CINXE.COM

Search results for: non-destructive test

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: non-destructive test</title> <meta name="description" content="Search results for: non-destructive test"> <meta name="keywords" content="non-destructive test"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="non-destructive test" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="non-destructive test"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9242</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: non-destructive test</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9242</span> Nondestructive Testing for Reinforced Concrete Buildings with Active Infrared Thermography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huy%20Q.%20Tran">Huy Q. Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungwon%20Huh"> Jungwon Huh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiseok%20Kwak"> Kiseok Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Choonghyun%20Kang"> Choonghyun Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrared thermography (IRT) technique has been proven to be a good method for nondestructive evaluation of concrete material. In the building, a broad range of applications has been used such as subsurface defect inspection, energy loss, and moisture detection. The purpose of this research is to consider the qualitative and quantitative performance of reinforced concrete deteriorations using active infrared thermography technique. An experiment of three different heating regimes was conducted on a concrete slab in the laboratory. The thermal characteristics of the IRT method, i.e., absolute contrast and observation time, are investigated. A linear relationship between the observation time and the real depth was established with a well linear regression R-squared of 0.931. The results showed that the absolute contrast above defective area increases with the rise of the size of delamination and the heating time. In addition, the depth of delamination can be predicted by using the proposal relationship of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20building" title="concrete building">concrete building</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20evaluation" title=" nondestructive evaluation"> nondestructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20delamination" title=" subsurface delamination"> subsurface delamination</a> </p> <a href="https://publications.waset.org/abstracts/84378/nondestructive-testing-for-reinforced-concrete-buildings-with-active-infrared-thermography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9241</span> Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Ji">Richard Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20testing" title="nondestructive testing">nondestructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20moduli%20backcalculation" title=" pavement moduli backcalculation"> pavement moduli backcalculation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavements" title=" concrete pavements"> concrete pavements</a> </p> <a href="https://publications.waset.org/abstracts/97902/structural-evaluation-of-airfield-pavement-using-finite-element-analysis-based-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9240</span> An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Mi">Hao Mi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Yang"> Ming Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian-yue%20Yang"> Tian-yue Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20monitoring" title="remote monitoring">remote monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20Linux%20system" title=" embedded Linux system"> embedded Linux system</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/101979/an-intelligent-nondestructive-testing-system-of-ultrasonic-infrared-thermal-imaging-based-on-embedded-linux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9239</span> Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mezghani">S. Mezghani</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Perrin"> E. Perrin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Bodnar"> J. L. Bodnar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Marthe"> J. Marthe</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Cauwe"> B. Cauwe</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vrabie"> V. Vrabie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows to obtain a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 µm and 130 µm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for non conductive substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20destructive" title="non destructive">non destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=paint%20coating" title=" paint coating"> paint coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a> </p> <a href="https://publications.waset.org/abstracts/20665/evaluation-of-heterogeneity-of-paint-coating-on-metal-substrate-using-laser-infrared-thermography-and-eddy-current" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">639</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9238</span> Evaluation of Mechanical Properties of Welds Fabricated at a Close Proximity on Offshore Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Nakkeran">T. Nakkeran</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Dhamodharan"> C. Dhamodharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Win%20Myint%20Soe"> Win Myint Soe </a>, <a href="https://publications.waset.org/abstracts/search?q=Ramasamy%20Deverajan"> Ramasamy Deverajan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ganesh%20Babu"> M. Ganesh Babu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This manuscript presents the results of an experimental investigation performed to study the material and mechanical properties of two weld joints fabricated within close proximity. The experiment was designed using welded S355 D Z35 with distances between two parallel adjacent weld toes at 8 mm. These distances were less than the distance that has normally been recommended in standards, codes, and specifications. The main idea of the analysis is to determine any significant effects when welding the joints with the close proximity of 8mm using the SAW welding process of the one joint with high heat put