CINXE.COM

Search results for: terahertz

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: terahertz</title> <meta name="description" content="Search results for: terahertz"> <meta name="keywords" content="terahertz"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="terahertz" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="terahertz"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 35</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: terahertz</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> The Development Status of Terahertz Wave and Its Prospect in Wireless Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiquan%20Liao">Yiquan Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Quanhong%20Jiang"> Quanhong Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since terahertz was observed by German scientists, we have obtained terahertz through different generation technologies of broadband and narrowband. Then, with the development of semiconductor and other technologies, the imaging technology of terahertz has become increasingly perfect. From the earliest application of nondestructive testing in aviation to the present application of information transmission and human safety detection, the role of terahertz will shine in various fields. The weapons produced by terahertz were epoch-making, which is a crushing deterrent against technologically backward countries. At the same time, terahertz technology in the fields of imaging, medical and livelihood, communication and communication are for the well-being of the country and the people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20treatment" title=" medical treatment"> medical treatment</a> </p> <a href="https://publications.waset.org/abstracts/166653/the-development-status-of-terahertz-wave-and-its-prospect-in-wireless-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Optical Properties of Tetrahydrofuran Clathrate Hydrates at Terahertz Frequencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyery%20Kang">Hyery Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Yeun%20Koh"> Dong-Yeun Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Ho%20Ahn"> Yun-Ho Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Huen%20Lee"> Huen Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terahertz time-domain spectroscopy (THz-TDS) was used to observe the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different average molecular weights (10,000 g/mol, 40,000 g/mol, 360,000 g/mol). Distinct footprints of phase transition in the THz region (0.4 - 2.2 THz) were analyzed and absorption coefficients and complex refractive indices are obtained and compared in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clathrate%20hydrate" title="clathrate hydrate">clathrate hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz" title=" terahertz"> terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinylpyrrolidone%20%28PVP%29" title=" polyvinylpyrrolidone (PVP)"> polyvinylpyrrolidone (PVP)</a>, <a href="https://publications.waset.org/abstracts/search?q=THz-TDS" title=" THz-TDS"> THz-TDS</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/24790/optical-properties-of-tetrahydrofuran-clathrate-hydrates-at-terahertz-frequencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> A Non-Destructive TeraHertz System and Method for Capsule and Liquid Medicine Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ke%20Lin">Ke Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Wu%20Qing%20Yang"> Steve Wu Qing Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Nan"> Zhang Nan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The medicine and drugs has in the past been manufactured to the final products and then used laboratory analysis to verify their quality. However the industry needs crucially a monitoring technique for the final batch to batch quality check. The introduction of process analytical technology (PAT) provides an incentive to obtain real-time information about drugs on the production line, with the following optical techniques being considered: near-infrared (NIR) spectroscopy, Raman spectroscopy and imaging, mid-infrared spectroscopy with the use of chemometric techniques to quantify the final product. However, presents problems in that the spectra obtained will consist of many combination and overtone bands of the fundamental vibrations observed, making analysis difficult. In this work, we describe a non-destructive system and method for capsule and liquid medicine identification, more particularly, using terahertz time-domain spectroscopy and/or designed terahertz portable system for identifying different types of medicine in the package of capsule or in liquid medicine bottles. The target medicine can be detected directly, non-destructively and non-invasively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive" title=" non-destructive"> non-destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive" title=" non-invasive"> non-invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20identification" title=" chemical identification"> chemical identification</a> </p> <a href="https://publications.waset.org/abstracts/111335/a-non-destructive-terahertz-system-and-method-for-capsule-and-liquid-medicine-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Phase Transition of Aqueous Ternary (THF + Polyvinylpyrrolidone + H2O) System as Revealed by Terahertz Time-Domain Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyery%20Kang">Hyery Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Yeun%20Koh"> Dong-Yeun Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Ho%20Ahn"> Yun-Ho Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Huen%20Lee"> Huen Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of the behavior of clathrate hydrate with inhibitor in the THz region will provide useful information about hydrate plug control in the upstream of the oil and gas industry. In this study, terahertz time-domain spectroscopy (THz-TDS) revealed the inhibition of the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different molecular weights. Distinct footprints of phase transition in the THz region (0.4–2.2 THz) were analyzed and absorption coefficients and real part of refractive indices are obtained in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clathrate%20hydrate" title="clathrate hydrate">clathrate hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20spectroscopy" title=" terahertz spectroscopy"> terahertz spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=tetrahydrofuran" title=" tetrahydrofuran"> tetrahydrofuran</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/27866/phase-transition-of-aqueous-ternary-thf-polyvinylpyrrolidone-h2o-system-as-revealed-by-terahertz-time-domain-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Concealed Objects Detection in Visible, Infrared and Terahertz Ranges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kowalski">M. Kowalski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kastek"> M. Kastek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Szustakowski"> M. Szustakowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multispectral screening systems are becoming more popular because of their very interesting properties and applications. One of the most significant applications of multispectral screening systems is prevention of terrorist attacks. There are many kinds of threats and many methods of detection. Visual detection of objects hidden under clothing of a person is one of the most challenging problems of threats detection. There are various solutions of the problem; however, the most effective utilize multispectral surveillance imagers. