.1103/PhysRevB.84.224436 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum magnetoelectric effect in molecular crystal Dy$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Plokhov%2C+D+I">D. I. Plokhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popov%2C+A+I">A. I. Popov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.1460v1-abstract-short" style="display: inline;"> Magnetoelectric properties of a molecular crystal formed by dysprosium triangular clusters are investigated. The effective spin-electric Hamiltonian is derived on the base of developed quantum mechanical model of the cluster spin structure. The magnetoelectric contribution to the free energy of the crystal is calculated. The analysis reveals several distinctive features of the magnetoelectric effe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.1460v1-abstract-full').style.display = 'inline'; document.getElementById('1108.1460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.1460v1-abstract-full" style="display: none;"> Magnetoelectric properties of a molecular crystal formed by dysprosium triangular clusters are investigated. The effective spin-electric Hamiltonian is derived on the base of developed quantum mechanical model of the cluster spin structure. The magnetoelectric contribution to the free energy of the crystal is calculated. The analysis reveals several distinctive features of the magnetoelectric effect, which are not typical for conventional paramagnetic systems at low temperatures. The peculiarities are explained by the chirality of the dysprosium core of the molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.1460v1-abstract-full').style.display = 'none'; document.getElementById('1108.1460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.2569">arXiv:1011.2569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.2569">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/91/47006">10.1209/0295-5075/91/47006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pinning of magnetic domain walls in multiferroics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gareeva%2C+Z+V">Z. V. Gareeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.2569v1-abstract-short" style="display: inline;"> The behavior of antiferromagnetic domain wall (ADW) against the background of a periodic ferroelectric domain structure has been investigated. It has been shown that the structure and the energy of ADW change due to the interaction with a ferroelectric domain structure. The ferroelectric domain boundaries play the role of pins for magnetic spins, the spin density changes in the vicinity of ferroel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2569v1-abstract-full').style.display = 'inline'; document.getElementById('1011.2569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.2569v1-abstract-full" style="display: none;"> The behavior of antiferromagnetic domain wall (ADW) against the background of a periodic ferroelectric domain structure has been investigated. It has been shown that the structure and the energy of ADW change due to the interaction with a ferroelectric domain structure. The ferroelectric domain boundaries play the role of pins for magnetic spins, the spin density changes in the vicinity of ferroelectric walls. The ADW energy becomes a periodical function on a coordinate which is the position of ADW relative to the ferroelectric domain structure. It has been shown that the energy of the magnetic domain wall attains minimum values when the center of the ADW coincides with the ferroelectric wall and the periodic ferroelectric structure creates periodic coercitivity for the ADW. The neighbouring equilibrium states of the ADW are separated by a finite potential barrier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2569v1-abstract-full').style.display = 'none'; document.getElementById('1011.2569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Europhysics Letters v.91, 47006 (2010) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zvezdin%2C+A+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zvezdin%2C+A+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zvezdin%2C+A+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10