and one joint welded with the FCAW welding process and evaluating the destructing and nondestructive testing between the welded joints. Further, we have evaluated the joints with Mechanical Testing for evaluating by performing Tensile test, bend testing, Macrostructure, Microstructure, Hardness test, and Impact testing. After evaluating the final outcome of the result, no significant changes were observed for welding the close proximity of weld of 8mm distance between the joints as compared to the specification minimum distance between the weldments of any design should be 50mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=S355%20carbon%20steel" title="S355 carbon steel">S355 carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20proximity" title=" weld proximity"> weld proximity</a>, <a href="https://publications.waset.org/abstracts/search?q=SAW%20process" title=" SAW process"> SAW process</a>, <a href="https://publications.waset.org/abstracts/search?q=FCAW%20process" title=" FCAW process"> FCAW process</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20input" title=" heat input"> heat input</a>, <a href="https://publications.waset.org/abstracts/search?q=bend%20test" title=" bend test"> bend test</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20test" title=" hardness test"> hardness test</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20test" title=" impact test"> impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20and%20microscopic%20examinations" title=" macro and microscopic examinations"> macro and microscopic examinations</a> </p> <a href="https://publications.waset.org/abstracts/155282/evaluation-of-mechanical-properties-of-welds-fabricated-at-a-close-proximity-on-offshore-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9237</span> Characterization of Bacteria by a Nondestructive Sample Preparation Method in a TEM System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Shiue">J. Shiue</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20H.%20Chen"> I. H. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Y.%20Chiu"> S. W. Y. Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Wang"> Y. L. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present a nondestructive method to characterize bacteria in a TEM system. Unlike the conventional TEM specimen preparation method, which needs to thin the specimen in a destructive way, or spread the samples on a tiny millimeter sized carbon grid, our method is easy to operate without the need of sample pretreatment. With a specially designed transparent chip that allows the electron beam to pass through, and a custom made chip holder to fit into a standard TEM sample holder, the bacteria specimen can be easily prepared on the chip without any pretreatment, and then be observed under TEM. The centimeter-sized chip is covered with Au nanoparticles in the surface as the markers which allow the bacteria to be observed easily on the chip. We demonstrate the success of our method by using E. coli as an example, and show that high-resolution TEM images of E. coli can be obtained with the method presented. Some E. coli morphology characteristics imaged using this method are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=chip" title=" chip"> chip</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a> </p> <a href="https://publications.waset.org/abstracts/54896/characterization-of-bacteria-by-a-nondestructive-sample-preparation-method-in-a-tem-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9236</span> Broadband Ultrasonic and Rheological Characterization of Liquids Using Longitudinal Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abderrahmane%20Mograne">M. Abderrahmane Mograne</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Laux"> Didier Laux</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Yves%20Ferrandis"> Jean-Yves Ferrandis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheological characterizations of complex liquids like polymer solutions present an important scientific interest for a lot of researchers in many fields as biology, food industry, chemistry. In order to establish master curves (elastic moduli vs frequency) which can give information about microstructure, classical rheometers or viscometers (such as Couette systems) are used. For broadband characterization of the sample, temperature is modified in a very large range leading to equivalent frequency modifications applying the Time Temperature Superposition principle. For many liquids undergoing phase transitions, this approach is not applicable. That is the reason, why the development of broadband spectroscopic methods around room temperature becomes a major concern. In literature many solutions have been proposed but, to our knowledge, there is no experimental bench giving the whole rheological characterization for frequencies about a few Hz (Hertz) to many MHz (Mega Hertz). Consequently, our goal is to investigate in a nondestructive way in very broadband frequency (A few Hz – Hundreds of MHz) rheological properties using longitudinal ultrasonic waves (L waves), a unique experimental bench and a specific container for the liquid: a test tube. More specifically, we aim to estimate the three viscosities (longitudinal, shear and bulk) and the complex elastic moduli (M*, G* and K*) respectively longitudinal, shear and bulk moduli. We have decided to use only L waves conditioned in two ways: bulk L wave in the liquid or guided L waves in the tube test walls. In this paper, we will present first results for very low frequencies using the ultrasonic tracking of a falling ball in the test tube. This will lead to the estimation of shear viscosity from a few mPa.s to a few Pa.s (Pascal second). Corrections due to the small dimensions of the tube will be applied and discussed regarding the size of the falling ball. Then the use of bulk L wave’s propagation in the liquid and the development of a specific signal processing in order to assess longitudinal velocity and attenuation will conduct to the longitudinal viscosity evaluation in the MHz frequency range. At last, the first results concerning the propagation, the generation and the processing of guided compressional waves in the test tube walls will be discussed. All these approaches and results will be compared to standard methods available and already validated in our lab. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20measurement%20for%20liquid" title="nondestructive measurement for liquid">nondestructive measurement for liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20transducer" title=" piezoelectric transducer"> piezoelectric transducer</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20longitudinal%20waves" title=" ultrasonic longitudinal waves"> ultrasonic longitudinal waves</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosities" title=" viscosities"> viscosities</a> </p> <a href="https://publications.waset.org/abstracts/60648/broadband-ultrasonic-and-rheological-characterization-of-liquids-using-longitudinal-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9235</span> Automating Test Activities: Test Cases Creation, Test Execution, and Test Reporting with Multiple Test Automation Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loke%20Mun%20Sei">Loke Mun Sei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software testing has become a mandatory process in assuring the software product quality. Hence, test management is needed in order to manage the test activities conducted in the software test life cycle. This paper discusses on the challenges faced in the software test life cycle, and how the test processes and test activities, mainly on test cases creation, test execution, and test reporting is being managed and automated using several test automation tools, i.e. Jira, Robot Framework, and Jenkins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test%20automation%20tools" title="test automation tools">test automation tools</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20case" title=" test case"> test case</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20execution" title=" test execution"> test execution</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20reporting" title=" test reporting"> test reporting</a> </p> <a href="https://publications.waset.org/abstracts/31605/automating-test-activities-test-cases-creation-test-execution-and-test-reporting-with-multiple-test-automation-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9234</span> Study of Ultrasonic Waves in Unidirectional Fiber-Reinforced Composite Plates for the Aerospace Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=DucTho%20Le">DucTho Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Duy%20Kien%20Dao"> Duy Kien Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Quoc%20Tinh%20Bui"> Quoc Tinh Bui</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidang%20Phan"> Haidang Phan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article is concerned with the motion of ultrasonic guided waves in a unidirectional fiber-reinforced composite plate under acoustic sources. Such unidirectional composite material has orthotropic elastic properties as it is very stiff along the fibers and rather compliant across the fibers. The dispersion equations of free Lamb waves propagating in an orthotropic layer are derived that results in the dispersion curves. The connection of these equations to the Rayleigh-Lamb frequency relations of isotropic plates is discussed. By the use of reciprocity in elastodynamics, closed-form solutions of elastic wave motions subjected to time-harmonic loads in the layer are computed in a simple manner. We also consider the problem of Lamb waves generated by a set of time-harmonic sources. The obtained computations can be very useful for developing ultrasound-based methods for nondestructive evaluation of composite structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lamb%20waves" title="lamb waves">lamb waves</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-reinforced%20composite%20plates" title=" fiber-reinforced composite plates"> fiber-reinforced composite plates</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20equations" title=" dispersion equations"> dispersion equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20evaluation" title=" nondestructive evaluation"> nondestructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=reciprocity%20theorems" title=" reciprocity theorems"> reciprocity theorems</a> </p> <a href="https://publications.waset.org/abstracts/110250/study-of-ultrasonic-waves-in-unidirectional-fiber-reinforced-composite-plates-for-the-aerospace-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9233</span> Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John-Nelson%20Ekumah">John-Nelson Ekumah</a>, <a href="https://publications.waset.org/abstracts/search?q=Selorm%20Yao-Say%20Solomon%20Adade"> Selorm Yao-Say Solomon Adade</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingming%20Zhong"> Mingming Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yufan%20Sun"> Yufan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiufang%20Liang"> Qiufang Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Safiullah%20Virk"> Muhammad Safiullah Virk</a>, <a href="https://publications.waset.org/abstracts/search?q=Xorlali%20Nunekpeku"> Xorlali Nunekpeku</a>, <a href="https://publications.waset.org/abstracts/search?q=Nana%20Adwoa%20Nkuma%20Johnson"> Nana Adwoa Nkuma Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Bridget%20Ama%20Kwadzokpui"> Bridget Ama Kwadzokpui</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Ren"> Xiaofeng Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kudzu%20starch%20gel" title="kudzu starch gel">kudzu starch gel</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared%20spectroscopy" title=" near-infrared spectroscopy"> near-infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20strength%20prediction" title=" gel strength prediction"> gel strength prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition%20algorithms" title=" pattern recognition algorithms"> pattern recognition algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20treatment" title=" ethanol treatment"> ethanol treatment</a> </p> <a href="https://publications.waset.org/abstracts/188372/nondestructive-prediction-and-classification-of-gel-strength-in-ethanol-treated-kudzu-starch-gels-using-near-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9232</span> Embedded Acoustic Signal Processing System Using OpenMP Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Elhanaoui">Abdelkader Elhanaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mhamed%20Hadji"> Mhamed Hadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Skouri"> Rachid Skouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Agounad"> Said Agounad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, altera de1-SoC FPGA board technology is utilized as a distinguished tool for nondestructive characterization of an aluminum circular cylindrical shell of radius ratio b/a (a: outer radius; b: inner radius). The acoustic backscattered signal processing system has been developed using OpenMP architecture. The design is built in three blocks; it is implemented per functional block, in a heterogeneous Intel-Altera system running under Linux. The useful data to determine the performances of SoC FPGA is computed by the analytical method. The exploitation of SoC FPGA has lead to obtain the backscattering form function and resonance spectra. A0 and S0 modes of propagation in the tube are shown. The findings are then compared to those achieved from the Matlab simulation of analytical method. A good agreement has, therefore, been noted. Moreover, the detailed SoC FPGA-based system has shown that acoustic spectra are performed at up to 5 times faster than the Matlab implementation using almost the same data. This FPGA-based system implementation of processing algorithms is realized with a coefficient of correlation R and absolute error respectively about 0.962 and 5 10⁻⁵. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OpenMP" title="OpenMP">OpenMP</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing%20system" title=" signal processing system"> signal processing system</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20backscattering" title=" acoustic backscattering"> acoustic backscattering</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20characterization" title=" nondestructive characterization"> nondestructive characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20tubes" title=" thin tubes"> thin tubes</a> </p> <a href="https://publications.waset.org/abstracts/162330/embedded-acoustic-signal-processing-system-using-openmp-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9231</span> Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Po%20Tseng">Sheng-Po Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Hua%20Yang"> Che-Hua Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guided%20waves" title="guided waves">guided waves</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20characterization" title=" material characterization"> material characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20evaluation" title=" nondestructive evaluation"> nondestructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20processing" title=" parallel processing"> parallel processing</a> </p> <a href="https://publications.waset.org/abstracts/92173/graphic-procession-unit-based-parallel-processing-for-inverse-computation-of-full-field-material-properties-based-on-quantitative-laser-ultrasound-visualization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9230</span> Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Hyeon%20Ryu">Chung-Hyeon Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Do-Hyoung%20Kim"> Do-Hyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak-Sung%20Kim"> Hak-Sung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber%20reinforced%20plastic%20composites" title=" glass fiber reinforced plastic composites"> glass fiber reinforced plastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20spectroscopy" title=" terahertz spectroscopy"> terahertz spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/20529/nondestructive-evaluation-of-hidden-delamination-in-glass-fiber-composite-using-terahertz-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9229</span> Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Hor">Y. L. Hor</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Chu"> H. S. Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Bui"> V. P. Bui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulsed%20phase%20thermography" title="pulsed phase thermography">pulsed phase thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20bond" title=" weak bond"> weak bond</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP" title=" CFRP"> CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20modelling" title=" computational modelling"> computational modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/78383/modelling-and-numerical-analysis-of-thermal-non-destructive-testing-on-complex-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9228</span> Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomoko%20Fukuyama">Tomoko Fukuyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Osamu%20Senbu"> Osamu Senbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitance" title="capacitance">capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=conductance" title=" conductance"> conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressed%20concrete" title=" prestressed concrete"> prestressed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptance" title=" susceptance"> susceptance</a> </p> <a href="https://publications.waset.org/abstracts/76185/nondestructive-electrochemical-testing-method-for-prestressed-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9227</span> Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I-Huan%20Chiu">I-Huan Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiko%20Ninomiya"> Kazuhiko Ninomiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%E2%80%99ichiro%20Takeda"> Shin’ichiro Takeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Meito%20Kajino"> Meito Kajino</a>, <a href="https://publications.waset.org/abstracts/search?q=Miho%20Katsuragawa"> Miho Katsuragawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunsaku%20Nagasawa"> Shunsaku Nagasawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Shinohara"> Atsushi Shinohara</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadayuki%20Takahashi"> Tadayuki Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryota%20Tomaru"> Ryota Tomaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%20Watanabe"> Shin Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Goro%20Yabu"> Goro Yabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical observation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the non-destructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSSD" title="DSSD">DSSD</a>, <a href="https://publications.waset.org/abstracts/search?q=muon" title=" muon"> muon</a>, <a href="https://publications.waset.org/abstracts/search?q=muonic%20X-ray" title=" muonic X-ray"> muonic X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20analysis" title=" non-destructive analysis"> non-destructive analysis</a> </p> <a href="https://publications.waset.org/abstracts/137568/development-of-nondestructive-imaging-analysis-method-using-muonic-x-ray-with-a-double-sided-silicon-strip-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9226</span> Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youn-Sung%20Kim">Youn-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Ho%20Jo"> Jin-Ho Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Sung%20Kim"> Mi-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Kun%20Lee"> Jae-Kun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20life%20cycle%20test" title="accelerated life cycle test">accelerated life cycle test</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20test" title=" reliability test"> reliability test</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20for%20washing%20machine" title=" motor for washing machine"> motor for washing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=brushless%20dc%20motor%20test" title=" brushless dc motor test"> brushless dc motor test</a> </p> <a href="https://publications.waset.org/abstracts/68978/analysis-of-the-result-for-the-accelerated-life-cycle-test-of-the-motor-for-washing-machine-by-using-acceleration-factor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9225</span> Equipment Design for Lunar Lander Landing-Impact Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohuan%20Li">Xiaohuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wangmin%20Yi"> Wangmin Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinghui%20Wu"> Xinghui Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to verify the performance of lunar lander structure, landing-impact test is urgently needed. Moreover, the test equipment is necessary for the test. The functions and the key points of the equipment is presented to satisfy the requirements of the test,and the design scheme is proposed. The composition, the major function and the critical parts’ design of the equipment are introduced. By the load test of releasing device and single-beam hoist, and the compatibility test of landing-impact testing system, the rationality and reliability of the equipment is proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landing-impact%20test" title="landing-impact test">landing-impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=releasing%20device" title=" releasing device"> releasing device</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20equipment" title=" test equipment"> test equipment</a> </p> <a href="https://publications.waset.org/abstracts/10548/equipment-design-for-lunar-lander-landing-impact-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9224</span> A Survey on the Status of Test Automation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Contan">Andrei Contan</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Torkar"> Richard Torkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The process of test automation and its practices in industry have to be better understood, both for the industry itself and for the research community. Method: We conducted a quantitative industry survey by asking IT professionals to answer questions related to the area of test automation. Results: Test automation needs and practices vary greatly between organizations at different stages of the software development life cycle. Conclusions: Most of the findings are general test automation challenges and are specific to small- to medium-sized companies, developing software applications in the web, desktop or mobile domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=survey" title="survey">survey</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20automation" title=" test automation"> test automation</a>, <a href="https://publications.waset.org/abstracts/search?q=status%20of%20test%20automation" title=" status of test automation"> status of test automation</a> </p> <a href="https://publications.waset.org/abstracts/23900/a-survey-on-the-status-of-test-automation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">659</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9223</span> Study of Transformer and Motor Winding under Pulsed Power Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arijit%20Basuray">Arijit Basuray</a>, <a href="https://publications.waset.org/abstracts/search?q=Saibal%20Chatterjee"> Saibal Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulsed Power in the form of Recurrent Surge Generator (RSG) can be used for testing various parameters of Motor or Transformer windings including inter-turn, interlayer insulation. Windings with solid insulation in motor and transformer have many interfaces and undesirable defects, and these defects can be exposed under this nondestructive testing methodology. Due to rapid development in power electronics variable frequency drives (VFD), Dry Type or cast resin Transformer used with PWM Sine wave inverters for solar power, solid insulation system used nowadays are shifting more and more to a high-frequency application. Authors have used the recurrent surge generator for testing winding integrity as well as Partial Discharge(PD) at fast rising voltage enabling PD measurement at closer situation under which the insulation system is supposed to work. Authors have discussed test results on a different system with recurrent surge voltages of different rise time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20rising%20voltage" title="fast rising voltage">fast rising voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge" title=" partial discharge"> partial discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20power" title=" pulsed power"> pulsed power</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20surge%20generator" title=" recurrent surge