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. We investigate the possibility of long lasting detection of potentially dangerous objects covered with various types of clothing. In the article we present the results of comparative studies of passive imaging in three spectrums – visible, infrared and terahertz <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=screening%20camera" title=" screening camera"> screening camera</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/6914/concealed-objects-detection-in-visible-infrared-and-terahertz-ranges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Optimal Parameters of Two-Color Ionizing Laser Pulses for Terahertz Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20D.%20Laryushin">I. D. Laryushin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Kostin"> V. A. Kostin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Silaev"> A. A. Silaev</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Vvedenskii"> N. V. Vvedenskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generation of broadband intense terahertz (THz) radiation attracts reasonable interest due to various applications, such as the THz time-domain spectroscopy, the probing and control of various ultrafast processes, the THz imaging with subwavelength resolution, and many others. One of the most promising methods for generating powerful and broadband terahertz pulses is based on focusing two-color femtosecond ionizing laser pulses in gases, including ambient air. For this method, the amplitudes of terahertz pulses are determined by the free-electron current density remaining in a formed plasma after the passage of the laser pulse. The excitation of this residual current density can be treated as multi-wave mixing: Аn effective generation of terahertz radiation is possible only when the frequency ratio of one-color components in the two-color pulse is close to irreducible rational fraction a/b with small odd sum a + b. This work focuses on the optimal parameters (polarizations and intensities) of laser components for the strongest THz generation. The optimal values of parameters are found numerically and analytically with the use of semiclassical approach for calculating the residual current density. For frequency ratios close to a/(a ± 1) with natural a, the strongest THz generation is shown to take place when the both laser components have circular polarizations and equal intensities. For this optimal case, an analytical formula for the residual current density was derived. For the frequency ratios such as 2/5, the two-color ionizing pulses with circularly polarized components practically do not excite the residual current density. However, the optimal parameters correspond generally to specific elliptical (not linear) polarizations of the components and intensity ratios close to unity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broadband%20terahertz%20radiation" title="broadband terahertz radiation">broadband terahertz radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=ionization" title=" ionization"> ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20plasma" title=" laser plasma"> laser plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrashort%20two-color%20pulses" title=" ultrashort two-color pulses"> ultrashort two-color pulses</a> </p> <a href="https://publications.waset.org/abstracts/77086/optimal-parameters-of-two-color-ionizing-laser-pulses-for-terahertz-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> A Terahertz Sensor and Dynamic Switch Based on a Bilayer Toroidal Metamaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angana%20Bhattacharya">Angana Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Sarkar"> Rakesh Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gagan%20Kumar"> Gagan Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toroidal resonances, a new class of electromagnetic excitations, demonstrate exceptional properties as compared to electric and magnetic dipolar resonances. The advantage of narrow linewidth in toroidal resonance is utilized in this proposed work, where a bilayer metamaterial (MM) sensor has been designed in the terahertz frequency regime (THz). A toroidal MM geometry in a single layer is first studied. A second identical MM geometry placed on top of the first layer results in the coupling of toroidal excitations, leading to an increase in the quality factor (Q) of the resonance. The sensing capability of the resonance is studied. Further, the dynamic switching from an 'off' stage to an 'on' stage in the bilayer configuration is explored. The ardent study of such toroidal bilayer MMs could provide significant potential in the development of bio-molecular and chemical sensors, switches, and modulators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toroidal%20resonance" title="toroidal resonance">toroidal resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=bilayer" title=" bilayer"> bilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz" title=" terahertz"> terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing" title=" sensing"> sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=switching" title=" switching"> switching</a> </p> <a href="https://publications.waset.org/abstracts/142036/a-terahertz-sensor-and-dynamic-switch-based-on-a-bilayer-toroidal-metamaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Semiconductor Variable Wavelength Generator of Near-Infrared-to-Terahertz Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power characteristics are obtained for laser beams of near-infrared and terahertz wavelengths when produced by difference-frequency generation with a quasi-phase-matched (QPM) waveguide made of gallium phosphide (GaP). A refractive-index change of the QPM GaP waveguide is included in computations with Sellmeier’s formula for varying input wavelengths, where optical loss is also included. Although the output power decreases with decreasing photon energy as the beam wavelength changes from near-infrared to terahertz wavelengths, the beam generation with such greatly different wavelengths, which is not achievable with an ordinary laser diode without the replacement of semiconductor material with a different bandgap one, can be made with the same semiconductor (GaP) by changing the QPM period, where a way of changing the period is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=difference-frequency%20generation" title="difference-frequency generation">difference-frequency generation</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20phosphide" title=" gallium phosphide"> gallium phosphide</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-phase-matching" title=" quasi-phase-matching"> quasi-phase-matching</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a> </p> <a href="https://publications.waset.org/abstracts/145853/semiconductor-variable-wavelength-generator-of-near-infrared-to-terahertz-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Modulating Plasmon Induced Transparency in Terahertz Metamaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gagan%20Kumar">Gagan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Koijam%20M.%20Devi"> Koijam M. Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amarendra%20K.%20Sarma"> Amarendra K. Sarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dibakar%20Roy%20Chowdhury"> Dibakar Roy Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research in metamaterials has been gaining momentum over the past decade owing to its ability in controlling electromagnetic wave properties through careful design at the sub-wavelength scale. The metamaterials have led to several important phenomena which are useful in a variety of applications. One such phenomenon is the electromagnetically induced transparency (EIT) effect in which a narrow transparency region is created in an otherwise absorptive spectrum. In our work, we explore plasmon induced transparency (PIT) in terahertz metamaterials which is analogues to EIT effect. The PIT effect is achieved using the plasmonic metamaterials in which a unit cell is comprised of two C (2C) shaped resonators and a cut-wire (CW). When terahertz wave of a particular polarization is normally incident on the proposed metamaterials geometry, it strongly couples with the cut wire, resulting in the excitation of the bright mode. However due to the specific polarization of the incident beam, the fundamental modes of the C-shaped resonators are not excited by the incident terahertz, hence they are termed as the dark mode. The PIT effect occurs as a result of interference between the bright and the dark mode. In order to observe PIT effect, both the bright and dark modes should have similar resonant frequencies with a little deviation. We further have examined that the PIT window can be modulated by displacing the C-shaped resonators w.r.t. the cut-wire. The numerical observations for different coupling configurations can be explained through an equivalent lumped element circuit model. Moving ahead the PIT effect is further explored in a metamaterial comprising of a cross like structure and four C-shaped resonators. For such configuration, equally strong PIT effect is observed for two orthogonally polarized lights. Therefore, such metamaterials demonstrate a polarization independent PIT response w.r.t the incident terahertz radiation. The proposed study could be significant in the development of slow light devices and polarization independent sensing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20ring%20resonator" title=" split ring resonator"> split ring resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon" title=" plasmon"> plasmon</a> </p> <a href="https://publications.waset.org/abstracts/75808/modulating-plasmon-induced-transparency-in-terahertz-metamaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Planar Plasmonic Terahertz Waveguides for Sensor Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maidul%20Islam">Maidul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Dibakar%20Roy%20Chowdhury"> Dibakar Roy Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Gagan%20Kumar"> Gagan Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate sensing capabilities of a planar plasmonic THz waveguide. The waveguide is comprised of one dimensional array of periodically arranged sub wavelength scale corrugations in the form of rectangular dimples in order to ensure the plasmonic response. The THz waveguide transmission is observed for polyimide (as thin film) substance filling the dimples. The refractive index of the polyimide film is varied to examine various sensing parameters such as frequency shift, sensitivity and Figure of Merit (FoM) of the fundamental plasmonic resonance supported by the waveguide. In efforts to improve sensing characteristics, we also examine sensing capabilities of a plasmonic waveguide having V shaped corrugations and compare results with that of rectangular dimples. The proposed study could be significant in developing new terahertz sensors with improved sensitivity utilizing the plasmonic waveguides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmonics" title="plasmonics">plasmonics</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-wavelength%20structures" title=" sub-wavelength structures"> sub-wavelength structures</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz" title=" terahertz"> terahertz</a> </p> <a href="https://publications.waset.org/abstracts/78757/planar-plasmonic-terahertz-waveguides-for-sensor-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Kumar%20Verma">Nirmal Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Jha"> Pallavi Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-color%20laser%20pulses" title="two-color laser pulses">two-color laser pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20radiation" title=" terahertz radiation"> terahertz radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20plasma" title=" magnetized plasma"> magnetized plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20and%20extraordinary%20mode" title=" ordinary and extraordinary mode"> ordinary and extraordinary mode</a> </p> <a href="https://publications.waset.org/abstracts/53261/simulation-study-of-enhanced-terahertz-radiation-generation-by-two-color-laser-plasma-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Hyeon%20Ryu">Chung-Hyeon Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Do-Hyoung%20Kim"> Do-Hyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak-Sung%20Kim"> Hak-Sung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber%20reinforced%20plastic%20composites" title=" glass fiber reinforced plastic composites"> glass fiber reinforced plastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20spectroscopy" title=" terahertz spectroscopy"> terahertz spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/20529/nondestructive-evaluation-of-hidden-delamination-in-glass-fiber-composite-using-terahertz-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Resonant Fluorescence in a Two-Level Atom and the Terahertz Gap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20N.