generator"> recurrent surge generator</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20insulation" title=" solid insulation"> solid insulation</a> </p> <a href="https://publications.waset.org/abstracts/66468/study-of-transformer-and-motor-winding-under-pulsed-power-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9222</span> Prioritization of Mutation Test Generation with Centrality Measure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supachai%20Supmak">Supachai Supmak</a>, <a href="https://publications.waset.org/abstracts/search?q=Yachai%20Limpiyakorn"> Yachai Limpiyakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mutation testing can be applied for the quality assessment of test cases. Prioritization of mutation test generation has been a critical element of the industry practice that would contribute to the evaluation of test cases. The industry generally delivers the product under the condition of time to the market and thus, inevitably sacrifices software testing tasks, even though many test cases are required for software verification. This paper presents an approach of applying a social network centrality measure, PageRank, to prioritize mutation test generation. The source code with the highest values of PageRank will be focused first when developing their test cases as these modules are vulnerable to defects or anomalies which may cause the consequent defects in many other associated modules. Moreover, the approach would help identify the reducible test cases in the test suite, still maintaining the same criteria as the original number of test cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title="software testing">software testing</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation%20test" title=" mutation test"> mutation test</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20centrality%20measure" title=" network centrality measure"> network centrality measure</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20case%20prioritization" title=" test case prioritization"> test case prioritization</a> </p> <a href="https://publications.waset.org/abstracts/154408/prioritization-of-mutation-test-generation-with-centrality-measure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9221</span> Developing a Test Specifications for an Internationalization Course: Environment for Health in Thai Context </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rungrawee%20Samawathdana">Rungrawee Samawathdana</a>, <a href="https://publications.waset.org/abstracts/search?q=Aim-Utcha%20Wattanaburanon"> Aim-Utcha Wattanaburanon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Test specifications for open book or notes exams provide the essential information to identify the types of the test items with validity of the evaluations process. This article explains the purpose of test specifications and illustrates how to use it to help construct the approach of open book or notes exams. The complication of the course objectives is challenging for the test designing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=course%20curriculum" title="course curriculum">course curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20for%20health" title=" environment for health"> environment for health</a>, <a href="https://publications.waset.org/abstracts/search?q=internationalization" title=" internationalization"> internationalization</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20specifications" title=" test specifications "> test specifications </a> </p> <a href="https://publications.waset.org/abstracts/20315/developing-a-test-specifications-for-an-internationalization-course-environment-for-health-in-thai-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9220</span> Inference for Synthetic Control Methods with Multiple Treated Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziyan%20Zhang">Ziyan Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although the Synthetic Control Method (SCM) is now widely applied, its most commonly- used inference method, placebo test, is often problematic, especially when the treatment is not uniquely assigned. This paper discusses the problems with the placebo test under the multivariate treatment case. And, to improve the power of inferences, I further propose an Andrews-type procedure as it potentially solves some drawbacks of the placebo test. Simulations are conducted to show the Andrews’ test is often valid and powerful, compared with the placebo test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Synthetic%20Control%20Method" title="Synthetic Control Method">Synthetic Control Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiple%20treatments" title=" Multiple treatments"> Multiple treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrews%27%20test" title=" Andrews&#039; test"> Andrews&#039; test</a>, <a href="https://publications.waset.org/abstracts/search?q=placebo%20test" title=" placebo test"> placebo test</a> </p> <a href="https://publications.waset.org/abstracts/118257/inference-for-synthetic-control-methods-with-multiple-treated-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9219</span> Application of XRF and Other Principal Component Analysis for Counterfeited Gold Coin Characterization in Forensic Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Khanjani">Somayeh Khanjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamideh%20Abolghasemi"> Hamideh Abolghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Shirzad"> Hadi Shirzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Nabavi"> Samaneh Nabavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At world market can be currently encountered a wide range of gemological objects that are incorrectly declared, treated, or it concerns completely different materials that try to copy precious objects more or less successfully. Counterfeiting of precious commodities is a problem faced by governments in most countries. Police have seized many counterfeit coins that looked like the real coins and because the feeling to the touch and the weight were very similar to those of real coins. Most people were fooled and believed that the counterfeit coins were real ones. These counterfeit coins may have been made by big criminal organizations. To elucidate the manufacturing process, not only the quantitative analysis of the coins but also the comparison of their morphological characteristics was necessary. Several modern techniques have been applied to prevent counterfeiting of coins. The objective of this study was to demonstrate the potential of X-ray Fluorescence (XRF) technique and the other analytical techniques for example SEM/EDX/WDX, FT-IR/ATR and Raman Spectroscopy. Using four elements (Cu, Ag, Au and Zn) and obtaining XRF for several samples, they could be discriminated. XRF technique and SEM/EDX/WDX are used for study of chemical composition. XRF analyzers provide a fast, accurate, nondestructive method to test the purity and chemistry of all precious metals. XRF is a very promising technique for rapid and non destructive counterfeit coins identification in forensic science. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=counterfeit%20coins" title="counterfeit coins">counterfeit coins</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20fluorescence" title=" X-ray fluorescence"> X-ray fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic" title=" forensic"> forensic</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a> </p> <a href="https://publications.waset.org/abstracts/28087/application-of-xrf-and-other-principal-component-analysis-for-counterfeited-gold-coin-characterization-in-forensic-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9218</span> An Approach to Analyze Testing of Nano On-Chip Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Fotovvatikhah">Farnaz Fotovvatikhah</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Akbari"> Javad Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Test time of a test architecture is an important factor which depends on the architecture's delay and test patterns. Here a new architecture to store the test results based on network on chip is presented. In addition, simple analytical model is proposed to calculate link test time for built in self-tester (BIST) and external tester (Ext) in multiprocessor systems. The results extracted from the model are verified using FPGA implementation and experimental measurements. Systems consisting 16, 25, and 36 processors are implemented and simulated and test time is calculated. In addition, BIST and Ext are compared in terms of test time at different conditions such as at different number of test patterns and nodes. Using the model the maximum frequency of testing could be calculated and the test structure could be optimized for high speed testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test" title="test">test</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20on-chip%20network" title=" nano on-chip network"> nano on-chip network</a>, <a href="https://publications.waset.org/abstracts/search?q=JTAG" title=" JTAG"> JTAG</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/42146/an-approach-to-analyze-testing-of-nano-on-chip-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9217</span> A Study on Design for Parallel Test Based on Embedded System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Sun">Zheng Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Cui"> Weiwei Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Ma"> Xiaodong Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongxin%20Jin"> Hongxin Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongpao%20Hong"> Dongpao Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsong%20Yang"> Jinsong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingyi%20Sun"> Jingyi Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20test" title="parallel test">parallel test</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20test%20system" title=" automatic test system"> automatic test system</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20test%20system%20%28ATS%29" title=" automatic test system (ATS)"> automatic test system (ATS)</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20management%20system" title=" central management system"> central management system</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20management%20system%20%28CMS%29" title=" central management system (CMS)"> central management system (CMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20test%20subsystems" title=" distributed test subsystems"> distributed test subsystems</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20test%20subsystems%20%28DTS%29" title=" distributed test subsystems (DTS)"> distributed test subsystems (DTS)</a> </p> <a href="https://publications.waset.org/abstracts/99560/a-study-on-design-for-parallel-test-based-on-embedded-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9216</span> Factors Affecting Test Automation Stability and Their Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagmani%20Lnu">Nagmani Lnu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Test automation is a vital requirement of any organization to release products faster to their customers. In most cases, an organization has an approach to developing automation but struggles to maintain it. It results in an increased number of Flaky Tests, reducing return on investments and stakeholders’ confidence. Challenges grow in multiple folds when automation is for UI behaviors. This paper describes the approaches taken to identify the root cause of automation instability in an extensive payments application and the best practices to address that using processes, tools, and technologies, resulting in a 75% reduction of effort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation%20stability" title="automation stability">automation stability</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20stability" title=" test stability"> test stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Flaky%20Test" title=" Flaky Test"> Flaky Test</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20quality" title=" test quality"> test quality</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20automation%20quality" title=" test automation quality"> test automation quality</a> </p> <a href="https://publications.waset.org/abstracts/179362/factors-affecting-test-automation-stability-and-their-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9215</span> Reinforced Concrete Bridge Deck Condition Assessment Methods Using Ground Penetrating Radar and Infrared Thermography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicole%20M.