%20Bogolubov">Nikolai N. Bogolubov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20V.%20Soldatov"> Andrey V. Soldatov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terahertz radiation occupies a range of frequencies somewhere from 100 GHz to approximately 10 THz, just between microwaves and infrared waves. This range of frequencies holds promise for many useful applications in experimental applied physics and technology. At the same time, reliable, simple techniques for generation, amplification, and modulation of electromagnetic radiation in this range are far from been developed enough to meet the requirements of its practical usage, especially in comparison to the level of technological abilities already achieved for other domains of the electromagnetic spectrum. This situation of relative underdevelopment of this potentially very important range of electromagnetic spectrum is known under the name of the 'terahertz gap.' Among other things, technological progress in the terahertz area has been impeded by the lack of compact, low energy consumption, easily controlled and continuously radiating terahertz radiation sources. Therefore, development of new techniques serving this purpose as well as various devices based on them is of obvious necessity. No doubt, it would be highly advantageous to employ the simplest of suitable physical systems as major critical components in these techniques and devices. The purpose of the present research was to show by means of conventional methods of non-equilibrium statistical mechanics and the theory of open quantum systems, that a thoroughly studied two-level quantum system, also known as an one-electron two-level 'atom', being driven by external classical monochromatic high-frequency (e.g. laser) field, can radiate continuously at much lower (e.g. terahertz) frequency in the fluorescent regime if the transition dipole moment operator of this 'atom' possesses permanent non-equal diagonal matrix elements. This assumption contradicts conventional assumption routinely made in quantum optics that only the non-diagonal matrix elements persist. The conventional assumption is pertinent to natural atoms and molecules and stems from the property of spatial inversion symmetry of their eigenstates. At the same time, such an assumption is justified no more in regard to artificially manufactured quantum systems of reduced dimensionality, such as, for example, quantum dots, which are often nicknamed 'artificial atoms' due to striking similarity of their optical properties to those ones of the real atoms. Possible ways to experimental observation and practical implementation of the predicted effect are discussed too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz%20gap" title="terahertz gap">terahertz gap</a>, <a href="https://publications.waset.org/abstracts/search?q=two-level%20atom" title=" two-level atom"> two-level atom</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20fluorescence" title=" resonant fluorescence"> resonant fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20fluorescence" title=" resonant fluorescence"> resonant fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=two-level%20atom" title=" two-level atom"> two-level atom</a> </p> <a href="https://publications.waset.org/abstracts/70294/resonant-fluorescence-in-a-two-level-atom-and-the-terahertz-gap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sree%20Sanker">S. S. Sree Sanker</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Madhusoodanan"> K. N. Madhusoodanan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CST%20microwave%20studio" title="CST microwave studio">CST microwave studio</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20sensor" title=" glucose sensor"> glucose sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title=" photonic crystal"> photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20waves" title=" terahertz waves"> terahertz waves</a> </p> <a href="https://publications.waset.org/abstracts/82728/terahertz-glucose-sensors-based-on-photonic-crystal-pillar-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Design of Circular Patch Antenna in Terahertz Band for Medical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moulfi%20Bouchra">Moulfi Bouchra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferouani%20Souheyla"> Ferouani Souheyla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziani%20Kerarti%20Djalal"> Ziani Kerarti Djalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Moulessehoul%20Wassila"> Moulessehoul Wassila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wireless body network (WBAN) is the most interesting network these days and especially with the appearance of contagious illnesses such as covid 19, which require surveillance in the house. In this article, we have designed a circular microstrip antenna. Gold is the material used respectively for the patch and the ground plane and Gallium (εr=12.94) is chosen as the dielectric substrate. The dimensions of the antenna are 82.10*62.84 μm2 operating at a frequency of 3.85 THz. The proposed, designed antenna has a return loss of -46.046 dB and a gain of 3.74 dBi, and it can measure various physiological parameters and sensors that help in the overall monitoring of an individual's health condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20patch%20antenna" title="circular patch antenna">circular patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=Terahertz%20transmission" title=" Terahertz transmission"> Terahertz transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=WBAN%20applications" title=" WBAN applications"> WBAN applications</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20monitoring" title=" real-time monitoring"> real-time monitoring</a> </p> <a href="https://publications.waset.org/abstracts/158335/design-of-circular-patch-antenna-in-terahertz-band-for-medical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Study on the Non-Contact Sheet Resistance Measuring of Silver Nanowire Coated Film Using Terahertz Wave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-Hyun%20Kim">Dong-Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan-Ho%20Chung"> Wan-Ho Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak-Sung%20Kim"> Hak-Sung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, non-destructive evaluation was conducted to measure the sheet resistance of silver nanowire coated film and find a damage of that film using terahertz (THz) wave. Pulse type THz instrument was used, and the measurement was performed under transmission and pitch-catch reflection modes with 30 degree of incidence angle. In the transmission mode, the intensity of the THz wave was gradually increased as the conductivity decreased. Meanwhile, the intensity of THz wave was decreased as the conductivity decreased in the pitch-catch reflection mode. To confirm the conductivity of the film, sheet resistance was measured by 4-point probe station. Interaction formula was drawn from a relation between the intensity and the sheet resistance. Through substituting sheet resistance to the formula and comparing the resultant value with measured maximum THz wave intensity, measurement of sheet resistance using THz wave was more suitable than that using 4-point probe station. In addition, the damage on the silver nanowire coated film was detected by applying the THz image system. Therefore, the reliability of the entire film can be also be ensured. In conclusion, real-time monitoring using the THz wave can be applied in the transparent electrodes with detecting the damaged area as well as measuring the sheet resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz%20wave" title="terahertz wave">terahertz wave</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20resistance" title=" sheet resistance"> sheet resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20evaluation" title=" non-destructive evaluation"> non-destructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanowire" title=" silver nanowire"> silver nanowire</a> </p> <a href="https://publications.waset.org/abstracts/20528/study-on-the-non-contact-sheet-resistance-measuring-of-silver-nanowire-coated-film-using-terahertz-wave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Non-Destructive Technique for Detection of Voids in the IC Package Using Terahertz-Time Domain Spectrometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Hyeon%20Park">Sung-Hyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Wook%20Jang"> Jin-Wook Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak-Sung%20Kim"> Hak-Sung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, Terahertz (THz) time-domain spectroscopy (TDS) imaging method has been received considerable interest as a promising non-destructive technique for detection of internal defects. In comparison to other non-destructive techniques such as x-ray inspection method, scanning acoustic tomograph (SAT) and microwave inspection method, THz-TDS imaging method has many advantages: First, it can measure the exact thickness and location of defects. Second, it doesn’t require the liquid couplant while it is very crucial to deliver that power of ultrasonic wave in SAT method. Third, it didn’t damage to materials and be harmful to human bodies while x-ray inspection method does. Finally, it exhibits better spatial resolution than microwave inspection method. However, this technology couldn’t be applied to IC package because THz radiation can penetrate through a wide variety of materials including polymers and ceramics except of metals. Therefore, it is difficult to detect the defects in IC package which are composed of not only epoxy and semiconductor materials but also various metals such as copper, aluminum and gold. In this work, we proposed a special method for detecting the void in the IC package using THz-TDS imaging system. The IC package specimens for this study are prepared by Packaging Engineering Team in Samsung Electronics. Our THz-TDS imaging system has a special reflection mode called pitch-catch mode which can change the incidence angle in the reflection mode from 10 o to 70 o while the others have transmission and the normal reflection mode or the reflection mode fixed at certain angle. Therefore, to find the voids in the IC package, we investigated the appropriate angle as changing the incidence angle of THz wave emitter and detector. As the results, the voids in the IC packages were successfully detected using our THz-TDS imaging system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20technique" title=" non-destructive technique"> non-destructive technique</a>, <a href="https://publications.waset.org/abstracts/search?q=void" title=" void"> void</a>, <a href="https://publications.waset.org/abstracts/search?q=IC%20package" title=" IC package"> IC package</a> </p> <a href="https://publications.waset.org/abstracts/20518/non-destructive-technique-for-detection-of-voids-in-the-ic-package-using-terahertz-time-domain-spectrometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Effect of Chain Length on Skeletonema pseudocostatum as Probed by THz Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruqyyah%20Mushtaq">Ruqyyah Mushtaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiacar%20Gamberdella"> Chiacar Gamberdella</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberta%20Miroglio"> Roberta Miroglio</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Novelli"> Fabio Novelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Domenica%20Papro"> Domenica Papro</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Paturzo"> M. Paturzo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rubano"> A. Rubano</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Sardo"> Angela Sardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae, particularly diatoms, are well suited for monitoring environmental health, especially in assessing the quality of seas and rivers in terms of organic matter, nutrients, and heavy metal pollution. They respond rapidly to changes in habitat quality. In this study, we focused on Skeletonema pseudocostatum, a unicellular alga that forms chains depending on environmental conditions. Specifically, we explored whether metal toxicants could affect the growth of these algal chains, potentially serving as an ecotoxicological indicator of heavy metal pollution. We utilized THz spectroscopy in conjunction with standard optical microscopy to observe the formation of these chains and their response to toxicants. Despite the strong absorption of terahertz radiation in water, we demonstrate that changes in water absorption in the terahertz range due to water-diatom interaction can provide insights into diatom chain length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=THz-TDS%20spectroscopy" title="THz-TDS spectroscopy">THz-TDS spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=diatoms" title=" diatoms"> diatoms</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20ecotoxicology" title=" marine ecotoxicology"> marine ecotoxicology</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20pollution" title=" marine pollution"> marine pollution</a> </p> <a