%20Martino">Nicole M. Martino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete bridge deck condition assessments primarily use visual inspection methods, where an inspector looks for and records locations of cracks, potholes, efflorescence and other signs of probable deterioration. Sounding is another technique used to diagnose the condition of a bridge deck, however this method listens for damage within the subsurface as the surface is struck with a hammer or chain. Even though extensive procedures are in place for using these inspection techniques, neither one provides the inspector with a comprehensive understanding of the internal condition of a bridge deck &ndash; the location where damage originates from.&nbsp; In order to make accurate estimates of repair locations and quantities, in addition to allocating the necessary funding, a total understanding of the deck&rsquo;s deteriorated state is key. The research presented in this paper collected infrared thermography and ground penetrating radar data from reinforced concrete bridge decks without an asphalt overlay. These decks were of various ages and their condition varied from brand new, to in need of replacement. The goals of this work were to first verify that these nondestructive evaluation methods could identify similar areas of healthy and damaged concrete, and then to see if combining the results of both methods would provide a higher confidence than if the condition assessment was completed using only one method. The results from each method were presented as plan view color contour plots. The results from one of the decks assessed as a part of this research, including these plan view plots, are presented in this paper. Furthermore, in order to answer the interest of transportation agencies throughout the United States, this research developed a step-by-step guide which demonstrates how to collect and assess a bridge deck using these nondestructive evaluation methods. This guide addresses setup procedures on the deck during the day of data collection, system setups and settings for different bridge decks, data post-processing for each method, and data visualization and quantification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20deck%20deterioration" title="bridge deck deterioration">bridge deck deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT%20of%20bridge%20decks" title=" NDT of bridge decks"> NDT of bridge decks</a> </p> <a href="https://publications.waset.org/abstracts/64735/reinforced-concrete-bridge-deck-condition-assessment-methods-using-ground-penetrating-radar-and-infrared-thermography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9214</span> Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carla%20M.%20Machado">Carla M. Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20A.%20Silva"> André A. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Armando%20Bastos"> Armando Bastos</a>, <a href="https://publications.waset.org/abstracts/search?q=Telmo%20G.%20Santos"> Telmo G. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pamies%20Teixeira"> J. Pamies Teixeira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20high%20strength%20steel" title="advanced high strength steel">advanced high strength steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bauschinger%20effect" title=" Bauschinger effect"> Bauschinger effect</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20metal%20forming" title=" sheet metal forming"> sheet metal forming</a>, <a href="https://publications.waset.org/abstracts/search?q=springback" title=" springback"> springback</a> </p> <a href="https://publications.waset.org/abstracts/65694/destructive-and-nondestructive-characterization-of-advanced-high-strength-steels-dp10001200" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9213</span> Assertion-Driven Test Repair Based on Priority Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruilian%20Zhao">Ruilian Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shukai%20Zhang"> Shukai Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang"> Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Wang"> Weiwei Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Repairing broken test cases is an expensive and challenging task in evolving software systems. Although an automated repair technique with intent preservation has been proposed, but it does not take into account the association between test repairs and assertions, leading to a large number of irrelevant candidates and decreasing the repair capability. This paper proposes an assertion-driven test repair approach. Furthermore, an intent-oriented priority criterion is raised to guide the repair candidate generation, making the repairs closer to the intent of the test. In more detail, repair targets are determined through post-dominance relations between assertions and the methods that directly cause compilation errors. Then, test repairs are generated from the target in a bottom-up way, guided by the intent-oriented priority criteria. Finally, the generated repair candidates are prioritized to match the original test intent. The approach is implemented and evaluated on the benchmark of 4 open-source programs and 91 broken test cases. The result shows that the approach can fix 89% (81/91) of broken test cases, which is more effective than the existing intentpreserved test repair approach, and our intent-oriented priority criteria work well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test%20repair" title="test repair">test repair</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20intent" title=" test intent"> test intent</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20test" title=" software test"> software test</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20case%20evolution" title=" test case evolution"> test case evolution</a> </p> <a href="https://publications.waset.org/abstracts/166462/assertion-driven-test-repair-based-on-priority-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=308">308</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=309">309</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-destructive%20test&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10