href="https://publications.waset.org/abstracts/188473/effect-of-chain-length-on-skeletonema-pseudocostatum-as-probed-by-thz-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fang%20Liu">Fang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=JunShuai%20Xue"> JunShuai Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=JiaJia%20Yao"> JiaJia Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=GuanLin%20Wu"> GuanLin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=ZuMaoLi"> ZuMaoLi</a>, <a href="https://publications.waset.org/abstracts/search?q=XueYan%20Yang"> XueYan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=HePeng%20Zhang"> HePeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=ZhiPeng%20Sun"> ZhiPeng Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN%20resonant%20tunneling%20diode" title="GaN resonant tunneling diode">GaN resonant tunneling diode</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20current%20density" title=" peak current density"> peak current density</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20oscillation" title=" microwave oscillation"> microwave oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=intrinsic%20capacitance" title=" intrinsic capacitance"> intrinsic capacitance</a> </p> <a href="https://publications.waset.org/abstracts/148950/2106-kacm2-peak-tunneling-current-density-in-gan-based-resonant-tunneling-diode-with-an-intrinsic-oscillation-frequency-of-260ghz-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alka%20Jakhar">Alka Jakhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Harmanpreet%20Kaur%20Sandhu"> Harmanpreet Kaur Sandhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaresh%20Das"> Samaresh Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=detector" title=" detector"> detector</a>, <a href="https://publications.waset.org/abstracts/search?q=responsivity" title=" responsivity"> responsivity</a>, <a href="https://publications.waset.org/abstracts/search?q=topological-semimetals" title=" topological-semimetals"> topological-semimetals</a> </p> <a href="https://publications.waset.org/abstracts/139509/room-temperature-sensitive-broadband-terahertz-photo-response-using-platinum-telluride-based-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Kumar%20Verma">Nirmal Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Jha"> Pallavi Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-color%20laser%20pulses" title="two-color laser pulses">two-color laser pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20radiation" title=" electromagnetic radiation"> electromagnetic radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20plasma" title=" magnetized plasma"> magnetized plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20and%20extraordinary%20modes" title=" ordinary and extraordinary modes"> ordinary and extraordinary modes</a> </p> <a href="https://publications.waset.org/abstracts/53322/electromagnetic-radiation-generation-by-two-color-sinusoidal-laser-pulses-propagating-in-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Graphene Metamaterials Supported Tunable Terahertz Fano Resonance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoyong%20He">Xiaoyong He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz" title=" terahertz"> terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable" title=" tunable"> tunable</a> </p> <a href="https://publications.waset.org/abstracts/54263/graphene-metamaterials-supported-tunable-terahertz-fano-resonance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Engineering the Topological Insulator Structures for Terahertz Detectors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Marchewka">M. Marchewka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topological%20insulator" title="topological insulator">topological insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=THz%20spectroscopy" title=" THz spectroscopy"> THz spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=KP%20model" title=" KP model"> KP model</a>, <a href="https://publications.waset.org/abstracts/search?q=II-VI%20compounds" title=" II-VI compounds"> II-VI compounds</a> </p> <a href="https://publications.waset.org/abstracts/133465/engineering-the-topological-insulator-structures-for-terahertz-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Nondestructive Inspection of Reagents under High Attenuated Cardboard Box Using Injection-Seeded THz-Wave Parametric Generator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shin%20Yoneda">Shin Yoneda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikiya%20Kato"> Mikiya Kato</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosuke%20Murate"> Kosuke Murate</a>, <a href="https://publications.waset.org/abstracts/search?q=Kodo%20Kawase"> Kodo Kawase </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there have been numerous attempts to smuggle narcotic drugs and chemicals by concealing them in international mail. Combatting this requires a non-destructive technique that can identify such illicit substances in mail. Terahertz (THz) waves can pass through a wide variety of materials, and many chemicals show specific frequency-dependent absorption, known as a spectral fingerprint, in the THz range. Therefore, it is reasonable to investigate non-destructive mail inspection techniques that use THz waves. For this reason, in this work, we tried to identify reagents under high attenuation shielding materials using injection-seeded THz-wave parametric generator (is-TPG). Our THz spectroscopic imaging system using is-TPG consisted of two non-linear crystals for emission and detection of THz waves. A micro-chip Nd:YAG laser and a continuous wave tunable external cavity diode laser were used as the pump and seed source, respectively. The pump beam and seed beam were injected to the LiNbO₃ crystal satisfying the noncollinear phase matching condition in order to generate high power THz-wave. The emitted THz wave was irradiated to the sample which was raster scanned by the x-z stage while changing the frequencies, and we obtained multispectral images. Then the transmitted THz wave was focused onto another crystal for detection and up-converted to the near infrared detection beam based on nonlinear optical parametric effects, wherein the detection beam intensity was measured using an infrared pyroelectric detector. It was difficult to identify reagents in a cardboard box because of high noise levels. In this work, we introduce improvements for noise reduction and image clarification, and the intensity of the near infrared detection beam was converted correctly to the intensity of the THz wave. A Gaussian spatial filter is also introduced for a clearer THz image. Through these improvements, we succeeded in identification of reagents hidden in a 42-mm thick cardboard box filled with several obstacles, which attenuate 56 dB at 1.3 THz, by improving analysis methods. Using this system, THz spectroscopic imaging was possible for saccharides and may also be applied to cases where illicit drugs are hidden in the box, and multiple reagents are mixed together. Moreover, THz spectroscopic imaging can be achieved through even thicker obstacles by introducing an NIR detector with higher sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20inspection" title="nondestructive inspection">nondestructive inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20parametric%20source" title=" terahertz parametric source"> terahertz parametric source</a>, <a href="https://publications.waset.org/abstracts/search?q=THz%20spectroscopic%20imaging" title=" THz spectroscopic imaging"> THz spectroscopic imaging</a> </p> <a href="https://publications.waset.org/abstracts/75628/nondestructive-inspection-of-reagents-under-high-attenuated-cardboard-box-using-injection-seeded-thz-wave-parametric-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Emerging Technology for 6G Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaseein%20S.%20Hussein">Yaseein S. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20P.%20Gil%20Jim%C3%A9nez"> Victor P. Gil Jiménez</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulmajeed%20Al-Jumaily"> Abdulmajeed Al-Jumaily</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and the year 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=6G%20networks" title="6G networks">6G networks</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence%20%28AI%29" title=" artificial intelligence (AI)"> artificial intelligence (AI)</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Fi%20technology" title=" Li-Fi technology"> Li-Fi technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Terahertz%20%28THz%29%20communication" title=" Terahertz (THz) communication"> Terahertz (THz) communication</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communication%20%28VLC%29" title=" visible light communication (VLC)"> visible light communication (VLC)</a> </p> <a href="https://publications.waset.org/abstracts/167153/emerging-technology-for-6g-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Self-Action Effects of a Non-Gaussian Laser Beam Through Plasma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar">Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The propagation of the Non-Gaussian laser beam results in strong self-focusing as compare to the Gaussian laser beam, which helps to achieve a prerequisite of the plasma-based electron, Terahertz generation, and higher harmonic generations. The theoretical investigation on the evolution of non-Gaussian laser beam through the collisional plasma with ramped density has been presented. The non-uniform irradiance over the cross-section of the laser beam results in redistribution of the carriers that modifies the optical response of the plasma in such a way that the plasma behaves like a converging lens to the laser beam. The formulation is based on finding a semi-analytical solution of the nonlinear Schrodinger wave equation (NLSE) with the help of variational theory. It has been observed that the decentred parameter ‘q’ of laser and wavenumber of ripples of medium contribute to providing the required conditions for the improvement of self-focusing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20beam" title="non-Gaussian beam">non-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=collisional%20plasma" title=" collisional plasma"> collisional plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20theory" title=" variational theory"> variational theory</a>, <a href="https://publications.waset.org/abstracts/search?q=self-focusing" title=" self-focusing"> self-focusing</a> </p> <a href="https://publications.waset.org/abstracts/124754/self-action-effects-of-a-non-gaussian-laser-beam-through-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Crystalline Silicon Optical Whispering Gallery Mode (WGM) Resonators for Precision Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Bilenko">Igor Bilenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Artem%20Shitikov"> Artem Shitikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Gorodetsky"> Michael Gorodetsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical whispering gallery mode (WGM) resonators combine very high optical quality factor (Q) with small size. Resonators made from low loss crystalline fluorites (CaF2, MgF2) may have Q as high as 1010 that make them unique devices for modern applications including ultrasensitive sensors, frequency control, and precision spectroscopy. While silicon is a promising material transparent from near infrared to terahertz frequencies, fundamental limit for Si WGM quality factor was not reached yet. In our paper, we presented experimental results on the preparation and testing of resonators at 1550 nm wavelength made from crystalline silicon grown and treated by different techniques. Q as high as 3x107 was demonstrated. Future steps need to reach a higher value and possible applications are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20quality%20factor" title="optical quality factor">optical quality factor</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20optical%20losses" title=" silicon optical losses"> silicon optical losses</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20optical%20resonator" title=" silicon optical resonator"> silicon optical resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=whispering%20gallery%20modes" title=" whispering gallery modes"> whispering gallery modes</a> </p> <a href="https://publications.waset.org/abstracts/81630/crystalline-silicon-optical-whispering-gallery-mode-wgm-resonators-for-precision-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Terahertz Surface Plasmon in Carbon Nanotube Dielectric Interface via Amplitude Modulated Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Singh">Monika Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A carbon nanotube thin film coated on dielectric interface is employed to produce THz surface plasma wave (SPW). The carbon nanotube has its plasmon frequency in the THz range. The SPW field falls off away from the metal film both inside the dielectric as well as in free space. An amplitude modulated laser pulse normally incident, from free space on slow wave structure, exert a modulation frequency ponderomotive force on the free electrons of the CNT film and resonantly excite the THz surface plasma wave at the modulation frequency. Carbon nanotube based plasmonic nano-structure materials provides potentially more versatile approach to tightly confined surface modes in the THz range in comparison to noble metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmons" title="surface plasmons">surface plasmons</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20waves" title=" surface waves"> surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=THz%20radiation" title=" THz radiation"> THz radiation</a> </p> <a href="https://publications.waset.org/abstracts/65604/terahertz-surface-plasmon-in-carbon-nanotube-dielectric-interface-via-amplitude-modulated-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Optical Heterodyning of Injection-Locked Laser Sources: A Novel Technique for Millimeter-Wave Signal Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subal%20Kar">Subal Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhuja%20Ghosh"> Madhuja Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumik%20Das"> Soumik Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Antara%20Saha"> Antara Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel technique has been developed to generate ultra-stable millimeter-wave signal by optical heterodyning of the output from two slave laser (SL) sources injection-locked to the sidebands of a frequency modulated (FM) master laser (ML). Precise thermal tuning of the SL sources is required to lock the particular slave laser frequency to the desired FM sidebands of the ML. The output signals from the injection-locked SL when coherently heterodyned in a fast response photo detector like high electron mobility transistor (HEMT), extremely stable millimeter-wave signal having very narrow line width can be generated. The scheme may also be used to generate ultra-stable sub-millimeter-wave/terahertz signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FM%20sideband%20injection%20locking" title="FM sideband injection locking">FM sideband injection locking</a>, <a href="https://publications.waset.org/abstracts/search?q=master-slave%20injection%20locking" title=" master-slave injection locking"> master-slave injection locking</a>, <a href="https://publications.waset.org/abstracts/search?q=millimetre-wave%20signal%20generation" title=" millimetre-wave signal generation"> millimetre-wave signal generation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20heterodyning" title=" optical heterodyning"> optical heterodyning</a> </p> <a href="https://publications.waset.org/abstracts/9221/optical-heterodyning-of-injection-locked-laser-sources-a-novel-technique-for-millimeter-wave-signal-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Tunable Graphene Metasurface Modeling Using the Method of Moment Combined with Generalised Equivalent Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Soltani">Imen Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Takoua%20Soltani"> Takoua Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20Aguili"> Taoufik Aguili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metamaterials crossover classic physical boundaries and gives rise to new phenomena and applications in the domain of beam steering and shaping. Where electromagnetic near and far field manipulations were achieved in an accurate manner. In this sense, 3D imaging is one of the beneficiaries and in particular Denis Gabor’s invention: holography. But, the major difficulty here is the lack of a suitable recording medium. So some enhancements were essential, where the 2D version of bulk metamaterials have been introduced the so-called metasurface. This new class of interfaces simplifies the problem of recording medium with the capability of tuning the phase, amplitude, and polarization at a given frequency. In order to achieve an intelligible wavefront control, the electromagnetic properties of the metasurface should be optimized by means of solving Maxwell’s equations. In this context, integral methods are emerging as an important method to study electromagnetic from microwave to optical frequencies. The method of moment presents an accurate solution to reduce the problem of dimensions by writing its boundary conditions in the form of integral equations. But solving this kind of equations tends to be more complicated and time-consuming as the structural complexity increases. Here, the use of equivalent circuit’s method exhibits the most scalable experience to develop an integral method formulation. In fact, for allaying the resolution of Maxwell’s equations, the method of Generalised Equivalent Circuit was proposed to convey the resolution from the domain of integral equations to the domain of equivalent circuits. In point of fact, this technique consists in creating an electric image of the studied structure using discontinuity plan paradigm and taken into account its environment. So that, the electromagnetic state of the discontinuity plan is described by generalised test functions which are modelled by virtual sources not storing energy. The environmental effects are included by the use of an impedance or admittance operator. Here, we propose a tunable metasurface composed of graphene-based elements which combine the advantages of reflectarrays concept and graphene as a pillar constituent element at Terahertz frequencies. The metasurface’s building block consists of a thin gold film, a dielectric spacer SiO₂ and graphene patch antenna. Our electromagnetic analysis is based on the method of moment combined with generalised equivalent circuit (MoM-GEC). We begin by restricting our attention to study the effects of varying graphene’s chemical potential on the unit cell input impedance. So, it was found that the variation of complex conductivity of graphene allows controlling the phase and amplitude of the reflection coefficient at each element of the array. From the results obtained here, we were able to determine that the phase modulation is realized by adjusting graphene’s complex conductivity. This modulation is a viable solution compared to tunning the phase by varying the antenna length because it offers a full 2π reflection phase control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20moment%20combined%20with%20generalised%20equivalent%20circuit" title=" method of moment combined with generalised equivalent circuit"> method of moment combined with generalised equivalent circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20metasurface" title=" reconfigurable metasurface"> reconfigurable metasurface</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectarray" title=" reflectarray"> reflectarray</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20domain" title=" terahertz domain"> terahertz domain</a> </p> <a href="https://publications.waset.org/abstracts/82831/tunable-graphene-metasurface-modeling-using-the-method-of-moment-combined-with-generalised-equivalent-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terahertz&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terahertz&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10